第7章 铸造成形
材料加工工艺习题【考研】【复习】
《材料加工工艺》考研习题第一章绪论第二章液态金属成形1.金属及合金的结晶包括哪两个基本过程?什么是均质形核和非均质形核?在实际铸造生产中铸造合金结晶的形核是以哪种形核为主,为什么?2.什么是液态金属的充型性能,它与哪些因素有关?铸造合金流动性的好与差对铸件质量有何影响?影响铸造合金流动性的主要因素有哪些?生产中如何采取措施提高铸造合金的流动性?3.铸造合金由液态冷却到室温时要经过哪三个收缩阶段?收缩对铸件质量有什么影响?其收缩大小与哪些因素有关?4.缩孔、缩松是铸件中的常见缺陷之一,哪些因素影响其形成?生产中如何采取措施进行防止?5.什么是铸造应力?铸造应力大小对铸件质量有什么影响?热应力是如何形成的?哪些因素影响其大小?生产中常采取哪些措施来防止和减小应力对铸件的危害?6.铸造合金中的气体主要来源于哪些方面?又以哪些形式存在于铸造合金中?对铸件质量有什么影响?7.铸造合金中的夹杂物是如何分类的?对铸件质有什么影响?如何防止和减小其对铸件的危害?8.湿型粘土砂的主要成分是什么?它有哪些优缺点?适合生产哪些铸件?9.湿型粘土砂的造型方法有哪些?试比较应用震击、压实、射压、高压、气冲和静压等各种造型方法的紧实的砂型紧实度分布(沿砂箱高度方向)。
为什么需要用高密度湿粘土砂型生产铸件?10.树脂自硬砂、水玻璃砂与粘土砂比较有哪些优点?各适用于哪些铸件的生产?11.砂芯的作用是什么?经常使用哪些粘结剂来制芯?常用的制芯工艺有哪些?12.砂型和砂芯涂料的作用是什么?其主要组成有哪些?13.什么是顺序凝固原则?什么是同时凝固原则?各需采用什么措施来实现?上述两种凝固原则各适用于哪些场合?14.铸件的壁厚为什么不能太薄,也不能太厚,而且应尽可能厚薄均匀?为什么要规定铸件的最小壁厚?不同铸造合金要求一样吗?为什么?。
15.为便于生产和保证铸件质量,通常对铸件结构有哪些要求?16.何谓铸件的浇注位置?它是否指铸件上的内绕道位置?铸件的浇注位置对铸件的质量有什么影响?应按何原则来选择?17.试述分型面与分模面的概念?分模造型时,其分型面是否就是其分模面?从保证质量与简化操作两方面考虑,确定分型面的主要原则有哪些?18.试确定图2-116所示铸件的浇注位置及分型面。
金属材料学第7-11章课后习题答案
金属材料学习题与思考题第七章铸铁1、铸铁与碳钢相比,在成分、组织和性能上有什么区别?(1)白口铸铁:含碳量约2.5%,硅在1%以下白口铸铁中的碳全部以渗透碳体(Fe3c)形式存在,因断口呈亮白色。
故称白口铸铁,由于有大量硬而脆的Fe3c,白口铸铁硬度高、脆性大、很难加工。
因此,在工业应用方面很少直接使用,只用于少数要求耐磨而不受冲击的制件,如拔丝模、球磨机铁球等。
大多用作炼钢和可锻铸铁的坯料(2)灰口铸铁;含碳量大于4.3%,铸铁中的碳大部或全部以自由状态片状石墨存在。
断口呈灰色。
它具有良好铸造性能、切削加工性好,减磨性,耐磨性好、加上它熔化配料简单,成本低、广泛用于制造结构复杂铸件和耐磨件。
(3)钢的成分要复杂的多,而且性能也是各不相同钢是含碳量在0.04%-2.3%之间的铁碳合金。
我们通常将其与铁合称为钢铁,为了保证其韧性和塑性,含碳量一般不超过1.7%。
钢的主要元素除铁、碳外,还有硅、锰、硫、磷等,而且钢还根据品质分类为①普通钢(P≤0.045%,S≤0.050%)②优质钢(P、S均≤0.035%)③高级优质钢(P≤0.035%,S≤0.030%)按照化学成分又分①碳素钢:.低碳钢(C≤0.25%).中碳钢(C≤0.25~0.60%).高碳钢(C≤0.60%)。
②合金钢:低合金钢(合金元素总含量≤5%).中合金钢(合金元素总含量>5~10%).高合金钢(合金元素总含量>10%)。
2、C、Si、Mn、P、S元素对铸铁石墨化有什么影响?为什么三低(C、Si、Mn低)一高(S高)的铸铁易出现白口?(1)合金元素可以分为促进石墨化元素和阻碍石墨化元素,顺序为:Al、C、Si、Ti、Ni、P、Co、Zr、Nb、W、Mn、S、Cr、V、Fe、Mg、Ce、B等。
其中,Nb为中性元素,向左促进程度加强,向右阻碍程度加强。
C和Si是铸铁中主要的强烈促进石墨化元素,为综合考虑它们的影响,引入碳当量CE = C% + 1/3Si%,一般CE≈4%,接近共晶点。
