2017年全国统一高考数学试卷(理科)(新课标Ⅰ)

合集下载

(完整word版)2017年高考全国理科数学试题及答案(1卷WORD版),推荐文档

(完整word版)2017年高考全国理科数学试题及答案(1卷WORD版),推荐文档

绝密★启用前2017年普通高等学校招生全国统一考试理科数学本试卷5页,23小题,满分150分。

考试用时120分钟。

注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A ={x |x <1},B ={x |31x <},则 A .{|0}A B x x =<I B .A B =R U C .{|1}A B x x =>UD .A B =∅I2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14B .π8C .12D .π43.设有下面四个命题1p :若复数z 满足1z ∈R ,则z ∈R ;2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数12,z z 满足12z z ∈R ,则12z z =;4p :若复数z ∈R ,则z ∈R .其中的真命题为 A .13,p pB .14,p pC .23,p pD .24,p p4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为A .1B .2C .4D .85.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是 A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]6.621(1)(1)x x++展开式中2x 的系数为 A .15B .20C .30D .357.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A .10B .12C .14D .168.右面程序框图是为了求出满足3n −2n >1000的最小偶数n ,那么在和两个空白框中,可以分别填入A .A >1 000和n =n +1B .A >1 000和n =n +2C .A ≤1 000和n =n +1D .A ≤1 000和n =n +29.已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 210.已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为 A .16B .14C .12D .1011.设xyz 为正数,且235x y z ==,则A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z12.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是 A .440B .330C .220D .110二、填空题:本题共4小题,每小题5分,共20分。

2017年高考新课标Ⅰ卷理数试题解析(参考版)

2017年高考新课标Ⅰ卷理数试题解析(参考版)

A.10
B.12
C.14
D.16
【答案】B
【解析】由题意该几何体的直观图是由一个三棱锥和三棱柱构成,则表面中含梯形的面积之和为
2 (2 4) 2 1 12 ,故选 B. 2
8.右面程序框图是为了求出满足 3n−2n>1000 的最小偶数 n,那么在 和 两个空白框中,可以分别填入
A.A>1 000 和 n=n+1 B.A>1 000 和 n=n+2
N(, 2) .
(1)假设生产状态正常,记 X 表示一天内抽取的 16 个零件中其尺寸在 ( 3 , 3 ) 之外的零件数,
求 P( X 1) 及 X 的数期望; (2)一天内抽检零件中,如果出现了尺寸在 ( 3 , 3 ) 之外的零件,就认为这条生产线在这一
63 2
cosA cos B C 1 ,
2
0 A , A , 3
又 a3
2R
a sin A
3 sin
3 2 3
3
32
sin B sin C b c 2R 2R
bc 23
2
bc 12
2 3
.
bc 8 , a2 b2 c2 2bc cos A
b2 c2 2bc cos 9 3
A.把 C1 上各点的横坐标伸长到原来的 2 倍,纵坐标不变,再把得到的曲线向右平移 π 个单位长度,得 6
到曲线 C2
B.把 C1 上各点的横坐标伸长到原来的 2 倍,纵坐标不变,再把得到的曲线向左平移 π 个单位长度,得 12
到曲线 C2
C.把 C1 上各点的横坐标缩短到原来的 1 倍,纵坐标不变,再把得到的曲线向右平移 π 个单位长度,得
以 BC,CA,AB 为折痕折起△ DBC,△ ECA,△ FAB,使得 D、E、F 重合,得到三棱锥。当△ ABC 的 边长变化时,所得三棱锥体积(单位:cm3)的最大值为_______。

2017全国1卷理科数学(含答案).docx

2017全国1卷理科数学(含答案).docx

2017 年普通高等学校招生全国统一考试理科数学一、选择题:本大题共12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={ x|x<1} ,B={ x| 3x 1 },则()A .AB { x | x 0} B .A B R C.A B { x | x 1}D.A B2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()A .1B .πC.1D.π84 423.设有下面四个命题p1:若复数 z 满足1R ,则z R ;p2:若复数 z 满足z2R ,则z R ;zp3:若复数 z1, z2满足 z1z2R,则z z;p4:若复数z R,则z R.12其中的真命题为()A.p1, p3 B .p1, p4C.p2, p3D.p2, p44.记S n为等差数列{ a n} 的前 n 项和.若 a4a524 , S648 ,则 { a n } 的公差为()A . 1B . 2C.4D. 85.函数f ( x)在(,) 递减,且为奇函数.若 f (1) 1 ,则满足 1 f ( x2)1的 x 的取值范围是()A.[2,2] B .[ 1,1]C.[0,4]D.[1,3]6.(116展开式中2的系数为()x2 )(1x)xA . 15B . 20C.30D. 35 7.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A . 10B.12C.14 D .168.右面程序框是了求出足3n- 2n>1000 的最小偶数 n,那么在和两个空白框中,可以分填入(A . A>1000 和 n=n+1B .A>1000 和 n=n+2C.A 1000 和 n=n+1 D .A 1000 和 n=n+2: y=cos x, C: y=sin (2 x+2π)9.已知曲 C2),下面正确的是(3A.把 C1上各点的横坐伸到原来的 2 倍,坐不,再把得到的曲向右平移π个位度,得到曲6C2B.把 C1上各点的横坐伸到原来的 2 倍,坐不,再把得到的曲向左平移π个位度,得到曲12C2C.把 C1上各点的横坐短到原来的1倍,坐不,再把得到的曲向右平移π个位度,得到曲26C2D.把 C1上各点的横坐短到原来的1倍,坐不,再把得到的曲向左平移π个位度,得到212曲 C210.已知 F 抛物2的焦点, F 作两条互相垂直的直l 1,l 2,直 l 1与 C 交于 A、B 两点,直C:y =4x与 C 交于 D、 E 两点, |AB |+|DE|的最小()A . 16B . 14C.12D. 10、、z 正数,且2x3y5z)11. x y,(A . 2x<3 y<5zB . 5z<2x<3y C.3y<5 z<2x D. 3y<2x<5z 12.几位大学生响国家的号召,开了一款用件.激大家学数学的趣,他推出了“解数学)l2取件激活”的活.款件的激活下面数学的答案:已知数列1, 1, 2, 1, 2, 4, 1,2, 4, 8, 1, 2,4, 8,16,⋯,其中第一是 20,接下来的两是 20, 21,再接下来的三是 20,21, 22,依此推.求足如下条件的最小整数 N:N>100 且数列的前 N 和 2 的整数.那么款件的激活是()A . 440B . 330C.220D. 110二、填空题:本题共 4 小题,每小题 5 分,共 20 分.13.已知向量 a , b 的夹角为 60°, |a |=2, |b |=1,则 | a +2 b |=.x 2 y 114.设 x ,y 满足约束条件2x y 1,则 z 3x 2 y 的最小值为.x y2215.已知双曲线 C :x2y 2 1( a>0,b>0)的右顶点为 A ,以 A 为圆心, b 为半径作圆 A ,圆 A 与双曲线 C 的 ab一条渐近线交于 M 、 N 两点.若∠ MAN =60°,则 C 的离心率为 ____ ____.16.如图,圆形纸片的圆心为O ,半径为 5 cm ,该纸片上的等边三角形ABC 的中心为 O .D 、E 、F 为圆 O 上的点,△ DBC ,△ ECA ,△ FAB 分别是以 BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△ DBC ,△ ECA ,△ FAB ,使得 D 、 E 、 F 重合,得到三棱锥.当△ ABC 的边长变化时,所得 三棱锥体积(单位:cm 3)的最大值为 _______.三、解答题:共 70 分.解答应写出文字说明、证明过程或演算步骤.第17~21 题为必考题,每个试题考生都必须作答.第 22、 23 题为选考题,考生根据要求作答.(一)必考题:共60 分.a 2 17.(12 分)△ ABC 的内角 A , B , C 的对边分别为 a ,b ,c ,已知△ ABC 的面积为3sin A( 1)求 sinBsinC;( 2)若 6cosBcosC=1, a=3,求△ ABC 的周长.18.( 12 分)如图,在四棱锥 P-ABCD 中, AB//CD ,且BAP CDP 90 .( 1)证明:平面 PAB ⊥平面 PAD ;( 2)若 PA=PD=AB=DC ,APD 90 ,求二面角 A-PB-C 的余弦值.19.( 12 分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16 个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N ( , 2 ).( 1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在 ( 3 ,3 ) 之外的零件数,求P( X 1) 及X的数学期望;( 2)一天内抽检零件中,如果出现了尺寸在(3,3 ) 之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:9.9510.129.969.9610.019.929.9810.0410.269.9110.1310.029.2210.0410.059.95116116( xi x )2116经计算得 x x i9.97 ,s(x i216x 2 ) 20.212,其中x i为抽取的第 i16 i 116 i 116i1个零件的尺寸,i1,2,,16 .用样本平均数x 作为的估计值 ?,用样本标准差s 作为的估计值? ,利用估计值判断是否需对当天的生产过程进行检查?剔除( ? 3 ?, ? 3 ?) 之外的数据,用剩下的数据估计和(精确到0.01).附:若随机变量Z 服从正态分布 N (,2 ) ,则 P(3Z3)0.9974 ,0.9974160.9592,0.0080.09.20.( 12 分)已知椭圆x2y23), P4( 1,3 C:22 =1 (a>b>0),四点P1(1,1),P2(0,1),P3(–1,)a b22中恰有三点在椭圆 C 上.( 1)求 C 的方程;( 2)设直线 l 不经过 P2点且与 C 相交于 A, B 两点.若直线P2A 与直线 P2B 的斜率的和为–1,证明: l 过定点.21.( 12 分)已知函数 f ( x) ae2x(a 2)e x x .( 1)讨论 f ( x) 的单调性;( 2)若f ( x)有两个零点,求 a 的取值范围.(二)选考题:共10 分.请考生在第22、 23 题中任选一题作答,如果多做,则按所做的第一题计分.22. [ 选修 4―4:坐标系与参数方程]( 10 分)x3cos x a4t 在直角坐标系 xOy 中,曲线 C 的参数方程为(θ为参数),直线 l 的参数方程为(为参数).y sin y1t( 1)若 a=-1 ,求 C 与 l 的交点坐标;( 2)若 C 上的点到 l 的距离的最大值为17 ,求 a.23. [ 选修 4—5:不等式选讲]( 10 分)已知函数f(x) = –x2+ax+4 , g(x)= │x+1│ +│x– 1│.(1)当 a=1 时,求不等式 f(x) ≥g(x)的解集;(2)若不等式 f(x) ≥g(x)的解集包含 [–1, 1],求 a 的取值范围.参考答案(理科数学)一、选择题123456789101112A B B C D C B D D A D A二、填空题13.2 314.52315.16.4 15 3三、解答题。

2017年全国统一高考数学试卷(理科)(新课标ⅰ)(含解析版)

2017年全国统一高考数学试卷(理科)(新课标ⅰ)(含解析版)

