2020年山东省滨州市中考数学试卷及答案

合集下载

山东省滨州市2020年中考数学试卷

山东省滨州市2020年中考数学试卷

山东省滨州市2020年中考数学试卷一、单选题(共12题;共24分)1.下列式子中,正确的是()A. |﹣5|=﹣5B. ﹣|﹣5|=5C. ﹣(﹣5)=﹣5D. ﹣(﹣5)=52.如图,AB//CD,点P为CD上一点,PF是∠EPC的平分线,若∠1=55°,则∠EPD的大小为()A. 60°B. 70°C. 80°D. 100°3.冠状病毒的直径约为80~120纳米,1纳米=米,若用科学记数法表示110纳米,则正确的结果是()A. 米B. 米C. 米D. 米4.在平面直角坐标系的第四象限内有一点M,到x轴的距离为4,到y轴的距离为5,则点M的坐标为()A. B. C. D.5.下列图形:线段、等边三角形、平行四边形、圆,其中既是轴对称图形,又是中心对称图形的个数为()A. 1B. 2C. 3D. 46.如图,点A在双曲线上,点B在双曲线上,且AB//x轴,点C、D在x轴上,若四边形ABCD为矩形,则它的面积为()A. 4B. 6C. 8D. 127.下列命题是假命题的是()A. 对角线互相垂直且相等的平行四边形是正方形.B. 对角线互相垂直的矩形是正方形.C. 对角线相等的菱形是正方形.D. 对角线互相垂直平分的四边形是正方形.8.已知一组数据5,4,3,4,9,关于这组数据的下列描述:①平均数是5,②中位数是4,③众数是4,④方差是4.4,其中正确的个数为()A. 1B. 2C. 3D. 49.在中,直径AB=15,弦DE⊥AB于点C.若OC:OB=3 :5,则DE的长为()A. 6B. 9C. 12D. 1510.对于任意实数k,关于x的方程的根的情况为()A. 有两个相等的实数根B. 没有实数根C. 有两个不相等的实数根D. 无法判定11.对称轴为直线x=1的抛物线(a、b、c为常数,且a≠0)如图所示,小明同学得出了以下结论:①abc<0,②b2>4ac,③4a+2b+c>0,④3a+c>0,⑤a+b≤m(am+b)(m为任意实数),⑥当x<-1时,y随x的增大而增大,其中结论正确的个数为()A. 3B. 4C. 5D. 612.如图,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF;把纸片展平后再次折叠,使点A落在EF 上的点处,得到折痕BM,BM与FF相交于点N.若直线B A’交直线CD于点O,BC=5,EN=1,则OD 的长为()A. B. C. D.二、填空题(共8题;共8分)13.若式子在实数范围内有意义,则x的取值范围是________.14.在等腰ABC中,AB=AC,∠B=50°,则∠A的大小为________.15.若正比例函数的图象与某反比例函数的图象有一个交点的纵坐标是2,则该反比例函数的解析式为________.16.如图,是正方形ABCD的内切圆,切点分别为E、F,G,H,ED与相交于点M,则sin∠MFG 的值为________.17.现有下列长度的五根木棒:3,5,8,10,13,从中任取三根,可以组成三角形的概率为________.18.若关于x的不等式组无解,则a的取值范围为________.19.观察下列各式:,根据其中的规律可得________(用含n的式子表示).20.如图,点P是正方形ABCD内一点,且点P到点A、B、C的距离分别为则正方形ABCD的面积为________三、解答题(共6题;共70分)21.先化筒,再求值:其中22.如图,在平面直角坐标系中,直线与直线相交于点P,并分别与x轴相交于点A、B.(1)求交点P的坐标;(2)求PAB的面积;(3)请把图象中直线在直线上方的部分描黑加粗,并写出此时自变量x的取值范围.23.如图,过□ABCD对角线AC与BD的交点E作两条互相垂直的直线,分别交边AB、BC.CD、DA于点P、M、Q、N.(1)求证:PBE≌QDE;(2)顺次连接点P、M、Q、N,求证:四边形PMQN是菱形.24.某水果商店销售一种进价为40元/千克的优质水果,若售价为50元/千克,则一个月可售出500千克;若售价在50元/千克的基础上每涨价1元,则月销售量就减少10千克.(1)当售价为55元/千克时,每月销售水果多少千克?(2)当月利润为8750元时,每千克水果售价为多少元?(3)当每千克水果售价为多少元时,获得的月利润最大?25.如图,AB是的直径,AM和BN是它的两条切线,过上一点E作直线DC,分别交AM、BN 于点D、C,且DA=DE.(1)求证:直线CD是的切线;(2)求证:26.如图,抛物线的顶点为A(h,-1),与y轴交于点B ,点F(2,1)为其对称轴上的一个定点.(1)求这条抛物线的函数解析式;(2)已知直线l是过点C(0,-3)且垂直于y轴的定直线,若抛物线上的任意一点P(m,n)到直线l的距离为d,求证:PF=d;(3)已知坐标平面内的点D(4,3),请在抛物线上找一点Q,使△DFQ的周长最小,并求此时DFQ周长的最小值及点Q的坐标.答案解析部分一、单选题1.【解析】【解答】解:A. |﹣5|=5,故原选项不符合题意;B. ﹣|﹣5|=-5,故原选项不符合题意;C. ﹣(﹣5)=5,故原选项不符合题意;D. ﹣(﹣5)=5,故符合题意.故答案为:D.【分析】根据负数的绝对值为它的相反数对A、B项进行判断;-(-5)表示-5的相反数,根据只有符号不同的两个数互为相反数对C、D选项进行判断.2.【解析】【解答】解:∵AB∥CD,∴∠1=∠CPF=55°,∵PF是∠EPC的平分线,∴∠CPE=2∠CPF=110°,∴∠EPD=180°-110°=70°,故答案为:B.【分析】根据平行线和角平分线的定义即可得到结论.3.【解析】【解答】解:110纳米=110×10-9米=1.1×10-7米.故答案为:C.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.4.【解析】【解答】设点M的坐标为(x,y),∵点M到x轴的距离为4,∴,∴,∵点M到y轴的距离为5,∴,∴,∵点M在第四象限内,∴x=5,y=-4,即点M的坐标为(5,-4)故答案为:D.【分析】根据点到坐标轴的距离及点所在的象限解答即可.5.【解析】【解答】解:线段是轴对称图形,也是中心对称图形;等边三角形是轴对称图形,不是中心对称图形;平行四边形不是轴对称图形,是中心对称图形;圆是轴对称图形,也是中心对称图形;则既是轴对称图形又是中心对称图形的有2个.故答案为:B.【分析】根据轴对称图形与中心对称图形的概念求解.6.