毛坯成型方法选择
7.2 常用毛坯成形方法的比较
6
(1) 铸造 铸造是液态金属充填型腔后凝固成形的成形方法,要求熔融金属流动性好、收缩性好,铸造材料利用率高,适用于制造各种尺寸和批量且形状复杂尤其具有复杂内腔的零件,如支座、壳体、箱体、机床床身等。手工砂型铸造是单件、小批生产铸件的常用方法;大批大量生产常采用机器造型;特种铸造常用于生产特殊要求或有色金属铸件。 (2)锻造 锻造是固态金属在压力下塑性变形的成形方法,要求金属的塑性较好、变形抗力小。锻造方法适用于制造受力较大、组织致密、质量均匀的锻件,如转轴、齿轮、曲轴和叉杆等。自由锻锻造工装简单、准备周期短,但产品形状简单,是单件生产和大型锻件的唯一锻造方法;胎模锻是在自由锻设备上采用胎模进行锻造的方法,可锻造较为复杂、中小批量的中小型锻件;模锻的锻件可较复杂,材料利用率和生产率远高于自由锻,但只能锻造批量较大的中小型锻件。
3. 生产条件兼顾原那么
3
零件的工作条件不同,选择的毛坯类型也不同。如机床主轴和手柄都是轴类零件,但主轴是机床的关键零件,尺寸形状和加工精度要求很高,受力复杂且在长期使用过程中只允许发生很微小的变形,因此要选用具有良好综合力学性能的45钢或40Cr,经锻造制坯及严格切削加工和热处理制成;而机床手柄那么采用低碳钢圆棒料或普通灰铸铁件为毛坯,经简单的切削加工即可完成,不需要热处理。再如内燃机曲轴在工作过程中承受很大的拉伸、弯曲和扭转应力,具有良好的综合力学性能,故高速大功率内燃机曲轴一般采用强度和韧性较好的合金结构钢锻造成形,功率较小时可采用球墨铸铁铸造成形或用中碳钢锻造成形。对于受力不大且为圆形曲面的直轴,可采用圆钢下料直接切削加工成形。
第7章 零件的毛坯选择
1
材料的成形过程是机械制造的重要工艺过程。机器制造中,大局部零件是先通过铸造成形、锻压成形、焊接成形或非金属材料成形方法制得毛坯,再经过切削加工制成的。毛坯的选择对机械制造质量、本钱、使用性能和产品形象有重要的影响,是机械设计和制造中的关键环节之一。 通常,零件的材料一旦确定,其毛坯成形方法也大致确定了。例如,零件采用ZL202、HT200、QT600-2等,显然其毛坯应选用铸造成形;齿轮零件采用45钢、LD7等常采用锻压成形;零件采用Q235、08钢等板、带材,那么一般选用切割、冲压或焊接成形;零件采用塑料,那么选用适宜的塑料成形方法;反之,在选择毛坯成形方法时,除了考虑零件结构工艺性之外,还要考虑材料的工艺性能能否符合要求。
铸造成型技术完整版
铸造成型技术完整版铸造成型技术是一种广泛应用于工业领域的制造工艺,用于生产各种类型的金属零件。
通过铸造成型技术,可以将熔化的金属注入成型工具中,随后冷却凝固,最终得到所需形状的零件。
这项技术的应用范围非常广泛,从汽车行业到航空航天,从机械制造到建筑领域,都有铸造成型技术的身影。
铸造成型技术的主要步骤包括:设计模具、选材、熔炼、浇注、冷却和取模。
下面将具体介绍每个步骤的详细过程。
首先,设计模具是铸造成型技术中至关重要的一步。
模具的设计需要根据所需零件的形状和尺寸来确定。
设计师们利用计算机辅助设计软件进行模型的三维建模,并结合具体生产需求,制定出最佳的模具设计方案。
其次,选材是非常重要的一环。
根据所需零件的性质和用途,选择合适的金属材料进行铸造。
不同材料具有不同的特性,在选择材料时需要考虑其机械性能、耐腐蚀性和可加工性等因素。
接下来是熔炼阶段,也是铸造成型技术中的核心步骤之一。
选定合适的金属材料后,将其加热至熔化状态,形成熔融金属。
通常采用高温炉来进行熔炼,确保金属材料达到适宜的流动性。
然后是浇注阶段。
在熔融金属状态下,将其倒入事先设计好的模具中。
浇注时需要注意金属的温度和浇注速度,以确保金属能够充分填充模具的空腔,并且得到均匀的密实度。
接着是冷却阶段。
在金属充分充满模具后,开始进行冷却。
通过控制冷却速度和冷却时间,可以使金属逐渐凝固并达到所需的硬度和强度。
冷却过程中,还需要考虑金属的收缩和应变等因素,以确保最终成型的零件符合要求。
最后是取模。
在完成冷却后,将模具打开,取出凝固完整的金属零件。
根据需要,还可以进行后续加工,如去毛刺、打磨和热处理等工艺,以达到最终的零件要求。
总结起来,铸造成型技术是一项重要的制造工艺,广泛应用于各个领域。