2017年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x<1},B={x|3x<1},则( )A.A∩B={x|x<0}B.A∪B=R C.A∪B={x|x>1}D.A∩B=∅2.(5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A.B.C.D.3.(5分)设有下面四个命题p1:若复数z满足∈R,则z∈R;p2:若复数z满足z2∈R,则z∈R;p 3:若复数z1,z2满足z1z2∈R,则z1=;p4:若复数z∈R,则∈R.其中的真命题为( )A.p1,p3B.p1,p4C.p2,p3D.p2,p4 4.(5分)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为( )A.1B.2C.4D.85.(5分)函数f(x)在(﹣∞,+∞)单调递减,且为奇函数.若f(1)=﹣1,则满足﹣1≤f(x﹣2)≤1的x的取值范围是( )A.[﹣2,2]B.[﹣1,1]C.[0,4]D.[1,3]6.(5分)(1+)(1+x)6展开式中x2的系数为( )A.15B.20C.30D.357.(5分)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A.10B.12C.14D.168.(5分)如图程序框图是为了求出满足3n﹣2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入( )A.A>1000和n=n+1B.A>1000和n=n+2C.A≤1000和n=n+1D.A≤1000和n=n+29.(5分)已知曲线C1:y=cosx,C2:y=sin(2x+),则下面结论正确的是( )A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C210.(5分)已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为( )A.16B.14C.12D.1011.(5分)设x、y、z为正数,且2x=3y=5z,则( )A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z 12.(5分)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是( )A.440B.330C.220D.110二、填空题:本题共4小题,每小题5分,共20分.13.(5分)已知向量,的夹角为60°,||=2,||=1,则|+2|= .14.(5分)设x,y满足约束条件,则z=3x﹣2y的最小值为 .15.(5分)已知双曲线C:﹣=1(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为 .16.(5分)如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC ,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为 .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC的周长.18.(12分)如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ﹣3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ﹣3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:9.9510.129.969.9610.019.929.9810.0410.269.9110.1310.029.2210.0410.059.95经计算得==9.97,s==≈0.212,其中x i为抽取的第i个零件的尺寸,i=1,2, (16)用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除(﹣3+3)之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z服从正态分布N(μ,σ2),则P(μ﹣3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592,≈0.09.20.(12分)已知椭圆C:+=1(a>b>0),四点P1(1,1),P2(0,1),P3(﹣1,),P4(1,)中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为﹣1,证明:l过定点.21.(12分)已知函数f(x)=ae2x+(a﹣2)e x﹣x.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.[选修4-4,坐标系与参数方程]22.(10分)在直角坐标系xOy中,曲线C的参数方程为,(θ为参数),直线l的参数方程为,(t为参数).(1)若a=﹣1,求C与l的交点坐标;(2)若C上的点到l距离的最大值为,求a.[选修4-5:不等式选讲]23.已知函数f(x)=﹣x2+ax+4,g(x)=|x+1|+|x﹣1|.(1)当a=1时,求不等式f(x)≥g(x)的解集;(2)若不等式f(x)≥g(x)的解集包含[﹣1,1],求a的取值范围.2017年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x<1},B={x|3x<1},则( )A.A∩B={x|x<0}B.A∪B=R C.A∪B={x|x>1}D.A∩B=∅【考点】1E:交集及其运算.【专题】11:计算题;37:集合思想;4O:定义法;5J:集合.【分析】先分别求出集合A和B,再求出A∩B和A∪B,由此能求出结果.【解答】解:∵集合A={x|x<1},B={x|3x<1}={x|x<0},∴A∩B={x|x<0},故A正确,D错误;A∪B={x|x<1},故B和C都错误.故选:A.【点评】本题考查交集和并集求法及应用,是基础题,解题时要认真审题,注意交集、并集定义的合理运用.2.(5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A.B.C.D.【考点】CF:几何概型.【专题】35:转化思想;4O:定义法;5I:概率与统计.【分析】根据图象的对称性求出黑色图形的面积,结合几何概型的概率公式进行求解即可.【解答】解:根据图象的对称性知,黑色部分为圆面积的一半,设圆的半径为1,则正方形的边长为2,则黑色部分的面积S=,则对应概率P==,故选:B.【点评】本题主要考查几何概型的概率计算,根据对称性求出黑色阴影部分的面积是解决本题的关键.3.(5分)设有下面四个命题p1:若复数z满足∈R,则z∈R;p2:若复数z满足z2∈R,则z∈R;p 3:若复数z1,z2满足z1z2∈R,则z1=;p4:若复数z∈R,则∈R.其中的真命题为( )A.p1,p3B.p1,p4C.p2,p3D.p2,p4【考点】2K:命题的真假判断与应用;A1:虚数单位i、复数;A5:复数的运算.【专题】2A:探究型;5L:简易逻辑;5N:数系的扩充和复数.【分析】根据复数的分类,有复数性质,逐一分析给定四个命题的真假,可得答案.【解答】解:若复数z满足∈R,则z∈R,故命题p1为真命题;p2:复数z=i满足z2=﹣1∈R,则z∉R,故命题p2为假命题;p 3:若复数z1=i,z2=2i满足z1z2∈R,但z1≠,故命题p3为假命题;p4:若复数z∈R,则=z∈R,故命题p4为真命题.故选:B.【点评】本题以命题的真假判断与应用为载体,考查了复数的运算,复数的分类,复数的运算性质,难度不大,属于基础题.4.(5分)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为( )A.1B.2C.4D.8【考点】84:等差数列的通项公式;85:等差数列的前n项和.【专题】11:计算题;34:方程思想;4O:定义法;54:等差数列与等比数列.【分析】利用等差数列通项公式及前n项和公式列出方程组,求出首项和公差,由此能求出{a n}的公差.【解答】解:∵S n为等差数列{a n}的前n项和,a4+a5=24,S6=48,∴,解得a1=﹣2,d=4,∴{a n}的公差为4.故选:C.【点评】本题考查等差数列公式的求法及应用,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.5.(5分)函数f(x)在(﹣∞,+∞)单调递减,且为奇函数.若f(1)=﹣1,则满足﹣1≤f(x﹣2)≤1的x的取值范围是( )A.[﹣2,2]B.[﹣1,1]C.[0,4]D.[1,3]【考点】3P:抽象函数及其应用.【专题】35:转化思想;4R:转化法;51:函数的性质及应用.【分析】由已知中函数的单调性及奇偶性,可将不等式﹣1≤f(x﹣2)≤1化为﹣1≤x﹣2≤1,解得答案.【解答】解:∵函数f(x)为奇函数.若f(1)=﹣1,则f(﹣1)=1,又∵函数f(x)在(﹣∞,+∞)单调递减,﹣1≤f(x﹣2)≤1,∴f(1)≤f(x﹣2)≤f(﹣1),∴﹣1≤x﹣2≤1,解得:x∈[1,3],故选:D.【点评】本题考查的知识点是抽象函数及其应用,函数的单调性,函数的奇偶性,难度中档.6.(5分)(1+)(1+x)6展开式中x2的系数为( )A.15B.20C.30D.35【考点】DA:二项式定理.【专题】35:转化思想;4R:转化法.【分析】直接利用二项式定理的通项公式求解即可.【解答】解:(1+)(1+x)6展开式中:若(1+)=(1+x﹣2)提供常数项1,则(1+x)6提供含有x2的项,可得展开式中x2的系数:若(1+)提供x﹣2项,则(1+x)6提供含有x4的项,可得展开式中x2的系数:由(1+x)6通项公式可得.可知r=2时,可得展开式中x2的系数为.可知r=4时,可得展开式中x2的系数为.(1+)(1+x)6展开式中x2的系数为:15+15=30.故选:C.【点评】本题主要考查二项式定理的知识点,通项公式的灵活运用.属于基础题.7.(5分)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A.10B.12C.14D.16【考点】L!:由三视图求面积、体积.【专题】11:计算题;31:数形结合;44:数形结合法;5Q:立体几何.【分析】由三视图可得直观图,由图形可知该立体图中只有两个相同的梯形的面,根据梯形的面积公式计算即可【解答】解:由三视图可画出直观图,该立体图中只有两个相同的梯形的面,S梯形=×2×(2+4)=6,∴这些梯形的面积之和为6×2=12,故选:B.【点评】本题考查了体积计算公式,考查了推理能力与计算能力,属于中档题. 8.(5分)如图程序框图是为了求出满足3n﹣2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入( )A.A>1000和n=n+1B.A>1000和n=n+2C.A≤1000和n=n+1D.A≤1000和n=n+2【考点】EF:程序框图.【专题】11:计算题;38:对应思想;49:综合法;5K:算法和程序框图.【分析】通过要求A>1000时输出且框图中在“否”时输出确定“”内不能输入“A>1000”,进而通过偶数的特征确定n=n+2.【解答】解:因为要求A>1000时输出,且框图中在“否”时输出,所以“”内不能输入“A>1000”,又要求n为偶数,且n的初始值为0,所以“”中n依次加2可保证其为偶数,所以D选项满足要求,故选:D.【点评】本题考查程序框图,属于基础题,意在让大部分考生得分.9.(5分)已知曲线C1:y=cosx,C2:y=sin(2x+),则下面结论正确的是( )A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【专题】11:计算题;35:转化思想;57:三角函数的图像与性质.【分析】利用三角函数的伸缩变换以及平移变换转化求解即可.【解答】解:把C1上各点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=cos2x图象,再把得到的曲线向左平移个单位长度,得到函数y=cos2(x+)=cos(2x+)=sin(2x+)的图象,即曲线C2,故选:D.【点评】本题考查三角函数的图象变换,诱导公式的应用,考查计算能力.10.(5分)已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为( )A.16B.14C.12D.10【考点】K8:抛物线的性质.【专题】11:计算题;34:方程思想;4R:转化法;5D:圆锥曲线的定义、性质与方程.【分析】方法一:根据题意可判断当A与D,B,E关于x轴对称,即直线DE的斜率为1,|AB|+|DE|最小,根据弦长公式计算即可.方法二:设直线l1的倾斜角为θ,则l2的倾斜角为+θ,利用焦点弦的弦长公式分别表示出|AB|,|DE|,整理求得答案【解答】解:如图,l1⊥l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,要使|AB|+|DE|最小,则A与D,B,E关于x轴对称,即直线DE的斜率为1,又直线l2过点(1,0),则直线l2的方程为y=x﹣1,联立方程组,则y2﹣4y﹣4=0,∴y1+y2=4,y1y2=﹣4,∴|DE|=•|y1﹣y2|=×=8,∴|AB|+|DE|的最小值为2|DE|=16,方法二:设直线l1的倾斜角为θ,则l2的倾斜角为+θ,根据焦点弦长公式可得|AB|==|DE|===∴|AB|+|DE|=+==,∵0<sin22θ≤1,∴当θ=45°时,|AB|+|DE|的最小,最小为16,故选:A.【点评】本题考查了抛物线的简单性质以及直线和抛物线的位置关系,弦长公式,对于过焦点的弦,能熟练掌握相关的结论,解决问题事半功倍属于中档题. 11.(5分)设x、y、z为正数,且2x=3y=5z,则( )A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z【考点】72:不等式比较大小.【专题】35:转化思想;51:函数的性质及应用;59:不等式的解法及应用.【分析】x、y、z为正数,令2x=3y=5z=k>1.lgk>0.可得x=,y=,z=.可得3y=,2x=,5z=.根据==,>=.即可得出大小关系.另解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.可得x=,y=,z=.==>1,可得2x>3y,同理可得5z>2x.【解答】解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x=,y=,z=.∴3y=,2x=,5z=.∵==,>=.∴>lg>>0.∴3y<2x<5z.另解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x=,y=,z=.∴==>1,可得2x>3y,==>1.可得5z>2x.综上可得:5z>2x>3y.解法三:对k取特殊值,也可以比较出大小关系.故选:D.【点评】本题考查了对数函数的单调性、换底公式、不等式的性质,考查了推理能力与计算能力,属于中档题.12.(5分)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是( )A.440B.330C.220D.110【考点】8E:数列的求和.【专题】35:转化思想;4R:转化法;54:等差数列与等比数列.【分析】方法一:由数列的性质,求得数列{b n}的通项公式及前n项和,可知当N为时(n∈N+),数列{a n}的前N项和为数列{b n}的前n项和,即为2n+1﹣n﹣2,容易得到N>100时,n≥14,分别判断,即可求得该款软件的激活码;方法二:由题意求得数列的每一项,及前n项和S n=2n+1﹣2﹣n,及项数,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n消去即可,分别即可求得N的值.【解答】解:设该数列为{a n},设b n=+…+=2n+1﹣1,(n∈N+),则=a i,由题意可设数列{a n}的前N项和为S N,数列{b n}的前n项和为T n,则T n=21﹣1+22﹣1+…+2n+1﹣1=2n+1﹣n﹣2,可知当N为时(n∈N+),数列{a n}的前N项和为数列{b n}的前n项和,即为2n+1﹣n﹣2,容易得到N>100时,n≥14,A项,由=435,440=435+5,可知S440=T29+b5=230﹣29﹣2+25﹣1=230,故A 项符合题意.B项,仿上可知=325,可知S330=T25+b5=226﹣25﹣2+25﹣1=226+4,显然不为2的整数幂,故B项不符合题意.C项,仿上可知=210,可知S220=T20+b10=221﹣20﹣2+210﹣1=221+210﹣23,显然不为2的整数幂,故C项不符合题意.D项,仿上可知=105,可知S110=T14+b5=215﹣14﹣2+25﹣1=215+15,显然不为2的整数幂,故D项不符合题意.故选A.方法二:由题意可知:,,,…,根据等比数列前n项和公式,求得每项和分别为:21﹣1,22﹣1,23﹣1,…,2n﹣1,每项含有的项数为:1,2,3,…,n,总共的项数为N=1+2+3+…+n=,所有项数的和为S n:21﹣1+22﹣1+23﹣1+…+2n﹣1=(21+22+23+…+2n)﹣n=﹣n=2n+1﹣2﹣n,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n消去即可,则①1+2+(﹣2﹣n)=0,解得:n=1,总共有+2=3,不满足N>100,②1+2+4+(﹣2﹣n)=0,解得:n=5,总共有+3=18,不满足N>100,③1+2+4+8+(﹣2﹣n)=0,解得:n=13,总共有+4=95,不满足N>100,④1+2+4+8+16+(﹣2﹣n)=0,解得:n=29,总共有+5=440,满足N>100,∴该款软件的激活码440.故选:A.【点评】本题考查数列的应用,等差数列与等比数列的前n项和,考查计算能力,属于难题.二、填空题:本题共4小题,每小题5分,共20分.13.(5分)已知向量,的夹角为60°,||=2,||=1,则|+2|= 2 .【考点】9O:平面向量数量积的性质及其运算.【专题】31:数形结合;4O:定义法;5A:平面向量及应用.【分析】根据平面向量的数量积求出模长即可.【解答】解:【解法一】向量,的夹角为60°,且||=2,||=1,∴=+4•+4=22+4×2×1×cos60°+4×12=12,∴|+2|=2.【解法二】根据题意画出图形,如图所示;结合图形=+=+2;在△OAC中,由余弦定理得||==2,即|+2|=2.故答案为:2.【点评】本题考查了平面向量的数量积的应用问题,解题时应利用数量积求出模长,是基础题.14.(5分)设x,y满足约束条件,则z=3x﹣2y的最小值为 ﹣5 .【考点】7C:简单线性规划.【专题】11:计算题;31:数形结合;35:转化思想;5T:不等式.【分析】由约束条件作出可行域,由图得到最优解,求出最优解的坐标,数形结合得答案.【解答】解:由x,y满足约束条件作出可行域如图,由图可知,目标函数的最优解为A,联立,解得A(﹣1,1).∴z=3x﹣2y的最小值为﹣3×1﹣2×1=﹣5.故答案为:﹣5.【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.15.(5分)已知双曲线C:﹣=1(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为 .【考点】KC:双曲线的性质.【专题】11:计算题;35:转化思想;49:综合法;5D:圆锥曲线的定义、性质与方程.【分析】利用已知条件,转化求解A到渐近线的距离,推出a,c的关系,然后求解双曲线的离心率即可.【解答】解:双曲线C:﹣=1(a>0,b>0)的右顶点为A(a,0),以A为圆心,b为半径做圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,可得A到渐近线bx+ay=0的距离为:bcos30°=,可得:=,即,可得离心率为:e=.故答案为:.【点评】本题考查双曲线的简单性质的应用,点到直线的距离公式以及圆的方程的应用,考查转化思想以及计算能力.16.(5分)如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC ,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为 4cm3 .【考点】LF:棱柱、棱锥、棱台的体积.【专题】11:计算题;35:转化思想;49:综合法;5E:圆锥曲线中的最值与范围问题.【分析】法一:由题,连接OD,交BC于点G,由题意得OD⊥BC,OG=BC,设OG=x,则BC=2x,DG=5﹣x,三棱锥的高h=,求出S△ABC=3,V==,令f(x)=25x4﹣10x5,x∈(0,),f′(x)=100x3﹣50x4,f(x)≤f(2)=80,由此能求出体积最大值.法二:设正三角形的边长为x,则OG=,FG=SG=5﹣,SO=h===,由此能示出三棱锥的体积的最大值.【解答】解法一:由题意,连接OD,交BC于点G,由题意得OD⊥BC,OG=BC,即OG的长度与BC的长度成正比,设OG=x,则BC=2x,DG=5﹣x,三棱锥的高h===,=3,则V===,令f(x)=25x4﹣10x5,x∈(0,),f′(x)=100x3﹣50x4,令f′(x)≥0,即x4﹣2x3≤0,解得x≤2,则f(x)≤f(2)=80,∴V≤=4cm3,∴体积最大值为4cm3.故答案为:4cm3.解法二:如图,设正三角形的边长为x,则OG=,∴FG=SG=5﹣,SO=h===,∴三棱锥的体积V===,令b(x)=5x4﹣,则,令b'(x)=0,则4x3﹣=0,解得x=4,∴(cm3).故答案为:4cm3.【点评】本题考查三棱锥的体积的最大值的求法,考查空间中线线、线面、面面间的位置关系、函数性质、导数等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC的周长.【考点】HP:正弦定理;HR:余弦定理.【专题】11:计算题;33:函数思想;4R:转化法;56:三角函数的求值;58:解三角形.【分析】(1)根据三角形面积公式和正弦定理可得答案,(2)根据两角余弦公式可得cosA=,即可求出A=,再根据正弦定理可得bc=8,根据余弦定理即可求出b+c,问题得以解决.【解答】解:(1)由三角形的面积公式可得S△ABC=acsinB=,∴3csinBsinA=2a,由正弦定理可得3sinCsinBsinA=2sinA,∵sinA≠0,∴sinBsinC=;(2)∵6cosBcosC=1,∴cosBcosC=,∴cosBcosC﹣sinBsinC=﹣=﹣,∴cos(B+C)=﹣,∴cosA=,∵0<A<π,∴A=,∵===2R==2,∴sinBsinC=•===,∴bc=8,∵a2=b2+c2﹣2bccosA,∴b2+c2﹣bc=9,∴(b+c)2=9+3cb=9+24=33,∴b+c=∴周长a+b+c=3+.【点评】本题考查了三角形的面积公式和两角和的余弦公式和诱导公式和正弦定理余弦定理,考查了学生的运算能力,属于中档题.18.(12分)如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.【考点】LY:平面与平面垂直;MJ:二面角的平面角及求法.【专题】15:综合题;31:数形结合;41:向量法;5G:空间角.【分析】(1)由已知可得PA⊥AB,PD⊥CD,再由AB∥CD,得AB⊥PD,利用线面垂直的判定可得AB⊥平面PAD,进一步得到平面PAB⊥平面PAD;(2)由已知可得四边形ABCD为平行四边形,由(1)知AB⊥平面PAD,得到AB ⊥AD,则四边形ABCD为矩形,设PA=AB=2a,则AD=.取AD中点O,BC中点E,连接PO、OE,以O为坐标原点,分别以OA、OE、OP所在直线为x、y、z轴建立空间直角坐标系,求出平面PBC的一个法向量,再证明PD⊥平面PAB,得为平面PAB的一个法向量,由两法向量所成角的余弦值可得二面角A﹣PB﹣C的余弦值.【解答】(1)证明:∵∠BAP=∠CDP=90°,∴PA⊥AB,PD⊥CD,∵AB∥CD,∴AB⊥PD,又∵PA∩PD=P,且PA⊂平面PAD,PD⊂平面PAD,∴AB⊥平面PAD,又AB⊂平面PAB,∴平面PAB⊥平面PAD;(2)解:∵AB∥CD,AB=CD,∴四边形ABCD为平行四边形,由(1)知AB⊥平面PAD,∴AB⊥AD,则四边形ABCD为矩形,在△APD中,由PA=PD,∠APD=90°,可得△PAD为等腰直角三角形,设PA=AB=2a,则AD=.取AD中点O,BC中点E,连接PO、OE,以O为坐标原点,分别以OA、OE、OP所在直线为x、y、z轴建立空间直角坐标系,则:D(),B(),P(0,0,),C().,,.设平面PBC的一个法向量为,由,得,取y=1,得.∵AB⊥平面PAD,AD⊂平面PAD,∴AB⊥PD,又PD⊥PA,PA∩AB=A,∴PD⊥平面PAB,则为平面PAB的一个法向量,.∴cos<>==.由图可知,二面角A﹣PB﹣C为钝角,∴二面角A﹣PB﹣C的余弦值为.【点评】本题考查平面与平面垂直的判定,考查空间想象能力和思维能力,训练了利用空间向量求二面角的平面角,是中档题.19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ﹣3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ﹣3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:9.9510.129.969.9610.019.929.9810.0410.269.9110.1310.029.2210.0410.059.95经计算得==9.97,s==≈0.212,其中x i为抽取的第i个零件的尺寸,i=1,2, (16)用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除(﹣3+3)之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z服从正态分布N(μ,σ2),则P(μ﹣3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592,≈0.09.【考点】CP:正态分布曲线的特点及曲线所表示的意义.【专题】11:计算题;35:转化思想;4A:数学模型法;5I:概率与统计.【分析】(1)通过P(X=0)可求出P(X≥1)=1﹣P(X=0)=0.0408,利用二项分布的期望公式计算可得结论;(2)(ⅰ)由(1)及知落在(μ﹣3σ,μ+3σ)之外为小概率事件可知该监控生产过程方法合理;(ⅱ)通过样本平均数、样本标准差s估计、可知(﹣3+3)=(9.334,10.606),进而需剔除(﹣3+3)之外的数据9.22,利用公式计算即得结论.【解答】解:(1)由题可知尺寸落在(μ﹣3σ,μ+3σ)之内的概率为0.9974,则落在(μ﹣3σ,μ+3σ)之外的概率为1﹣0.9974=0.0026,因为P(X=0)=×(1﹣0.9974)0×0.997416≈0.9592,所以P(X≥1)=1﹣P(X=0)=0.0408,又因为X~B(16,0.0026),所以E(X)=16×0.0026=0.0416;(2)(ⅰ)如果生产状态正常,一个零件尺寸在(﹣3+3)之外的概率只有0.0026,一天内抽取的16个零件中,出现尺寸在(﹣3+3)之外的零件的概率只有0.0408,发生的概率很小.因此一旦发生这种状况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的.(ⅱ)由=9.97,s≈0.212,得μ的估计值为=9.97,σ的估计值为=0.212,由样本数据可以看出一个零件的尺寸在(﹣3+3)之外,因此需对当天的生产过程进行检查.剔除(﹣3+3)之外的数据9.22,剩下的数据的平均数为(16×9.97﹣9.22)=10.02,因此μ的估计值为10.02.2=16×0.2122+16×9.972≈1591.134,剔除(﹣3+3)之外的数据9.22,剩下的数据的样本方差为(1591.134﹣9.222﹣15×10.022)≈0.008,因此σ的估计值为≈0.09.【点评】本题考查正态分布,考查二项分布,考查方差、标准差,考查概率的计算,考查运算求解能力,注意解题方法的积累,属于中档题.20.(12分)已知椭圆C:+=1(a>b>0),四点P1(1,1),P2(0,1),P3(﹣1,),P4(1,)中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为﹣1,证明:l过定点.【考点】K3:椭圆的标准方程;KI:圆锥曲线的综合.【专题】14:证明题;35:转化思想;49:综合法;5E:圆锥曲线中的最值与范围问题.【分析】(1)根据椭圆的对称性,得到P2(0,1),P3(﹣1,),P4(1,)三点在椭圆C上.把P2(0,1),P3(﹣1,)代入椭圆C,求出a2=4,b2=1,由此能求出椭圆C的方程.(2)当斜率不存在时,不满足;当斜率存在时,设l:y=kx+t,(t≠1),联立,得(1+4k2)x2+8ktx+4t2﹣4=0,由此利用根的判别式、韦达定理、直线方程,结合已知条件能证明直线l过定点(2,﹣1).【解答】解:(1)根据椭圆的对称性,P3(﹣1,),P4(1,)两点必在椭圆C上,又P4的横坐标为1,∴椭圆必不过P1(1,1),∴P2(0,1),P3(﹣1,),P4(1,)三点在椭圆C上.把P2(0,1),P3(﹣1,)代入椭圆C,得:,解得a2=4,b2=1,∴椭圆C的方程为=1.证明:(2)①当斜率不存在时,设l:x=m,A(m,y A),B(m,﹣y A),∵直线P2A与直线P2B的斜率的和为﹣1,∴===﹣1,解得m=2,此时l过椭圆右顶点,不存在两个交点,故不满足.②当斜率存在时,设l:y=kx+t,(t≠1),A(x1,y1),B(x2,y2),联立,整理,得(1+4k2)x2+8ktx+4t2﹣4=0,,x1x2=,则=====﹣1,又t≠1,∴t=﹣2k﹣1,此时△=﹣64k,存在k,使得△>0成立,∴直线l的方程为y=kx﹣2k﹣1,当x=2时,y=﹣1,∴l过定点(2,﹣1).【点评】本题考查椭圆方程的求法,考查椭圆、直线方程、根的判别式、韦达定理、直线方程位置关系等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想、化归与转化思想,是中档题.21.(12分)已知函数f(x)=ae2x+(a﹣2)e x﹣x.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.【考点】52:函数零点的判定定理;6B:利用导数研究函数的单调性.【专题】32:分类讨论;35:转化思想;4R:转化法;53:导数的综合应用.【分析】(1)求导,根据导数与函数单调性的关系,分类讨论,即可求得f(x)单调性;(2)由(1)可知:当a>0时才有两个零点,根据函数的单调性求得f(x)最小值,由f(x)min<0,g(a)=alna+a﹣1,a>0,求导,由g(a)min=g(e﹣2)=e﹣2lne﹣2+e﹣2﹣1=﹣﹣1,g(1)=0,即可求得a的取值范围.(1)求导,根据导数与函数单调性的关系,分类讨论,即可求得f(x)单调性;(2)分类讨论,根据函数的单调性及函数零点的判断,分别求得函数的零点,即可求得a的取值范围.【解答】解:(1)由f(x)=ae2x+(a﹣2)e x﹣x,求导f′(x)=2ae2x+(a﹣2)e x﹣1。

(精校版)2017年新课标Ⅰ理数高考真题文档版(含答案)

(精校版)2017年新课标Ⅰ理数高考真题文档版(含答案)

更多优质资料请关注公众号:诗酒叙华年绝密★启用前2017年普通高等学校招生全国统一考试理科数学本试卷5页,23小题,满分150分。

考试用时120分钟。

注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A ={x |x <1},B ={x |31x <},则 A .{|0}A B x x =<I B .A B =R U C .{|1}A B x x =>UD .A B =∅I2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14B .π8C .12D .π43.设有下面四个命题1p :若复数z 满足1z∈R ,则z ∈R ;更多优质资料请关注公众号:诗酒叙华年2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数12,z z 满足12z z ∈R ,则12z z =; 4p :若复数z ∈R ,则z ∈R .其中的真命题为 A .13,p pB .14,p pC .23,p pD .24,p p4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为A .1B .2C .4D .85.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是 A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]6.621(1)(1)x x++展开式中2x 的系数为 A .15B .20C .30D .357.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A .10B .12C .14D .168.右面程序框图是为了求出满足3n −2n >1000的最小偶数n ,那么在和两个空白框中,可以分别填入A .A >1 000和n =n +1更多优质资料请关注公众号:诗酒叙华年B .A >1 000和n =n +2C .A ≤1 000和n =n +1D .A ≤1 000和n =n +29.已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是 A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 210.已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为 A .16B .14C .12D .1011.设xyz 为正数,且235x y z ==,则A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z12.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的学科网&最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是 A .440B .330C .220D .110二、填空题:本题共4小题,每小题5分,共20分。