【解析】【解答】过点A作AE⊥y轴于点E,∵点A在双曲线上,∴四边形AEOD的面积为4,∵点B在双曲线上,且AB//x轴,∴四边形BEOC的面积为12,∴矩形ABCD的面积为12-4=8,故答案为:C.【分析】过点A作AE⊥y轴于点E,利用反比例函数系数k的几何意义,分别得到四边形AEOD的面积为4,四边形BEOC的面积为12,即可得到矩形ABCD的面积.7.【解析】【解答】解:对角线互相垂直且相等的平行四边形是正方形,符合题意;对角线互相垂直的矩形是正方形,符合题意;对角线相等的菱形是正方形,符合题意;对角线互相垂直平分且相等的四边形是正方形;可知选项D是错误的.故答案为:D.【分析】根据正方形的各种判定方法逐项分析即可.8.【解析】【解答】解:数据由小到大排列为3,4,4,5,9,它的平均数为=5,数据的中位数为4,众数为4,数据的方差= [(3-5)2+(4-5)2+(4-5)2+(5-5)2+(9-5)2]=4.4.所以①②③④都符合题意.故答案为:D.【分析】先把数据由小到大排列为3,4,4,5,9,然后根据算术平均数、中位数和众数的定义得到数据的平均数,中位数和众数,再根据方差公式计算数据的方差,然后利用计算结果对各选项进行判断.9.【解析】【解答】解:如图所示:∵直径AB=15,∴BO=7.5,∵OC:OB=3:5,∴CO=4.5,∵DE⊥AB,∴DC==6,∴DE=2DC=12.故答案为:C.【分析】根据题意画出图形,然后利用垂径定理和勾股定理解答即可.10.【解析】【解答】解:,,不论k为何值,,即,所以方程没有实数根,故答案为:B.【分析】先根据根的判别式求出“△”的值,再根据根的判别式的内容判断即可.11.【解析】【解答】解:①由图象可知:a>0,c<0,∵- =1,∴b=-2a<0,∴abc>0,故①不符合题意;②∵抛物线与x轴有两个交点,∴b2-4ac>0,故②符合题意;③当x=2时,y=4a+2b+c<0,故③不符合题意;④当x=-1时,y=a-b+c=a-(-2a)+c>0,∴3a+c>0,故④符合题意;⑤当x=1时,y取到值最小,此时,y=a+b+c,而当x=m时,y=am2+bm+c,所以a+b+c≤am2+bm+c,故a+b≤am2+bm,即a+b≤m(am+b),故⑤符合题意,⑥当x<-1时,y随x的增大而减小,故⑥不符合题意,故答案为:A.【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.12.【解析】【解答】解:∵EN=1,∴由中位线定理得AM=2,由折叠的性质可得A′M=2,∵AD∥EF,∴∠AMB=∠A′NM,∵∠AMB=∠A′MB,∴∠A′NM=∠A′MB,∴A′N=2,∴A′E=3,A′F=2过M点作MG⊥EF于G,∴NG=EN=1,∴A′G=1,由勾股定理得MG= ,∴BE=DF=MG= ,∴OF:BE=2:3,解得OF= ,∴OD= - = .故答案为:B.【分析】根据中位线定理可得AM=2,根据折叠的性质和等腰三角形的性质可得A′M=A′N=2,过M点作MG⊥EF于G,可求A′G,根据勾股定理可求MG,进一步得到BE,再根据平行线分线段成比例可求OF,从而得到OD.二、填空题13.【解析】【解答】∵在实数范围内有意义,∴x−5⩾0,解得x⩾5.故答案为:x≥5.【分析】使二次根式有意义,即是使被开方数大于等于0,据此解答即可.14.【解析】【解答】解:∵AB=AC,∠B=50°,∴∠C=∠B=50°,∴∠A=180°-2×50°=80°.故答案为:80°.【分析】根据等腰三角形两底角相等可求∠C,再根据三角形内角和为180°列式进行计算即可得解.15.【解析】【解答】令y=2x中y=2,得到2x=2,解得x=1,∴正比例函数的图象与某反比例函数的图象交点的坐标是(1,2),设反比例函数解析式为,将点(1,2)代入,得,∴反比例函数的解析式为,故答案为:.【分析】利用正比例函数解析式求出交点的横坐标,再将交点的坐标代入反比例函数解析式中求出k即可得到答案.16.【解析】【解答】如图,连接EG、HF由正方形内切圆的性质得:EG与HF的交点即为圆心O四边形ABCD是正方形由圆的切线的性质得:四边形ADGE和四边形OHDG均为矩形,设正方形ABCD的边长为,则的半径为在中,由圆周角定理得:则故答案为:.【分析】先根据正方形内切圆的性质得出圆心O的位置,再根据正方形的性质、圆的切线的性质可得,,从而可得四边形ADGE和四边形OHDG均为矩形,又根据矩形的性质可得,,设正方形ABCD的边长为,从而可得,,然后在中,根据正弦三角函数的定义可得,最后根据圆周角定理可得,由此即可得出答案.17.【解析】【解答】五根木棒,任意取三根共有10种情况:3、5、8;3、5、10;3、5、13;3、8、10;3、8、13;3、10、13;5、10、13;5、8、10;5、8、13;8、10、13其中能组成三角形的有:①3、8、10,由于8-3<10<8+3,所以能构成三角形;②5、10、13,由于10-5<13<10+5,所以能构成三角形;③5、8、10,由于8-5<10<8+5,所以能构成三角形;④8、10、13,由于10-8<13<10+8,所以能构成三角形;所以有4种方案符合要求,故能构成三角形的概率是P= = ,故答案为:.【分析】求出任取三根木棒的所有情况,再求出能组成三角形的所有情况,利用概率公式直接计算即可.18.【解析】【解答】解:对不等式组,解不等式①,得,解不等式②,得,∵原不等式组无解,∴,解得:.故答案为:.【分析】先解不等式组中的两个不等式,然后根据不等式组无解可得关于a的不等式,解不等式即得答案.19.【解析】【解答】解:由分析得,故答案为:【分析】观察发现,每一项都是一个分数,分母依次为3、5、7,…,那么第n项的分母是2n+1;分子依次为2,3,10,15,26,…,变化规律为:奇数项的分子是n2+1,偶数项的分子是n2-1,即第n项的分子是n2+(-1)n+1;依此即可求解.20.【解析】【解答】解:如图,将△ABP绕点B顺时针旋转90°得到△CBM,连接PM,过点B作BH⊥PM 于H.∵BP=BM= ,∠PBM=90°,∴PM= PB=2,∵PC=4,PA=CM=2 ,∴PC2=CM2+PM2,∴∠PMC=90°,∵∠BPM=∠BMP=45°,∴∠CMB=∠APB=135°,∴∠APB+∠BPM=180°,∴A,P,M共线,∵BH⊥PM,∴PH=HM,∴BH=PH=HM=1,∴AH=2 +1,∴AB2=AH2+BH2=(2 +1)2+12=14+4 ,∴正方形ABCD的面积为14+4 .故答案为14+4 .