通过合理的模具设计、选材、熔炼、浇注、冷却和取模等步骤,可以实现金属零件的快速制造。
此外,随着科技的不断进步,铸造成型技术也在不断发展,出现了更多新的材料和工艺,为各行各业提供了更多的选择。
第七章 金属的液态成形
缩松:分散在铸件内部分散而细小的缩孔,大多分布在 铸件中心轴线处、冒口根部、内浇口附近或缩孔下方。形成 的原因与缩孔基本相同。 缩孔及缩松使铸件力学性能下降,防止其发生的主要 措施是“定向凝固”,通过增设冒口、冷铁等一些工艺措施 ,使凝固顺序形成向着冒口方向进行,如下图。远离冒口的 部位先凝固,冒口最后凝固,使缩松和缩孔产生在冒口处。 或在铸件厚大部位增设冷铁,以加快该处的凝固速度。
第七章 金属的液态成形
什么是金属的液态成形: 即将液态金属浇入与零件形状相适应的铸型空腔 中,待其冷却凝固,以获得毛坯或零件的工艺方法,亦 称铸造. 金属的液态成形的作用: 金属的液态成形是制造毛坯、零件的重要方法之一。 按铸型材料的不同,金属液态成形可分为砂型铸造和特 种铸造(包括压力铸造、金属型铸造等)。 其中砂型铸 造产品成本最低,应用最普遍,所生产的铸件要占铸件 总量的80%以上。但工艺过程较复杂不易控制,,铸件内 部常有缩孔、夹渣、气孔、裂纹等缺陷产生,导致铸件 力学性能,特别是冲击性能较低。
• (2) 浇注温度 • 浇注温度越高,液态合金的流动性越好,若过高,铸 件易产生缩松、粘沙等缺陷。一般浇注温度控制在:铸钢 1520~1620℃;铸铁1230~1450℃;铝合金680~780℃。 • (3)铸型填充条件 • 内浇道横截面小、型腔表面粗糙、型砂透气性差都会增加 液态合金的流动阻力;铸型材料的导热性过大,使液体金 属凝固快,同样会降低流动性。
f) 挖砂造型
活块造型是在制模时将铸件上的妨碍起模的小凸台,肋 条等这些部分作成活动的(即活块)。起模时,先起出 主体模样,然后再从侧面取出活块。其造型费时,工人 技术水平要求高。主要用于单件、小批生产带有突出部 分、难以起模的铸件。
活块造型
三箱造型的铸型由上、中、下三型构成。中型高度 需与铸件两个分型面的间距相适应。三箱造型操作 费工。主要适用于具有两个分型面的单件、小批生 产的铸件。
材料液态成形工艺
第一节 金属铸造工艺简介
2.收缩导致的铸件缺陷
(1)缩孔和缩松 铸件在凝固过程中,由于金属液态收缩和凝
固收缩造成的体积减小得不到液态金属的补充 ,在铸件最后凝固的部位形成孔洞。其中容积 较大而集中的称缩孔,细小而分散的称缩松。 缩孔和缩松的形成过程示意图分别见图7-6和 图7-7。使铸件的凝固按薄壁-厚壁-冒口的 顺序先后进行,让缩孔移入冒口中,从而获得 致密的铸件,如图7-8所示。
第一节 金属铸造工艺简介
(2)铸造应力、变形和裂纹
铸造应力按其形成原因的不同,分为热应力、 机械应力等。
减少铸造应力就应设法减少铸件冷却过程中各 部位的温差,使各部位收缩一致,如将浇口开在 薄壁处,在厚壁处安放冷铁,即采取同时凝固原 则,如图7-9所示。
铸造应力是导致铸件产生变形和开裂的根源。 图7-10为“T”形铸件在热应力作用下的变形情 况,虚线表示变形的方向。
,易产生浇不足、冷隔和粘砂等缺陷。铸钢的收缩性大 ,产生缩孔、缩松、裂纹等缺陷的倾向大 。
3.铸造有色金属 常用的有铸造铝合金、铸造铜合金等。它们大都具有
流动性好,收缩性大,容易吸气和氧化等特点,特别容 易产生气孔、夹渣缺陷。
六、新型材料-金属间化合物及其铸造性能 特点
第三节 砂型铸造
第三节 砂型铸造
根据造型材料不同,可将铸造方法分为砂型铸造 (Sand Casting Process) 和 特 种 铸 造 (Special Casting Process)两类。
图7-1所示为砂型铸造工艺过程示意图。
第一节 金属铸造工艺简介
第二节 铸造工艺基础知识
一、液态金属的充型能力
液态金属的充型能力(Mold Filling Capacity)是指液 态金属充满铸型型腔,获得形状完整、轮廓清晰铸件的能 力。
第七章铸件宏观组织
二、孕育处理
孕育处理( Inoculation) : 是浇注之前或浇注过程中向液态金 属中添加少量物质以达到细化晶粒、改善宏观组织目的的一 种工艺方法。 孕育主要是影响生核过程, 促进非自发形核以细化晶粒;促进 晶粒游离,细化晶粒.