2017年全国统一高考新课标版Ⅰ卷全国1卷理科数学试卷及参考答案与解析

2017年全国统一高考新课标版Ⅰ卷全国1卷理科数学试卷及参考答案与解析

2017年全国统一高考新课标版Ⅰ卷全国1卷理科数学试卷及参考答案与解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x<1},B={x|3x<1},则( )A.A∩B={x|x<0}B.A∪B=RC.A∪B={x|x>1}D.A∩B=∅2.(5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A. B. C. D.3.(5分)设有下面四个命题p1:若复数z满足∈R,则z∈R;p2:若复数z满足z2∈R,则z∈R;p 3:若复数z1,z2满足z1z2∈R,则z1=;p4:若复数z∈R,则∈R. 其中的真命题为( )A.p1,p3B.p1,p4C.p2,p3D.p2,p44.(5分)记Sn 为等差数列{an}的前n项和.若a4+a5=24,S6=48,则{an}的公差为( )A.1B.2C.4D.85.(5分)函数f(x)在(-∞,+∞)单调递减,且为奇函数.若f(1)=-1,则满足-1≤f(x-2)≤1的x的取值范围是( )A.[-2,2]B.[-1,1]C.[0,4]D.[1,3]6.(5分)(1+)(1+x)6展开式中x2的系数为( )A.15B.20C.30D.357.(5分)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A.10B.12C.14D.168.(5分)如图程序框图是为了求出满足3n-2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入( )A.A>1000和n=n+1B.A>1000和n=n+2C.A≤1000和n=n+1D.A≤1000和n=n+29.(5分)已知曲线C1:y=cosx,C2:y=sin(2x+),则下面结论正确的是( )A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C210.(5分)已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为( ) A.16 B.14 C.12 D.1011.(5分)设x、y、z为正数,且2x=3y=5z,则( )A.2x<3y<5zB.5z<2x<3yC.3y<5z<2xD.3y<2x<5z12.(5分)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是( )A.440B.330C.220D.110二、填空题:本题共4小题,每小题5分,共20分.13.(5分)已知向量,的夹角为60°,||=2,||=1,则|+2|=.14.(5分)设x,y满足约束条件,则z=3x-2y的最小值为.15.(5分)已知双曲线C:-=1(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为. 16.(5分)如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC的周长.18.(12分)如图,在四棱锥P-ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A-PB-C的余弦值.19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ-3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ-3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;经计算得==9.97,s==≈0.212,其中xi为抽取的第i个零件的尺寸,i=1,2, (16)用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除(-3+3)之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z服从正态分布N(μ,σ2),则P(μ-3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592,≈0.09.20.(12分)已知椭圆C:+=1(a>b>0),四点P1(1,1),P2(0,1),P3(-1,),P4(1,)中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为-1,证明:l过定点.21.(12分)已知函数f(x)=ae2x+(a-2)e x-x.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.[选修4-4,坐标系与参数方程]22.(10分)在直角坐标系xOy中,曲线C的参数方程为,(θ为参数),直线l的参数方程为,(t为参数).(1)若a=-1,求C与l的交点坐标;(2)若C上的点到l距离的最大值为,求a.[选修4-5:不等式选讲]23.已知函数f(x)=-x2+ax+4,g(x)=|x+1|+|x-1|.(1)当a=1时,求不等式f(x)≥g(x)的解集;(2)若不等式f(x)≥g(x)的解集包含[-1,1],求a的取值范围.2017年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x<1},B={x|3x<1},则( )A.A∩B={x|x<0}B.A∪B=RC.A∪B={x|x>1}D.A∩B=∅【分析】先分别求出集合A和B,再求出A∩B和A∪B,由此能求出结果.【解答】解:∵集合A={x|x<1},B={x|3x<1}={x|x<0},∴A∩B={x|x<0},故A正确,D错误;A∪B={x|x<1},故B和C都错误.故选:A.【点评】本题考查交集和并集求法及应用,是基础题,解题时要认真审题,注意交集、并集定义的合理运用.2.(5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A. B. C. D.【分析】根据图象的对称性求出黑色图形的面积,结合几何概型的概率公式进行求解即可. 【解答】解:根据图象的对称性知,黑色部分为圆面积的一半,设圆的半径为1,则正方形的边长为2,则黑色部分的面积S=,则对应概率P==,故选:B.【点评】本题主要考查几何概型的概率计算,根据对称性求出黑色阴影部分的面积是解决本题的关键.3.(5分)设有下面四个命题p1:若复数z满足∈R,则z∈R;p2:若复数z满足z2∈R,则z∈R;p 3:若复数z1,z2满足z1z2∈R,则z1=;p4:若复数z∈R,则∈R. 其中的真命题为( )A.p1,p3B.p1,p4C.p2,p3D.p2,p4【分析】根据复数的分类,有复数性质,逐一分析给定四个命题的真假,可得答案.【解答】解:若复数z满足∈R,则z∈R,故命题p1为真命题;p 2:复数z=i满足z2=-1∈R,则z∉R,故命题p2为假命题;p 3:若复数z1=i,z2=2i满足z1z2∈R,但z1≠,故命题p3为假命题;p 4:若复数z∈R,则=z∈R,故命题p4为真命题.故选:B.【点评】本题以命题的真假判断与应用为载体,考查了复数的运算,复数的分类,复数的运算性质,难度不大,属于基础题.4.(5分)记Sn 为等差数列{an}的前n项和.若a4+a5=24,S6=48,则{an}的公差为( )A.1B.2C.4D.8【分析】利用等差数列通项公式及前n项和公式列出方程组,求出首项和公差,由此能求出{an}的公差.【解答】解:∵Sn 为等差数列{an}的前n项和,a4+a5=24,S6=48,∴,解得a1=-2,d=4,∴{an}的公差为4.故选:C.【点评】本题考查等差数列的面公式的求法及应用,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.5.(5分)函数f(x)在(-∞,+∞)单调递减,且为奇函数.若f(1)=-1,则满足-1≤f(x-2)≤1的x的取值范围是( )A.[-2,2]B.[-1,1]C.[0,4]D.[1,3]【分析】由已知中函数的单调性及奇偶性,可将不等式-1≤f(x-2)≤1化为-1≤x-2≤1,解得答案.【解答】解:∵函数f(x)为奇函数.若f(1)=-1,则f(-1)=1,又∵函数f(x)在(-∞,+∞)单调递减,-1≤f(x-2)≤1,∴f(1)≤f(x-2)≤f(-1),∴-1≤x-2≤1,解得:x∈[1,3],故选:D.【点评】本题考查的知识点是抽象函数及其应用,函数的单调性,函数的奇偶性,难度中档.6.(5分)(1+)(1+x)6展开式中x2的系数为( )A.15B.20C.30D.35【分析】直接利用二项式定理的通项公式求解即可.【解答】解:(1+)(1+x)6展开式中:若(1+)=(1+x-2)提供常数项1,则(1+x)6提供含有x2的项,可得展开式中x2的系数:若(1+)提供x-2项,则(1+x)6提供含有x4的项,可得展开式中x2的系数:由(1+x)6通项公式可得.可知r=2时,可得展开式中x2的系数为.可知r=4时,可得展开式中x2的系数为.(1+)(1+x)6展开式中x2的系数为:15+15=30.故选:C.【点评】本题主要考查二项式定理的知识点,通项公式的灵活运用.属于基础题.7.(5分)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A.10B.12C.14D.16【分析】由三视图可得直观图,由图形可知该立体图中只有两个相同的梯形的面,根据梯形的面积公式计算即可【解答】解:由三视图可画出直观图,该立体图中只有两个相同的梯形的面,=×2×(2+4)=6,S梯形∴这些梯形的面积之和为6×2=12,故选:B.【点评】本题考查了体积计算公式,考查了推理能力与计算能力,属于中档题.8.(5分)如图程序框图是为了求出满足3n-2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入( )A.A>1000和n=n+1B.A>1000和n=n+2C.A≤1000和n=n+1D.A≤1000和n=n+2【分析】通过要求A>1000时输出且框图中在“否”时输出确定“”内不能输入“A>1000”,进而通过偶数的特征确定n=n+2.【解答】解:因为要求A>1000时输出,且框图中在“否”时输出,所以“”内不能输入“A>1000”,又要求n为偶数,且n的初始值为0,所以“”中n依次加2可保证其为偶数,所以D选项满足要求,故选:D.【点评】本题考查程序框图,属于基础题,意在让大部分考生得分.9.(5分)已知曲线C 1:y =cosx,C 2:y =sin(2x +),则下面结论正确的是( )A.把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C 2B.把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C 2C.把C 1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C 2D.把C 1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C 2【分析】利用三角函数的伸缩变换以及平移变换转化求解即可.【解答】解:把C 1上各点的横坐标缩短到原来的倍,纵坐标不变,得到函数y =cos2x 图象,再把得到的曲线向左平移个单位长度,得到函数y =cos2(x +)=cos(2x +)=sin(2x+)的图象,即曲线C 2, 故选:D.【点评】本题考查三角函数的图象变换,诱导公式的应用,考查计算能力.10.(5分)已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB|+|DE|的最小值为( ) A.16 B.14 C.12 D.10【分析】方法一:根据题意可判断当A 与D,B,E 关于x 轴对称,即直线DE 的斜率为1,|AB|+|DE|最小,根据弦长公式计算即可.方法二:设直线l 1的倾斜角为θ,则l 2的倾斜角为 +θ,利用焦点弦的弦长公式分别表示出|AB|,|DE|,整理求得答案【解答】解:如图,l 1⊥l 2,直线l 1与C 交于A 、B 两点, 直线l 2与C 交于D 、E 两点, 要使|AB|+|DE|最小,则A 与D,B,E 关于x 轴对称,即直线DE 的斜率为1, 又直线l 2过点(1,0),则直线l 2的方程为y =x -1,联立方程组,则y 2-4y -4=0,∴y 1+y 2=4,y 1y 2=-4, ∴|DE|=•|y 1-y 2|=×=8,∴|AB|+|DE|的最小值为2|DE|=16,方法二:设直线l 1的倾斜角为θ,则l 2的倾斜角为 +θ,根据焦点弦长公式可得|AB|==|DE|===∴|AB|+|DE|=+==,∵0<sin 22θ≤1,∴当θ=45°时,|AB|+|DE|的最小,最小为16, 故选:A.【点评】本题考查了抛物线的简单性质以及直线和抛物线的位置关系,弦长公式,对于过焦点的弦,能熟练掌握相关的结论,解决问题事半功倍属于中档题.11.(5分)设x 、y 、z 为正数,且2x =3y =5z ,则( )A.2x <3y <5zB.5z <2x <3yC.3y <5z <2xD.3y <2x <5z 【分析】x 、y 、z 为正数,令2x =3y =5z =k >1.lgk >0.可得x =,y =,z =.可得3y =,2x =,5z =.根据==,>=.即可得出大小关系.另解:x 、y 、z 为正数,令2x =3y =5z =k >1.lgk >0.可得x =,y =,z =.==>1,可得2x>3y,同理可得5z>2x.【解答】解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x=,y=,z=.∴3y=,2x=,5z=.∵==,>=.∴>lg>>0.∴3y<2x<5z.另解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x=,y=,z=.∴==>1,可得2x>3y,==>1.可得5z>2x.综上可得:5z>2x>3y.解法三:对k取特殊值,也可以比较出大小关系.故选:D.【点评】本题考查了对数函数的单调性、换底公式、不等式的性质,考查了推理能力与计算能力,属于中档题.12.(5分)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是( )A.440B.330C.220D.110【分析】方法一:由数列的性质,求得数列{bn}的通项公式及前n项和,可知当N为时(n∈N+),数列{an}的前N项和为数列{bn}的前n项和,即为2n+1-n-2,容易得到N>100时,n≥14,分别判断,即可求得该款软件的激活码;方法二:由题意求得数列的每一项,及前n项和Sn=2n+1-2-n,及项数,由题意可知:2n+1为2的整数幂.只需将-2-n消去即可,分别即可求得N的值.【解答】解:设该数列为{an },设bn=+…+=2n+1-1,(n∈N+),则=ai ,由题意可设数列{an }的前N项和为SN,数列{bn}的前n项和为Tn,则Tn=21-1+22-1+…+2n+1-1=2n+1-n-2,可知当N为时(n∈N+),数列{an}的前N项和为数列{bn}的前n项和,即为2n+1-n-2,容易得到N>100时,n≥14,A项,由=435,440=435+5,可知S440=T29+b5=230-29-2+25-1=230,故A项符合题意.B项,仿上可知=325,可知S330=T25+b5=226-25-2+25-1=226+4,显然不为2的整数幂,故B项不符合题意.C项,仿上可知=210,可知S220=T20+b10=221-20-2+210-1=221+210-23,显然不为2的整数幂,故C项不符合题意.D项,仿上可知=105,可知S110=T14+b5=215-14-2+25-1=215+15,显然不为2的整数幂,故D项不符合题意.故选A.方法二:由题意可知:,,,…,根据等比数列前n项和公式,求得每项和分别为:21-1,22-1,23-1,…,2n-1,每项含有的项数为:1,2,3,…,n,总共的项数为N=1+2+3+…+n=,所有项数的和为Sn:21-1+22-1+23-1+…+2n-1=(21+22+23+…+2n)-n=-n=2n+1-2-n,由题意可知:2n+1为2的整数幂.只需将-2-n消去即可,则①1+2+(-2-n)=0,解得:n=1,总共有+2=3,不满足N>100,②1+2+4+(-2-n)=0,解得:n=5,总共有+3=18,不满足N>100,③1+2+4+8+(-2-n)=0,解得:n=13,总共有+4=95,不满足N>100,④1+2+4+8+16+(-2-n)=0,解得:n=29,总共有+5=440,满足N>100, ∴该款软件的激活码440.故选:A.【点评】本题考查数列的应用,等差数列与等比数列的前n项和,考查计算能力,属于难题.二、填空题:本题共4小题,每小题5分,共20分.13.(5分)已知向量,的夹角为60°,||=2,||=1,则|+2|=2.【分析】根据平面向量的数量积求出模长即可.【解答】解:【解法一】向量,的夹角为60°,且||=2,||=1,∴=+4•+4=22+4×2×1×cos60°+4×12=12,∴|+2|=2.【解法二】根据题意画出图形,如图所示;结合图形=+=+2;在△OAC中,由余弦定理得||==2,即|+2|=2.故答案为:2.【点评】本题考查了平面向量的数量积的应用问题,解题时应利用数量积求出模长,是基础题.14.(5分)设x,y满足约束条件,则z=3x-2y的最小值为-5 .【分析】由约束条件作出可行域,由图得到最优解,求出最优解的坐标,数形结合得答案.【解答】解:由x,y满足约束条件作出可行域如图,由图可知,目标函数的最优解为A,联立,解得A(-1,1).∴z=3x-2y的最小值为-3×1-2×1=-5.故答案为:-5.【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.15.(5分)已知双曲线C:-=1(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为.【分析】利用已知条件,转化求解A到渐近线的距离,推出a,c的关系,然后求解双曲线的离心率即可.【解答】解:双曲线C:-=1(a>0,b>0)的右顶点为A(a,0),以A为圆心,b为半径做圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,可得A到渐近线bx+ay=0的距离为:bcos30°=,可得:=,即,可得离心率为:e=.故答案为:.【点评】本题考查双曲线的简单性质的应用,点到直线的距离公式以及圆的方程的应用,考查转化思想以及计算能力.16.(5分)如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为4cm3.【分析】由题,连接OD,交BC于点G,由题意得OD⊥BC,OG=BC,设OG=x,则BC=2x,DG=3,V==,令=5-x,三棱锥的高h=,求出S△ABCf(x)=25x4-10x5,x∈(0,),f′(x)=100x3-50x4,f(x)≤f(2)=80,由此能求出体积最大值.【解答】解:由题意,连接OD,交BC于点G,由题意得OD⊥BC,OG=BC,即OG的长度与BC的长度成正比,设OG=x,则BC=2x,DG=5-x,三棱锥的高h===,=3,则V===,令f(x)=25x4-10x5,x∈(0,),f′(x)=100x3-50x4,令f′(x)≥0,即x4-2x3≤0,解得x≤2,则f(x)≤f(2)=80,∴V≤=4cm3,∴体积最大值为4cm3.故答案为:4cm3.【点评】本题考查三棱锥的体积的最大值的求法,考查空间中线线、线面、面面间的位置关系、函数性质、导数等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC的周长.【分析】(1)根据三角形面积公式和正弦定理可得答案,(2)根据两角余弦公式可得cosA=,即可求出A=,再根据正弦定理可得bc=8,根据余弦定理即可求出b+c,问题得以解决.=acsinB=,【解答】解:(1)由三角形的面积公式可得S△ABC∴3csinBsinA=2a,由正弦定理可得3sinCsinBsinA=2sinA,∵sinA≠0,∴sinBsinC=;(2)∵6cosBcosC=1,∴cosBcosC=,∴cosBcosC-sinBsinC=-=-,∴cos(B+C)=-,∴cosA=,∵0<A<π,∴A=,∵===2R==2,∴sinBsinC=•===,∴bc=8,∵a2=b2+c2-2bccosA,∴b2+c2-bc=9,∴(b+c)2=9+3cb=9+24=33,∴b+c=∴周长a+b+c=3+.【点评】本题考查了三角形的面积公式和两角和的余弦公式和诱导公式和正弦定理余弦定理,考查了学生的运算能力,属于中档题.18.(12分)如图,在四棱锥P-ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A-PB-C的余弦值.【分析】(1)由已知可得PA⊥AB,PD⊥CD,再由AB∥CD,得AB⊥PD,利用线面垂直的判定可得AB ⊥平面PAD,进一步得到平面PAB⊥平面PAD;(2)由已知可得四边形ABCD为平行四边形,由(1)知AB⊥平面PAD,得到AB⊥AD,则四边形ABCD 为矩形,设PA=AB=2a,则AD=.取AD中点O,BC中点E,连接PO、OE,以O为坐标原点,分别以OA、OE、OP所在直线为x、y、z轴建立空间直角坐标系,求出平面PBC的一个法向量,再证明PD⊥平面PAB,得为平面PAB的一个法向量,由两法向量所成角的余弦值可得二面角A-PB-C的余弦值.【解答】(1)证明:∵∠BAP=∠CDP=90°,∴PA⊥AB,PD⊥CD,∵AB∥CD,∴AB⊥PD,又∵PA∩PD=P,且PA⊂平面PAD,PD⊂平面PAD,∴AB⊥平面PAD,又AB⊂平面PAB,∴平面PAB⊥平面PAD;(2)解:∵AB∥CD,AB=CD,∴四边形ABCD为平行四边形,由(1)知AB⊥平面PAD,∴AB⊥AD,则四边形ABCD为矩形,在△APD中,由PA=PD,∠APD=90°,可得△PAD为等腰直角三角形,设PA=AB=2a,则AD=.取AD中点O,BC中点E,连接PO、OE,以O为坐标原点,分别以OA、OE、OP所在直线为x、y、z轴建立空间直角坐标系,则:D(),B(),P(0,0,),C().,,.设平面PBC的一个法向量为,由,得,取y=1,得.∵AB⊥平面PAD,AD⊂平面PAD,∴AB⊥PD,又PD⊥PA,PA∩AB=A,∴PD⊥平面PAB,则为平面PAB的一个法向量,.∴cos<>==.由图可知,二面角A-PB-C为钝角,∴二面角A-PB-C的余弦值为.【点评】本题考查平面与平面垂直的判定,考查空间想象能力和思维能力,训练了利用空间向量求二面角的平面角,是中档题.19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ-3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ-3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;经计算得==9.97,s==≈0.212,其中x为i抽取的第i个零件的尺寸,i=1,2, (16)用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除(-3+3)之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z服从正态分布N(μ,σ2),则P(μ-3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592,≈0.09.【分析】(1)通过P(X=0)可求出P(X≥1)=1-P(X=0)=0.0408,利用二项分布的期望公式计算可得结论;(2)(ⅰ)由(1)及知落在(μ-3σ,μ+3σ)之外为小概率事件可知该监控生产过程方法合理;(ⅱ)通过样本平均数、样本标准差s估计、可知(-3+3)=(9.334,10.606),进而需剔除(-3+3)之外的数据9.22,利用公式计算即得结论.【解答】解:(1)由题可知尺寸落在(μ-3σ,μ+3σ)之内的概率为0.9974,则落在(μ-3σ,μ+3σ)之外的概率为1-0.9974=0.0026,因为P(X=0)=×(1-0.9974)0×0.997416≈0.9592,所以P(X≥1)=1-P(X=0)=0.0408,又因为X~B(16,0.0026),所以E(X)=16×0.0026=0.0416;(2)(ⅰ)如果生产状态正常,一个零件尺寸在(-3+3)之外的概率只有0.0026,一天内抽取的16个零件中,出现尺寸在(-3+3)之外的零件的概率只有0.0408,发生的概率很小.因此一旦发生这种状况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的.(ⅱ)由=9.97,s≈0.212,得μ的估计值为=9.97,σ的估计值为=0.212,由样本数据可以看出一个零件的尺寸在(-3+3)之外,因此需对当天的生产过程进行检查.剔除(-3+3)之外的数据9.22,剩下的数据的平均数为(16×9.97-9.22)=10.02,因此μ的估计值为10.02.2=16×0.2122+16×9.972≈1591.134,剔除(-3+3)之外的数据9.22,剩下的数据的样本方差为(1591.134-9.222-15×10.022)≈0.008,因此σ的估计值为≈0.09.【点评】本题考查正态分布,考查二项分布,考查方差、标准差,考查概率的计算,考查运算求解能力,注意解题方法的积累,属于中档题.20.(12分)已知椭圆C:+=1(a>b>0),四点P1(1,1),P2(0,1),P3(-1,),P4(1,)中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为-1,证明:l过定点.【分析】(1)根据椭圆的对称性,得到P2(0,1),P3(-1,),P4(1,)三点在椭圆C上.把P 2(0,1),P3(-1,)代入椭圆C,求出a2=4,b2=1,由此能求出椭圆C的方程.(2)当斜率不存在时,不满足;当斜率存在时,设l:y=kx+t,(t≠1),联立,得(1+4k2)x2+8ktx+4t2-4=0,由此利用根的判别式、韦达定理、直线方程,结合已知条件能证明直线l过定点(2,-1).【解答】解:(1)根据椭圆的对称性,P3(-1,),P4(1,)两点必在椭圆C上,又P4的横坐标为1,∴椭圆必不过P1(1,1),∴P2(0,1),P3(-1,),P4(1,)三点在椭圆C上.把P2(0,1),P3(-1,)代入椭圆C,得:,解得a2=4,b2=1, ∴椭圆C的方程为=1.证明:(2)①当斜率不存在时,设l:x=m,A(m,yA ),B(m,-yA),∵直线P2A与直线P2B的斜率的和为-1,∴===-1,解得m=2,此时l过椭圆右顶点,不存在两个交点,故不满足.②当斜率存在时,设l:y=kx+t,(t≠1),A(x1,y1),B(x2,y2),联立,整理,得(1+4k2)x2+8ktx+4t2-4=0,,x1x2=,则=====-1,又t≠1,∴t=-2k-1,此时△=-64k,存在k,使得△>0成立,∴直线l的方程为y=kx-2k-1,当x=2时,y=-1,∴l过定点(2,-1).【点评】本题考查椭圆方程的求法,考查椭圆、直线方程、根的判别式、韦达定理、直线方程位置关系等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想、化归与转化思想,是中档题.21.(12分)已知函数f(x)=ae2x+(a-2)e x-x.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.【分析】(1)求导,根据导数与函数单调性的关系,分类讨论,即可求得f(x)单调性;<(2)由(1)可知:当a>0时才有两个零点,根据函数的单调性求得f(x)最小值,由f(x)min=g(e-2)=e-2lne-2+e-2-1=--1,g(1)=0, 0,g(a)=alna+a-1,a>0,求导,由g(a)min即可求得a的取值范围.(1)求导,根据导数与函数单调性的关系,分类讨论,即可求得f(x)单调性;(2)分类讨论,根据函数的单调性及函数零点的判断,分别求得函数的零点,即可求得a的取值范围.【解答】解:(1)由f(x)=ae2x+(a-2)e x-x,求导f′(x)=2ae2x+(a-2)e x-1,当a=0时,f′(x)=-2e x-1<0,∴当x∈R,f(x)单调递减,当a>0时,f′(x)=(2e x+1)(ae x-1)=2a(e x+)(e x-),令f′(x)=0,解得:x=ln,当f′(x)>0,解得:x>ln,当f′(x)<0,解得:x<ln,∴x∈(-∞,ln)时,f(x)单调递减,x∈(ln,+∞)单调递增;当a<0时,f′(x)=2a(e x+)(e x-)<0,恒成立,∴当x∈R,f(x)单调递减,综上可知:当a≤0时,f(x)在R单调减函数,当a>0时,f(x)在(-∞,ln)是减函数,在(ln,+∞)是增函数;(2)①若a≤0时,由(1)可知:f(x)最多有一个零点,当a>0时,f(x)=ae2x+(a-2)e x-x,当x→-∞时,e2x→0,e x→0,∴当x→-∞时,f(x)→+∞,当x→∞,e2x→+∞,且远远大于e x和x,∴当x→∞,f(x)→+∞,∴函数有两个零点,f(x)的最小值小于0即可,由f(x)在(-∞,ln)是减函数,在(ln,+∞)是增函数,∴f(x)=f(ln)=a×()+(a-2)×-ln<0,min∴1--ln<0,即ln+-1>0,设t=,则g(t)=lnt+t-1,(t>0),求导g′(t)=+1,由g(1)=0,∴t=>1,解得:0<a<1,∴a的取值范围(0,1).方法二:(1)由f(x)=ae2x+(a-2)e x-x,求导f′(x)=2ae2x+(a-2)e x-1,当a=0时,f′(x)=-2e x-1<0,∴当x∈R,f(x)单调递减,当a>0时,f′(x)=(2e x+1)(ae x-1)=2a(e x+)(e x-),令f′(x)=0,解得:x=-lna,当f′(x)>0,解得:x>-lna,当f′(x)<0,解得:x<-lna,∴x∈(-∞,-lna)时,f(x)单调递减,x∈(-lna,+∞)单调递增;当a<0时,f′(x)=2a(e x+)(e x-)<0,恒成立,∴当x∈R,f(x)单调递减,综上可知:当a≤0时,f(x)在R单调减函数,当a>0时,f(x)在(-∞,-lna)是减函数,在(-lna,+∞)是增函数;(2)①若a≤0时,由(1)可知:f(x)最多有一个零点,=f(-lna)=1--ln, ②当a>0时,由(1)可知:当x=-lna时,f(x)取得最小值,f(x)min当a=1,时,f(-lna)=0,故f(x)只有一个零点,当a∈(1,+∞)时,由1--ln>0,即f(-lna)>0,故f(x)没有零点,当a∈(0,1)时,1--ln<0,f(-lna)<0,由f(-2)=ae-4+(a-2)e-2+2>-2e-2+2>0, 故f(x)在(-∞,-lna)有一个零点,假设存在正整数n0,满足n>ln(-1),则f(n)=(a+a-2)-n>-n>-n>0,由ln(-1)>-lna,因此在(-lna,+∞)有一个零点.∴a的取值范围(0,1).【点评】本题考查导数的综合应用,考查利用导数求函数单调性及最值,考查函数零点的判断,考查计算能力,考查分类讨论思想,属于中档题.[选修4-4,坐标系与参数方程]22.(10分)在直角坐标系xOy中,曲线C的参数方程为,(θ为参数),直线l的参数方程为,(t为参数).(1)若a=-1,求C与l的交点坐标;(2)若C上的点到l距离的最大值为,求a.【分析】(1)将曲线C的参数方程化为标准方程,直线l的参数方程化为一般方程,联立两方程可以求得焦点坐标;(2)曲线C上的点可以表示成P(3cosθ,sinθ),θ∈[0,2π),运用点到直线距离公式可以表示出P到直线l的距离,再结合距离最大值为进行分析,可以求出a的值.【解答】解:(1)曲线C的参数方程为(θ为参数),化为标准方程是:+y2=1;a=-1时,直线l的参数方程化为一般方程是:x+4y-3=0;联立方程,解得或,所以椭圆C和直线l的交点为(3,0)和(-,).(2)l的参数方程(t为参数)化为一般方程是:x+4y-a-4=0,椭圆C上的任一点P可以表示成P(3cosθ,sinθ),θ∈[0,2π),所以点P到直线l的距离d为:。