【分析】如图,将△ABP绕点B顺时针旋转90°得到△CBM,连接PM,过点B作BH⊥PM于H.首先证明∠PMC=90°,推出∠CMB=∠APB=135°,推出A,P,M共线,利用勾股定理求出AB2即可.三、解答题21.【解析】【分析】直接利用分式的混合运算法则化简,再计算x,y的值,进而代入得出答案.22.【解析】【分析】(1)解析式联立,解方程组即可求得交点P的坐标;(2)求得A、B的坐标,然后根据三角形面积公式求得即可;(3)根据图象求得即可.23.【解析】【分析】(1)由ASA证△PBE≌△QDE即可;(2)由全等三角形的性质得出EP=EQ,同理△BME≌△DNE(ASA),得出EM=EN,证出四边形PMQN是平行四边形,由对角线PQ⊥MN,即可得出结论.24.【解析】【分析】(1)根据销售量的规律:500减去减少的数量即可求出答案;(2)设每千克水果售价为x元,根据题意列方程解答即可;(3)设月销售利润为y元,每千克水果售价为x元,根据题意列函数关系式,再根据顶点式函数关系式的性质解答即可.25.【解析】【分析】(1)连接OD,OE,证明△OAD≌△OED,得∠OAD=∠OED=90°,进而得CD是切线;(2)连接OC,得AM∥BN,得,再证明,进而得出结论.26.【解析】【分析】(1)由题意抛物线的顶点A(2,-1),可以假设抛物线的解析式为y=a(x-2)2-1,把点B坐标代入求出a即可.(2)由题意P(m,),求出d2,PF2(用m表示)即(3)如图,过点Q作QH⊥直线l于H,过点D作DN⊥直线l于N.因为△DFQ的周长=DF+DQ+FQ,可解决问题.DF是定值= ,推出DQ+QF的值最小时,△DFQ的周长最小,再根据垂线段最短解决问题即可.。

2020年山东省滨州市中考数学试卷及试题详解(WORD版)

2020年山东省滨州市中考数学试卷及试题详解(WORD版)

2020年山东省滨州市中考数学试卷(1-6)2020年山东省滨州市中考数学试题详解(7-16)一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,用2B铅笔把答题卡上对应题目的答案标号涂黑.每小题涂对得3分,满分36分.1.下列各式正确的是()A.﹣|﹣5|=5 B.﹣(﹣5)=﹣5 C.|﹣5|=﹣5 D.﹣(﹣5)=52.如图,AB∥CD,点P为CD上一点,PF是∠EPC的平分线,若∠1=55°,则∠EPD的大小为()A.60°B.70°C.80°D.100°3.冠状病毒的直径约为80~120纳米,1纳米=1.0×10﹣9米,若用科学记数法表示110纳米,则正确的结果是()A.1.1×10﹣9米B.1.1×10﹣8米C.1.1×10﹣7米D.1.1×10﹣6米4.在平面直角坐标系的第四象限内有一点M,到x轴的距离为4,到y轴的距离为5,则点M的坐标为()A.(﹣4,5)B.(﹣5,4)C.(4,﹣5)D.(5,﹣4)5.下列图形:线段、等边三角形、平行四边形、圆,其中既是轴对称图形,又是中心对称图形的个数为()A.1 B.2 C.3 D.46.如图,点A在双曲线y=上,点B在双曲线y=上,且AB∥x轴,点C、D在x轴上,若四边形ABCD为矩形,则它的面积为()A.4 B.6 C.8 D.127.下列命题是假命题的是()A.对角线互相垂直且相等的平行四边形是正方形B.对角线互相垂直的矩形是正方形C.对角线相等的菱形是正方形D.对角线互相垂直且平分的四边形是正方形8.已知一组数据:5,4,3,4,9,关于这组数据的下列描述:①平均数是5,②中位数是4,③众数是4,④方差是4.4,其中正确的个数为()A.1 B.2 C.3 D.49.在⊙O中,直径AB=15,弦DE⊥AB于点C,若OC:OB=3:5,则DE的长为()A.6 B.9 C.12 D.1510.对于任意实数k,关于x的方程x2﹣(k+5)x+k2+2k+25=0的根的情况为()A.有两个相等的实数根B.没有实数根C.有两个不相等的实数根D.无法判定11.对称轴为直线x=1的抛物线y=ax2+bx+c(a、b、c为常数,且a≠0)如图所示,小明同学得出了以下结论:①abc<0,②b2>4ac,③4a+2b+c>0,④3a+c>0,⑤a+b≤m(am+b)(m为任意实数),⑥当x<﹣1时,y随x的增大而增大.其中结论正确的个数为()A.3 B.4 C.5 D.612.如图,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平后再次折叠,使点A落在EF上的点A′处,得到折痕BM,BM与EF相交于点N.若直线BA′交直线CD于点O,BC=5,EN=1,则OD的长为()A.B.C.D.二、填空题:本大题共8个小题.每小题5分,满分40分.13.若二次根式在实数范围内有意义,则x的取值范围为.14.在等腰△ABC中,AB=AC,∠B=50°,则∠A的大小为.15.若正比例函数y=2x的图象与某反比例函数的图象有一个交点的纵坐标是2,则该反比例函数的解析式为.16.如图,⊙O是正方形ABCD的内切圆,切点分别为E、F、G、H,ED与⊙O相交于点M,则sin∠MFG 的值为.17.现有下列长度的五根木棒:3,5,8,10,13,从中任取三根,可以组成三角形的概率为.18.若关于x的不等式组无解,则a的取值范围为.19.观察下列各式:a1=,a2=,a3=,a4=,a5=,…,根据其中的规律可得a n=(用含n的式子表示).20.如图,点P是正方形ABCD内一点,且点P到点A、B、C的距离分别为2、、4,则正方形ABCD 的面积为.三、解答题:本大题共6个小题,满分74分,解答时请写出必要的演推过程.21.先化简,再求值:1﹣÷;其中x=cos30°×,y=(π﹣3)0﹣()﹣1.22.如图,在平面直角坐标系中,直线y=﹣x﹣1与直线y=﹣2x+2相交于点P,并分别与x轴相交于点A、B.(1)求交点P的坐标;(2)求△PAB的面积;(3)请把图象中直线y=﹣2x+2在直线y=﹣x﹣1上方的部分描黑加粗,并写出此时自变量x的取值范围.23.如图,过▱ABCD对角线AC与BD的交点E作两条互相垂直的直线,分别交边AB、BC、CD、DA于点P、M、Q、N.(1)求证:△PBE≌△QDE;(2)顺次连接点P、M、Q、N,求证:四边形PMQN是菱形.24.某水果商店销售一种进价为40元/千克的优质水果,若售价为50元/千克,则一个月可售出500千克;若售价在50元/千克的基础上每涨价1元,则月销售量就减少10千克.(1)当售价为55元/千克时,每月销售水果多少千克?