变质处理(Modification): 则是改变晶体的生长机理,从而 影响晶体形貌。 变质在改变共晶合金的非金属相的结晶形貌上有着重要的应 用,而在等轴晶组织的获得和细化中采用的则是孕育方法。
32
4.流变铸造
这流种变细铸小造圆又整称的半固半态固铸 态造,金这属种浆方液法由是于当液具体有金 较属凝好固的达流50动~性60而%时容,易在 成氩气形保。护因下为进它行高的速温搅度拌, 远使金低属于成液为相半线固温态浆度液,, 所以对于黑色金属的
将半固态浆液凝固成坯料
压铸件来说,能大大
或挤压至铸型凝固成形。
论 三、 枝晶熔断及结晶雨理论 四.单个等轴晶形成过程的动态演示 8
一、“成分过冷”理论
该理论认为,随着凝固层向内 推移,固相散热能力逐渐削弱, 内部温度梯度趋于平缓,且液相 中的溶质原子越来越富集,从而 使界面前方成分过冷逐渐增大。 当成分过冷大到足以发生非均质 生核时,便导致内部等轴晶的形 成。
第七章 铸件宏观组织的控制机理 及方法
一、铸件的宏观组织构成 二、表面激冷区及柱状晶区的形成 三、 内部等轴晶的形成机理 四、 铸件宏观结晶组织的控制
1
一、 铸件的宏观组织构成
内部等轴晶区 表层急冷晶区
1.表面激冷细晶 区,晶粒细小均 匀
2.柱状晶区,晶 粒垂直于型壁排 列,平行于热流 方向.
中间柱状晶区
孕孕育育剂衰加退入: 几合乎金所液有后的要孕经育历剂一都个有孕在育孕期育和处衰理退后期一。 段在时孕间育出期现内孕,育作衰为退孕现育象剂. 的中间合金的某些组分完 成影熔响化孕过育程效,果或的与因合素金: 液孕反育应剂生的成种化类合(成物分,)和起孕细育化
铸造成形优秀课件
是产品技术的进步 ,要求铸件各种机械物理性能更好,同
时仍具有良好的机械加工性能;另一个原因是机械工业本
身和其他工业如化工、仪表等的发展,给铸造业创造了有
利的物质条件。如检测手段的发展,保证了铸件质量的提
高和稳定,并给铸造理论的发展提供了条件;电子显微镜
中国在公元前513年,铸出了世界上最早见于文字记载 的铸铁件—晋国铸型鼎,重约270公斤。欧洲在公元八世纪 前后也开始生产铸铁件。铸铁件的出现,扩大了铸件的应 用范围。例如在15~17世纪,德、法等国先后敷设了不少 向居民供饮用水的铸铁管道。18世纪的工业革命以后,蒸 汽机、纺织机和铁路等工业兴起,铸件进入为大工业服务 的新时期,铸造技术开始有了大的发展。
五、金属液态成形---铸造的发展历程
1 铸造发展史 铸造是人类掌握比较早的一种金属热加工工艺,已有
约6000年的历史。中国约在公元前1700~前1000年之间已 进入青铜铸件的全盛期,工艺上已达到相当高的水平。中 国商朝的重875公斤的司母戊方鼎,战国时期的曾侯乙尊盘, 西汉的透光镜,北京明朝永乐青铜大钟(重达46.5t,钟高 6.75m,唇厚22cm,外径3.3m,体内铸有经文22.7万字,击 钟时尾音长达2min以上,传距达20km),都是古代铸造的 代表产品。
早期的铸件大多是农业生产、宗教、生活等方面的工 具或用具,艺术色彩浓厚。那时的铸造工艺是与制陶工艺 并行发展的,受陶器的影响很大。
司母戊方鼎
曾侯乙尊盘
青铜尊盘出土于曾侯乙墓。尊盘由尊和盘组成,尊置于盘中。 尊盘的口沿是非常精细的镂空的变形龙纹和龙形雕饰,均可 分辨出每条盘龙上的眼睛。是采用“失蜡法”的铸造方法。 尊和盘均铸有“曾候乙作持用终”铭文。
工程材料及机械制造基础习题答案