2017年高考全国一卷理科数学试卷

2017年高考全国一卷理科数学试卷

2017年普通高等学校招生全国统一考试(I 卷)理科数学一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符 合题目要求的。

1. 已知集合}13|{}1|{<=<=xx B x x A ,,则A. }0|{<=x x B AB. R =B AC. }1|{>=x x B AD. ∅=B A2. 如图,正方形ABCD 内的图形来自中国古代的太极图。

正方形内切圆中的黑色部分 和白色部分关于正方形的中心成中心对称。

在正方形内随机取一点,则此点取自黑 色部分的概率是 A.41 B.8πC. 21 D.4π 3. 设有下面四个命题p 1:若复数z 满足R ∈z1,则R ∈z ;p 2:若复数z 满足R ∈2z ,则R ∈z ; p 3:若复数z 1、z 2满足R ∈21z z ,则21z z =;p 4:若复数R ∈z ,则R ∈z 。

其中的真命题为 A. p 1,p 3B. p 1,p 4C. p 2,p 3D. p 2,p 44. 记S n 为等差数列{a n }的前n 项和,若a 4 + a 5 = 24,S 6 = 48,则{a n }的公差为A. 1B. 2C. 4D. 85. 函数f (x )在),(+∞-∞单调递减,且为奇函数。

若f (1) = -1,则满足-1 ≤ f (x - 2) ≤ 1的x 的取值范围是A. [-2,2]B. [-1,1]C. [0,4]D. [1,3]2017.66. 62)1)(11(x x++展开式中x 2的系数为 A. 15 B. 20C. 30D. 357. 某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形, 这些梯形的面积之和为 A. 10B. 12C. 14D. 168. 右面程序框图是为了求出满足3n - 2n > 1000的最小偶数n ,那么在◇和▭两个空白框中,可以分别填入A. A > 1000和n = n + 1B. A > 1000和n = n + 2C. A ≤ 1000和n = n + 1D. A ≤ 1000和n = n + 29. 已知曲线C 1:x y cos =,C 2:)322sin(π+=x y ,则下面结论正确的是 A. 把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个6π单位长度,得到C 2B. 把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个12π单位长度,得到C 2C. 把C 1上各点的横坐标缩短到原来的21倍,纵坐标不变,再把得到的曲线向右平移个6π单位长度,得到C 2D. 把C 1上各点的横坐标缩短到原来的21倍,纵坐标不变,再把得到的曲线向左平移个12π单位长度,得到C 210. 已知F 为抛物线C :y 2 = 4x 的焦点,过F 作两条互相垂直的直线l 1、l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则| AB | + | DE |的最小值为 A. 16B. 14C. 12D. 1011. 设x 、y 、z 为正数,且2x = 3y = 5z ,则A. 2x < 3y < 5zB. 5z < 2x < 3yC. 3y < 5z < 2xD. 3y < 2x < 5z12. 几位大学生响应国家的创业号召,开发了一款应用软件,为激发大家学习数学的兴趣,他们推出了“解数学题 获取软件激活码”的活动。

(完整版)2017年普通高等学校招生全国统一考试理科数学试题及答案-全国1卷

(完整版)2017年普通高等学校招生全国统一考试理科数学试题及答案-全国1卷

绝密★启用前2017年普通高等学校招生全国统一考试理科数学本试卷5页,23小题,满分150分。

考试用时120分钟。

注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{}|1{|31}xA x xB x =<=<,,则A .{|0}AB x x =<I B .A B =R UC .{|1}A B x x =>UD .A B =∅I2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是 A .14 B .8π C .12D .4π 3.设有下面四个命题1p :若复数z 满足1z ∈R ,则z ∈R ; 2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数12,z z 满足12z z ∈R ,则12z z =;4p :若复数z ∈R ,则z ∈R .其中的真命题为 A .13,p pB .14,p pC .23,p pD .24,p p4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为A .1B .2C .4D .85.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是 A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]6.621(1)(1)x x++展开式中2x 的系数为 A .15B .20C .30D .357.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为 A .10 B .12 C .14 D .168.右面程序框图是为了求出满足321000nn->的最小偶数n ,那么在和两个空白框中,可以分别填入A .1000A >和1n n =+B .1000A >和2n n =+C .1000A ≤和1n n =+D .1000A ≤和2n n =+9.已知曲线122:cos ,:sin(2)3C y x C y x π==+,则下面结论正确的是A .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线2CB .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线2CC .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线2CD .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线2C10.已知F 为抛物线2:4C y x =的焦点,过F 作两条互相垂直的直线12,l l ,直线1l 与C 交于A 、B 两点,直线2l 与C 交于D 、E 两点,则|AB |+|DE |的最小值为 A .16B .14C .12D .1011.设xyz 为正数,且235xyz==,则A .235x y z <<B .523z x y <<C .352y z x <<D .325y x z <<12.几位大学生响应国家的创业号召,开发了一款应用软件。

2017高考数学全国Ⅰ卷(理)精校版可编辑

2017高考数学全国Ⅰ卷(理)精校版可编辑

2017年普通高等学校招生全国统一考试理科数学(全国I 卷)注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{}1A x x =<,{}31x B x =<,则()A .{}0AB x x =< B .A B =RC .{}1A B x x =>D .A B =∅【答案】A ,集合交并,指数函数2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分位于正方形的中心成中心对称,在正方形内随机取一点,则此点取自黑色部分的概率是()A .14B .π8C .12D .π4【答案】B ,几何概型,设正方形边长为2,则圆半径为1,则此点取自黑色部分的概率为ππ248=. 3.设有下面四个命题,其中真命题是()1p :若复数z 满足1z ∈R ,则z ∈R ;2p :若复数z 满足2z ∈R ,则z ∈R ; 3p :若复数12z z ,满足12z z ∈R ,则12z z =; 4p :若复数z ∈R ,则z ∈R .A .13p p ,B .14p p ,C .23p p ,D .24p p ,【答案】B ,复数性质、运算.4.记n S 为等差数列{}n a 的前n 项和,若4524a a +=,648S =,则{}n a 的公差为()A .1B .2C .4D .8【答案】C ,等差通项、求和5.函数()f x 在()-∞+∞,单调递减,且为奇函数.若()11f =-,则满足()121f x --≤≤的x 的取值范围是()A .[]22-,B .[]11-,C .[]04,D .[]13,【答案】D ,函数图象及平移,函数单调性,函数奇偶性,∵()f x 为奇函数,所以()()111f f -=-=,于是()121f x --≤≤等价于()()()121f f x f --≤≤,又()f x 在()-∞+∞,单调递减,∴121x --≤≤,即3x 1≤≤6.()62111x x ⎛⎫++ ⎪⎝⎭展开式中2x 的系数为()A .15B .20C .30D .35【答案】C ,二项式定理,246630C C +=7.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形、该多面体的各个面中有若干是梯形,这些梯形的面积之和为()A .10B .12C .14D .16【答案】B ,三视图→且()24226S =+⨯÷=梯.8.右面程序框图是为了求出满足321000n n ->的最小偶数n ,那么在和两个空白框中,可以分别填入()A .1000A >和1n n =+B .1000A >和2n n =+C .1000A ≤和1n n =+D .1000A ≤和2n n =+【答案】D ,程序框图——循环机构,∵要求A 大于1000时输出,且框图中在“否”时输出,∴“”中应输入1000A ≤,又要求n 为偶数,且n 初始值为0,∴“”中n 依次加2可保证其为偶数.9.已知曲线1:cos C y x =,22π:sin 23C y x ⎛⎫=+ ⎪⎝⎭,则下面结论正确的是()A .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线2C ;B .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线2C ;C .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线2C ;D .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线2C .【答案】D ,诱导公式,三角函数图象平移,1C :πsin 2y x ⎛⎫=+ ⎪⎝⎭,横坐标缩短到原来的12倍,得πs i n 22y x ⎛⎫=+ ⎪⎝⎭,即πs i n 24y x ⎛⎫=+ ⎪⎝⎭,再向左平移π12个单位,得πsin 23y x ⎛⎫=+ ⎪⎝⎭.10.已知F 为抛物线C :24y x =的交点,过F 作两条互相垂直1l ,2l ,直线1l 与C 交于,A B两点,直线2l 与C 交于,D E 两点,AB DE +的最小值为() A .16 B .14 C .12D .10【答案】A ,抛物线定义,焦点弦弦长,直线垂直,类比推理 方法一:设直线AB 方程为(1)y k x =-,其中(0)k ≠,由2(1)4y k x y x =-⎧⎨=⎩,得2222(24)0k x k k -++=,∴212224k x x k ++=, ∴212224||22k AB x x k+=++=+,同理222124||2441k CD k k +=+=+,∴224||||444816AB CD k k +=+++≥+=; 方法二:设AB 倾斜角为θ.作1AK 垂直准线,2AK 垂直x 轴易知11cos AF GF AK AK AF θ⎧⋅+=⎪⎨=⎪⎩,其中GP P =,∴cos AF P AF θ⋅+=, 同理1cos P AF θ=-,1cos P BF θ=+,∴22221cos sin P PAB θθ==-,(焦点弦长公式) 又DE 与AB 垂直,即DE 的倾斜角为π2θ+,2222πcos sin 2P P DE θθ==⎛⎫+ ⎪⎝⎭, ∵24y x =,∴2P =.∴22112sin cos AB DE P θθ⎛⎫+=+⎪⎝⎭224sin cos θθ=241sin 24θ=21616sin 2θ=≥, 当π4θ=取等号,即AB DE +最小值为16. 11.设,,x y z 为正数,且523xyz ==,则()A .235x y z <<B .523z x y <<C .352y z x <<D .325y x z <<【答案】D ,指对数运算,不等式,设523xyz k ===,则2log x k =,3log y k =,5log z k =,1lg 222lg x k =,1lg333lg y k =,1lg 555lg z k=, ∵lg8lg96lg 6lg k k<,∴1123x y <,即23x y >, ∵lg 32lg 2510lg 10lg k k>,∴1125x z >,∴25x z <, 12.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N :100N >且该数列的前N 项和为2的整数幂.那么该款软件的激活码是() A .440 B .330 C .220 D .110【答案】A ,在原数列中第1组为第1项,第2组为接下来的2项,……,第k 组为接下来的k 项,则前k 组共有(1)2k k +个数, 第k 组所有项之和为:02(12)2112k k -=--, 前k 组所有项之和为:12(21)(21)(21)k-+-++- 2(12)12k k -=--122k k +=--, 设(1)(1)(2)22k k k k N +++<≤, 则前N 项之和为:(1)0212(12)2212k k N k k +-+---+-(1)12223k k N k k +-+=+--,若前N 项和为2的整数幂,则(1)223k k N k +-=+,∴23423,23,23,k =--- 当52329k =-=时,符合题意,∴293052N ⨯-=,即440N =. 二、填空题:本题共4小题,每小题5分,共20分.13.已知向量,a b 的夹角为60︒,2a = ,1b = ,则2a b +=____________.【答案】-求模, ()22222(2)22cos602a b a b a a b b+=+=+⋅⋅⋅︒+ 221222222=+⨯⨯⨯+12=,方法二:向量的图形计算,略14.设,x y 满足约束条件21210x y x y x y +≤⎧⎪+≥-⎨⎪-≤⎩,则32z x y =-的最小值为____________.【答案】5-,线性规划15.已知双曲线2222:1x y C a b-=(0,0)a b >>,的右顶点为A ,以A 为圆心,b 为半径作圆A ,圆A 与双曲线C 的一条渐近线交于,M N 两点,若60MAN ∠=︒,则C 的离心率为____________.【答案】3,双曲线性质,点到直线距离公式, 方法一:一条渐近线方程为:by x a=,即0bx ay -=, 点(,0)A a到它的距离为d =,由等边三角形求得d ==,解得223a b =,∴3e =方法二:由||tan ||b AB AOB a OB =∠==求解16.如图,圆形纸片的圆心为O ,半径为5cm ,该纸片上的等边三角形ABC 的中心为O ,,,D E F 为圆O 上的点,DBC △,ECA △,FAB △分别是以,,BC CA AB 为底边的等腰三角形,沿虚线剪开后,分别以,,BC CA AB 为折痕折起DBC △,ECA △,FAB △,使得,,D E F 重合,得到三棱锥.当ABC △的边长变化时,所得三棱锥体积(单位:3cm )的最大值为____________.连结OF交AB于点H,设OH x=,则AB=,5FH x=-∴211sin6032AB=⨯⋅211)32=⨯4x==5-)设54()25f x x x=-,则44'()1020f x x x=-310(2)x x=-,当2x=时,min()16f x=-,∴max()D ABCV-=三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.(Ⅰ)(Ⅱ)(Ⅲ)17.(12分)△ABC的内角,,A B C的对边分别为,,a b c,已知△ABC的面积为23sinaA.(Ⅰ)求sin sinB C;(Ⅱ)若6cos cos1B C=,3a=,求△ABC的周长.【解】:三角恒等变换,正弦定理,余弦定理(Ⅰ)∵ABC△面积23sinaSA=,且1sin2S bc A=,∴21sin 3sin 2a bc A A =,由正弦定理得2sin 1sin sin sin 3sin 2A B C A A =, ∵sin 0A ≠得2sin sin 3B C =;(Ⅱ)由(Ⅰ)得2sin sin 3B C =,又∵1cos cos 6B C =,πA B C ++=, ∴()()1cos cos πcos sin sinC cos cos 2A B C B C B B C =--=-+=-= 又∵()0πA ∈, ∴60A =︒,sin A =1cos 2A = 由余弦定理得2229a b c bc =+-=……① 由正弦定理得sin sin a bB A =⋅,sin sin ac C A=⋅,∴22sin sin 8sin a bc B C A=⋅=……②由①②得b c +∴3a b c ++=ABC △周长为3+18.(12分)如图,在四棱锥P ABCD -中,//AB CD ,且90BAP CDP ∠=∠=.(Ⅰ)证明:平面PAB ⊥平面PAD ;(Ⅱ)若PA PD AB DC ===,90APD ∠=,求二面角A PB C --的余弦值.【解】(Ⅰ)证明:∵90BAP CDP ∠=∠=︒, ∴PA AB ⊥,PD CD ⊥,又∵AB CD ∥,∴PD AB ⊥,又∵PD PA P = ,,PD PA ⊂平面PAD ,【线面垂直判定】∴AB ⊥平面PAD ,又AB ⊂平面PAB , 【面面垂直判定】∴平面PAB ⊥平面PAD ; (Ⅱ)【空间向量-二面角】PABCD取AD 中点O ,BC 中点E ,连接,PO OE ,∵//AB CD =, ∴四边形ABCD 为平行四边形,∴//OE AB =, 由(Ⅰ)知,AB ⊥平面PAD ,∴OE ⊥平面PAD ,又,PO AD ⊂平面PAD , ∴OE PO ⊥,OE AD ⊥, 又∵PA AD =,∴PO AD ⊥, ∴,,PO OE AD 两两垂直,∴以O 为坐标原点,建立如图所示的空间直角坐标系O xyz -,设2PA =,∴(D、B、P、(C ,∴(0PD =、2PB =、()00BC =-,设(),,n x y z =为平面PBC 的法向量,由00n PB n BC ⎧⎪⎨⎪⎩⋅=⋅=,得20y ⎪⎩+=-=,令1y =,则z =0x =,可得平面PBC的一个法向量(n =∵90APD ∠=︒,∴PD PA ⊥,又知AB ⊥平面PAD ,PD ⊂平面PAD , ∴PD AB ⊥,又PA AB A = , ∴PD ⊥平面PAB ,即PD是平面PAB的一个法向量,(0,PD =,∴cos ,PD nPD n PD n⋅===⋅,由图知二面角A PB C --为钝角,所以它的余弦值为. 19.(12分)为了抽检某种零件的一条生产线的生产过程,实验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm ).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布()2,Nμσ.(Ⅰ)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在()3,3μσμσ-+之外的零件数,求()1P X ≥及X 的数学期望;(Ⅱ)一天内抽检零件中,如果出现了尺寸在()3,3μσμσ-+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查. (1)试说明上述监控生产过程方法的合理性:经计算得1619.97i i x x ===∑,0.212s =≈,其中i x 为抽取的第i 个零件的尺寸,1216i = ,,,.用样本平均数x 作为μ的估计值ˆμ,用样本标准差s 作为σ的估计值ˆσ,利用估计值判断是否需对当天的生产过程进行检查,剔除()ˆˆˆˆ3,3μσμσ-+之外的数据,用剩下的数据估计μ和σ(精确到0.01). 附:若随机变量Z 服从正态分布()2,Nμσ,则()330.9974P Z μσμσ-<<+=.160.99740.9592≈0.09≈. 【解】(Ⅰ)由题可知尺寸落在()33μσμσ-+,之内的概率为0.9974,落在()33μσμσ-+,之外的概率为0.0026.【n 次独立重复试验的概率】()()016160C 10.99740.99740.9592P X ==-≈,【对立事件的概率】∴()()11010.95920.0408P X P X ≥=-=≈-=,由题可知()~16,0.0026XB ,∴()160.00260.0416E X =⨯=;(Ⅱ)【正态分布-小概率事件】(1)尺寸落在()33μσμσ-+,之外的概率为0.0026,由正态分布知尺寸落在()33μσμσ-+,之外为小概率事件,因此上述监控生产过程的方法合理. (2)【平均数,方差,标准差】39.9730.2129.334μσ-=-⨯=,39.9730.21210.606μσ+=+⨯=()()339.33410.606μσμσ-+=,, ()9.229.33410.606∉,,∴需对当天的生产过程检查.因此剔除9.22 剔除数据之后:9.97169.2210.0215μ⨯-==.()()()()()()()()()()()()()()()2222222222222222[9.9510.0210.1210.029.9610.029.9610.0210.0110.029.9210.029.9810.0210.0410.0210.2610.029.9110.0210.1310.0210.0210.02110.0410.0210.0510.029.9510.02]0.015σ=-+-+-+-+-+-+-+-+-+-+-+-+-+-+-⨯≈08∴0.09σ=.20.(12分)已知椭圆:C 22221y x a b +=()0a b >>,四点()111P ,,()201P ,,31P ⎛ ⎝⎭-,41P ⎛ ⎝⎭中恰有三点在椭圆C 上. (Ⅰ)求C 的方程;(Ⅱ)设直线l 不经过2P 点且与C 相交于,A B 两点,若直线2P A 与直线2P B 的斜率的和为1-,证明:l 过定点.【解】(Ⅰ)根据【椭圆对称性】,必过3P 、4P , 又4P 横坐标为1,椭圆必不过1P ,所以过234,,P P P 三点,【待定系数法】将()23011P P ⎛ ⎝⎭-,,代入椭圆方程得: 222113141b ab ⎧⎪⎪⎨⎪⎪⎩=+=,解得24a =,21b =,∴椭圆C 的方程为:2214x y +=; (Ⅱ)【分类讨论】【斜率公式】【直线与圆锥曲线】【韦达定理】 ①当斜率不存在时,设直线:l x m =,则()(),A A A m y B m y -,, 由221121A A P B P A y y k k m m m----+=+==-,得2m =, 此时l 过椭圆右顶点,不存在两个交点,故不满足;②当斜率存在时,设直线()1l y kx b b =+≠∶,()()1122A x y B x y ,,,, 联立22440y kx b x y ⎧⎪⎨⎪⎩=++-=,整理得()222148440k x kbx b +++-=,∴12814kbx x k -+=+,21224414b x x k -⋅=+则22121211P B P A y y k k x x --+=+121211kx b kx b x x +-+-+=1212(1)()2b x x k x x -+=+ 22(1)21kb b k b -=--21k b =+(1b ≠),∴21b k =--,此时64k ∆=-,存在k 使得0∆>成立, ∴直线l 的方程为(2)1y k x =--,∴l 过定点(2,1)-. 21.(12分)已知函数()()2e 2e x x f x a a x =+--.(Ⅰ)讨论()f x 的单调性;(Ⅱ)若()f x 有两个零点,求a 的取值范围.【解】(Ⅰ)【导数判定函数单调性,分类讨论,因式分解】 由于()()()()22e 2e 1e 12e 1x x x x f x a a a '=+--=-+,①当0a ≤时,e 10x a -<,2e 10x +>,从而()0f x '<恒成立, ∴()f x 在R 上单调递减;②当0a >时,令()0f x '=,则e 10x a -=,得1lnx =, 综上,当0a ≤时,()f x 在R 上单调递减;当0a >时,()f x 在1(,ln )a -∞上单调递减,在1(ln ,)a+∞上单调递增;(Ⅱ)【零点判定定理,导数求极值】由(Ⅰ)知,当0a ≤时,()f x 在R 上单调递减,故()f x 在R 上至多有一个零点,不满足条件;当0a >时,min 11()ln 1ln f x f a a a ⎛⎫⎪⎝⎭==-+,∵()f x 在1(,ln )a -∞上单调递减,在1(ln ,)a+∞上单调递增,且()f x 有两个零点,∴()f x 满足min 1()1ln 0f x a a =-+<,且存在121ln x x a <<,使得12()0()0f x f x >⎧⎨>⎩, 令()()11ln 0g a a a a =-+>,则()211'0g a aa =+>, ∴()g a 在()0+∞,上单调增,又∵()10g =, ∴当01a <<时,()0g a <, 此时1ln0a>, 令11x =-,则()1222)12(110e e e a e ea a a f x f =+-+--=++=>,故()f x 在11ln a ⎛⎫ ⎪⎝⎭-,上有一个零点, 【分析出2x 与a 有关,且21ln x a >,∴可以依次取2ln a ,3ln a,…,进行验证】 令23lnx a=, 则2()f x 3(ln )f a =()()332ln ln 3ln e2e a aa f x a a -=+-2933(2)ln a a a a a=⋅+-- 333ln a a=+-,设()ln h t t t =-,1'()1h t t=-,当(0,1)t ∈时,'()0h t <,()h t 单调递减,当(1,)t ∈+∞时,'()0h t >,()h t 单调递增, ∴min ()(1)10h t h ==>,∴2()f x 333ln a a=+-0>, ∴()f x 在,13ln ln aa ⎛⎫ ⎪⎝⎭上有一个零点,∴当01a <<时,函数()f x 有两个零点.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22.【选修4-4:坐标系与参考方程】在直角坐标系xOy 中,曲线C 的参数方程为3cos sin x y θθ⎧⎨⎩==(θ为参数),直线l 的参数方程为41x a ty t ⎧⎨⎩=+=-(t 为参数).(Ⅰ)若1a =-,求C 与l 的交点坐标;(Ⅱ)若C 上的点到la . 【解】(Ⅰ)【参化普,极化普,曲线交点】 当1a =-时,直线l 的一般方程为430x y +-=.曲线C 的标准方程是2219x y +=, 联立方程2243019x y x y ⎧⎪⎨⎪⎩+-=+=,解得30x y ⎧⎨⎩==或21252425x y ⎧⎪⎪⎨⎪⎪⎩=-=,则C 与l 交点坐标是(3,0)和2124(,)2525-; (Ⅱ)【参数方程求最值,分类讨论】直线l 一般式方程是440x y a +--=, 设曲线C 上点()3cos sin P θθ,,则P 到l距离d =3tan 4ϕ=, ∵()95sin 41a a a θϕ--≤+--≤-,当15a ->,即4a <-时,∵max d =,∴117a -=,即16a =-, 当15a -≤,即4a ≥-时,∵max d =,∴917a --=-,即8a =, 综上所述,16a =-或8a =.23.【选修4-5:不等式选讲】已知函数2()4f x x ax =-++,()|1||1|g x x x =++-.(Ⅰ)当1a =时,求不等式()()f x g x ≥的解集;(Ⅱ)若不等式()()f x g x ≥的解集包含[1,1]-,求a 的取值范围. 【解】(Ⅰ)【分段函数,不等式转化】当1a =时,2()4f x x x =-++,()|1||1|g x x x =++-2,12,112,1x x x x x >⎧⎪=-≤≤⎨⎪-<-⎩,原不等式化为:2142x x x x >⎧⎨-++≥⎩或21142x x x -≤≤⎧⎨-++≥⎩或2142x x x x<-⎧⎨-++≥-⎩即1x x >⎧≤≤1112x x -≤≤⎧⎨-≤≤⎩或114x x <-⎧⎨-≤≤⎩即1x <≤或11x -≤≤或∅, ∴不等式()()f x g x ≥的解集为{|1x x -≤≤; (Ⅱ)【一元二次方程根的分布】依题意得:242x ax -++≥在[1,1]-恒成立, 即220x ax --≤在[1,1]-恒成立, 设2()2h x x ax =--,则只须(1)0(1)0h h -≤⎧⎨≤⎩,即120120a a +-≤⎧⎨--≤⎩,解得11a -≤≤,故a 取值范围是[1,1]-.。