(2)当月利润为8750元时,每千克水果售价为多少元?(3)当每千克水果售价为多少元时,获得的月利润最大?25.如图,AB是⊙O的直径,AM和BN是它的两条切线,过⊙O上一点E作直线DC,分别交AM、BN于点D、C,且DA=DE.(1)求证:直线CD是⊙O的切线;(2)求证:OA2=DE•CE.26.如图,抛物线的顶点为A(h,﹣1),与y轴交于点B(0,﹣),点F(2,1)为其对称轴上的一个定点.(1)求这条抛物线的函数解析式;(2)已知直线l是过点C(0,﹣3)且垂直于y轴的定直线,若抛物线上的任意一点P(m,n)到直线l 的距离为d,求证:PF=d;(3)已知坐标平面内的点D(4,3),请在抛物线上找一点Q,使△DFQ的周长最小,并求此时△DFQ 周长的最小值及点Q的坐标.2020年滨州市初中学业水平考试试题数学详解一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,用2B铅笔把答题卡上对应题目的答案标号涂黑.每小题涂对得3分,满分36分.1、解:A、∵﹣|﹣5|=﹣5,∴选项A不符合题意;B、∵﹣(﹣5)=5,∴选项B不符合题意;C、∵|﹣5|=5,∴选项C不符合题意;D、∵﹣(﹣5)=5,∴选项D符合题意.故选:D.2、∵AB∥CD,∴∠1=∠CPF=55°,∵PF是∠EPC的平分线,∴∠CPE=2∠CPF=110°,∴∠EPD=180°﹣110°=70°,故选:B.3、110纳米=110×10﹣9米=1.1×10﹣7米.故选:C.4、解:∵在平面直角坐标系的第四象限内有一点M,到x轴的距离为4,到y轴的距离为5,∴点M的纵坐标为:﹣4,横坐标为:5,即点M的坐标为:(5,﹣4).故选:D.5、解:线段是轴对称图形,也是中心对称图形;等边三角形是轴对称图形,不是中心对称图形;平行四边形不是轴对称图形,是中心对称图形;圆是轴对称图形,也是中心对称图形;则既是轴对称图形又是中心对称图形的有2个.故选:B.6、解:过A点作AE⊥y轴,垂足为E,∵点A在双曲线y=上,∴四边形AEOD的面积为4,∵点B在双曲线线y=上,且AB∥x轴,∴四边形BEOC的面积为12,∴矩形ABCD的面积为12﹣4=8.故选:C.7、解:A、对角线互相垂直且相等的平行四边形是正方形是真命题,故选项A不合题意;B、对角线互相垂直的矩形是正方形是真命题,故选项B不合题意;C、对角线相等的菱形是正方形是真命题,故选项C不合题意;D、对角线互相垂直且平分的四边形是菱形,即对角线互相垂直且平分的四边形是正方形是假命题,故选项D符合题意;故选:D.8、解:数据由小到大排列为3,4,4,5,9,它的平均数为=5,数据的中位数为4,众数为4,数据的方差=[(3﹣5)2+(4﹣5)2+(4﹣5)2+(5﹣5)2+(9﹣5)2]=4.4.所以A、B、C、D都正确.故选:D.9、解:如图所示:∵直径AB=15,∴BO=7.5,∵OC:OB=3:5,∴CO=4.5,∴DC==6,∴DE=2DC=12.故选:C.10、解:x2﹣(k+5)x+k2+2k+25=0,△=[﹣(k+5)]2﹣4××(k2+2k+25)=﹣k2+6k﹣25=﹣(k﹣3)2﹣16,不论k为何值,﹣(k﹣3)2≤0,即△=﹣(k﹣3)2﹣16<0,所以方程没有实数根,故选:B.11、解:①由图象可知:a>0,c<0,∵﹣=1,∴b=﹣2a<0,∴abc<0,故①错误;②∵抛物线与x轴有两个交点,∴b2﹣4ac>0,∴b2>4ac,故②正确;③当x=2时,y=4a+2b+c<0,故③错误;④当x=﹣1时,y=a﹣b+c>0,∴3a+c>0,故④正确;⑤当x=1时,y的值最小,此时,y=a+b+c,而当x=m时,y=am2+bm+c,所以a+b+c≤am2+bm+c,故a+b≤am2+bm,即a+b≤m(am+b),故⑤正确,⑥当x<﹣1时,y随x的增大而减小,故⑥错误,故选:A.12、解:∵EN=1,∴由中位线定理得AM=2,由折叠的性质可得A′M=2,∵AD∥EF,∴∠AMB=∠A′NM,∵∠AMB=∠A′MB,∴∠A′NM=∠A′MB,∴A′N=2,∴A′E=3,A′F=2过M点作MG⊥EF于G,∴NG=EN=1,∴A′G=1,由勾股定理得MG==,∴BE=OF=MG=,∴OF:BE=2:3,解得OF=,∴OD=﹣=.故选:B.二、填空题:本大题共8个小题.每小题5分,满分40分.13、解:要使二次根式在实数范围内有意义,必须x﹣5≥0,解得:x≥5,故答案为:x≥5.14、解:∵AB=AC,∠B=50°,∴∠C=∠B=50°,∴∠A=180°﹣2×50°=80°.故答案为:80°.15、解:当y=2时,即y=2x=2,解得:x=1,故该点的坐标为(1,2),将(1,2)代入反比例函数表达式y=并解得:k=2,故答案为:y=.16、解:∵⊙O是正方形ABCD的内切圆,∴AE=AB,EG=BC;根据圆周角的性质可得:∠MFG=∠MEG.∵sin∠MFG=sin∠MEG==,∴sin∠MFG=.故答案为:.17、解:3,5,8,10,13,从中任取三根,所有情况为:3、5、8;3、5、10;3、5、13;3、8、10;3、8、13;3,10,13;5、8、10;5、8、13;5、10、13;8、10、13;共有10种等可能的结果数,其中可以组成三角形的结果数为4,所以可以组成三角形的概率==.故答案为.18、解:解不等式x﹣a>0,得:x>2a,解不等式4﹣2x≥0,得:x≤2,∵不等式组无解,∴2a≥2,解得a≥1,故答案为:a≥1.19、解:由分析可得a n=.故答案为:.20、解:如图,将△ABP绕点B顺时针旋转90°得到△CBM,连接PM,过点B作BH⊥PM于H.∵BP=BM=,∠PBM=90°,∴PM=PB=2,∵PC=4,PA=CM=2,∴PC2=CM2+PM2,∴∠PMC=90°,∵∠BPM=∠BMP=45°,∴∠CNB=∠APB=135°,∴∠APB+∠BPM=180°,∴A,P,M共线,∵BH⊥PM,∴PH=HM,∴BH=PH=HM=1,∴AH=2+1,∴AB2=AH2+BH2=(2+1)2+12=14+4,∴正方形ABCD的面积为14+4.故答案为14+4.