⼯程材料及机械制造基础习题答案《⼯程材料及机械制造基础》习题参考答案第⼀章材料的种类与性能(P7)1、⾦属材料的使⽤性能包括哪些?⼒学性能、物理性能、化学性能等。
2、什么是⾦属的⼒学性能?它包括那些主要⼒学指标?⾦属材料的⼒学性能:⾦属材料在外⼒作⽤下所表现出来的与弹性和⾮弹性反应相关或涉及⼒与应变关系的性能。
主要包括:弹性、塑性、强度、硬度、冲击韧性等。
3、⼀根直径10mm的钢棒,在拉伸断裂时直径变为8.5mm,此钢的抗拉强度为450Mpa,问此棒能承受的最⼤载荷为多少?断⾯收缩率是多少?F=35325N ψ=27.75%4、简述洛⽒硬度的测试原理。
以压头压⼊⾦属材料的压痕深度来表征材料的硬度。
5、什么是蠕变和应⼒松弛?蠕变:⾦属在长时间恒温、恒应⼒作⽤下,发⽣缓慢塑性变形的现象。
应⼒松弛:承受弹性变形的零件,在⼯作过程中总变形量不变,但随时间的延长,⼯作应⼒逐渐衰减的现象。
6、⾦属腐蚀的⽅式主要有哪⼏种?⾦属防腐的⽅法有哪些?主要有化学腐蚀和电化学腐蚀。
防腐⽅法:1)改变⾦属的化学成分;2)通过覆盖法将⾦属同腐蚀介质隔离;3)改善腐蚀环境;4)阴极保护法。
第⼆章材料的组织结构(P26)1、简述⾦属三种典型结构的特点。
体⼼⽴⽅晶格:晶格属于⽴⽅晶系,在晶胞的中⼼和每个顶⾓各有⼀个原⼦。
每个体⼼⽴⽅晶格的原⼦数为:2个。
塑性较好。
⾯⼼⽴⽅晶格:晶格属于⽴⽅晶系,在晶胞的8个顶⾓和6个⾯的中⼼各有⼀个原⼦。
每个⾯⼼⽴⽅晶格的原⼦数为:4个。
塑性优于体⼼⽴⽅晶格的⾦属。
密排六⽅晶格:晶格属于六⽅棱柱体,在六棱柱晶胞的12个项⾓上各有⼀个原⼦,两个端⾯的中⼼各有⼀个原⼦,晶胞内部有三个原⼦。
每个密排六⽅晶胞原⼦数为:6个,较脆2、⾦属的实际晶体中存在哪些晶体缺陷?它们对性能有什么影响?存在点缺陷、线缺陷和⾯缺陷。
使⾦属抵抗塑性变形的能⼒提⾼,从⽽使⾦属强度、硬度提⾼,但防腐蚀能⼒下降。
3、合⾦元素在⾦属中存在的形式有哪⼏种?各具备什么特性?存在的形式有固溶体和⾦属化合物两种。
材料成形基本原理3版-合工大第7章答案
第七章铸件与焊缝宏观组织及其控制1.铸件典型宏观凝固组织是由哪几部分构成的,它们的形成机理如何?答:铸件的宏观组织通常由激冷晶区、柱状晶区和内部等轴晶区所组成。
表面激冷区的形成:当液态金属浇入温度较低的铸型中时,型壁附近熔体由于受到强烈的激冷作用,产生很大的过冷度而大量非均质生核。
这些晶核在过冷熔体中也以枝晶方式生长,由于其结晶潜热既可从型壁导出,也可向过冷熔体中散失,从而形成了无方向性的表面细等轴晶组织。
柱状晶区的形成:在结晶过程中由于模壁温度的升高,在结晶前沿形成适当的过冷度,使表面细晶粒区继续长大(也可能直接从型壁处长出),又由于固-液界面处单向的散热条件(垂直于界面方向),处在凝固界面前沿的晶粒在垂直于型壁的单向热流的作用下,以表面细等轴晶凝固层某些晶粒为基底,呈枝晶状单向延伸生长,那些主干取向与热流方向相平行的枝晶优先向内伸展并抑制相邻枝晶的生长,在淘汰取向不利的晶体过程中,发展成柱状晶组织。
内部等轴晶的形成:内部等轴晶区的形成是由于熔体内部晶核自由生长的结果。
随着柱状晶的发展,熔体温度降到足够低,再加之金属中杂质等因素的作用,满足了形核时的过冷度要求,于是在整个液体中开始形核。
同时由于散热失去了方向性,晶体在各个方向上的长大速度是相等的,因此长成了等轴晶。
2.试分析溶质再分配对游离晶粒的形成及晶粒细化的影响。
