数据结构线性表
数据结构 线性表
第1讲线性表本章主要掌握如下内容:线性表的定义和基本操作,线性表的实现,线性表的顺序存储结构及链式存储结构,线性表的应用。
知识点分析(一)线性表的定义和基本操作1.线性表基本概念1)定义:是由相同类型的结点组成的有限序列。
如:由n个结点组成的线性表(a1, a2, …, a n)a1是最前结点,a n是最后结点。
结点也称为数据元素或者记录。
2)线性表的长度:线性表中结点的个数称为其长度。
长度为0的线性表称为空表。
3)结点之间的关系:设线性表记为(a1,a2,…a i-1 , a i, a i+1 ,…a n),称a i-1是a i的直接前驱结点....(简称前驱),a i+1是a i的直接后继结点....(简称后继)。
4)线性表的性质:①线性表结点间的相对位置是固定..的,结点间的关系由结点在表中的位置确定。
②如果两个线性表有相同的数据结点,但它们的结点顺序不一致,该两个线性表也是不相等的。
注意:线性表中结点的类型可以是任何数据(包括简单类型和复杂类型),即结点可以有多个成分,其中能唯一标识表元的成分称为关键字(key),或简称键。
以后的讨论都只考虑键,而忽略其它成分,这样有利于把握主要问题,便于理解。
『经典例题解析』线性表的特点是每个元素都有一个前驱和一个后继。
( )【答案】错误。
【解析】线性表的第一个数据元素没有前驱,最后一个元素没有后继。
其余的所有元素都有一个前驱和后继。
2.线性表的抽象数据类型线性表是一个相当灵活的数据结构,其长度可以根据需要增加或减少。
从操作上讲,用户不仅可以对线性表的数据元素进行访问操作,还可以进行插入、删除、定位等操作。
1)线性表的基本操作假设线性表L有数据对象 D={ai | ai∈ElemSet,i=1,2,3,…,n,n>=0},数据元素之间的关系R={<ai-1,ai>|ai-1,ai∈D,i=1,2,…,n},则线性表L的基本操作如下所示:●InitList(&L):其作用是构造一个长度为0的线性表(空线性表);●DestoryList(&L):其作用是销毁当前的线性表L;●ClearList(&L):清空线性表L,使之成为空表;●ListLength(L):返回线性表L的长度,即线性表中数据元素的个数;●ListEmpty(L) :判断线性表L是否为空表,是则返回True,否则返回False;●GetElem(L,i,&e):将线性表L中第i个数据元素的值返回到变量e中;●LocateELem(L,e,compare( )) :判断线性表L中是否存在与e满足compare()条件的数据元素,有则返回第一个数据元素;●PriorElem(L,cur_e,&pri_e):返回线性表L中数据元素cur_e的前驱结点;●NextElem(L,cur_e,&next_e):返回线性表L中数据元素cur_e的后继结点;●ListInsert(&L,i,e):向线性表L的第i个位置之前插入一个数据元素,其值为e;●ListDelete(&L,i,&e):删除线性表L的第i个数据元素,并将该数据元素的值返回到e中;●ListTraverse(L,visit()):遍历线性表中的每个数据元素。
数据结构第1讲---线性表
34F2 地址 被释放,变 量P与地址 34F2没有关 系
p1^
200 34F2
34F2
new(p1) ——向计算机申请内存地址 p1^:=200 ——给p1指向的单元赋值 dispose(p1) ——释放存储单元
链式结构——什么是指针
Type p=^integer; arr=array[1..4] of char; arrp = ^arr; Var p1:p; p2:arrp;
线性结构 数据的逻辑结构 数 据 结 构 树形结构 图形结构 数据的存储结构 顺序存储
链式存储
数据结构的基本运算 :查找、插入、删除等
三、线性结构——线性表
1、线性表的概念
线性表是由n(n≥0)个具有相同特性数据元素(结点)
a1,a2,…,an组成的有限序列。
线性表的长度:所含元素的个数,用n表示,n>=0。
在我们生活中有哪些属于线性表的例子,列举几个。 1、英文字母表(A,B,…,Z)是线性表, 表中每个字母是一个数据元素(结点)
2、学生成绩表中,每个学生及其成绩是一
个数据元素,其中数据元素由学号、姓名、
各科成绩及平均成绩等数据项组成。
4、线性表的顺序存储
顺序存储是线性表的一种最 简单的存储结构,存储方式是: 在内存中为线性表开辟一块连 续的存储空间。用数组来存放 每一个节点。
[例4-2] 法雷序列
[问题描述]对任意给定的一个自然数n(n<=100),将 分母小于等于n的不可约的真分数按上升次序排序,并 且在第一个分数前加0/1,而在最后一个分数后加1/1, 这个序列称为n级的法雷序列。 当n=8时序列为:0/1, 1/8, 1/7, 1/6,1/5, 1/4,2/7,1/3,3/8, 2/5,3/7,1/2,4/7,3/5,5/8,2/3,5/7,3/4, 4/5,5/6,6/7,7/8, 1/1 。 编程求出n级的法雷序列,每行输出10个分数。
数据结构第二章:线性表