三、解答题:本大题共6个小题,满分74分,解答时请写出必要的演推过程.21、解:原式=1﹣÷=1+•=1+==,∵x=cos30°×=×2=3,y=(π﹣3)0﹣()﹣1=1﹣3=﹣2,∴原式==0.22、解:(1)由解得,∴P(2,﹣2);(2)直线y=﹣x﹣1与直线y=﹣2x+2中,令y=0,则﹣x﹣1=0与﹣2x+2=0,解得x=﹣2与x=1,∴A(﹣2,0),B(1,0),∴AB=3,∴S△PAB===3;(3)如图所示:自变量x的取值范围是x<2.23、解(1)证明:∵四边形ABD是平行四边形,∴EB=ED,AB∥CD,∴∠EBP=∠EDQ,在△PBE和△QDE中,,∴△PBE≌△QDE(ASA);(2)证明:如图所示:∵△PBE≌△QDE,∴EP=EQ,同理:△BME≌△DNE(ASA),∴EM=EN,∴四边形PMQN是平行四边形,∵PQ⊥MN,∴四边形PMQN是菱形.24、解:(1)当售价为55元/千克时,每月销售水果=500﹣10×(55﹣50)=450千克;(2)设每千克水果售价为x元,由题意可得:8750=(x﹣40)[500﹣10(x﹣50)],解得:x1=65,x2=75,答:每千克水果售价为65元或75元;(3)设每千克水果售价为m元,获得的月利润为y元,由题意可得:y=(m﹣40)[500﹣10(m﹣50)]=﹣10(m﹣70)2+9000,∴当m=70时,y有最大值为9000元,答:当每千克水果售价为70元时,获得的月利润最大值为9000元.25、解:(1)连接OD,OE,如图1,在△OAD和△OED中,,∴△OAD≌△OED(SSS),∴∠OAD=∠OED,∵AM是⊙O的切线,∴∠OAD=90°,∴∠OED=90°,∴直线CD是⊙O的切线;(2)过D作DF⊥BC于点F,如图2,则∠DFB=∠RFC=90°,∵AM、BN都是⊙O的切线,∴∠ABF=∠BAD=90°,∴四边形ABFD是矩形,∴DF=AB=2OA,AD=BF,∵CD是⊙O的切线,∴DE=DA,CE=CB,∴CF=CB﹣BF=CE﹣DE,∵DE2=CD2﹣CF2,∴4OA2=(CE+DE)2﹣(CE﹣DE)2,即4OA2=4DE•CE,∴OA2=DE•CE.26、解(1)解:由题意抛物线的顶点A(2,﹣1),可以假设抛物线的解析式为y=a(x﹣2)2﹣1,∵抛物线经过B(0,﹣),∴﹣=4a﹣1,∴a=,∴抛物线的解析式为y=(x﹣2)2﹣1.(2)证明:∵P(m,n),∴n=(m﹣2)2﹣1=m2﹣m﹣,∴P(m,m2﹣m﹣),∴d=m2﹣m﹣﹣(﹣3)=m2﹣m+,∵F(2,1),∴PF==,∵d2=m4﹣m3+m2﹣m+,PF2=m4﹣m3+m2﹣m+,∴d2=PF2,∴PF=d.(3)如图,过点Q作QH⊥直线l于H,过点D作DN⊥直线l于N.∵△DFQ的周长=DF+DQ+FQ,DF是定值==2,∴DQ+QF的值最小时,△DFQ的周长最小,∵QF=QH,∴DQ+DF=DQ+QH,根据垂线段最短可知,当D,Q,H共线时,DQ+QH的值最小,此时点H与N重合,点Q在线段DN上,∴DQ+QH的最小值为3,∴△DFQ的周长的最小值为2+3,此时Q(4,﹣)。

2020年山东省滨州市中考数学试卷

2020年山东省滨州市中考数学试卷

2020年山东省滨州市中考数学试卷一、选择题(本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,用2B铅笔把答题卡上对应题目的答案标号涂黑,每小题涂对得3分,满分36分)1.(3分)计算﹣(﹣1)+|﹣1|,其结果为()A.﹣2 B.2 C.0 D.﹣12.(3分)一元二次方程x2﹣2x=0根的判别式的值为()A.4 B.2 C.0 D.﹣43.(3分)如图,直线AC∥BD,AO、BO分别是∠BAC、∠ABD的平分线,那么下列结论错误的是()A.∠BAO与∠CAO相等B.∠BAC与∠ABD互补C.∠BAO与∠ABO互余D.∠ABO与∠DBO不等4.(3分)下列计算:(1)=2,(2)=2,(3)(﹣2)2=12,(4)(+)(﹣)=﹣1,其中结果正确的个数为()A.1 B.2 C.3 D.45.(3分)若正方形的外接圆半径为2,则其内切圆半径为()A.B.2 C.D.16.(3分)分式方程﹣1=的解为()A.x=1 B.x=﹣1 C.无解D.x=﹣27.(3分)如图,在△ABC中,AC⊥BC,∠ABC=30°,点D是CB延长线上的一点,且BD=BA,则tan∠DAC的值为()A.2+B.2 C.3+D.38.(3分)如图,在△ABC中,AB=AC,D为BC上一点,且DA=DC,BD=BA,则∠B的大小为()A.40°B.36°C.30°D.25°9.(3分)某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是()A.22x=16(27﹣x)B.16x=22(27﹣x)C.2×16x=22(27﹣x)D.2×22x=16(27﹣x)10.(3分)若点M(﹣7,m)、N(﹣8,n)都在函数y=﹣(k2+2k+4)x+1(k 为常数)的图象上,则m和n的大小关系是()A.m>n B.m<n C.m=n D.不能确定11.(3分)如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB 互补,若∠MPN在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N 两点,则以下结论:(1)PM=PN恒成立;(2)OM+ON的值不变;(3)四边形PMON的面积不变;(4)MN的长不变,其中正确的个数为()A.4 B.3 C.2 D.112.(3分)在平面直角坐标系内,直线AB垂直于x轴于点C(点C在原点的右侧),并分别与直线y=x和双曲线y=相交于点A、B,且AC+BC=4,则△OAB的面积为()A.2+3或2﹣3 B.+1或﹣1 C.2﹣3 D.﹣1二、填空题:本大题共6个小题,每小题4分,满分24分13.(4分)计算:+(﹣3)0﹣|﹣|﹣2﹣1﹣cos60°=.14.(4分)不等式组的解集为.15.(4分)在平面直角坐标系中,点C、D的坐标分别为C(2,3)、D(1,0),现以原点为位似中心,将线段CD放大得到线段AB.若点D的对应点B在x轴上且OB=2,则点C的对应点A的坐标为.16.(4分)如图,将矩形ABCD沿GH对折,点C落在Q处,点D落在AB边上的E处,EQ与BC相交于点F,若AB=6,AD=8,AE=4,则△EBF周长的大小为.17.(4分)如图,一个几何体的三视图分别是两个矩形,一个扇形,则这个几何体表面积的大小为.18.(4分)观察下列各式:=﹣;=﹣;=﹣;…请利用你所得结论,化简代数式:+++…+(n≥3且n为整数),其结果为.三、解答题(本大题共6个小题,满分60分,解答时请写出必要的盐推过程)19.(8分)(1)计算:(a﹣b)(a2+ab+b2)(2)利用所学知识以及(1)所得等式,化简代数式÷.20.