答:对于纯金属在冷却结晶时候没有溶质再分配,所以在其沿型壁方向晶体迅速长大,晶体与晶体之间很快能够连接起来形成凝固壳。
当形成一个整体的凝固壳时,结晶体再从型壁处游离出来就很困难了。
但是如果向金属中添加溶质,则在晶体与型壁的交汇处将会形成溶质偏析,溶质的偏析容易使晶体在与型壁的交会处产生“脖颈”,具有“脖颈”的晶体不易于沿型壁方向与其相邻晶体连接形成凝固壳, 另一方面,在浇注过程和凝固初期存在的对流容易冲断“脖颈”,使晶体脱落并游离出去,形成游离晶。
一些游离晶被保留下来并发生晶体增殖,成为等轴晶的核心,形成等轴晶,从而起到细化晶粒的作用。
6 铸造成型CAD
热焓(Enthalpy)法
T
H
c
T0
p
dT
( 4 12 )
即:用金属结晶前后的自由焓变化来表示潜热。
7-2-3 流动充型分析
(1)数学模型
一般情况下,铸造过程中,液态金属的流动属于带自由表面、 粘性、不可压缩、非稳态流动。此流动满足动量守恒和质量守恒 定理。因此有:
动量守恒方程(Navier-Stoks方程)
热量为
( 4 1)
dxdy
dx ) dydz dy ) dzdx (4 2)
dz ) dxdy
再假设微元体中无类热
源,根据能量守恒定律
微元体内蓄热量的增加 即 式中 Q Q 入- Q 出 Q cP T t
2
=流入热量-流出热量 ( 4 3) (4 4)
dxdydz
T t T
2
x
2
求解思路: 将求解问题的时间和空间离散,组成节点有限的等距网格单元; 分别在第 i 个单元的节点上建立时间和空间的泰勒展开式,并忽略 高次项; 将该泰勒展开式改写成差分迭代通式; 求解此差分迭代通式。
按照求解思路整理得到
一维温度场问题的有限
差分通式
c pe c p 式中 c pe L (T L T ) TL TS (4 - 10 ) 进而可求得一维凝固时 的
等价比热,可以测定, 温度场分布。
温度回复(Temperature Recovery)法 平衡结晶时,液态金属释放的潜热会使固相温度回升,
因此有
g s c pT / L 式中 g s 体积固化百分比的增加 ( 4 11 ) 量,可测。
Gs R Cm
凝固结束前的铸件温度 铸件热节处的折算厚度
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
① 浇注温度
在保证流动性足够的条件下,浇注温度应尽可能低些,
在实际生产中掌握的原则是“高温出炉,低温浇注”。
② 充型压力 压力越大,充型能力越强。
③ 铸型条件
a.铸型的蓄热能力
b. 铸型温度
c. 铸型中的气体
d. 铸件结构
7.1.2 铸件的凝固与收缩
(1)铸件的凝固方式 在铸件凝固过程中,其断面一般存在三个区域,即固相
7.3.3 压力铸造
缺点:
① 铸件凝固快,易产生缩松,影响铸件内在质量。 ② 压铸件不能进行热处理,也不宜在高温下工作。 ③ 压铸设备投资大,制造压型费用高、周期长,故只适 合于大批量生产。
压力铸造主要多用于生产非铁合金的中小型、薄壁、 复杂铸件的大量生产。
7.3.4 离心铸造
离心铸造是将液态金属浇入高速旋转的铸型,在离心力作用 下凝固成形的铸造方法。
7.3.4 离心铸造
离心铸造主要用于生产回转体的中空铸件,也可用于 生产双金属铸件。
7.3.5 常用铸造方法的对比
7.4 铸造机械与设备
自动造型生产线:
思考题与习题
1. 什么是熔融合金的充型能力,它与合金的流动性有什么 关系?它受哪些因素影响?