实现:可用C 实现:可用C语言的一维数组实现
6
V数组下标 0 1
内存 a1 a2
元素序号 1 2
typedef int DATATYPE; #define M 1000 DATATYPE data[M]; 例 typedef struct card { int num; char name[20]; char author[10]; char publisher[30]; float price; }DATATYPE; DATATYPE library[M];
4
{加工型操作 加工型操作} 加工型操作
ClearList( &L ) 初始条件:线性表 L 已存在。 操作结果:将 L 重置为空表。 PutElem( &L, i, &e ) 初始条件:线性表L已存在,1≤i≤LengthList(L)。 操作结果:L 中第 i 个元素赋值同 e 的值 ListInsert( &L, i, e ) 初始条件:线性表 L 已存在,1≤i≤LengthList(L)+1。 操作结果:在 L 的第 i 个元素之前插入新的元素 e,L 的长度增1。 ListDelete( &L, i, &e ) 初始条件:线性表 L 已存在且非空,1≤i≤LengthList(L)。 操作结果:删除 L 的第 i 个元素,并用 e 返回其值,L 的长度减1。 }ADT LIST
3
PriorElem( PriorElem L, cur_e, &pre_e ) 初始条件:线性表 L 已存在。 操作结果:若 cur_e 是 L 中的数据元素,则用 pre_e 返回 它的前驱,否则操作失败,pre_e 无定义。 NextElem( NextElem L, cur_e, &next_e ) 初始条件:线性表 L 已存在。 操作结果:若 cur_e 是 L 中的数据元素,则用 next_e 返 回它的后继,否则操作失败,next_e 无定义。 GetElem( GetElem L, i, &e ) 初始条件:线性表 L 已存在,1≤i≤LengthList(L)。 操作结果:用 e 返回 L 中第 i 个元素的值。 LocateElem( LocateElem L, e, compare( ) ) 初始条件:线性表 L 已存在,compare( ) 是元素判定函数。 操作结果:返回 L 中第1个与 e 满足关系 compare( ) 的元 素的位序。若这样的元素不存在,则返回值为0。 ListTraverse(L, visit( )) ListTraverse 初始条件:线性表 L 已存在,visit( ) 为元素的访问函数。 操作结果:依次对 L 的每个元素调用函数 visit( )。 一旦 visit( ) 失败,则操作失败。
【数据结构】线性表的基本操作
【数据结构】线性表的基本操作【数据结构】线性表的基本操作1:定义1.1 线性表的概念1.2 线性表的特点2:基本操作2.1 初始化操作2.1.1 空表的创建2.1.2 非空表的创建2.2 插入操作2.2.1 在指定位置插入元素2.2.2 在表头插入元素2.2.3 在表尾插入元素2.3 删除操作2.3.1 删除指定位置的元素2.3.2 删除表头的元素2.3.3 删除表尾的元素2.4 查找操作2.4.1 按值查找元素2.4.2 按位置查找元素2.5 修改操作2.5.1 修改指定位置的元素 2.5.2 修改指定值的元素3:综合操作3.1 反转线性表3.2 合并两个线性表3.3 排序线性表3.4 删除重复元素3.5 拆分线性表4:线性表的应用场景4.1 数组的应用4.2 链表的应用4.3 栈的应用4.4 队列的应用附件:无法律名词及注释:- 线性表:根据某种规则排列的一组元素的有限序列。
- 初始化操作:创建一个空的线性表,或者创建一个已经包含一定元素的线性表。
- 插入操作:在线性表的指定位置或者表头、表尾插入一个新元素。
- 删除操作:从线性表中删除掉指定位置或者表头、表尾的元素。
- 查找操作:在线性表中按照指定的元素值或者位置查找元素。
- 修改操作:更改线性表中指定位置或者值的元素。
- 反转线性表:将线性表中的元素顺序颠倒。
- 合并线性表:将两个线性表合并成一个新的线性表。
- 排序线性表:按照某种规则对线性表中的元素进行排序。
- 删除重复元素:将线性表中重复的元素删除,只保留一个。
- 拆分线性表:将一个线性表分成多个不重叠的子线性表。
02331自考数据结构 第二章 线性表
return ;
}
if ( L -> length >= ListSize ){
printf (" overflow ");
return ;
}
for ( j - L -> length -1; j >= i -1; j --)
L ->data [ j +1]= L -> data [ j ]; //从最后一个元素开始逐一后移
线性表的基本运算
上述运算仅仅是线性表的基本运算,不是其全部运 算。因为对不同问题的线性表,所需要的运算可能不同。 因此,对于实际问题中涉及其他更为复杂的运算,可用 基本运算的组合来实现。
线性表的基本运算