2017年高考数学全国卷1理科数学试题全部解析

2017年高考数学全国卷1理科数学试题全部解析

2017年普通高等学校招生全国统一考试(全国I卷)理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上,2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12 小题,每小题 5 分,共60 分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

x1. 已知集合 A x x 1 ,B x 3 1 ,则()A.A B x x 0 B.A B RC.A B x x 1 D.A B【答案】 Ax【解析】 A x x 1 ,B x 3 1 x x 0∴A B x x 0 ,A B x x 1 ,选A2. 如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分位于正方形的中心成中心对称,在正方形内随机取一点,则此点取自黑色部分的概率是()A.14B.π8C.12D.π4【答案】 B【解析】设正方形边长为2,则圆半径为 1则正方形的面积为 2 2 4,圆的面积为 2π1 π,图中黑色部分的概率为π2π则此点取自黑色部分的概率为 2π4 8 故选B13. 设有下面四个命题()1p :若复数z 满足1zR,则z R;p :若复数z 满足z2 R,则z R;2p :若复数3 z ,z 满足z z R,则1 2 1 2z z ;1 2p :若复数z R,则z R.4A.p1 ,p3 B.p,p C.1 4 p ,p D.2 3p ,p2 4【答案】 B1 1 a bi 【解析】p1 :设z a bi ,则2 2z a bi a b R,得到b 0 ,所以z R.故P正确;1p2 : 若z2 1 ,满足z R,而z i ,不满足z R,故p2 不正确;2 2p3 : 若z 1,1 z 2,则z1z2 2 ,满足z1z2 R,而它们实部不相等,不是共轭复2数,故p3 不正确;p4 : 实数没有虚部,所以它的共轭复数是它本身,也属于实数,故p正确;44.记S n 为等差数列a n 的前n 项和,若a4 a5 24,S6 48 ,则a n 的公差为()A.1 B.2 C.4 D.8 【答案】 C【解析】a4 a5 a1 3d a1 4d 246 5S 6a d 486 12联立求得2a 7d 2416a 15d 481①②①②得21 15 d 2436d 24∴d 4选C5. 函数 f x 在,单调递减,且为奇函数.若 f 1 1,则满足1≤ f x 2 ≤1 的x 的取值范围是()A.2,2 B.1,1 C.0 ,4 D.1,3 【答案】 D【解析】因为 f x 为奇函数,所以 f 1 f 1 1 ,于是1≤ f x 2 ≤1等价于 f 1 ≤ f x 2 ≤ f 1 |又f x 在,单调递减1≤x 2≤11≤x≤3 故选D26.11 1 x2x6展开式中 2x 的系数为A.15 B.20 C.30 D.35【答案】 C.【解析】1 16 6 6 1+ 1 x 1 1 x 1 x2 2x x对 61 x 的2 x 项系数为26 5C 1562对12x1 x 6 的 2x 项系数为4C =15 ,6∴ 2x 的系数为15 15 30故选C7.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为 2 ,俯视图为等腰直角三角形、该多面体的各个面中有若干是梯形,这些梯形的面积之和为A.10 B.12 C.14 D.16 【答案】 B【解析】由三视图可画出立体图该立体图平面内只有两个相同的梯形的面S梯2 4 2 2 6S全梯6 2 12故选Bn n8.右面程序框图是为了求出满足 3 2 1000的最小偶数n ,那么在和两个空白框中,可以分别填入3A.A 1000 和n n 1 B.A 1000 和n n 2 C.A≤1000 和n n 1 D.A≤1000 和n n 2 【答案】 D【答案】因为要求 A 大于1000 时输出,且框图中在“否”时输出∴“”中不能输入A1000排除A、B又要求n为偶数,且n 初始值为0,“”中n 依次加 2 可保证其为偶故选D2π9.已知曲线C1 : y cos x , 2C : y sin 2x ,则下面结论正确的是()3A.把C1 上各点的横坐标伸长到原来的 2 倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2π6B.把C1 上各点的横坐标伸长到原来的 2 倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C2C.把C1 上各点的横坐标缩短到原来的个单位长度,得到曲线C212倍,纵坐标不变,再把得到的曲线向右平移π6D.把C1 上各点的横坐标缩短到原来的 2 倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2π12【答案】 D【解析】 C y x , 2 : sin 21 : cos C y x 2π3首先曲线C、1C 统一为一三角函数名,可将2C1 : y cos x用诱导公式处理.πππy cos x cos x sin x .横坐标变换需将1变成2,2 2 24即1π C 上各坐短它原ππ点横标缩来1y sin x y sin 2x sin 2 x22 2 42ππy sin 2x sin 2 x .3 3π注意的系数,在右平移需将 2 提到括号外面,这时x 平移至4πx ,3根据“左加右减”原则,“πx ”到“4πx ”需加上3π,即再向左平移12π12.10.已知F 为抛物线 C : 2 y x 的交点,过F作两条互相垂直l1 ,l2 ,直线l1 与C 交于A、4B 两点,直线l2 与C 交于D ,E 两点,AB DE 的最小值为()A.16 B.14 C.12 D.10 【答案】 A【解析】设A B 倾斜角为.作AK1 垂直准线,AK2 垂直x 轴AF cos GF AK(几何关系)1易知A K AF1(抛物线特性)P PGP P2 2∴AF cos P AF同理PAF ,1 cosBFP1 cos2P 2P∴AB 2 21 cos sin又DE 与AB垂直,即DE 的倾斜角为π2DE2sin 2P 2P2 πcos 2而 2y x ,即P 2 .41 1AB DE 2P∴ 2 2 42 2sin cos2 2sin cos42 2sin cos1442sin 2sin cos162 sin 2 ≥16 ,当π取等号4即AB DE 最小值为16 ,故选A511.设x ,y ,z 为正数,且 2 3 5x y z,则()A.2x 3y 5z B.5z 2x 3y C.3y 5z 2x D.3y 2x 5z【答案】 D【答案】取对数:xln 2 y ln3 ln5 .x ln3 3y ln 2 2∴2x 3yx ln2 zln5则xzln5 5ln 2 2∴2x 5z ∴3y 2x 5z,故选D12.几位大学生响应国家的创业号召,开发了一款应用软件,为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动,这款软件的激活码为下面数学问题的答案:已知数列1, 1, 2 , 1, 2 , 4 , 1, 2 , 4 , 8 , 1, 2 , 4 , 8 , 16 ,⋯,其中第一项是20 ,接下来的两项是20 ,2,在接下来的三项式2,1 62 ,12 ,依次类推,求满足如下条件2的最小整数N :N 100 且该数列的前N 项和为2的整数幂.那么该款软件的激活码是()A.440 B.330 C.220 D.110 【答案】 A【解析】设首项为第 1 组,接下来两项为第 2 组,再接下来三项为第 3 组,以此类推.n 1 n设第n 组的项数为n ,则n 组的项数和为2由题,N 100 ,令n1 n2 100 →n ≥14 且*n N,即N 出现在第13 组之后第n 组的和为n1 21 2n2 1n 组总共的和为n2 1 21 2nn 2 2 n若要使前N 项和为 2 的整数幂,则n 1 nk 应与2n 互为相反N 项的和2 12数即k n k N,n ≥*2 1 2 14k log n 32→n 29,k 5则N 29 1 2925 440故选A二、填空题:本题共 4 小题,每小题 5 分,共20 分。

2017年全国高考数学试题-理科Ⅰ卷

2017年全国高考数学试题-理科Ⅰ卷

绝密★启用前2017年普通高等学校招生全国统一考试理科数学注意事项:1 •答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。

2•回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3 •考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A x|x 1 , B x3x1 ,则A. AI B {x| x 0}B. AU B RC. AU B {x|x 1}D. AI B2•如图,正方形ABCD内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称•在正方形内随机取一点,则此点取自黑色部分的概率是1 n 1 nA. B. C. D.—4 8 2 43.设有下面四个命题1P1 :若复数z满足—R,则z R ;z2P2:若复数z满足z R,则z R ;P3 :若复数乙,乙2满足乙R,则z Z2 ;乙2P4:若复数z R,则z R.其中的真命题为A. P1, P3B. P1 , P4C. P2, P3D. P2, P44•记S n为等差数列{a n}的前n项和•若a4 24 , S4 48,则{ a.}的公差为)单调递减,且为奇函数•若 f ⑴1,则满足 1 f(x 2) 1的x 的取值范围A • [ 2,2]B • [ 1,1]C . [0,4] 1 6 26.(1弋)(1 x)展开式中x 的系数为xA. 15B.20C.30D.357•某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形 组成,正方形的边长为 2,俯视图为等腰直角三角形,该多面体的各个面中有若 干个是梯形,这些梯形的面积之和为 A. 10 B. 12 C. 14 D. 168•右面程序框图是为了求出满足 3n 2n 1000的最小偶数n ,那么在<^和>和 |两个空白框中,可以分别填入A. A>1000 和 n=n+1B. A>1000 和 n=n+2C. A 1000 和 n=n+1D. A 1000 和 n=n+22 n9. 已知曲线 C 1: y=cos x , C 2: y=sin (2x+),则下面结正确的是3A.把C 1上各点的横坐标伸长到原来的 2倍,纵坐标不变,再把得到的曲线向右平移曲线C 2B.把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移」个单位长度,得到12曲线C 2C.把C 1上各点的横坐标缩短到原来的1倍,2纵坐标不变, 再把得到的曲线向右平移丄个单位长度,得到6曲线C 25•函数f (x)在(D • [1,3]上个单位长度,得到 6\A = r-rD.把C 1上各点的横坐标缩短到原来的 丄倍, 2纵坐标不变, 再把得到的曲线向左平移」个单位长度,得12到曲线C 210. 已知F为抛物线C: y2=4x的焦点,过F作两条互相垂直的直线l i ,12,直线l i与C交于A、B两点,直线12与C交于D、E两点,贝U |AB|+|DE|的最小值为A . 16 B. 14 C. 12 D . 1011. 设x,y,z为正数,且2x3y5z,则A. 2x<3y<5zB. 5z<2x<3yC. 3y<5z<2xD. 3y<2x<5z12•几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了解数学题获取软件激活码”的活动•这款软件的激活码为下面数学问题的答案:已知数列1, 1 ,2, 1,2, 4, 1 , 2, 4, 8, 1, 2, 4, 8, 16 ,…,其中第一项是20,接下来的两项是20, 21,再接下来的三项是20, 21,22,依此类推•求满足如下条件的最小整数N: N>100且该数列的前N项和为2的整数幕•那么该款软件的激活码是A.440B.330C.220D.110、填空题:本题共4小题,每小题5分,共20分。

2017全国卷1理科数学试题解析纯版完美版(最新整理)

2017全国卷1理科数学试题解析纯版完美版(最新整理)