2. 铸件的凝固方式有哪几种类型?它受哪些因素影响? 3. 某铸件时常产生裂纹缺陷,如何鉴别其裂纹性质?如果
(1)浇注位置的选择 ② 铸件上宽大的平面应位于型腔下面。
③ 铸件壁薄而大的平面应位于型腔的下面、侧面或倾斜。
7.2.2 浇注位置和分型面的选择
(2)分型面的选择 分型面是指铸型间相互接触的表面。 在选择分型面时要考虑以下原则:
① 分型面的位置应保证模型能顺利从铸型中取出。 ② 应使铸件全部或大部分位于同一砂型内,或使主要加 工面与加工的基准面处于同一砂型中,以防错型,保证 铸件尺寸精度,便于造型和合型操作。
7.1 铸造工艺基础
铸造成形:将液态合金浇入铸型中使之冷却、凝固, 制造出金属制品的过程,简称铸造。所铸出的金属制品 称为铸件。
7.1.1 液态合金的充型
充型:液态合金填充铸型的过程。液态合金填充铸型 获得形状完整、轮廓清晰铸件的能力称为合金充型能力。
影响合金充型能力的因素主要有3个:流动性、浇注条 件及铸型条件。 (1)合金的流动性
7.3 特种铸造
特种铸造是指砂型铸造以外的其它铸造方法。
7.3.1 熔模铸造
熔模铸造又称失蜡铸造,是在易熔模样(简称熔模)的表 面包覆多层耐火材料,然后将模样熔去制成无分型面的 型壳,经焙烧、浇注而获得铸件的铸造方法。
(1)熔模铸造工艺过程 熔模铸造的工艺过程包括压型制造、蜡模制造、蜡模
组装、型壳制造、脱蜡、焙烧、浇注、落砂和清理等工 序。
熔模铸造适用于制造形状复杂,难以加工的高熔点合 金及有特殊要求的精密铸件。
7.3.2 金属型铸造
将液体金属浇入到金属铸型内而获得铸件的方法称为金属型 铸造。
(1)金属型的构造 按照分型面位置的不同,金属型可分为整体式、垂直
分型式、水平分型式和复合分型式。
7.3.2 金属型铸造
金属铸型一般采用铸铁或铸钢制成。铸件的内腔可用金属 芯或砂芯制成。
(2)金属型铸造的工艺特点
① 涂挂涂料 型腔表面要涂以厚度为0.2~1.0mm的耐火 涂料。
② 预热铸型 金属型要预热才能使用,预热温度为铸铁 件250~350℃、有色金属件100~250℃。
③ 控制开型时间与浇注温度
一般情况下,小型铸铁件的开型时间为10~60s,浇注 温度比砂型铸造高20~30℃。通常,铸造铝合金为680~ 740℃,灰铸铁为1300~1370℃,铸造锡青铜为1100~ 1150℃。
7.3.2 金属型铸造
(3)金属型铸造的特点和应用范围 ① 金属型复用性好,实现了“一型多铸”,提高了生产 率,改善了劳动条件。 ② 金属型铸件尺寸精度和表面质量比砂型铸件显著提高, 机械加工余量小。 ③ 金属型冷却速度快,结晶组织致密,铸件的力学性能 得到提高。 ④ 铸件易产生浇不足、裂纹或白口缺陷等。 ⑤ 不宜铸造大型、形状复杂和薄壁的铸件。
根据生产经验,在单件和小批量生产条件下,灰铸铁 的最小铸出孔径为30~40mm,碳钢铸件的最小铸出孔径 为50mm。
7.2.3 主要工艺参数的选择
(2)起模斜度
在模样、芯盒的出模方向留有一定斜度, 这个在铸造 工艺设计时所规定的斜度称为起模斜度。
7.2.3 主要工艺参数的选择
(2)起模斜度
起模斜度通常为15′~3°。 立壁越高,起模斜度越小(β1<β2); 机器造型应比手工造型的斜度小; 铸件的内壁的起模斜度应比外壁大,一般为3°~10°。 起模斜度在工艺图上用角度或宽度表示,其数值参照 JB/T5105—1991。
(1)铸造工艺对铸件结构的要求 ④ 应有一定的结构斜度
7.2.4 铸件结构设计
(2)铸造性能对铸件结构的要求 ① 铸件壁厚应适当
7.2.4 铸件结构设计
(2)铸造性能对铸件结构的要求 ② 铸件壁厚要均匀
7.2.4 铸件结构设计
(2)铸造性能对铸件结构的要求 ③ 铸件壁或筋的连接应合理
④ 避免水平方向出现较大的平面
属于热裂,应该从哪些方面寻找产生原因?
4. 常见的铸造缺陷有哪些?产生原因是什么?对铸件质量 有何影响?生产中采用哪些措施进行预防或消除?