【例2.1】假设有两个线性表 LA 和 LB 分别表示两个 集合 A 和 B ,现要求一个新集合 A = A∪B 。
线性表的逻辑定义
数据元素“一个接一个的排列”的关系叫做 线性关系,线性关系的特点是“一对一”,在计 算机领域用“线性表”来描述这种关系。另外, 在一个线性表中数据元素的类型是相同的,或者 说线性表是由同一类型的数据元素构成的,如学 生情况信息表是一个线性表,表中数据元素的类 型为学生类型;一个字符串也是一个线性表:表 中数据元素的类型为字符型等等。
,
a2
i
,…,
ai-1
,
a.aii++1.1 , .…,
an
)
an
线性表n的-1逻辑结an构和存储结构都发…生了相应的变化, 与插入运算相反,插…入是向后移动元素,而删除运算则
是向前移M动AX元-1 素,除非i=n 时直接删除终端元素,不需移
动元素。
删除前
删除后
数据结构线性表
数据结构线性表一、引言数据结构是计算机存储、组织数据的方式,它决定了数据访问的效率和灵活性。
在数据结构中,线性表是一种最基本、最常用的数据结构。
线性表是由零个或多个数据元素组成的有限序列,其中数据元素之间的关系是一对一的关系。
本文将对线性表的概念、分类、基本操作及其应用进行详细阐述。
二、线性表的概念1.数据元素之间具有一对一的关系,即除了第一个和一个数据元素外,其他数据元素都是首尾相连的。
2.线性表具有唯一的第一个元素和一个元素,分别称为表头和表尾。
3.线性表的长度是指表中数据元素的个数,长度为零的线性表称为空表。
三、线性表的分类根据线性表的存储方式,可以将线性表分为顺序存储结构和链式存储结构两大类。
1.顺序存储结构:顺序存储结构是将线性表中的数据元素按照逻辑顺序依次存放在一组地质连续的存储单元中。
顺序存储结构具有随机访问的特点,可以通过下标快速访问表中的任意一个元素。
顺序存储结构的线性表又可以分为静态顺序表和动态顺序表两种。
2.链式存储结构:链式存储结构是通过指针将线性表中的数据元素连接起来,形成一个链表。
链表中的每个节点包含一个数据元素和一个或多个指针,指向下一个或前一个节点。
链式存储结构具有动态性,可以根据需要动态地分配和释放节点空间。
链式存储结构的线性表又可以分为单向链表、双向链表和循环链表等。
四、线性表的基本操作线性表作为一种数据结构,具有一系列基本操作,包括:1.初始化:创建一个空的线性表。
2.插入:在线性表的指定位置插入一个数据元素。
3.删除:删除线性表中指定位置的数据元素。
4.查找:在线性表中查找具有给定关键字的数据元素。
5.更新:更新线性表中指定位置的数据元素。
6.销毁:释放线性表所占用的空间。
7.遍历:遍历线性表中的所有数据元素,进行相应的操作。
8.排序:对线性表中的数据元素进行排序。
9.合并:将两个线性表合并为一个线性表。
五、线性表的应用1.程序语言中的数组:数组是一种典型的顺序存储结构的线性表,常用于存储具有相同类型的数据元素。
数据结构 线性表
(9) Status NextElem_Sq(SqList L, ElemType cur_e, ElemaType &next_e)
//若cur_e是线性表L的元素且不是最后一个,返回它的后继 { for (i=0; i<L.length-1; i++) if (cur_e==L.elem[i]) { next_e=L.elem[i+1]; return OK; } return ERROR; }//NextElem_Sq O(n)
抽象数据类型 唯 一 数据的逻辑结构 确 操作的定义 定
集合 *
线性表
特殊线性表 扩展线性表
线性结构
树形结构 图形结构
灵 活 数据的存储结构 操作的实现 设 计
顺序存储 链式存储 散列(哈希)存储
数据的基本操作:针对结构、针对元素、针对状态
数据结构---第二章 线性表 1
第二章 线性表
2.1 2.2 2.3 2.4
数据结构---第二章 线性表
9
2.2 线性表的顺序存储结构(顺序表)
起始地址为b、最多可容纳maxlen个元素的线性表
下标 存储地址
0
1
b b+c
b+(i-1)c
a1 a2
ai
c个存储单元
i-1
LOC(ai)=LOC(a1)+(i-1)c LOC(ai)=LOC(ai-1)+c
n-1
b+(n-1)c
n-1
int LocateElem_Sq(SqList L, ElemType e, (7) Status (*compare)(ElemType,ElemType) ) //在线性表L中查找第1个值与e满足 //compare()的元素的位序 { for (i=0; i<L.length; i++) L.elem[i]==e if ( (*compare)(L.elem[i],e) ) return i+1; return 0 ; //作为未找到的特殊标记 } // LocateElem_Sq O(n) P25-2.6
《数据结构》课程课件第二章线性表
Step2:数据域赋值
插入后: Step3:插入(连接)
X q
(1)式和(2)式的顺序颠倒,可以吗?
4、插入元素(在第i个元素之前插入元素e)
为什么时间复杂度不再是O(1)?