2017年普通高等学校招生全国统一考试(全国I 卷)理科数学一、选择题:(本题共12小题,每小题5分,共60分)1、已知集合A={x|x<1},B={x|3x <1},则( )A .A∩B={x|x<0}B .A ∪B=R C .A ∪B={x|x>1} D .A∩B=∅解析:A={x|x<1},B={x|3x <1}={x|x<0},∴A ∩B={x|x<0},A ∪B={x|x<1},选A .2、如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分位于正方形的中心成中心对称,在正方形内随机取一点,则此点取自黑色部分的概率是()A .B .C .D .14π812π4解析:设正方形边长为2,则圆半径为1,则正方形的面积为2×2=4,圆的面积为π×12=π,图中黑色部分的概率为.则此点取自黑色部分的概率为=.故选B .π2π24π83、设有下面四个命题,其中正确的是( )p 1:若复数z 满足∈R ,则z ∈R ;1zp 2:若复数z 满足z 2∈R ,则z ∈R ;p 3:若复数z 1,z 2满足z 1z 2∈R ,则z 1=;z 2p 4:若复数z ∈R ,则∈R .z A .p 1,p 3 B .p 1,p 4 C .p 2,p 3 D .p 2,p 4解析:p 1:设z=a+bi ,则==∈R ,得到b=0,所以z ∈R .故p 1正确;1z 1a +bi a–bia 2+b2p 2:若z 2=–1,满足z 2∈R ,而z=i ,不满足z 2∈R ,故p 2不正确;p 3:若z 1=1,z 2=2,则z 1z 2=2,满足z 1z 2=R ,而它们实部不相等,不是共轭复数,故p 3不正确;p 4:实数没有虚部,所以它的共轭复数是它本身,也属于实数,故p 4正确;故选B .4、记S n 为等差数列{a n }的前n 项和,若a 4+a 5=24,S 6=48,则{a n }的公差为( )A .1 B .2 C .4 D .8解析:a 4+a 5=a 1+3d+a 1+4d=24,S 6=6a 1+d=48,联立求得6×52{2a 1+7d =24①6a 1+15d =48②)①×3–②得(21–15)d=24,∴6d=24,∴d=4,∴选C .当然,我们在算的时候引用中间项更快更简单:a 4+a 5=24→a 4.5=12,S 6=48→a 3.5=8,∴d=4.5、函数f(x)在(–∞,+∞)单调递减,且为奇函数.若f(1)=–1,则满足–1≤f(x –2)≤1的x 的取值范围是( )A .[–2,2] B .[–1,1] C .[0,4] D .[1,3]解析:因为f(x)为奇函数,所以f(–1)=–f(1)=1,于是–1≤f(x –2)≤1等价于f(1)≤f(x –2)≤f(–1).又f(x)在(–∞,+∞)单调递减,∴–1≤x –2≤1,∴1≤x≤3.故选D .6、(1+)(1+x)6展开式中x 2的系数为( )1x2A .15 B .20 C .30 D .35解析:(1+)(1+x)6=1·(1+x)6+·(1+x)6.对(1+x)6的x 2项系数为C ==15,1x 21x 2266×52对·(1+x)6的x 2项系数为C =15,∴x 2的系数为15+15=30.故选C .1x2467、某多面体的三视图如图,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形、该多面体的各个面中有若干是梯形,这些梯形的面积之和为( )A .10B .12C .14D .16解析:由三视图可画出立体图该立体图平面内只有两个相同的梯形的面,∴S 梯=(2+4)×2÷2=6,S 全=6×2=12.故选B .8、右面程序框图是为了求出满足3n –2n >1000的最小偶数n ,那么在和两个空白框中,可以分别填入( )A .A>1000和n=n+1B .A>1000和n=n+2C .A≤1000和n=n+1D .A≤1000和n=n+2解析:因为要求A 大于1000时输出,且框图中在“否”时输出,∴“”中不能输入A>1000,排除A 、B .又要求n 为偶数,且n 初始值为0,“中n 依次加2可保证其为偶,故选D .9、已知曲线C 1:y=cosx ,C 2:y=sin(2x+),则下面结论正确的是( )2π3A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲π6线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲π12线C 2C .把C 1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线12π6C 2D .把C 1上各点的横坐标缩短到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲π12线C 2解析:C 1:y=cosx ,C 2:y=sin(2x+),首先曲线C 1、C 2统一为一三角函数名,可将C 1:y=cosx 用诱导公式处2π3理.y=cosx=cos(x+–)=sin(x+).横坐标变换需将ω=1变成ω=2,π2π2π2即y=sin(x+)→y=sin(2x+)=sin2(x+)→y=sin(2x+)=sin2(x+).π2C 1上各点横坐标缩短为它原来的一半π2π42π3π3注意ω的系数,在右平移需将ω=2提到括号外面,这时x+平移至x+,π4π3根据“左加右减”原则,“x+”到“x+”需加上,即再向左平移.π4π3π12π1210、已知F 为抛物线C :y 2=4x 的交点,过F 作两条互相垂直l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D ,E 两点,|AB|+|DE|的最小值为( ) A .16B .14 C .12 D .10解析:设AB 倾斜角为θ.作AK 1垂直准线,AK 2垂直x 轴,易知.{|AF|·cos θ+|GF|=|AK 1|(几何关系)|AK 1|=|AF||GP|=PP ,2))=P)∴|AF|·cosθ+P=|AF|.同理|AF|=,|BF|=,∴|AB|==.P 1–cos θP 1+cos θ2P 1–cos 2θ2Psin 2θ又DE 与AB 垂直,即DE 的倾斜角为+θ,|DE|==,而y 2=4x ,即P=2.π22P sin 2(\F(π,2)+θ)2Pcos 2θ∴x|AB|+|DE|=2P(+)=4==≥16,当θ=取等号,即|AB|+|DE|最小值为16,故1sin 2θ1cos 2θsin 2θ+cos 2θsin 2θcos 2θ4sin 2θcos 2θ16sin 2θπ4选A .11、设x ,y ,z 为正数,且2x =3y =5z ,则( )A .2x<3y<5zB .5z<2x<3yC .3y<5z<2xD .3y<2x<5z解析:取对数:xln2=yln3=zln5,=>,∴2x>3y .又∵xln2=zln5,则=<.∴2x<5z ,∴3y<2x<5z ,故选D .x y ln3ln232x z ln5ln25212、几位大学生响应国家的创业号召,开发了一款应用软件,为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动,这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,在接下来的三项式26,21,22,依次类推,求满足如下条件的最小整数N :N>100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是( ) A .440B .330C .220 D .110解析:设首项为第1组,接下来两项为第2组,再接下来三项为第3组,以此类推.设第n 组的项数为n ,则n 组的项数和为,n(1+n)2由题,N>100,令>100→n≥14且n ∈N +,即N 出现在第13组之后.第n 组的和为=2n–1.n(1+n)21–2n 1–2n 组总共的和为–n=2n –2–n .2(1–2n )1–2若要使前N 项和为2的整数幂,则N–项的和2k –1应与–2–n 互为相反数,即2k –1=2+n(k ∈N+,n≥14).n(1+n)2∴k=log 2(n+3).∴n=29,k=5.∴N=+5=440,故选A .29×(1+29)2二、填空题:本题共4小题,每小题5分,共20分.1、已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则|a +2b |=________.解析:|a +2b |2=(a +2b )2=|a |2+2·|a ||2b |·cos60°+(2|b |)2=22+2×2×2×+22=4+4+4=12,∴|a +2b |==2.121232、设x ,y 满足约束条件,则z=3x–2y 的最小值为_______.{x +2y ≤12x +y ≥–1x–y≤0)解析:不等式组表示的平面区域如图.{x +2y ≤12x +y ≥–1x–y ≤0)2x +y +1=0由z=3x–2y 得y=x–,32z2求z 的最小值,即求直线y=x–的纵截距的最大值32z2当直线y=x–过图中点A 时,纵截距最大32z2由解得A 点坐标为(–1,1),此时z=3×(–1)–2×1=–5.{2x +y =–1x +2y =1)3、已知双曲线C :–=1,(a>0,b>0)的右顶点为A ,以A 为圆心,b 为半径作圆A ,圆A 与双曲线C 的一条x 2a 2y 2b2渐近线交于M ,N 两点,若∠MAN=60°,则C 的离心率为_______.解析:如图,|OA|=a ,|AN|=|AM|=b .∵∠MAN=60°,∴|AP|=b ,|OP|==,32|OA|2–|PA|2a 2–34b 2∴tanθ==,又∵tanθ=,∴=,解得a 2=3b 2,∴e===. |AP||OP|32b a 2–34b 2b a 32ba 2–34b 2b a 1+b 2a 21+132334、如图,圆形纸片的圆心为O ,半径为5cm ,该纸片上的等边三角形ABC 的中心为O ,D 、E 、F 为元O 上的点,△DBC ,△ECA ,△FAB 分别是一BC ,CA ,AB 为底边的等腰三角形,沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△FAB ,使得D ,E ,F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为_______.解析:由题,连接OD ,交BC 与点G ,由题,OD ⊥BC ,OG=BC ,即OG 的长度与BC 的长度或成正比.36设OG=x ,则BC=2x ,DG=5–x .∴三棱锥的高h===.3DG 2–OG 225–10x +x 2–x 225–10x 又∵S △ABC =2·3x·=3x 2,∴V=S △ABC ·h=x 2·=·,312313325–10x 325x 4–10x 3令f(x)=25x 4–10x 3,x ∈(0,),f'(x)=100x 3–50x 4.52令f'(x)>0,即x 4–2x 3<0,x<2.∴f(x)≤f(2)=80,∴V≤×=4,∴体积最大值为4cm 3.380515三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17–21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.1、△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为.a 23sinA(1)求sinBsinC ;(2)若6cosBcosC=1,a=3,求△ABC 的周长.解析:本题主要考查三角函数及其变换,正弦定理,余弦定理等基础知识的综合应用.(1)∵△ABC 面积S=且S=bcsinA ,∴=bcsinA .∴a 2=bcsinA .a 23sinA 12a 23sinA 1232∵由正弦定理得sin 2A=sinBsinCsin 2A ,由sinA≠0得sinBsinC=.3223(2)由(1)得sinBsinC=,cosBcosC=.∵A+B+C=π,∴cosA=cos(π–B–C)=–cos(B+C)=sinBsinC–cosBcosC=.231612又∵A ∈(0,π),∴A=60°,∴sinA=,cosA=.3212由余弦定理得a 2=b 2+c 2–bc=9 ①由正弦定理得b=·sinB ,c=·sinC ,∴bc=·sinBsinC=8②a sinA a sinA a 2sin 2A由①②得b+c=.∴a+b+c=3+,即△ABC 的周长为3+.3333332、(12分)如图,在四棱锥P–ABCD 中,AB ∥CD 中,且∠BAP=∠CDP=90°.(1)证明:平面PAB ⊥平面PAD ;(2)若PA=PD=AB=DC ,∠APD=90°,求二面角A–PB–C 的余弦值.解析:(1)证明:∵∠BAP=∠CDP=90°,∴PA ⊥AB ,PD ⊥CD .又∵AB ∥CD ,∴PD ⊥AB .又∵PD∩PA=P ,PD 、PA ⊂平面PAD .∴AB ⊥平面PAD ,又AB ⊂平面PAB .∴平面PAB ⊥平面PAD .(2)取AD 中点O ,BC 中点E ,连接PO ,OE ,∵AB ∥CD ∴四边形ABCD 为平行四边形,∴OE ∥AB .由(1)知,AB ⊥平面PAD ,∴OE ⊥平面PAD ,又PO 、AD ⊂平面PAD .∴OE ⊥PO ,OE ⊥AD .又∵PA=PD ,∴PO ⊥AD .∴PO 、OE 、AD 两两垂直∴以O 为坐标原点,建立如图所示的空间直角坐标系O–xyz .设PA=2,∴D(–,0,0)、B(,2,0)、P(0,0,)、C(–,2,0),∴PD =(–,0,–)、PB =(,2,– )、BC =(–2,0,0) 222222222设n =(x,y,z)为平面PBC 的法向量由,得.令y=1,则z=,x=0,可得平面PBC 的一个法向量n =(0,1,). {n ·PB =0n ·BC =0){x +2y–z =0–2x =0)22∵∠APD=90°,∴PD ⊥PA .又知AB ⊥平面PAD ,PD ⊂平面PAD .∴PD ⊥AB ,又PA∩AB=A ,∴PD ⊥平面PAB即PD 是平面PAB 的一个法向量,PD =(–,0,–). ∴cos<PD ,n >===–.22PD ·n |PD ||n |–22333由图知二面角A–PB–C 为钝角,所以它的余弦值为–.333、(12分)为了抽检某种零件的一条生产线的生产过程,实验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(μ–3σ,μ+3σ)之外的零件数,求P(X≥1)及X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ–3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.①试说明上述监控生产过程方法的合理性:②下面是检验员在一天内抽取的16个零件的尺寸:9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.0410.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95经计算得1619.97i i x x ===∑,0.212s ==≈,其中x i 为抽取的第i 个零件的尺寸,i=1,2, (16)用样本平均数为μ的估计值,用样本标准差s 作为σ的估计值,利用估计值判断是否需对当天的生产过x μσ程进行检查,剔除(–3,+3)之外的数据,用剩下的数据估计μ和σ(精确到0.01).μσμσ附:若随机变量Z 服从正态分布N(μ,σ2),则P(μ–3σ<Z<μ+3σ).0.997416≈0.9592,≈0.09.0.008解析:(1)由题可知尺寸落在(μ–3σ,μ+3σ)之内的概率为0.9974,落在(μ–3σ,μ+3σ)之外的概率为0.0026.P(X=0)=C (1–0.9974)0·0.997416≈0.9592,P(X≥1)=1–P(X=0)≈1–0.9592=0.0408,016由题可知X~B(16,0.0026),∴E(X)=16×0.0026=0.0416.(2)①尺寸落在(μ–3σ,μ+3σ)之外的概率为0.0026,由正态分布知尺寸落在(μ–3σ,μ+3σ)之外为小概率事件,因此上述监控生产过程的方法合理.②(μ–3σ=9.97–3×0.212=9.334,μ+3σ=9.97+3×0.212=10.606,∴(μ–3σ,μ+3σ)=(9.334,10.606)∵9.22∉(9.334,10606),∴需对当天的生产过程检查,因此剔除9.22.剔除数据之后:μ==10.02.9.97×16–9.2215σ2=[(9.95–10.02)2+(10.12–10.02)2+(9.96–10.02)2+(9.96–10.02)2+(10.01–10.02)2+(9.92–10.02)2+(9.98–10.02)2+(10.04–10.02)2+(10.26–10.02)2+(9.91–10.02)2+(10.13–10.02)2+(10.02–10.02)2+(10.04–10.02)2+(10.05–10.02)2+(9.95–10.02)2]×,∴σ=≈0.09.1150.0084、(12分)已知椭圆C :+=1(a>b>0),四点P 1(1,1),P 2(0,1),P 3(–1,),P 4(1,)中恰有三点在椭圆C 上.x 2a 2y 2b 23232(1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A 、B 两点,若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.解析:(1)根据椭圆对称性,必过P 3、P 4.又P 4横坐标为1,椭圆必不过P 1,所以过P 2、P 3、P 4三点将P 2(0,1)、P 3(–1,)代入椭圆方程得,解得a 2=4,b 2=1.∴椭圆C 的方程为:+y 2=1.32x 24(2)①当斜率不存在时,设l :x=m ,A(m,y A ),B(m,–y A ),k P2A +k P2B =+=–=–1y A –1m –y A –1m 2m得m=2,此时l 过椭圆右顶点,不存在两个交点,故不满足.②当斜率存在时,设l :y=kx+b(b ≠1),A(x 1,y 1),B(x 2,y 2),联立,整理得(1+4k 2)x 2+8kbx+4b 2–4=0.∴x 1+x 2=,x 1x 2=.{y =kx +b x 2+4y 2–4=0)–8kb 1+4k 24b 2–41+4k 2则k P2A +k P2B =+====–1.y 1–1x 1y 2–1x 2x 2(kx 1+b)–x 2+x 1(kx 2+b)–x 1x 1x 28kb 2–8k–8kb 2+8kb1+4k 24b 2–41+4k 28k(b–1)4(b +1)(b–1)又b ≠1,∴b=–2k–1,此时△=–64k ,存在k 使得△>0成立.∴直线l 的方程为y=kx–2k–1.当x=2时,y=–1.所以l 过定点(2,–1).5、(12分)已知函数f(x)=ae 2x +(a–2)e x –x .(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a 的取值范围.解析:(1)由于f(x)=ae 2x +(a–2)e x –x ,故f'(x)=2ae 2x +(a–2)e x –1=(ae x –1)(2e x +1)①当a≤0时,ae x –1<0,2e x +1>0.从而f'(x)<0恒成立.f(x)在R 上单调递减②当a>0时,令f'(x)=0,从而x 综上,当a≤0时,f(x)在R lna,+∞)上单调递增(2)由(1)知,当a≤0时,f(x)在R 上单调减,故f(x)在R 上至多一个零点,不满足条件.当a>0时,f min =f(–lna)=1–+lna .1a令g(a)= f min =1–+lna(a>0),则g(a)在(0,+∞)上单调增,而g(1)=0.故当0<a<1时,g(a)<0.当1a a=1时g(a)=0.当a>1时若a>1,则f min =1–+lna=g(a)>0,故f(x)>0恒成立,从而f(x)无零点,不满足条件.1a 若a=1,则f min =1–+lna=0,故f(x)=0仅有一个实根x=–lna=0,不满足条件.1a 若0<a<1,则f min =1–+lna<0,注意到–lna>0.f(–1)=++1–>0.1a a e 2a e 2e故f(x)在(–1,–lna)上有一个实根,而又ln(–1)>ln =–lna .3a 1a且f(ln(–1))=e 的ln(–1)次方·(a·e 的ln(–1)次方+a–2)–ln(–1)=(–1)·(3–a+a–2)–ln(–1)=(–1)–ln(–1)>0.3a 3a 3a 3a 3a 3a 3a 3a故f(x)在(–lna,ln(–1))上有一个实根.3a又f(x)在(–∞,–lna)上单调减,在(–lna,+∞)单调增,故f(x)在R 上至多两个实根.又f(x)在(–1,–lna)及(–lna,ln(–1))上均至少有一个实数根,故f(x)在R 上恰有两个实根.3a综上,0<a<1.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.1、[选修4–4:坐标系与参考方程]在直角坐标系xOy 中,曲线C 的参数方程为(θ为参数),直线l 的{x =3cos θy =sin θ)参数方程为(t 为参数).{x =a +4t y =1–t)(1)若a=–1,求C 与l 的交点坐标;(2)若C 上的点到l 距离的最大值为,求a .17解析:(1)a=–1时,直线l 的方程为x+4y–3=0.曲线C 的标准方程是+y 2=1,x 29联立方程,解得:或,则C 与l 交点坐标是(3,0)和(–,).{x +4y–3=0x 2){x =3y =0)21252425(2)直线l 一般式方程是x+4y–4–a=0.设曲线C 上点P(3cosθ,sinθ).则P 到l 距离d==,其中tan φ=.依题意得:d max =,解得a=–16或|3cos θ+4sin θ–4–a|17|5sin(θ+φ)–4–a|173417a=8.2、[选修4–5:不等式选讲]已知函数f(x)=–x 2+ax+4,g(x)=|x+1|+|x–1|.(1)当a=1时,求不等式f(x)≥g(x)的解集;(2)若不等式f(x)≥g(x)的解集包含[–1,1],求a 的取值范围.解析:(1)当a=1时,f(x)=–x 2+x+4,是开口向下,对称轴x=的二次函数.g(x)=|x+1|+|x –1|=12,{2x(x >1)2(–1≤x ≤1)–2x(x <–1))当x ∈(1,+∞)时,令–x 2+x+4=2x ,解得x=.17–12g(x)在(1,+∞)上单调递增,f(x)在(1,+∞)上单调递减.∴此时f(x)≥g(x)解集为(1,].17–12当x ∈[–1,1]时,g(x)=2,f(x)≥f(–1)=2;当x ∈(–∞,–1)时,g(x)单调递减,f(x)单调递增,且g(–1)=f(–1)=2.综上所述,f(x)≥g(x)解集[–1,].17–12(2)依题意得:–x 2+ax+4≥2在[–1,1]恒成立.即x 2–ax–2≤0在[–1,1]恒成立.则只须,解出:–1≤a≤1.故a 取值范围是[–1,1].{12–a·1–2≤0(–1)2–a(–1)–2≤0)“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。

2017年高考全国1卷理科数学和答案详解(word版本)(可编辑修改word版)

2017年高考全国1卷理科数学和答案详解(word版本)(可编辑修改word版)

绝密★启用前2017 年普通高等学校招生全国统一考试理科数学本试卷 5 页,23 小题,满分 150 分。

考试用时 120 分钟。

注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。

用 2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2. 作答选择题时,选出每小题答案后,用 2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试卷上。

3. 非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4. 考生必须保证答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

一、选择题:本题共 12 小题,每小题 5 分,共 60 分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合 A ={x |x <1},B ={x | 3x < 1 },则 A . A B = {x | x < 0} C . A B = {x | x > 1}B . A B = R D . A B = ∅2. 如图,正方形 ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A . 14C. 123.设有下面四个命题B . π8D . π4p :若复数 z 满足 1∈ R ,则 z ∈ R ; 1zp 2 :若复数 z 满足 z 2 ∈ R ,则 z ∈ R ;p 3 :若复数 z 1 , z 2 满足 z 1 z 2 ∈ R ,则 z 1 = z 2 ;p4:若复数 z ∈R,则 z∈R .其中的真命题为A.p1 , p3B.p1 , p4C.p2 , p3D.p2 , p44.记S n 为等差数列{a n } 的前n 项和.若a4 +a5 = 24 ,S6 = 48 ,则{a n } 的公差为A.1 B.2 C.4 D.85.函数f (x) 在(-∞, +∞) 单调递减,且为奇函数.若f (1) =-1,则满足-1 ≤f (x - 2) ≤ 1的x 的取值范围是A.[-2, 2]B.[-1,1]C.[0, 4]D.[1, 3]6.(1+ 1)(1+x)6展开式中x2的系数为x2A.15 B.20 C.30 D.357.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A.10 B.12 C.14 D.168.右面程序框图是为了求出满足3n−2n>1000 的最小偶数n,那么在和两个空白框中,可以分别填入A.A>1 000 和n=n+1B.A>1 000 和n=n+2C.A ≤1 000 和n=n+1D.A ≤1 000 和n=n+29.已知曲线C :y=cos x,C :y=sin (2x+ 2π),则下面结论正确的是1 23⎨ ⎩A. 把 C 1 π 上各点的横坐标伸长到原来的 2 倍,纵坐标不变,再把得到的曲线向右平移 个单位长度,得6到曲线 C 2B. 把 C 1 π上各点的横坐标伸长到原来的2 倍,纵坐标不变,再把得到的曲线向左平移 个单位长度,得 12 到曲线 C 2C. 把 C 1 1 π 上各点的横坐标缩短到原来的 倍,纵坐标不变,再把得到的曲线向右平移 个单位长度,得26到曲线 C 2D. 把 C 1 1 上各点的横坐标缩短到原来的 倍,纵坐标不变,再把得到的曲线向左平移2 π个单位长度,12得到曲线 C 210.已知 F 为抛物线 C :y 2=4x 的焦点,过 F 作两条互相垂直的直线 l 1,l 2,直线 l 1 与 C 交于 A 、B 两点, 直线 l 2 与 C 交于 D 、E 两点,则|AB |+|DE |的最小值为 A .16B .14C .12D .1011.设 xyz 为正数,且2x = 3y = 5z ,则 A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z12. 几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列 1,1,2,1,2,4,1,2,4, 8,1,2,4,8,16,…,其中第一项是 20,接下来的两项是 20,21,再接下来的三项是 20,21,22, 依此类推.求满足如下条件的学科网&最小整数 N :N >100 且该数列的前 N 项和为 2 的整数幂.那么该款软件的激活码是 A .440B .330C .220D .110二、填空题:本题共 4 小题,每小题 5 分,共 20 分。

(word完整版)2017年高考全国1卷理科数学和答案详解(word版本)

(word完整版)2017年高考全国1卷理科数学和答案详解(word版本)

绝密★启用前2017年普通高等学校招生全国统一考试理科数学本试卷5页,23小题,满分150分。

考试用时120分钟。

注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A ={x |x <1},B ={x |31x <},则 A .{|0}A B x x =<I B .A B =R U C .{|1}A B x x =>UD .A B =∅I2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14B .π8C .12D .π43.设有下面四个命题1p :若复数z 满足1z ∈R ,则z ∈R ;2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数12,z z 满足12z z ∈R ,则12z z =;4p :若复数z ∈R ,则z ∈R .其中的真命题为 A .13,p pB .14,p pC .23,p pD .24,p p4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为A .1B .2C .4D .85.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是 A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]6.621(1)(1)x x++展开式中2x 的系数为 A .15B .20C .30D .357.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A .10B .12C .14D .168.右面程序框图是为了求出满足3n −2n >1000的最小偶数n ,那么在和两个空白框中,可以分别填入A .A >1 000和n =n +1B .A >1 000和n =n +2C .A ≤1 000和n =n +1D .A ≤1 000和n =n +29.已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 210.已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为 A .16B .14C .12D .1011.设xyz 为正数,且235x y z ==,则A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z12.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的学科网&最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是 A .440B .330C .220D .110二、填空题:本题共4小题,每小题5分,共20分。