5. 试从铸件结构、型砂、铸造工艺等方面考虑如何防止铸 件产生内应力和裂纹。
7.2.2 浇注位置和分型面的选择
(2)分型面的选择
③ 应尽量减少分型面的数量,并尽可能选择平面,以简 化造型工艺,提高铸件精度及生产率。
7.2.3 主要工艺参数的选择
(1)机械加工余量和最小铸出孔 设计铸造工艺图时,为铸件预先增加的、要切去的金
属层厚度,称为机械加工余量(RMA)。
依据GB/T6414—1999,机械加工余量等级有10级,称 为A、B、…、H、J、K级。
(2)铸件的变形与防止
7.1.3 铸件变形和裂纹
(2)铸件的变形与防止 防止铸件变形的方法: a.防止铸造应力,根本方法; b.反变形法,即在模样上做出挠度相等但方向相反的预
变形量来消除床身导轨的变形; c.对某些重要的易变形铸件,可采取提早落砂,落砂后
立即将铸件放入炉内焖火的办法。
7.1.3 铸件变形和裂纹
金属型铸造适用于大批量生产非铁合金铸件。
7.3.3 压力铸造
压力铸造(简称压铸)是将熔融金属在高压、高速下充型并凝 固而获得铸件的方法。
(1)压力铸造的工艺过程
7.3.3 压力铸造
(2)压力涛造的特点及应用范围 优点:
① 压铸件尺寸精度高,表面粗糙度低,一般不需机械加 工或少量加工后即可使用。 ② 可压铸形状复杂的薄壁精密件。 ③ 铸件组织致密,力学性能好。 ④ 生产率高,操作简便,易实现自动、半自动化生产。 ⑤ 便于采用镶嵌法,可制出通常难以制出的复杂件。
7.3.1 熔模铸造
7.3.1 熔模铸造
(2)熔模铸造的特点和适用范围
① 铸件的尺寸精度较高,表面质量好,可节省加工工时,对 一些精度要求不高的零件,是少或无切削加工工艺的重要方法。
② 可生产出形状复杂的薄壁铸件(最小壁厚0.7mm)。
③ 各种金属材料都可用熔模铸造。
④ 生产工艺过程繁杂、生产周期长(4~15天),铸件成 本比砂型铸造高。
普通高等教育“十三五”规划教材
目录
7.1 铸造工艺基础 7.1.1 液态合金的充型 7.1.2 铸件的凝固与收缩 7.1.3 铸件变形和裂纹 7.2 砂型铸造 7.2.1 造型方法的选择 7.2.2 浇注位置和分型面的选择 7.2.3 主要工艺参数的选择 7.2.4 铸件结构设计
目录
7.3 特种铸造 7.3.1 熔模铸造 7.3.2 金属型铸造 7.3.3 压力铸造 7.3.4 离心铸造 7.3.5 常用铸造方法的对比 7.4 铸造机械与设备
7.2.1 造型方法的选择
(1)手工造型 主要用于单件小批生产。 (2)机器造型 只适用于中、小铸件的成批或大量生产。
7.2.2 浇注位置和分型面的选择
(1)浇注位置的选择 浇注位置是指浇注时铸件在铸型内所处的位置。
① 铸件的重要加工面或主要工作面应位于型腔底面或侧 面。
7.2.2 浇注位置和分型面的选择
区、凝固区和液相区。
7.1.2 铸件的凝固与收缩
(1)铸件的凝固方式 依据凝固区的宽窄将铸件的“凝固方式”划分为逐层
凝固、糊状凝固和中间凝固。
7.1.2 铸件的凝固与收缩
(2)铸造合金的收缩 铸件在凝固和冷却过程中,其体积减小的现象称为收
缩。 合金的收缩可分为液态收缩、凝固收缩和固态收缩三
个阶段。 ①液态收缩 从浇注温度冷却到凝固开始温度(液相线温度) 的收缩,即合金在液态时由于温度降低而发生的体积收缩。 ②凝固收缩 从凝固开始温度冷却到凝固终止温度(固相线温 度)的收缩,即熔融合金在凝固阶段的体积收缩。 ③ 固态收缩 从凝固终止温度冷却到室温的收缩,即合金在 固态由于温度降低而发生的体积收缩。
7.1.2 铸件的凝固与收缩
(3)铸件中的缩孔与缩松 金属在铸型内冷凝过程中其体积收缩得不到补充时铸件
最后凝固的部位形成孔洞,这种孔洞为缩孔。 通常所说的缩孔,主要指集中缩孔,分散缩孔一般称为
缩松。 ① 缩孔的形成
7.1.2 铸件的凝固与收缩
② 缩松的形成
7.1.2 铸件的凝固与收缩
③ 缩孔和缩松的防止措施 实践证明,只要能使铸件实现“顺序凝固”,尽管合金
②机械应力(又称收缩应力) 机械应力是铸件的固态收 缩受到铸型或型芯的机械阻碍而形成的内应力。
7.1.3 铸件变形和裂纹
(1)铸造应力 ③ 减小和消除铸造应力的措施 a.合理地设计铸件的结构; b.合理选材; c.采用同时凝固的工艺;