第i-1个元素
第i个元素
p
s
新插入元素
5、删除p所指元素的后继元素
P
删除前:
P->next P->next->next
删除:
五、线性表ADT的应用举例
Void mergelist(list La,list Lb,list &Lc)
{ //已知线性表La和Lb中的数据元素按值非递减排列
//归并La和Lb得到新的线性表Lc,Lc中的元素也按值非递减排列
例: 将两个各有n个元素的有序表归并成一个有序表, 其最小的比较次数是( )。 A、n B、2n-1 C、2n D、n-1
三、线性表的ADT
四、线性表的分类
五、线性表ADT的应用举例
例1:已知有线性表L,要求删除所有X的出现
五、线性表ADT的应用举例
例2: 已知有两个分别有序的线性表(从小到大),要 求合并两个线性表,且合并后仍然有序。——归并 方法1: 合并,再排序O((m+n)2)
方法2: 归并,利用分别有序的特点O((m+n))
二、线性表上常见的运算
8、删除 Delete(L,i):删除线性表的第i个元素 删除前 a1 a2 … ai-1 ai ai+1 … an 删除后 a1 a2 … ai-1 ai+1 … an 9、判断是否为空 Empty(L):线性表空,则返回TRUE, 否则FALSE 10、输出线性表 Print(L):输出线性表的各个元素 11、其它操作 复制、分解、合并、分类等
数据结构实验报告线性表
数据结构实验报告线性表数据结构实验报告:线性表引言:数据结构是计算机科学中的重要概念,它涉及到如何组织和存储数据,以及如何有效地操作和管理这些数据。
线性表是数据结构中最基本的一种,它是一种有序的数据元素集合,其中的元素之间存在着一对一的关系。
一、线性表的定义和特点线性表是由n个数据元素组成的有限序列,其中n为表的长度。
这些数据元素可以是相同类型的,也可以是不同类型的。
线性表中的数据元素按照一定的顺序排列,并且每个数据元素都有唯一的前驱和后继。
线性表的特点有以下几个方面:1. 数据元素之间是一对一的关系,即每个数据元素只有一个直接前驱和一个直接后继。
2. 线性表中的元素是有序的,每个元素都有一个确定的位置。
3. 线性表的长度是有限的,它的长度可以是0,也可以是任意正整数。
二、线性表的实现方式线性表可以使用不同的数据结构来实现,常见的实现方式有数组和链表。
1. 数组实现线性表:数组是一种连续存储的数据结构,它可以用来存储线性表中的元素。
数组的优点是可以快速访问任意位置的元素,但是插入和删除操作需要移动其他元素,效率较低。
2. 链表实现线性表:链表是一种非连续存储的数据结构,它通过指针将线性表中的元素链接起来。
链表的优点是插入和删除操作简单高效,但是访问任意位置的元素需要遍历链表,效率较低。
三、线性表的基本操作线性表的基本操作包括插入、删除、查找和修改等。
1. 插入操作:插入操作用于向线性表中插入一个新元素。
具体步骤是先将插入位置后面的元素依次后移,然后将新元素插入到指定位置。
2. 删除操作:删除操作用于从线性表中删除一个元素。
具体步骤是先将删除位置后面的元素依次前移,然后将最后一个元素删除。
3. 查找操作:查找操作用于在线性表中查找指定元素。
具体步骤是从线性表的第一个元素开始逐个比较,直到找到匹配的元素或者到达线性表的末尾。
4. 修改操作:修改操作用于修改线性表中的某个元素的值。
具体步骤是先查找到要修改的元素,然后将其值更新为新值。
数据结构线性表ppt课件
01
02
03
04
插入操作
在链表的指定位置插入一个新 节点,需要修改相邻节点的指
针。
删除操作
删除链表的指定节点,需要修 改相邻节点的指针。
查找操作
从链表的头节点开始,顺序遍 历链表,直到找到目标元素或
遍历到链表末尾。
遍历操作
从链表的头节点开始,顺序访 问每个节点,直到遍历到链表
末尾。
04 线性表应用举例 与问题分析
多项式表示与计算问题
01
02
03
多项式表示方法
数组表示法和链表表示法 。
数组表示法
将多项式的系数按次序存 放在一个数组中,通过下 标表示对应的幂次。
链表表示法
每个节点包含系数和指数 两个数据域,以及一个指 向下一个节点的指针域。
一元多项式相加算法设计
• 算法思想:将两个多项式中的同类项系数相加,得到新的 多项式。
删除操作
删除指定位置i的元素,需要将i之后的元素都向前移动 一个位置。
03 链式存储结构及 其实现
链式存储结构原理及特点
链式存储结构原理
使用一组任意的存储单元存储线 性表的数据元素(这组存储单元 可以是连续的,也可以是不连续 的)。
链式存储结构特点
逻辑上相邻的元素在物理位置上 不一定相邻,元素之间的逻辑关 系是通过指针链接来表示的。
...,an组成的有序序列。
性质
集合中必存在唯一的一个“第一元素 ”。
集合中必存在唯一的一个“最后元素 ”。
除最后元素之外,均有唯一的后继。
除第一元素之外,均有唯一的前驱。
线性表与数组关系
数组是线性表的一种表现和实现形式。
线性表更侧重于逻辑概念,而数组则是这种逻辑概念在计算机中的一种存储方式。
数据结构之线性表
线性表是最简单、最基本、最常用的数据结构。线性表是线性结构的抽象(Abstract),线性 结构的特点是结构中的数据元素之间存在一对一的线性关系。这种一对一的关系指的是数据 元素之间的位置关系,即:( 1)除第一个位置的数据元素外,其它数据元素位置的前面都 只有一个数据元素;( 2)除最后一个位置的数据元素外,其它数据元素位置的后面都只有 一个元素。也就是说,数据元素是一个接一个的排列。因此,可以把线性表想象为一种数据 元素序列的数据结构。
单链表的存储
链表是用一组任意的存储单元来存储线性表中的数据元素(这组存储单元可以是连续的,也 可以是不连续的)。那么,怎么表示两个数据元素逻辑上的相邻关系呢?即如何表示数据元 素之间的线性关系呢?为此,在存储数据元素时,除了存储数据元素本身的信息外,还要存 储与它相邻的数据元素的存储地址信息。这两部分信息组成该数据元素的存储映像(Image), 称为结点(Node)。把存储据元素本身信息的域叫结点的数据域(Data Domain),把存储与它 相邻的数据元素的存储地址信息的域叫结点的引用域(Reference Domain)。因此,线性表 通过每个结点的引用域形成了一根“链条”,这就是“链表”名称的由来。 如果结点的引用域只存储该结点直接后继结点的存储地址,则该链表叫单链表(Singly Linked List)。把该引用域叫 next。单链表结点的结构如图所示,图中 data 表示结点的数 据域。