2017年高考真题(全国Ⅰ卷)数学理科含答解析

2017年高考真题(全国Ⅰ卷)数学理科含答解析

2017年普通高等学校招生统一考试全国I 卷理科数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x |x <1},B ={x |31x <},则 A .{|0}A B x x =< B .A B =R C .{|1}A B x x =>D .A B =∅【答案】A 【解析】试题分析:由31x <可得033x <,则0x <,即{|0}B x x =<,所以{|1}{|0}A B x x x x =<<{|0}x x =<,{|1}{|0}{|1}A B x x x x x x =<<=< ,故选A.【考点】集合的运算,指数运算性质【名师点睛】集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理. 2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14 B .π8 C .12D .π4【答案】B 【解析】试题分析:设正方形边长为a ,则圆的半径为2a ,正方形的面积为2a ,圆的面积为2π4a .由图形的对称性可知,太极图中黑白部分面积相等,即各占圆面积的一半.由几何概型概率的计算公式得,此点取自黑色部分的概率是221ππ248a a ⋅=,选B.秒杀解析:由题意可知,此点取自黑色部分的概率即为黑色部分面积占整个面积的比例,由图可知其概率p 满足1142p <<,故选B. 【考点】几何概型【名师点睛】对于几何概型的计算,首先确定事件类型为几何概型并确定其几何区域(长度、面积、体积或时间),其次计算基本事件区域的几何度量和事件A 区域的几何度量,最后计算()P A . 3.设有下面四个命题1p :若复数z 满足1z∈R ,则z ∈R ;2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数12,z z 满足12z z ∈R ,则12z z =; 4p :若复数z ∈R ,则z ∈R .其中的真命题为 A .13,p pB .14,p pC .23,p pD .24,p p【答案】B【考点】复数的运算与性质【名师点睛】分式形式的复数,分子、分母同乘以分母的共轭复数,化简成i(,)z a b a b =+∈R 的形式进行判断,共轭复数只需实部不变,虚部变为原来的相反数即可.4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为 A .1B .2C .4D .8【答案】C 【解析】【考点】等差数列的基本量求解【名师点睛】求解等差数列基本量问题时,要多多使用等差数列的性质,如{}n a 为等差数列,若m n p q +=+,则m n p q a a a a +=+.5.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是 A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]【答案】D 【解析】试题分析:因为()f x 为奇函数且在(,)-∞+∞单调递减,要使1()1f x -≤≤成立,则x 满足11x -≤≤,从而由121x -≤-≤得13x ≤≤,即满足1(2)1f x -≤-≤成立的x 的取值范围为[1,3],选D. 【考点】函数的奇偶性、单调性【名师点睛】奇偶性与单调性的综合问题,要充分利用奇、偶函数的性质与单调性解决不等式和比较大小问题,若()f x 在R 上为单调递增的奇函数,且12()()0f x f x +>,则120x x +>,反之亦成立. 6.621(1)(1)x x++展开式中2x 的系数为 A .15B .20C .30D .35【答案】C 【解析】试题分析:因为6662211(1)(1)1(1)(1)x x x x x ++=⋅++⋅+,则6(1)x +展开式中含2x 的项为22261C 15x x ⋅=,621(1)x x ⋅+展开式中含2x 的项为442621C 15x x x⋅=,故2x 的系数为151530+=,选C.【考点】二项式定理【名师点睛】对于两个二项式乘积的问题,用第一个二项式中的每项乘以第二个二项式的每项,分析含2x 的项共有几项,进行相加即可.这类问题的易错点主要是未能分析清楚构成这一项的具体情况,尤其是两个二项展开式中的r不同.7.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A.10 B.12 C.14 D.16【答案】B【解析】试题分析:由题意该几何体的直观图是由一个三棱锥和三棱柱构成,如下图,则该几何体各面内只有两个相同的梯形,则这些梯形的面积之和为12(24)2122⨯+⨯⨯=,故选B.【考点】简单几何体的三视图【名师点睛】三视图往往与几何体的体积、表面积以及空间线面关系、角、距离等问题相结合,解决此类问题的关键是由三视图准确确定空间几何体的形状及其结构特征并且熟悉常见几何体的三视图. 8.下面程序框图是为了求出满足3n−2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入A.A>1 000和n=n+1 B.A>1 000和n=n+2C.A≤1 000和n=n+1 D.A≤1 000和n=n+2【答案】D【考点】程序框图【名师点睛】解决此类问题的关键是读懂程序框图,明确顺序结构、条件结构、循环结构的真正含义.本题巧妙地设置了两个空格需要填写,所以需要抓住循环的重点,偶数该如何增量,判断框内如何进行判断可以根据选项排除.9.已知曲线C1:y=cos x,C2:y=sin (2x+2π3),则下面结论正确的是A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C2 【答案】D 【解析】试题分析:因为12,C C 函数名不同,所以先将2C 利用诱导公式转化成与1C 相同的函数名,则22π2πππ:sin(2)cos(2)cos(2)3326C y x x x =+=+-=+,则由1C 上各点的横坐标缩短到原来的12倍变为cos 2y x =,再将曲线向左平移π12个单位长度得到2C ,故选D.【考点】三角函数图象变换【名师点睛】对于三角函数图象变换问题,首先要将不同名函数转换成同名函数,利用诱导公式,需要重点记住ππsin cos(),cos sin()22αααα=-=+;另外,在进行图象变换时,提倡先平移后伸缩,而先伸缩后平移在考试中也经常出现,无论哪种变换,记住每一个变换总是对变量x 而言.10.已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为 A .16B .14C .12D .10【答案】A【考点】抛物线的简单几何性质【名师点睛】对于抛物线弦长问题,要重点抓住抛物线定义,到定点的距离要想到转化到准线上,另外,直线与抛物线联立,求判别式,利用根与系数的关系是通法,需要重点掌握.考查最值问题时要能想到用函数方法和基本不等式进行解决.此题还可以利用弦长的倾斜角表示,设直线的倾斜角为α,则22||sin pAB α=,则2222||πcos sin (+)2p pDE αα==,所以222221||||4(cos sin cos p p AB DE ααα+=+=+ 222222222111sin cos )4()(cos sin )4(2)4(22)16sin cos sin cos sin ααααααααα=++=++≥⨯+=. 11.设x 、y 、z 为正数,且235x y z==,则A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z【答案】D【考点】指、对数运算性质【名师点睛】对于连等问题,常规的方法是令该连等为同一个常数,再用这个常数表示出对应的,,x y z ,通过作差或作商进行比较大小.对数运算要记住对数运算中常见的运算法则,尤其是换底公式以及0与1的对数表示.12.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是 A .440B .330C .220D .110【答案】A 【解析】试题分析:由题意得,数列如下:11,1,2,1,2,4,1,2,4,,2k -则该数列的前(1)122k k k ++++=项和为 11(1)1(12)(122)222k k k k S k -++⎛⎫=+++++++=-- ⎪⎝⎭,要使(1)1002k k +>,有14k ≥,此时122k k ++<,所以2k +是第1k +组等比数列1,2,,2k 的部分和,设1212221t t k -+=+++=- ,所以2314t k =-≥,则5t ≥,此时52329k =-=, 所以对应满足条件的最小整数293054402N ⨯=+=,故选A. 【考点】等差数列、等比数列【名师点睛】本题非常巧妙地将实际问题和数列融合在一起,首先需要读懂题目所表达的具体含义,以及观察所给定数列的特征,进而判断出该数列的通项和求和.另外,本题的难点在于数列里面套数列,第一个数列的和又作为下一个数列的通项,而且最后几项并不能放在一个数列中,需要进行判断. 二、填空题:本题共4小题,每小题5分,共20分.13.已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则| a +2b |= .【答案】23 【解析】试题分析:222|2|||44||4421cos60412+=+⋅+=+⨯⨯⨯+= a b a a b b ,所以|2|1223+==a b . 秒杀解析:利用如下图形,可以判断出2+a b 的模长是以2为边长,一夹角为60°的菱形的对角线的长度,则为23.【考点】平面向量的运算【名师点睛】平面向量中涉及有关模长的问题时,常用到的通法是将模长进行平方,利用向量数量积的知识进行解答,很快就能得出答案;另外,向量是一个工具型的知识,具备代数和几何特征,在做这类问题时可以使用数形结合的思想,会加快解题速度.14.设x ,y 满足约束条件21210x y x y x y +≤⎧⎪+≥-⎨⎪-≤⎩,,,则32z x y =-的最小值为 .【答案】5- 【解析】试题分析:不等式组表示的可行域如图所示,易求得1111(1,1),(,),(,)3333A B C ---,由32z x y =-得322zy x =-在y 轴上的截距越大,z 就越小,所以,当直线32z x y =-过点A 时,z 取得最小值, 所以z 的最小值为3(1)215⨯--⨯=-. 【考点】线性规划【名师点睛】本题是常规的线性规划问题,线性规划问题常出现的形式有:①直线型,转化成斜截式比较截距,要注意z 前面的系数为负时,截距越大,z 值越小;②分式型,其几何意义是已知点与未知点的斜率;③平方型,其几何意义是距离,尤其要注意的是最终结果应该是距离的平方;④绝对值型,转化后其几何意义是点到直线的距离.15.已知双曲线C :22221x y a b-=(a >0,b >0)的右顶点为A ,以A 为圆心,b 为半径作圆A ,圆A 与双曲线C 的一条渐近线交于M ,N 两点.若∠MAN =60°,则C 的离心率为 .【答案】233【解析】试题分析:如图所示,作AP MN ⊥,因为圆A 与双曲线C 的一条渐近线交于M 、N 两点,则MN 为双曲线的渐近线by x a=上的点,且(,0)A a ,||||AM AN b ==, 而AP MN ⊥,所以30PAN ∠= , 点(,0)A a 到直线by x a=的距离22||||1b AP b a =+,在Rt PAN △中,||cos ||PA PAN NA ∠=,代入计算得223a b =,即3a b =, 由222c a b =+得2c b =, 所以22333c b e a b ===.【考点】双曲线的简单几何性质【名师点睛】双曲线渐近线是其独有的性质,所以有关渐近线问题备受出题者的青睐.做好这一类问题要抓住以下重点:①求解渐近线,直接把双曲线后面的1换成0即可;②双曲线的焦点到渐近线的距离是b ;③双曲线的顶点到渐近线的距离是abc. 16.如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O .D ,E ,F 为圆O上的点,△DBC ,△ECA ,△F AB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△F AB ,使得D ,E ,F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为.【答案】415 【解析】试题分析:如下图,连接DO 交BC 于点G ,设D ,E ,F 重合于S 点,正三角形的边长为x (x >0),则1332OG x =⨯36x =.∴356FG SG x ==-, 222233566SO h SG GO x x ⎛⎫⎛⎫==-=-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭3553x ⎛⎫=- ⎪ ⎪⎝⎭, ∴三棱锥的体积21133553343ABC V S h x x ⎛⎫=⋅=⨯⨯- ⎪ ⎪⎝⎭△451535123x x =-. 设()45353n x x x =-,x >0,则()3453203n x x x '=-, 令()0n x '=,即43403x x -=,得43x =,易知()n x 在43x =处取得最大值.∴max 15485441512V =⨯⨯-=.【考点】简单几何体的体积【名师点睛】对于三棱锥最值问题,需要用到函数思想进行解决,本题解决的关键是设好未知量,利用图形特征表示出三棱锥体积.当体积中的变量最高次是2次时可以利用二次函数的性质进行解决,当变量是高次时需要用到求导的方式进行解决.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为23sin a A.(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长. 【解析】试题分析:(1)由三角形面积公式建立等式21sin 23sin a ac B A=,再利用正弦定理将边化成角,从而得出sin sin B C 的值;(2)由1cos cos 6B C =和2sin sin 3B C =计算出1cos()2B C +=-,从而求出角A ,根据题设和余弦定理可以求出bc 和b c +的值,从而求出ABC △的周长为333+.【考点】三角函数及其变换【名师点睛】在处理解三角形问题时,要注意抓住题目所给的条件,当题设中给定三角形的面积,可以使用面积公式建立等式,再将所有边的关系转化为角的关系,有时需将角的关系转化为边的关系;解三角形问题常见的一种考题是“已知一条边的长度和它所对的角,求面积或周长的取值范围”或者“已知一条边的长度和它所对的角,再有另外一个条件,求面积或周长的值”,这类问题的通法思路是:全部转化为角的关系,建立函数关系式,如sin()y A x b ωϕ=++,从而求出范围,或利用余弦定理以及基本不等式求范围;求具体的值直接利用余弦定理和给定条件即可. 18.(12分)如图,在四棱锥P−ABCD 中,AB//CD ,且90BAP CDP ∠=∠= .(1)证明:平面P AB ⊥平面P AD ;(2)若P A =PD =AB =DC ,90APD ∠= ,求二面角A −PB −C 的余弦值. 【解析】试题解析:(1)由已知90BAP CDP ∠=∠=︒,得AB ⊥AP ,CD ⊥PD . 由于AB//CD ,故AB ⊥PD ,从而AB ⊥平面P AD . 又AB ⊂平面P AB ,所以平面P AB ⊥平面P AD . (2)在平面PAD 内作PF AD ⊥,垂足为F ,由(1)可知,AB ⊥平面PAD ,故AB PF ⊥,可得PF ⊥平面ABCD .以F 为坐标原点,FA 的方向为x 轴正方向,||AB 为单位长,建立如图所示的空间直角坐标系F xyz -.由(1)及已知可得2(,0,0)2A ,2(0,0,)2P ,2(,1,0)2B ,2(,1,0)2C -. 所以22(,1,)22PC =-- ,(2,0,0)CB = ,22(,0,)22PA =- ,(0,1,0)AB = .设(,,)x y z =n 是平面PCB 的法向量,则0,0,PC CB ⎧⋅=⎪⎨⋅=⎪⎩ n n 即220,2220,x y z x ⎧-+-=⎪⎨⎪=⎩可取(0,1,2)=--n .设(,,)x y z =m 是平面PAB 的法向量,则0,0,PA AB ⎧⋅=⎪⎨⋅=⎪⎩ m m 即220,220.x z y ⎧-=⎪⎨⎪=⎩可取(1,0,1)=m . 则3cos ,||||3⋅==-<>n m n m n m , 所以二面角A PB C --的余弦值为33-. 【考点】面面垂直的证明,二面角平面角的求解【名师点睛】高考对空间向量与立体几何的考查主要体现在以下几个方面:①求异面直线所成的角,关键是转化为两直线的方向向量的夹角;②求直线与平面所成的角,关键是转化为直线的方向向量和平面的法向量的夹角;③求二面角,关键是转化为两平面的法向量的夹角.建立空间直角坐标系和表示出所需点的坐标是解题的关键. 19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm ).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布2(,)N μσ.(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(3,3)μσμσ-+之外的零件数,求(1)P X ≥及X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(3,3)μσμσ-+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查. (ⅰ)试说明上述监控生产过程方法的合理性; (ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.04 10.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95经计算得16119.9716i i x x ===∑,16162221111()(16)0.2121616i i i i s x x x x ===-=-≈∑∑,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.用样本平均数x 作为μ的估计值ˆμ,用样本标准差s 作为σ的估计值ˆσ,利用估计值判断是否需对当天的生产过程进行检查?剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z 服从正态分布2(,)N μσ,则(33)0.997 4P Z μσμσ-<<+=,160.997 40.959 2≈,0.0080.09≈.【解析】试题解析:(1)抽取的一个零件的尺寸在(3,3)μσμσ-+之内的概率为0.9974,从而零件的尺寸在(3,3)μσμσ-+之外的概率为0.0026,故~(16,0.0026)X B .因此16(1)1(0)10.99740.0408P X P X ≥=-==-≈.X 的数学期望为160.00260.0416EX =⨯=.(2)(i )如果生产状态正常,一个零件尺寸在(3,3)μσμσ-+之外的概率只有0.0026,一天内抽取的16个零件中,出现尺寸在(3,3)μσμσ-+之外的零件的概率只有0.0408,发生的概率很小.因此一旦发生这种情况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的.(ii )由9.97,0.212x s =≈,得μ的估计值为ˆ9.97μ=,σ的估计值为ˆ0.212σ=,由样本数据可以看出有一个零件的尺寸在ˆˆˆˆ(3,3)μσμσ-+之外,因此需对当天的生产过程进行检查.剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据9.22,剩下数据的平均数为1(169.979.22)10.0215⨯-=,因此μ的估计值为10.02.162221160.212169.971591.134ii x==⨯+⨯≈∑,剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据9.22,剩下数据的样本方差为221(1591.1349.221510.02)0.00815--⨯≈, 因此σ的估计值为0.0080.09≈. 【考点】正态分布,随机变量的期望和方差【名师点睛】数学期望是离散型随机变量中重要的数学概念,反映随机变量取值的平均水平.求解离散型随机变量的分布列、数学期望时,首先要分清事件的构成与性质,确定离散型随机变量的所有取值,然后根据概率类型选择公式,计算每个变量取每个值的概率,列出对应的分布列,最后求出数学期望.正态分布是一种重要的分布,之前考过一次,尤其是正态分布的3σ原则. 20.(12分)已知椭圆C :2222=1x y a b +(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1,32),P 4(1,32)中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点. 【解析】试题分析:(1)根据3P ,4P 两点关于y 轴对称,由椭圆的对称性可知C 经过3P ,4P 两点.另外由222211134a b a b +>+知,C 不经过点P 1,所以点P 2在C 上.因此234,,P P P 在椭圆上,代入其标准方程,即可求出C 的方程;(2)先设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2,再设直线l 的方程,当l 与x轴垂直时,通过计算,不满足题意,再设l :y kx m =+(1m ≠),将y kx m =+代入2214x y +=,写出判别式,利用根与系数的关系表示出x 1+x 2,x 1x 2,进而表示出12k k +,根据121k k +=-列出等式表示出k 和m 的关系,从而判断出直线恒过定点.试题解析:(1)由于3P ,4P 两点关于y 轴对称,故由题设知C 经过3P ,4P 两点. 又由222211134a b a b +>+知,C 不经过点P 1,所以点P 2在C 上.因此22211,131,4b ab ⎧=⎪⎪⎨⎪+=⎪⎩解得224,1.a b ⎧=⎪⎨=⎪⎩故C 的方程为2214x y +=.(2)设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2,如果l 与x 轴垂直,设l :x =t ,由题设知0t ≠,且||2t <,可得A ,B 的坐标分别为(t ,242t -),(t ,242t --).则22124242122t t k k t t---++=-=-,得2t =,不符合题设. 从而可设l :y kx m =+(1m ≠).将y kx m =+代入2214x y +=得222(41)8440k x kmx m +++-=. 由题设可知22=16(41)0k m ∆-+>.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2841kmk -+,x 1x 2=224441m k -+.而12121211y y k k x x --+=+ 121211kx m kx m x x +-+-=+ 1212122(1)()kx x m x x x x +-+=.由题设121k k +=-,故1212(21)(1)()0k x x m x x ++-+=.即222448(21)(1)04141m kmk m k k --+⋅+-⋅=++.解得12m k +=-.当且仅当1m >-时,0∆>,于是l :12m y x m +=-+,即11(2)2m y x ++=--, 所以l 过定点(2,1-).【考点】椭圆的标准方程,直线与圆锥曲线的位置关系【名师点睛】椭圆的对称性是椭圆的一个重要性质,判断点是否在椭圆上,可以通过这一方法进行判断;证明直线过定点的关键是设出直线方程,通过一定关系转化,找出两个参数之间的关系式,从而可以判断过定点情况.另外,在设直线方程之前,若题设中未告知,则一定要讨论直线斜率不存在和存在两种情况,其通法是联立方程,求判别式,利用根与系数的关系,再根据题设关系进行化简. 21.(12分)已知函数2()e (2)e x x f x a a x =+--. (1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围. 【解析】试题分析:(1)讨论()f x 单调性,首先进行求导,发现式子特点后要及时进行因式分解,再对a 按0a ≤,0a >进行讨论,写出单调区间;(2)根据第(1)问,若0a ≤,()f x 至多有一个零点.若0a >,当ln x a =-时,()f x 取得最小值,求出最小值1(ln )1ln f a a a-=-+,根据1a =,(1,)a ∈+∞,(0,1)a ∈进行讨论,可知当(0,1)a ∈时有2个零点.易知()f x 在(,ln )a -∞-有一个零点;设正整数0n 满足03ln(1)n a>-,则0000()e (e2)e 20n n n n f n a a n n n =+-->->->.由于3ln(1)ln a a->-,因此()f x 在(ln ,)a -+∞有一个零点.从而可得a 的取值范围为(0,1).试题解析:(1)()f x 的定义域为(,)-∞+∞,2()2e (2)e 1(e 1)(2e 1)x x x x f x a a a '=+--=-+, (ⅰ)若0a ≤,则()0f x '<,所以()f x 在(,)-∞+∞单调递减. (ⅱ)若0a >,则由()0f x '=得ln x a =-.当(,ln )x a ∈-∞-时,()0f x '<;当(ln ,)x a ∈-+∞时,()0f x '>,所以()f x 在(,ln )a -∞-单调递减,在(ln ,)a -+∞单调递增.(2)(ⅰ)若0a ≤,由(1)知,()f x 至多有一个零点.(ⅱ)若0a >,由(1)知,当ln x a =-时,()f x 取得最小值,最小值为1(ln )1ln f a a a-=-+. ①当1a =时,由于(ln )0f a -=,故()f x 只有一个零点; ②当(1,)a ∈+∞时,由于11ln 0a a-+>,即(ln )0f a ->,故()f x 没有零点; ③当(0,1)a ∈时,11ln 0a a-+<,即(ln )0f a -<. 又422(2)e (2)e 22e 20f a a ----=+-+>-+>,故()f x 在(,ln )a -∞-有一个零点.设正整数0n 满足03ln(1)n a>-,则00000000()e (e 2)e 20n n n n f n a a n n n =+-->->->. 由于3ln(1)ln a a->-,因此()f x 在(ln ,)a -+∞有一个零点. 综上,a 的取值范围为(0,1).【考点】含参函数的单调性,利用函数零点求参数取值范围【名师点睛】研究函数零点问题常常与研究对应方程的实根问题相互转化.已知函数()f x 有2个零点求参数a 的取值范围,第一种方法是分离参数,构造不含参数的函数,研究其单调性、极值、最值,判断y a =与其交点的个数,从而求出a 的取值范围;第二种方法是直接对含参函数进行研究,研究其单调性、极值、最值,注意点是若()f x 有2个零点,且函数先减后增,则只需其最小值小于0,且后面还需验证最小值两边存在大于0的点.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22.[选修4−4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a t t y t =+⎧⎨=-⎩(为参数). (1)若a =−1,求C 与l 的交点坐标;(2)若C 上的点到l 距离的最大值为17,求a . 【解析】试题分析:(1)先将曲线C 和直线l 的参数方程化成普通方程,然后联立两方程即可求出交点坐标;(2)由直线l 的普通方程为440x y a +--=,设C 上的点为(3cos ,sin )θθ,易求得该点到l 的距离为|3cos 4sin 4|17a d θθ+--=.对a 再进行讨论,即当4a ≥-和4a <-时,求出a 的值.试题解析:(1)曲线C 的普通方程为2219x y +=. 当1a =-时,直线l 的普通方程为430x y +-=.由22430,19x y x y +-=⎧⎪⎨+=⎪⎩解得3,0x y =⎧⎨=⎩或21,2524.25x y ⎧=-⎪⎪⎨⎪=⎪⎩从而C 与l 的交点坐标为(3,0),2124(,)2525-. (2)直线l 的普通方程为440x y a +--=,故C 上的点(3cos ,sin )θθ到l 的距离为|3cos 4sin 4|17a d θθ+--=.当4a ≥-时,d 的最大值为917a +.由题设得91717a +=,所以8a =; 当4a <-时,d 的最大值为117a -+.由题设得11717a -+=,所以16a =-. 综上,8a =或16a =-. 【考点】坐标系与参数方程【名师点睛】化参数方程为普通方程的关键是消参,可以利用加减消元、平方消元、代入法等等;在极坐标方程与参数方程的条件下求解直线与圆的位置关系问题时,通常将极坐标方程化为直角坐标方程,参数方程化为普通方程来解决. 23.[选修4−5:不等式选讲](10分)已知函数2–4()x ax f x =++,11()x x g x =++-||||.(1)当a =1时,求不等式()()f x g x ≥的解集;(2)若不等式()()f x g x ≥的解集包含[–1,1],求a 的取值范围. 【解析】试题分析:(1)将1a =代入,不等式()()f x g x ≥等价于2|1||1|40x x x x -+++--≤,对x 按1x <-,11x -≤≤,1x >讨论,得出不等式的解集;(2)当[1,1]x ∈-时,()2g x =.若()()f xg x ≥的解集包含[1,1]-,等价于当[1,1]x ∈-时()2f x ≥.则()f x 在[1,1]-的最小值必为(1)f -与(1)f 之一,所以(1)2f -≥且(1)2f ≥,从而得11a -≤≤.试题解析:(1)当1a =时,不等式()()f x g x ≥等价于2|1||1|40x x x x -+++--≤.① 当1x <-时,①式化为2340x x --≤,无解;当11x -≤≤时,①式化为220x x --≤,从而11x -≤≤;当1x >时,①式化为240x x +-≤,从而11712x -+<≤.- 21 - 所以()()f x g x ≥的解集为117{|1}2x x -+-≤≤.【考点】绝对值不等式的解法,恒成立问题【名师点睛】零点分段法是解答绝对值不等式问题常用的方法,也可以将绝对值函数转化为分段函数,借助图象解题.。