(9分)根据要求,解答下列问题:①方程x2﹣2x+1=0的解为;②方程x2﹣3x+2=0的解为;③方程x2﹣4x+3=0的解为;…(2)根据以上方程特征及其解的特征,请猜想:①方程x2﹣9x+8=0的解为;②关于x的方程的解为x1=1,x2=n.(3)请用配方法解方程x2﹣9x+8=0,以验证猜想结论的正确性.21.(9分)为了考察甲、乙两种成熟期小麦的株高长势情况,现从中随机抽取6株,并测得它们的株高(单位:cm)如下表所示:(1)请分别计算表内两组数据的方差,并借此比较哪种小麦的株高长势比较整齐?(2)现将进行两种小麦优良品种杂交实验,需从表内的甲、乙两种小麦中,各随机抽取一株进行配对,以预估整体配对情况,请你用列表法或画树状图的方法,求所抽取的两株配对小麦株高恰好都等于各自平均株高的概率.22.(10分)如图,在▱ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于BF的相同长为半径画弧,两弧交于点P;连接AP并延长交BC于点E,连接EF,则所得四边形ABEF是菱形.(1)根据以上尺规作图的过程,求证:四边形ABEF是菱形;(2)若菱形ABEF的周长为16,AE=4,求∠C的大小.23.(10分)如图,点E是△ABC的内心,AE的延长线交BC于点F,交△ABC 的外接圆⊙O于点D,连接BD,过点D作直线DM,使∠BDM=∠DAC.(1)求证:直线DM是⊙O的切线;(2)求证:DE2=DF•DA.24.(14分)如图,直线y=kx+b(k、b为常数)分别与x轴、y轴交于点A(﹣4,0)、B(0,3),抛物线y=﹣x2+2x+1与y轴交于点C.(1)求直线y=kx+b的函数解析式;(2)若点P(x,y)是抛物线y=﹣x2+2x+1上的任意一点,设点P到直线AB的距离为d,求d关于x的函数解析式,并求d取最小值时点P的坐标;(3)若点E在抛物线y=﹣x2+2x+1的对称轴上移动,点F在直线AB上移动,求CE+EF的最小值.2020年山东省滨州市中考数学试卷参考答案与试题解析一、选择题(本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,用2B铅笔把答题卡上对应题目的答案标号涂黑,每小题涂对得3分,满分36分)1.(3分)(2020•滨州)计算﹣(﹣1)+|﹣1|,其结果为()A.﹣2 B.2 C.0 D.﹣1【分析】根据有理数的加法和绝对值可以解答本题.【解答】解:﹣(﹣1)+|﹣1|=1+1=2,故选B.【点评】本题考查有理数的加法和绝对值,解答本题的关键是明确有理数加法的计算方法.2.(3分)(2020•滨州)一元二次方程x2﹣2x=0根的判别式的值为()A.4 B.2 C.0 D.﹣4【分析】直接利用判别式的定义,计算△=b2﹣4ac即可.【解答】解:△=(﹣2)2﹣4×1×0=4.故选A.【点评】本题考查了根的判别式:利用一元二次方程根的判别式(△=b2﹣4ac)判断方程的根的情况.3.(3分)(2020•滨州)如图,直线AC∥BD,AO、BO分别是∠BAC、∠ABD的平分线,那么下列结论错误的是()A.∠BAO与∠CAO相等B.∠BAC与∠ABD互补C.∠BAO与∠ABO互余D.∠ABO与∠DBO不等【分析】根据平行线的性质和平分线的定义即可得到结论.【解答】解:∵AC∥BD,∴∠CAB+∠ABD=180°,∵AO、BO分别是∠BAC、∠ABD的平分线,∴∠BAO与∠CAO相等,∠ABO与∠DBO相等,∴∠BAO与∠ABO互余,故选D.【点评】本题考查了平行线的性质和角平分线的定义,熟练掌握平行线的性质是解题的关键.4.(3分)(2020•滨州)下列计算:(1)=2,(2)=2,(3)(﹣2)2=12,(4)(+)(﹣)=﹣1,其中结果正确的个数为()A.1 B.2 C.3 D.4【分析】根据二次根式的性质对(1)、(2)、(3)进行判断;根据平方差公式对(4)进行判断.【解答】解::(1)=2,(2)=2,(3)(﹣2)2=12,(4)(+)(﹣)=2﹣3=﹣1.故选D.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.5.(3分)(2020•滨州)若正方形的外接圆半径为2,则其内切圆半径为()A.B.2 C.D.1【分析】根据题意画出图形,再由正方形及等腰直角三角形的性质求解即可.【解答】解:如图所示,连接OA、OE,∵AB是小圆的切线,∴OE⊥AB,∵四边形ABCD是正方形,∴AE=OE,∴△AOE是等腰直角三角形,∴OE=OA=.故选A.【点评】本题考查的是正方形和圆、勾股定理、等腰直角三角形的性质等知识,解题的关键是根据题意画出图形,利用勾股定理是解答此题的关键,属于中考常考题型.6.(3分)(2020•滨州)分式方程﹣1=的解为()A.x=1 B.x=﹣1 C.无解D.x=﹣2【分析】分式方程变形后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x(x+2)﹣(x﹣1)(x+2)=3,整理得:2x﹣x+2=3解得:x=1,检验:把x=1代入(x﹣1)(x+2)=0,所以分式方程的无解.故选C.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.7.(3分)(2020•滨州)如图,在△ABC中,AC⊥BC,∠ABC=30°,点D是CB 延长线上的一点,且BD=BA,则tan∠DAC的值为()A.2+B.2 C.3+D.3【分析】通过解直角△ABC得到AC与BC、AB间的数量关系,然后利用锐角三角函数的定义求tan∠DAC的值.【解答】解:如图,∵在△ABC中,AC⊥BC,∠ABC=30°,∴AB=2AC,BC==AC.∵BD=BA,∴DC=BD+BC=(2+)AC,∴tan∠DAC===2+.故选:A.【点评】本题考查了解直角三角形,利用锐角三角函数的概念解直角三角形问题.8.(3分)(2020•滨州)如图,在△ABC中,AB=AC,D为BC上一点,且DA=DC,BD=BA,则∠B的大小为()A.40°B.36°C.30°D.25°【分析】根据AB=AC可得∠B=∠C,CD=DA可得∠ADB=2∠C=2∠B,BA=BD,可得∠BDA=∠BAD=2∠B,在△ABD中利用三角形内角和定理可求出∠B.【解答】解:∵AB=AC,∴∠B=∠C,∵CD=DA,∴∠C=∠DAC,∵BA=BD,∴∠BDA=∠BAD=2∠C=2∠B,又∵∠B+∠BAD+∠BDA=180°,∴5∠B=180°,∴∠B=36°,故选B.