data = val; next = p; }
//构造器
public DbNode(DbNode<T> p) {
next = p; }
//构造器 public DbNode(T val) { data = val; next = null; }
数据结构线性表
数据结构---线性表线性表代码主要参考严蔚敏《数据结构(c语言版)》,有部分改动线性表的定义定义•线性表是具有相同的数据类型的n(n >= 0)个数据元素的有限序列,当n=0时线性表为一个空表•用L表示线性表则L = (a1,a2,a3,…,ano a1为表头元素,an为表尾元素o a1无直接前驱,an无直接后继特点•表中元素个数有限•表中元素具有逻辑上的顺序,表中元素有先后次序•表中元素都是数据元素•表中元素的数据类型都相同,每个元素占的空间大小一致要点数据项、数据元素、线性表的关系线性表由若干个数据元素组成,而数据元素又由若干个数据项组成,数据项是数据的不可分割的最小单位。
其中姓名,学号等就是数据项线性表的顺序表示顺序表的定义顺序表是指用一组地址连续的存储单元依次存储信息表中的数据元素,从而使得逻辑相邻的两个元素在物理位置上也相邻预先定义(为了代码可以运行)#define True 1#define False 0#define OK 1#define ERROR 0#define INFEASIBLE -1#define OVERFLOW -2typedef int Status;第n个元素的内存地址表示为LOC(A) + (n-1)*sizeof(ElemType)假定线性表的元素类型为ElemType,则线性表的顺序存储类型描述为typedef int ElemType ;#define MaxSize 50typedef struct{ElemType data[MaxSize];int length;}SqList;一维数组可以是静态分配的,也可以是动态分配的。
静态分配后大小和空间都固定了,下面使用动态分配的形式typedef int ElemType ;#define InitSize 100 //表长度的初始大小定义#define ListIncreasement 10 //线性表存储空间的分配增量typedef struct{ElemType *data;int MaxSize,length;}SeqList;顺序表的初始化顺序表的初始化,&是C++的引用,可以使用指针代替Status InitList(SeqList &L){L.data = (ElemType *) malloc(InitSize * sizeof(ElemType));if(! L.data) exit(OVERFLOW);//存储分配失败L.length = 0;L.MaxSize = InitSize;return OK;}顺序表的插入在顺序表L的第i(1<= i <= L.length +1)个位置插入新元素e,需要将第n 个至第i (共n-i+1)个元素向后移动一个位置【最后一个到倒数第n-i+i个元素向后移动一位】。
数据结构(C语言版) 线性表 详细举例介绍
}
} // union
O(ListLength2(Lb))
算法2.1’’
试改变结构, 选用有序表表示集合。
有序表: 其数据元素依值从小 到大(非递减)有序排列的 线性表。
例如: (2,3,3,5,6,6,6,8,12)
void purge(List &La, List Lb) {
(求数据元素的后继)
初始条件: 线性表L已存在。
若cur_e是L的元素,但不是 操作结果:
最后一个,则用next_e返回它 的后继,否则操作失败, next_e无定义。
GetElem( L, i, &e ) (求线性表中某个数据元素)
线性表L已存在, 初始条件: 且 1≤i≤LengthList(L)
算法2.1’’
InitList(LA); La_len = ListLength(La); Lb_len =ListLength(Lb); // 求线性表的长度
for (i = 1; i <= Lb_len; i++) { GetElem(Lb, i, e);
// 取Lb中第i个数据元素赋给e
if (ListEmpty(La) || !equal (en, e)) { ListInsert(La, ++La_len, e); 算法2.1’ en = e;
} // La中不存在和 e 相同的数据元素,则插入之
}
}
O(ListLength(Lb))
例2-2 (教材P.20)
归并两个“其数据元素按值非递减有 序排列”的线性表 LA 和 LB,求得线性 表 LC 也具有同样特性。
数据结构导论 第2章 线性表
线性表是一种线性结构,线性结构的特点是数据元 素之间是一种线性关系,数据元素“一个接一个的 排列”。 线性结构是n(n>=0)个结点的有穷序列。对于 n>0的线性结构表示成: (a1,a2,… ai-1,ai,ai+1,…an) a1称为起始结点 an称为终端结点 起始结点, 终端结点; 起始结点 终端结点 ai-1 称为 ai 的直接前趋 i+1 称为 ai 的直接后继 直接前趋,a 直接后继。 直接前趋 直接后继
4.查找(定位) locate(L,x): .查找(定位) :
依次将顺序表L中的每个元素与给定的值x进行比 较。若找到则返回其序号(下标+1),否则返回0。 int locate (sqlist L, datatype x) { int i; for ( i=0; i<st; i++) if (L.data[i]==x) return (i+1); return(0); }