2017年高考真题——数学理(全国Ⅰ卷)

2017年高考真题——数学理(全国Ⅰ卷)

2017年普通高等学校招生全国统一考试理科数学本试卷5页,23小题,满分150分。

考试用时120分钟。

注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A ={x |x <1},B ={x |31x <},则 A .{|0}AB x x =< B .A B =RC .{|1}A B x x =>D .A B =∅【考点】:集合的简单运算,指数函数【思路】:利用指数函数的性质可以将集合B 求解出来,之后利用集合的计算求解即可。

【解析】:由310x x <⇒<,解得{}0B x x=<,故而{}{}0,1A B B x x A B A x x ⋂==<⋃==<,选A 。

2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14B .π8C .12D .π4【考点】:几何概型【思路】:几何概型的面积问题,=P 基本事件所包含的面积总面积。

【解析】:()21212=82r S P S r ππ==,故而选B 。

2017高考数学全国卷1理(附参考答案及详解)

2017高考数学全国卷1理(附参考答案及详解)
"!*!12$%&'() $"%& *+,-".'()/01*2 3 - !''() '+! 415*6789:;789<='()*5>?5> @ AB
- ""



)
*
p


:
-
"4
! "
4
".+4"
'!"!
"# *!
,$-.
,!5!12U- P J * r (- 0"- .!### * [
之 和 为 $! ! %
)%!#!
*%!$!
+%!-!
,%!&
!
第2题图
第.题图
.!如图所示的程序框图是 为 了 求 出 满 足 (* 0$* &!### 的 最 小 偶
数 *#那 么 在

两 个 空 白 框 中#可 以 分 别
填 入 $! ! % )%"&!### 和 *'*/! +%")!### 和 *'*/!
二 填 空 题本大题共-小题每 小 题 " 分共 $# 分!把 答 案 填 在
题中横线上 !(!已 知 向 量 的 夹 角 为 &#9""'$""'!则"/$"
'!!!!!
,#/$-)! !-!设 #- 满足约束条件+$#/-*0!则('(#0$- 的 最 小 值 为
码+的活动!这款软件的激活码 为 下 面 数 学 问 题 的 答 案&已 知 数 列 !#!#$#!#$#-#!#$#-#.#!#$#-#.#!&#, #其 中 第 一 项 是 $# #接 下 来 的 两 项 是 $##$!#再 接 下 来 的 三 项 是 $##$!#$$#依 此 类 推 ! 求满足如下条件的最小整数 1&1&!## 且 该 数 列 的 前 1 项 和
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|x<1},B={x|3x<1},则()A.A∩B={x|x<0} B.A∪B=R C.A∪B={x|x>1} D.A∩B=∅2.如图,正方形ABCD内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()A.B.C.D.3.设有下面四个命题p1:若复数z满足∈R,则z∈R;p2:若复数z满足z2∈R,则z∈R;p 3:若复数z1,z2满足z1z2∈R,则z1=;p4:若复数z∈R,则∈R.其中的真命题为()A.p1,p3B.p1,p4C.p2,p3D.p2,p44.Sn 为等差数列{an}的前n项和.若a4+a5=24,S6=48,则{an}的公差为()A.1 B.2 C.4 D.85.函数f(x)在(﹣∞,+∞)单调递减,且为奇函数.若f(1)=﹣1,则满足﹣1≤f(x﹣2)≤1的x的取值范围是()A.[﹣2,2] B.[﹣1,1] C.[0,4] D.[1,3]6.(1+)(1+x)6展开式中x2的系数为()A.15 B.20 C.30 D.357.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A.10 B.12 C.14 D.168.如图程序框图是为了求出满足3n﹣2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入()A.A>1000和n=n+1 B.A>1000和n=n+2C.A≤1000和n=n+1 D.A≤1000和n=n+29.已知曲线C1:y=cosx,C2:y=sin(2x+),则下面结论正确的是()A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C210.已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为()A.16 B.14 C.12 D.10 11.设x、y、z为正数,且2x=3y=5z,则()A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z12.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是()A.440 B.330 C.220 D.110二、填空题:本题共4小题,每小题5分,共20分.13.已知向量,的夹角为60°,||=2,||=1,则|+2|= .14.设x,y满足约束条件,则z=3x﹣2y的最小值为.15.已知双曲线C:﹣=1(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为.16.如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC的周长.18.(12分)如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ﹣3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ﹣3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性; (ⅱ)下面是检验员在一天内抽取的16个零件的尺寸: 9.95 10.12 9.969.96 10.01 9.929.98 10.0410.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95 经计算得==9.97,s==≈0.212,其中x i 为抽取的第i 个零件的尺寸,i=1,2,…,16. 用样本平均数作为μ的估计值,用样本标准差s 作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除(﹣3+3)之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z 服从正态分布N (μ,σ2),则P (μ﹣3σ<Z <μ+3σ)=0.9974,0.997416≈0.9592,≈0.09.20.(12分)已知椭圆C :+=1(a >b >0),四点P 1(1,1),P 2(0,1),P 3(﹣1,),P4(1,)中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为﹣1,证明:l过定点.21.(12分)已知函数f(x)=ae2x+(a﹣2)e x﹣x.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.[选修4-4,坐标系与参数方程]22.(10分)在直角坐标系xOy中,曲线C的参数方程为(θ为参数),直线l的参数方程为(t为参数).(1)若a=﹣1,求C与l的交点坐标;(2)若C上的点到l距离的最大值为,求a.[选修4-5:不等式选讲]23.已知函数f(x)=﹣x2+ax+4,g(x)=|x+1|+|x﹣1|.(1)当a=1时,求不等式f(x)≥g(x)的解集;(2)若不等式f(x)≥g(x)的解集包含[﹣1,1],求a的取值范围.参考答案与试题解析一、选择题1.:A.解:∵集合A={x|x<1},B={x|3x<1}={x|x<0},∴A∩B={x|x<0},故A正确,D错误;A∪B={x|x<1},故B和C都错误.2.B解:根据图象的对称性知,黑色部分为圆面积的一半,设圆的半径为1,则正方形的边长为2,则黑色部分的面积S=,则对应概率P==3.B.解:若复数z满足∈R,则z∈R,故命题p1为真命题;p 2:复数z=i满足z2=﹣1∈R,则z∉R,故命题p2为假命题;p 3:若复数z1=i,z2=2i满足z1z2∈R,但z1≠,故命题p3为假命题;p 4:若复数z∈R,则=z∈R,故命题p4为真命题.4.C.解:∵Sn 为等差数列{an}的前n项和,a4+a5=24,S6=48,∴,解得a1=﹣2,d=4,∴{an}的公差为4.5.D解:∵函数f(x)为奇函数.若f(1)=﹣1,则f(﹣1)=1,又∵函数f(x)在(﹣∞,+∞)单调递减,﹣1≤f(x﹣2)≤1,∴f(1)≤f(x﹣2)≤f(﹣1),∴﹣1≤x﹣2≤1,解得:x∈[1,3],6.C.解:(1+)(1+x)6展开式中:若(1+ )=(1+x﹣2)提供常数项1,则(1+x)6提供含有x2的项,可得展开式中x2的系数:若(1+)提供x﹣2项,则(1+x)6提供含有x4的项,可得展开式中x2的系数:由(1+x)6通项公式可得.可知r=2时,可得展开式中x2的系数为.可知r=4时,可得展开式中x2的系数为.(1+)(1+x)6展开式中x2的系数为:15+15=30.7.B解:由三视图可画出直观图,该立体图中只有两个相同的梯形的面,=×2×(2+4)=6,S梯形∴这些梯形的面积之和为6×2=12,8.D.解:因为要求A>1000时输出,且框图中在“否”时输出,所以“”内不能输入“A>1000”,又要求n为偶数,且n的初始值为0,所以“”中n依次加2可保证其为偶数,所以D选项满足要求,9.解:把C上各点的横坐标缩短到原来的倍,纵坐标1不变,得到函数y=cos2x图象,再把得到的曲线向左平移个单位长度,得到函数y=cos2(x+)=cos(2x+)=sin(2x+)的图象,即曲线C2,故选:D.10.A解:如图,l1⊥l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,要使|AB|+|DE|最小,则A与D,B,E关于x轴对称,即直线DE的斜率为1,又直线l2过点(1,0),则直线l2的方程为y=x﹣1,联立方程组,则y2﹣4y﹣4=0,∴y1+y2=4,y1y2=﹣4,∴|DE|=•|y1﹣y2|=×=8,∴|AB|+|DE|的最小值为2|DE|=16,11.D.解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x=,y=,z=.∴3y=,2x=,5z=.∵==,>=.∴>lg>>0.∴3y<2x<5z.12.A.解:设该数列为{an },设bn=+…+=2n﹣1,(n∈N+),则=ai,由题意可设数列{an }的前N项和为SN,数列{bn}的前n项和为Tn,则Tn=21﹣1+22﹣1+…+2n﹣1=2n﹣n﹣2,可知当N为时(n∈N+),数列{an}的前N项和为数列{bn}的前n项和,即为2n﹣n﹣2,容易得到N>100时,n≥14,A项,由=435,440=435+5,可知S440=T29+b5=230﹣29﹣2+25﹣1=230,故A项符合题意.B项,仿上可知=325,可知S330=T25+b5=226﹣25﹣2+25﹣1=226+4,显然不为2的整数幂,故B项不符合题意.C项,仿上可知=210,可知S220=T20+b10=221﹣20﹣2+210﹣1=221+210﹣23,显然不为2的整数幂,故C项不符合题意.D项,仿上可知=105,可知S110=T14+b5=215﹣14﹣2+25﹣1=215+15,显然不为2的整数幂,故D项不符合题意.故选A.方法二:由题意可知:,,,…,根据等比数列前n项和公式,求得每项和分别为:21﹣1,22﹣1,23﹣1,…,2n﹣1,每项含有的项数为:1,2,3,…,n,总共的项数为N=1+2+3+…+n=,所有项数的和为Sn:21﹣1+22﹣1+23﹣1+…+2n﹣1=(21+22+23+…+2n)﹣n=﹣n=2n+1﹣2﹣n,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n消去即可,则①1+2+(﹣2﹣n)=0,解得:n=1,总共有+2=3,不满足N>100,②1+2+4+(﹣2﹣n)=0,解得:n=5,总共有+3=18,不满足N>100,③1+2+4+8+(﹣2﹣n)=0,解得:n=13,总共有+4=95,不满足N>100,④1+2+4+8+16+(﹣2﹣n)=0,解得:n=29,总共有+5=440,满足N>100,∴该款软件的激活码440.二、填空题13.2.解:∵向量,的夹角为60°,且||=2,||=1,∴=+4•+4=22+4×2×1×cos60°+4×12=12,∴|+2|=2.14.﹣5 .解:由x,y满足约束条件作出可行域如图,由图可知,目标函数的最优解为A,联立,解得A(﹣1,1).∴z=3x﹣2y的最小值为﹣3×1﹣2×1=﹣5.15..解:双曲线C:﹣=1(a>0,b>0)的右顶点为A(a,0),以A为圆心,b为半径做圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,可得A到渐近线bx+ay=0的距离为:bcos30°=,可得:=,即,可得离心率为:e=.16.4cm3.解:由题意,连接OD,交BC于点G,由题意得OD⊥BC,OG=BC,即OG的长度与BC的长度成正比,设OG=x,则BC=2x,DG=5﹣x,三棱锥的高h===,=3,则V===,令f(x)=25x4﹣10x5,x∈(0,),f′(x)=100x3﹣50x4,令f′(x)≥0,即x4﹣2x3≤0,解得x≤2,则f(x)≤f(2)=80,∴V≤=4cm3,∴体积最大值为4cm3.三、解答题17.解:(1)由三角形的面积公式可得S=acsinB=,△ABC∴3csinBsinA=2a,由正弦定理可得3sinCsinBsinA=2sinA,∵sinA≠0,∴sinBsinC=;(2)∵6cosBcosC=1,∴cosBcosC=,∴cosBcosC﹣sinBsinC=﹣=﹣,∴cos(B+C)=﹣,∴cosA=,∵0<A<π,∴A=,∵===2R==2,∴sinBsinC=•===,∴bc=8,∵a2=b2+c2﹣2bccosA,∴b2+c2﹣bc=9,∴(b+c)2=9+3cb=9+24=33,∴b+c=∴周长a+b+c=3+.18.(1)证明:∵∠BAP=∠CDP=90°,∴PA⊥AB,PD⊥CD,∵AB∥CD,∴AB⊥PD,又∵PA∩PD=P,且PA⊂平面PAD,PD⊂平面PAD,∴AB⊥平面PAD,又AB⊂平面PAB,∴平面PAB⊥平面PAD;(2)解:∵AB∥CD,AB=CD,∴四边形ABCD为平行四边形,由(1)知AB⊥平面PAD,∴AB⊥AD,则四边形ABCD为矩形,在△APD中,由PA=PD,∠APD=90°,可得△PAD为等腰直角三角形,设PA=AB=2a,则AD=.取AD中点O,BC中点E,连接PO、OE,以O为坐标原点,分别以OA、OE、OP所在直线为x、y、z轴建立空间直角坐标系,则:D(),B(),P(0,0,),C().,,.设平面PBC的一个法向量为,由,得,取y=1,得.∵AB⊥平面PAD,AD⊂平面PAD,∴AB⊥AD,又PD⊥PA,PA∩AB=A,∴PD⊥平面PAB,则为平面PAB的一个法向量,.∴cos<>==.由图可知,二面角A﹣PB﹣C为钝角,∴二面角A﹣PB﹣C的余弦值为.19.解:(1)由题可知尺寸落在(μ﹣3σ,μ+3σ)之内的概率为0.9974,则落在(μ﹣3σ,μ+3σ)之外的概率为1﹣0.9974=0.0026,因为P(X=0)=×(1﹣0.9974)0×0.997416≈0.9592,所以P(X≥1)=1﹣P(X=0)=0.0408,又因为X~B(16,0.0026),所以E(X)=16×0.0026=0.0416;(2)(ⅰ)由(1)知尺寸落在(μ﹣3σ,μ+3σ)之外的概率为0.0026,由正态分布知尺寸落在(μ﹣3σ,μ+3σ)之外为小概率事件,因此上述监控生产过程方法合理;(ⅱ)因为用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,且==9.97,s==≈0.212,所以﹣3=9.97﹣3×0.212=9.334,+3=9.97+3×0.212=10.606,所以9.22∉(﹣3+3)=(9.334,10.606),因此需要对当天的生产过程进行检查,剔除(﹣3+3)之外的数据9.22,则剩下的数据估计μ==10.02,将剔除掉9.22后剩下的15个数据,利用方差的计算公式代入计算可知σ2≈0.008,所以σ≈0.09.20.解:(1)根据椭圆的对称性,P3(﹣1,),P4(1,)两点必在椭圆C上,又P4的横坐标为1,∴椭圆必不过P1(1,1),∴P2(0,1),P3(﹣1,),P4(1,)三点在椭圆C上.把P2(0,1),P3(﹣1,)代入椭圆C,得:,解得a2=4,b2=1,∴椭圆C的方程为=1.证明:(2)①当斜率不存在时,设l:x=m,A(m,yA ),B(m,﹣yA),∵直线P2A与直线P2B的斜率的和为﹣1,∴===﹣1,解得m=2,此时l过椭圆右顶点,不存在两个交点,故不满足.②当斜率存在时,设l:y=kx+b,(b≠1),A(x1,y1),B(x2,y2),联立,整理,得(1+4k2)x2+8kbx+4b2﹣4=0,,x1x2=,则=====﹣1,又b≠1,∴b=﹣2k﹣1,此时△=﹣64k,存在k,使得△>0成立,∴直线l的方程为y=kx﹣2k﹣1,当x=2时,y=﹣1,∴l过定点(2,﹣1).21.解:(1)由f(x)=ae2x+(a﹣2)e x﹣x,求导f′(x)=2ae2x+(a﹣2)e x﹣1,当a=0时,f′(x)=﹣2e x﹣1<0,∴当x∈R,f(x)单调递减,当a>0时,f′(x)=(2e x+1)(ae x﹣1)=2a(e x+)(e x﹣),令f′(x)=0,解得:x=ln,当f′(x)>0,解得:x>ln,当f′(x)<0,解得:x<ln,∴x∈(﹣∞,ln)时,f(x)单调递减,x∈(ln,+∞)单调递增;当a<0时,f′(x)=2a(e x+)(e x﹣)<0,恒成立,∴当x∈R,f(x)单调递减,综上可知:当a≤0时,f(x)在R单调减函数,当a>0时,f(x)在(﹣∞,ln)是减函数,在(ln,+∞)是增函数;(2)①若a≤0时,由(1)可知:f(x)最多有一个零点,当a>0时,f(x)=ae2x+(a﹣2)e x﹣x,当x→﹣∞时,e2x→0,e x→0,∴当x→﹣∞时,f(x)→+∞,当x→∞,e2x→+∞,且远远大于e x和x,∴当x→∞,f(x)→+∞,∴函数有两个零点,f(x)的最小值小于0即可,由f(x)在(﹣∞,ln)是减函数,在(ln,+∞)是增函数,=f(ln)=()+(a﹣2)×﹣ln<0,∴f(x)min∴1﹣﹣ln<0,即ln+﹣1>0,设t=,则g(t)=lnt+t﹣1,(t>0),求导g′(t)=+1,由g(1)=0,∴t=>1,解得:0<a<1,∴a的取值范围(0,1).[选修4-4,坐标系与参数方程]22.解:(1)曲线C的参数方程为(θ为参数),化为标准方程是:+y2=1;a=﹣1时,直线l的参数方程化为一般方程是:x+4y﹣3=0;联立方程,解得或,所以椭圆C和直线l的交点为(3,0)和(﹣,).(2)l的参数方程(t为参数)化为一般方程是:x+4y﹣a﹣4=0,椭圆C上的任一点P可以表示成P(3cosθ,sinθ),θ∈[0,2π),所以点P到直线l的距离d为:d==,φ满足tanφ=,又d的最大值d=,max所以|5sin(θ+φ)﹣a﹣4|的最大值为17,得:5﹣a﹣4=17或﹣5﹣a﹣4=﹣17,即a=﹣16或a=8.[选修4-5:不等式选讲]23.解:(1)当a=1时,f(x)=﹣x2+x+4,是开口向下,对称轴为x=的二次函数,g(x)=|x+1|+|x﹣1|=,当x∈(1,+∞)时,令﹣x2+x+4=2x,解得x=,g(x)在(1,+∞)上单调递增,f(x)在(1,+∞)上单调递减,∴此时f(x)≥g(x)的解集为(1,];当x∈[﹣1,1]时,g(x)=2,f(x)≥f(﹣1)=2.当x∈(﹣∞,﹣1)时,g(x)单调递减,f(x)单调递增,且g(﹣1)=f(﹣1)=2.综上所述,f(x)≥g(x)的解集为[﹣1,];(2)依题意得:﹣x2+ax+4≥2在[﹣1,1]恒成立,即x2﹣ax﹣2≤0在[﹣1,1]恒成立,则只需,解得﹣1≤a≤1,故a的取值范围是[﹣1,1].。

相关文档
最新文档