【点评】本题主要考查等腰三角形的性质,掌握等边对等角是解题的关键,注意三角形内角和定理和方程思想的应用.9.(3分)(2020•滨州)某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是()A.22x=16(27﹣x)B.16x=22(27﹣x)C.2×16x=22(27﹣x)D.2×22x=16(27﹣x)【分析】设分配x名工人生产螺栓,则(27﹣x)名生产螺母,根据每天生产的螺栓和螺母按1:2配套,可得出方程.【解答】解:设分配x名工人生产螺栓,则(27﹣x)名生产螺母,∵一个螺栓套两个螺母,每人每天生产螺母16个或螺栓22个,∴可得2×22x=16(27﹣x).故选D.【点评】本题考查了根据实际问题抽象一元一次方程,要保证配套,则生产的螺母的数量是生产的螺栓数量的2倍,所以列方程的时候,应是螺栓数量的2倍=螺母数量.10.(3分)(2020•滨州)若点M(﹣7,m)、N(﹣8,n)都在函数y=﹣(k2+2k+4)x+1(k为常数)的图象上,则m和n的大小关系是()A.m>n B.m<n C.m=n D.不能确定【分析】根据一次函数的变化趋势即可判断m与n的大小.【解答】解:∵k2+2k+4=(k+1)2+3>0∴﹣(k2+2k+4)<0,∴该函数是y随着x的增大而减少,∵﹣7>﹣8,∴m<n,故选(B)【点评】本题考查一次函数的性质,解题的关键是判断k2+2k+4与0的大小关系,本题属于中等题型.11.(3分)(2020•滨州)如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补,若∠MPN在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:(1)PM=PN恒成立;(2)OM+ON的值不变;(3)四边形PMON的面积不变;(4)MN的长不变,其中正确的个数为()A.4 B.3 C.2 D.1【分析】如图作PE⊥OA于E,PF⊥OB于F.只要证明△POE≌△POF,△PEM≌△PFN,即可一一判断.【解答】解:如图作PE⊥OA于E,PF⊥OB于F.∵∠PEO=∠PFO=90°,∴∠EPF+∠AOB=180°,∵∠MPN+∠AOB=180°,∴∠EPF=∠MPN,∴∠EPM=∠FPN,∵OP平分∠AOB,PE⊥OA于E,PF⊥OB于F,∴PE=PF,在△POE和△POF中,,∴△POE≌△POF,∴OE=OF,在△PEM和△PFN中,,∴△PEM≌△PFN,∴EM=NF,PM=PN,故(1)正确,=S△PNF,∴S△PEM=S四边形PEOF=定值,故(3)正确,∴S四边形PMON∵OM+ON=OE+ME+OF﹣NF=2OE=定值,故(2)正确,MN的长度是变化的,故(4)错误,故选B.【点评】本题考查全等三角形的性质、角平分线的性质定理、四边形的面积等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.12.(3分)(2020•滨州)在平面直角坐标系内,直线AB垂直于x轴于点C(点C在原点的右侧),并分别与直线y=x和双曲线y=相交于点A、B,且AC+BC=4,则△OAB的面积为()A.2+3或2﹣3 B.+1或﹣1 C.2﹣3 D.﹣1【分析】根据题意表示出AC,BC的长,进而得出等式求出m的值,进而得出答案.【解答】解:如图所示:设点C的坐标为(m,0),则A(m,m),B(m,),所以AC=m,BC=.∵AC+BC=4,∴可列方程m+=4,解得:m=2±.故=2±,所以A(2+,2+),B(2+,2﹣)或A(2﹣,2﹣),B(2﹣,2+),∴AB=2.∴△OAB的面积=×2×(2±)=2±3.故选:A.【点评】此题主要考查了反比例函数与一次函数的交点,正确表示出各线段长是解题关键.二、填空题:本大题共6个小题,每小题4分,满分24分13.(4分)(2020•滨州)计算:+(﹣3)0﹣|﹣|﹣2﹣1﹣cos60°=﹣.【分析】根据零指数幂、负整数指数幂和特殊角的三角函数值进行计算.【解答】解:原式=+1﹣2﹣﹣=﹣.故答案为﹣.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.14.(4分)(2020•滨州)不等式组的解集为﹣7≤x<1.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式x﹣3(x﹣2)>4,得:x<1,解不等式≤,得:x≥﹣7,则不等式组的解集为﹣7≤x<1,故答案为:﹣7≤x<1.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.15.(4分)(2020•滨州)在平面直角坐标系中,点C、D的坐标分别为C(2,3)、D(1,0),现以原点为位似中心,将线段CD放大得到线段AB.若点D的对应点B在x轴上且OB=2,则点C的对应点A的坐标为(4,6)或(﹣4,﹣6).【分析】根据位似变换的定义,画出图形即可解决问题,注意有两解.【解答】解:如图,由题意,位似中心是O,位似比为2,∴OC=AC,∵C(2,3),∴A(4,6)或(﹣4,﹣6),故答案为(4,6)或(﹣4,﹣6).【点评】本题考查位似变换、坐标与图形的性质等知识,解题的关键是学会正确画出图形解决问题,注意一题多解.16.(4分)(2020•滨州)如图,将矩形ABCD沿GH对折,点C落在Q处,点D 落在AB边上的E处,EQ与BC相交于点F,若AB=6,AD=8,AE=4,则△EBF周长的大小为8.【分析】设AH=a,则DH=AD﹣AH=8﹣a,通过勾股定理即可求出a值,再根据同角的余角互补可得出∠BFE=∠AEH,从而得出△EBF∽△HAE,根据相似三角形的周长比等于对应比即可求出结论.【解答】解:设AH=a,则DH=AD﹣AH=8﹣a,在Rt△AEH中,∠EAH=90°,AE=4,AH=a,EH=DH=8﹣a,∴EH2=AE2+AH2,即(8﹣a)2=42+a2,解得:a=3.∵∠BFE+∠BEF=90°,∠BEF+∠AEH=90°,∴∠BFE=∠AEH.又∵∠EAH=∠FBE=90°,∴△EBF∽△HAE,∴===.=AE+EH+AH=AE+AD=12,∵C△HAE∴C=C△HAE=8.△EBF故答案为:8.【点评】本题考查了翻折变换、矩形的性质、勾股定理以及相似三角形的判定及性质,解题的关键是找出△EBF∽△HAE.本题属于中档题,难度不大,解决该题型题目时,通过勾股定理求出三角形的边长,再根据相似三角形的性质找出周长间的比例是关键.17.