void insert (sqlist *L, datatype x, int i ) { if (i<1 || i>L->last+1) error (“插入位置错误”); else if (L->last==maxsize) error (“溢出”); else { for (j=L->last-1; j>=i-1; j--) //往后移动元素 //往后移动元素 L->data[j+1]=L->data[j]; L->data[i-1]=x; //插入x L->last++; //修改表长 } }
常见的线性表的基本运算有以下几个: 常见的线性表的基本运算有以下几个:
数据结构 第二章__线性表(本)
数据结构与算法华东师范大学计算机系杨沛第二章线性表2.1 线性表的基本概念线性表是具有相同数据类型的数据元素的有限序列。
由n(n≥0)个数据元素k0,k1,…,kn-1组成的线性表记为(k0 ,k1 ,…,kn-1),线性表中包含的数据元素的个数n称为线性表的长度(length),称长度为零的线性表为空的线性表(简称为空表)。
相关概念:表头、表尾、前驱、后继有序线性表:数据元素的相对位置与它们的值有联系。
无序线性表:数据元素的相对位置与它们的值没有联系。
第二章线性表例小于20的质数组成的线性表(2,3,5,7,11,13, 17,19);英文字母表也是线性表,表中每个字母是一个数据元素:(A,B,C,……,Z);2.2 顺序表2.2.1 线性表顺序表(sequential list)就是顺序存贮的线性表,即用一组连续的存贮单元依次、连续地存贮线性表中的结点。
如果每个结点占用s个存贮单元,并假设存放结点ki(0≤i≤n-1)的开始地址为loc(k0),则结点ki的地址loc(ki)可表示成Loc(ki) =loc(k0) + i*s。
2.2 顺序表在C 语言中,可用数组表示线性表:#define MAXN 100int list[MAXN];int n;线性表的结点k 0,k 1,…,k n-1依次存放在数组单元list[0],list[1],…,list[n-1]。
2.2.1 线性表最大表长实际表长线性表2.2 顺序表2.2.1 线性表假设s=sizeof(int),则可得到计算ki的地址的公式,因loc(ki)=&list[i],而&list[i]=&list[0]+i·s,故loc(ki)=&list[0]+i·s。
2.2 顺序表2.2.2 顺序表的操作(1)初始化:初始长度置为0即可(n=0;),数组空间在编译时分配。
(2)顺序表的插入:插入算法的C函数SqListInsert():若插入位置i不在可以插入的位置上,即i<0或i>n,则返回0;若n=MAXN,即线性表已满,此时数组list[]没有多余的存贮单元可以存放新结点,则返回-1;若插入成功,则返回12.2 顺序表实际表长(2)顺序表的插入:int SqListInsert(int list[],int*p_n,int i,int x) {int j;if(i<0||i>*p_n)return(0);//i不是合法的插入位置if(*p_len==MAXN)return(-1);//线性表已满2.2 顺序表for(j=*p_n;j>i;j--)list[j]=list[j-1];//结点右移list[i]=x;(*p_n)++;//表长加1return(1);}2.2 顺序表(2)顺序表的插入:对于存放在数组list[]中的、具有n个结点的顺序表,为了把值为x的结点插在表的位置i(0≤i≤n)上,可调用如下的语句:k=SqListInsert(list, &n, i, x);注:结点移动是本算法的关键操作2.2 顺序表(3)顺序表的删除:删除算法的C函数SqListDelete():在具有n个结点的顺序表中,删除第i(0≤i≤n-1)个位置上的结点,使线性表长度减1,若删除位置不合法,即i<0或i≥n,则返回0;若删除位置合法,即0≤i≤n-1,则删除成功,返回1。
数据结构——线性表(顺序实现)
数据结构——线性表(顺序实现) 好好学习基础知识,出⼈头地就靠它了,内外兼修。
(好吧,我现在内外都不⾏)写这篇⽂章的⽬的就是为了,巩固刚学完的线性表,个⼈能⼒有限,若有不当之处,望指出。
线性表 好了,扯完了,说正事: 1、定义 线性表是⼀种及其常⽤的并且最简单的⼀种数据结构。
简单来说,线性表就是集合⾥的元素的有限排列。
(在这⾥我把集合定义为具有相同属性的元素,会有些狭义) 在线性表中数据元素之间的关系是⼀对⼀的关系,即除了第⼀个和最后⼀个数据元素之外,其它数据元素都是⾸尾相接的(注意,这句话只适⽤⼤部分线性表,⽽不是全部。
⽐如,循环链表逻辑层次上也是⼀种线性表(存储层次上属于链式存储),但是把最后⼀个数据元素的尾指针指向了⾸位结点)[] 怎么说呢,毕竟数据结构毕竟是逻辑结构,逻辑上符合线性结构的特征即可,存储结构能实现就⾏。
线性表的很重要!很重要!很重要!后⾯的栈,队列,串等都是基于线性表的基础上实现的,所以说⼀定要学好线性表 2、线性表的特点: 对于任意的的⾮空线性表或者线性结构有: 1、存在唯⼀⼀个被称为 ”第⼀个“的元素 2、存在唯⼀⼀个被称为 ”最后⼀个“的元素 3、出第⼀个元素之外,每⼀个元素都存在⼀个后继 4、除最后⼀个元素之外,每⼀个元素都存在⼀个前驱 3、基本操作 1、Create(*L)创建空表 2、InitEmpty(*L)初始化 3、getLength(*L)获取长度 4、Insert(*L)插⼊元素 5、Remove(*L)移除元素 6、IsEmpty(*L)空表检测 7、IsFulled(*L)表满检测(顺序表常⽤,链式表基本不⽤) 8、Delete(*L)删除表 9、getElemt(*L)获取元素 10、Traverse(*L)遍历输出所有元素 11、Clear(*L)清除所有元素 4 、实现 好了最⿇烦的事情开始了,数据结构在计算机上的的映射。
众所周知,线性表有两种实现⽅法,⼀种是顺序表,另⼀种是链式表,这两种结构实现最⼤的不同在于前者逻辑关系⽆需存储空间,⽽后者则需要⽤额外的空间(顺便记录⼀下,指针⼤⼩只由环境有关(严格意义上说和CPU的位数有关)本篇只实现顺序结构)。
数据结构课件线性表
目录
CONTENTS
• 线性表的基本概念 • 线性表的实现方式 • 线性表的基本操作 • 线性表操作的效率分析 • 线性表的应用案例
01 线性表的基本概念
线性表的定义
线性表:线性表是一种具有线性 关系的抽象数据类型,其元素之
间存在一对一的顺序关系。
线性表由n个元素组成,每个元 素都有一个唯一的标识符,称为
04 线性表操作的效率分析
顺序存储结构的效率分析
访问元素
顺序存储结构中,访问任意一个元素 的时间复杂度为O(1),因为可以通过 索引直接访问。
插入和删除操作
顺序存储结构中,插入和删除操作的时 间复杂度为O(n),因为需要移动元素来 保持线性表的连续性。
链式存储结构的效率分析
访问元素
链式存储结构中,访问任意一个元素的时间复杂度为O(n),因为需要从头节点 开始遍历链表直到找到目标节点。
VS
详细描述
二维数组是一种二维的数据结构,可以看 作是线性表的扩展。在二维数组中,每个 元素的位置由其行列索引确定,这使得二 维数组在表示矩阵等数学运算中非常方便 。同时,二维数组也可以通过行优先或列 优先的方式进行线性化处理,转化为线性 表的形式进行操作。
哈希表的设计与实现
总结词
哈希表是一种特殊的线性表,通过哈希函数将键映射到数组的索引上,实现快速的查找 操作。
线性表的分类
静态线性表
静态线性表是使用数组实现的线 性表,其大小在创建时确定,且 不可改变。
动态线性表
动态线性表是使用链表或动态数 组实现的线性表,其大小可以动 态地增加或减少储结构是指将线性表中 的元素按照一定的顺序存储在 一片连续的存储空间中。
顺序存储结构的特点是访问速 度快,可以通过索引直接访问 任意元素。
线性表结构
线性表结构线性表是计算机科学中一种常见的数据结构,它具有容易理解、实现简单及操作性能良好的特点,因而在计算机应用中得到了广泛的使用。
本文将介绍线性表结构的定义、结构特点、相关操作以及实际应用。
一、线性表的定义一个线性表(Linear Table)是一种抽象的数据结构,它由n(n>0)个相同类型的数据元素(成员)组成,其中每个数据元素有且仅有一个直接前驱和一个直接后继,表中最前面一个元素称为头元素,最后一个元素称为尾元素。
二、线性表的特点线性表是一种基本的数据结构,它具备以下几个基本特点:(1)表中元素有顺序关系,元素之间的次序由它们在表中出现的次序决定。
(2)线性表中的每个元素都有且仅有一个直接前驱和一个直接后继,表中的第一个元素没有前驱,表中的最后一个元素没有后继。
(3)线性表中的每个元素都属于相同的数据类型。
(4)线性表是限定性结构,它只能完成表中元素的顺序存取,不能完成元素的随机存取。
三、线性表的应用(1)线性表可以用来存储和操作顺序序列的数据,如求积分、求傅立叶变换等;(2)线性表可用于处理姓名、课程名称、学号等顺序性的数据;(3)线性表可以用于求解算法中的搜索、排序等问题,如快速排序,归并排序等。
四、线性表的操作线性表的操作要求在不改变原表结构的情况下对原表中数据进行插入、删除、更改、查找等操作,常用的操作有:(1)求长度:求表的长度即求表中元素的个数;(2)求特定元素:查找表中某一特定元素;(3)插入元素:向表中插入新的元素;(4)删除元素:删除表中指定位置的元素;(5)拼接表:将两个不同的表拼接成一个表;(6)按序访问:按照表元素在表中出现的次序进行操作。
五、线性表的实际应用线性表在实际应用中被广泛使用,下面简单介绍几个常见的应用场景:(1)链表是重要的动态存储结构,可以用其实现稀疏矩阵的存储;(2)在关系数据库中,用户可以使用线性表来表示关系表本身;(3)操作系统中,可以使用线性表来存储进程调度表、用户登录信息表等;(4)线性表还可以用于各种算法的求解,比如排序算法和回溯法等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
b +(n-1)L
a1
L1
顺
a2
2
序
……
随表
ai ai+1 ……
i
机中
存的
取元
。素
an
n
可
空闲区
以
8
例1 一个一维数组M,下标的范围是0到9,每
个数组元素用相邻的5个字节存储。存储器按字 节编址,设存储数组元素M[0]的第一个字节的地
址是98,则M[3]的第一个字节的地址是 113
应当有1≤i≤L.length
18
删除顺序表的第i个结点L.data[i-1]
SeqList DeleteList(SeqList L, int i){
int j; if(i<1||i>L.length)
{ printf(“position error!\n”); exit(0); }
for(j=i; j<=L.length-1; j++)
需特殊处理; 空表:head==NULL; 非空表:r->next==NULL;
2.空表与非空链表处理不一致。
34
可在单链表的第一个结点之前附设一个结点,称之 为头结点,解决上述复杂性。示意图如下:
head
info
a1
a2
…
an ^
头指针 头结点 首元结点
空链表: head info ^
35
思考:带头结点的链表的优越性
}
29
以下为在已有链表中插入、删除结点的函数。 “C语言复习”中讲过,不详述。 不同之处:查找方式不同。 ➢ 按值查找插入删除结点的位置; ➢ 按序号查找插入删除结点的位置;
30
ListNode *del(ListNode *head, int i){
ListNode *p,*q; int j=1; p=head;
while( j<i && p!=NULL ){
q=p; p=p->next; j=j+1 ; }
if(j==i){
if(i==1) head=p->next ;
else q->next=p->next ;
(*)
printf("The No. %dth char is deleted\n",i); }
应有1≤i≤ L.length+1 L.length < ListSize
15
将新结点x插入顺序表的第i个结点L.data[i-1]的位置上
SeqList InsertList(SeqList L, int x, int i){
int j; if(i<1||i>L.length+1)
{ printf(“position error!\n”); exit(0); }
于春梅 何仕鹏 王爽 王亚武
:
:
性别
女 男 女 男 :
年龄
18 18 18 18 :
班级
2001级电信016班 2001级电信017班 2001级通信011班 2001级通信012班
:
数据元素都是记录; 元素间关系是线性
5
2.2 顺序表
2.2.1 顺序表的表示(*)
2.2.2 对顺序表操作的实现 2.2.3 顺序表的运算效率分析 本节小结
6
2.2.1 顺序表的表示 线性表的顺序存储结构。 把线性表的结点按逻辑次序依次存放在一组地 址连续的存储单元里。用这种方法存储的线性 表简称为顺序表。
简言之,逻辑上相邻,物理上也相邻
高级语言中实现方法: (一维)数组 V[n]
7
线性表的顺序存储结构示意图
地址
内容
元素在表中的位序
b=LOC(a1) b+L
的核心语句:
head=s;
从空表开始,若读入的字符不为‘\n’,就将 新结点s链到表头。
26
ListNode *CreateListF(){ char ch; ListNode *head,*s; head=NULL; while((ch=getchar())!='\n'){ s=(ListNode *)malloc(sizeof(ListNode)); s->data=ch; s->next=head; head=s; } return head;
数据元素
表头元素
下标:是元素的 序号,表示元素 在表中的位置
ai的直接前趋 ai的直接后继 表尾元素
n=0时称为 空表
n为元素总个 数,即表长
线性表的逻辑结构示意图
3
线性表的特点:(若非空)
(1)存在唯一一个被称作“第一个”的数据元素; (2)存在唯一一个被称作“最后一个”的数据元素; (3)除第一个元素,每个元素均只有一个前驱; (4)除最后一个元素,每个元素均只有一个后继;
解:地址计算通式为: LOC(ai) = LOC(a1) + L *(i-1)
因此:LOC( M[3] ) = 98 + 5 ×(3-0) =113
9
顺序表结构定义
(*)
用一维数组来存放表结点
#define ListSize 100 //表空间的大小,假设为100
typedef struct L{
L.data[j-1]=L.data[j];
L.length--;
return L;
}
19
2.2.3 顺序表的运算效率分析 时间效率分析:
算法时间主要耗费在移动元素的操作上
讨论1:若在长度为 n 的线性表的第 i 位前 插入一 元素则向后移动元素的次数f(n)为:
f(n) = n – i + 1
讨论2:若在长度为n的线性表上删除第i位元素, 向前移动元素的次数f(n)为:
int data[ListSize]; int length; }SeqList;
void main(){ SeqList L; L.length=0;
}
12
查找结点
顺序表L中第i个节点如何表示?
L.data[i-1]
13
数组下标 内存 元素序号
0
a1 1
1
a2 2
数组下标 内存 元素序号
0
a1 1
数据结构课程的内容
唯一的逻辑结构 对应
不唯一的存储结构
运算的实现依赖于 存储结构
1
第2章 线性表
2.1 线性表的类型定义(逻辑结构)
2.2 顺序表(*) 2.3 链 表(*)
2.4 应用举例
2
2.1 线性表的类型定义
线性表:是由n(n>=0)个数据元素(结点)a1,a2…an
组成的有限序列。
(a1, a2, … ai-1,ai, ai+1 ,…, an)
链式存储结构
见2.3节
22
2.3 线性表的链式表示和实现
2.3.1 链表的表示(*)
2.3.2 链表的实现(*)
2.3.3 链表的运算效率分析 2.3.4 应用举例
23
2.3.1 链表的表示
链式存储结构特点:逻辑上相邻的两个数据 元素,物理上不一定相邻。
用C语言描述的单链表如下:
typedef struct Lnode {
char
data;
struct Lnode *next;
}ListNode;
//数据域 //指针域
24
2.3.2 链表的实现
1. 单链表的建立和输出(*) 2. 删除单链表中结点(*) 3. 在单链表中插入结点(*)
4. 其它链表形式
25
建立单链表:(1)头插法建表
方法:
hea/d/ c
b
a^
s d 有关指针操作 s->next=head;
}
27
2.尾插法建表
head
a
b
新结点插到表尾,必须增 加尾指针r,使其始终指向 当前表尾结点;
c
// r
s
d^
核心语句: if(head==NULL)
head=s; else
r->next=s; r=s;
28
ListNode *CreateListR(){ char ch; ListNode *head,*s,*r; head=r=NULL; while((ch=getchar())!='\n'){ s=(ListNode *)malloc(sizeof(ListNode)); s->data=ch; s->next=NULL; if(head==NULL) head=s; else r->next=s; r=s; } return head;
0
a1 1
1
a2 2
V数组下标 内存 元素序号
0
a1 1
1
a2 2
i-1 ai i
i
ai+1 i+1
n-1 an n=L.length
i-1 ai+1 i i ai+2 i+1
n-2 an n-1
n-1
n
删除:删除顺序表L中第i个位置的元素 17
3)删除 删除线性表的第i个位置上的元素 实现步骤: • 将第i +1至第n 位的元素向前移动一个位置; • 表长减1。 注意:事先需要判断,删除位置i 是否合法?
if(head==NULL){ head=s ; s->next=NULL ; }
else{ while(( j<i )&&( p!=NULL )){
q=p; p=p->next; j++; }