(4分)(2020•滨州)如图,一个几何体的三视图分别是两个矩形,一个扇形,则这个几何体表面积的大小为12+15π.【分析】由几何体的三视图得出该几何体的表面是由3个长方形与两个扇形围成,结合图中数据求出组合体的表面积即可.【解答】解:由几何体的三视图可得:该几何体的表面是由3个长方形与两个扇形围成,该几何体的表面积为:S=2×2×3+×2+×3=12+15π,故答案为:12+15π.【点评】本题考查了由几何体三视图求几何体的表面积的应用问题,考查了空间想象能力,由三视图复原成几何体是解决问题的关键.18.(4分)(2020•滨州)观察下列各式:=﹣;=﹣;=﹣;…请利用你所得结论,化简代数式:+++…+(n≥3且n为整数),其结果为.【分析】根据所列的等式找到规律=(﹣),由此计算+++…+的值.【解答】解:∵=﹣,=﹣,=﹣,…∴=(﹣),∴+++…+=(1﹣+﹣+﹣+…+﹣)=(1+﹣﹣)=.故答案是:..【点评】此题主要考查了数字变化类,此题在解答时,看出的是左右数据的特点是解题关键.三、解答题(本大题共6个小题,满分60分,解答时请写出必要的盐推过程)19.(8分)(2020•滨州)(1)计算:(a﹣b)(a2+ab+b2)(2)利用所学知识以及(1)所得等式,化简代数式÷.【分析】(1)根据多项式乘以多项式法则计算即可得;(2)利用(1)种结果将原式分子、分母因式分解,再约分即可得.【解答】解:(1)原式=a3+a2b+ab2﹣a2b﹣ab2﹣b3=a3﹣b3;(2)原式=•=(m﹣n)•=m+n.【点评】本题主要考查多项式乘以多项式及分式的乘法,根据多项式乘法得出立方差公式是解题的关键.20.(9分)(2020•滨州)根据要求,解答下列问题:①方程x2﹣2x+1=0的解为x1=x2=1;②方程x2﹣3x+2=0的解为x1=1,x2=2;③方程x2﹣4x+3=0的解为x1=1,x2=3;…(2)根据以上方程特征及其解的特征,请猜想:①方程x2﹣9x+8=0的解为1、8;②关于x的方程x2﹣(1+n)x+n=0的解为x1=1,x2=n.(3)请用配方法解方程x2﹣9x+8=0,以验证猜想结论的正确性.【分析】(1)利用因式分解法解各方程即可;(2)根据以上方程特征及其解的特征,可判定方程x2﹣9x+8=0的解为1和8;②关于x的方程的解为x1=1,x2=n,则此一元二次方程的二次项系数为1,则一次项系数为1和n的和的相反数,常数项为1和n的积.(3)利用配方法解方程x2﹣9x+8=0可判断猜想结论的正确.【解答】解:(1)①(x﹣1)2=0,解得x1=x2=1,即方程x2﹣2x+1=0的解为x1=x2=1,;②(x﹣1)(x﹣2)=0,解得x1=1,x2=2,所以方程x2﹣3x+2=0的解为x1=1,x2=2,;③(x﹣1)(x﹣3)=0,解得x1=1,x2=3,方程x2﹣4x+3=0的解为x1=1,x2=3;…(2)根据以上方程特征及其解的特征,请猜想:①方程x2﹣9x+8=0的解为x1=1,x2=8;②关于x的方程x2﹣(1+n)x+n=0的解为x1=1,x2=n.(3)x2﹣9x=﹣8,x2﹣9x+=﹣8+,(x﹣)2=x﹣=±,所以x1=1,x2=8;所以猜想正确.故答案为x1=x2=1;x1=1,x2=2;x1=1,x2=3;x2﹣(1+n)x+n=0;【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n 的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.也考查了因式分解法解一元二次方程.21.(9分)(2020•滨州)为了考察甲、乙两种成熟期小麦的株高长势情况,现从中随机抽取6株,并测得它们的株高(单位:cm)如下表所示:(1)请分别计算表内两组数据的方差,并借此比较哪种小麦的株高长势比较整齐?(2)现将进行两种小麦优良品种杂交实验,需从表内的甲、乙两种小麦中,各随机抽取一株进行配对,以预估整体配对情况,请你用列表法或画树状图的方法,求所抽取的两株配对小麦株高恰好都等于各自平均株高的概率.【分析】(1)先计算出平均数,再依据方差公式即可得;(2)列表得出所有等可能结果,由表格得出两株配对小麦株高恰好都等于各自平均株高的结果数,依据概率公式求解可得.【解答】解:(1)∵==63,∴s甲2=×[(63﹣63)2×2+(66﹣63)2+2×(61﹣63)2+(64﹣63)2]=3;∵==63,∴s乙2=×[(63﹣63)2×3+(65﹣63)2+(60﹣63)2+(64﹣63)2]=,∵s乙2<s甲2,∴乙种小麦的株高长势比较整齐;(2)列表如下:由表格可知,共有36种等可能结果,其中两株配对小麦株高恰好都等于各自平均株高的有6种,∴所抽取的两株配对小麦株高恰好都等于各自平均株高的概率为=.【点评】本题考查了平均数、方差及列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.22.(10分)(2020•滨州)如图,在▱ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于BF的相同长为半径画弧,两弧交于点P;连接AP并延长交BC于点E,连接EF,则所得四边形ABEF是菱形.(1)根据以上尺规作图的过程,求证:四边形ABEF是菱形;(2)若菱形ABEF的周长为16,AE=4,求∠C的大小.【分析】(1)先证明△AEB≌△AEF,推出∠EAB=∠EAF,由AD∥BC,推出∠EAF=∠AEB=∠EAB,得到BE=AB=AF,由此即可证明;(2)连结BF,交AE于G.根据菱形的性质得出AB=4,AG=AE=2,∠BAF=2∠BAE,AE⊥BF.然后解直角△ABG,求出∠BAG=30°,那么∠BAF=2∠BAE=60°.再根据平行四边形的对角相等即可求出∠C=∠BAF=60°.【解答】解:(1)在△AEB和△AEF中,,∴△AEB≌△AEF,∴∠EAB=∠EAF,∵AD∥BC,∴∠EAF=∠AEB=∠EAB,∴BE=AB=AF.∵AF∥BE,∴四边形ABEF是平行四边形,∵AB=BE,∴四边形ABEF是菱形;(2)如图,连结BF,交AE于G.∵菱形ABEF的周长为16,AE=4,∴AB=BE=EF=AF=4,AG=AE=2,∠BAF=2∠BAE,AE⊥BF.在直角△ABG中,∵∠AGB=90°,∴cos∠BAG===,∴∠BAG=30°,∴∠BAF=2∠BAE=60°.∵四边形ABCD是平行四边形,∴∠C=∠BAF=60°.【点评】本题考查菱形的判定和性质、平行四边形的性质、作图﹣基本作图等知识,解题的关键是全等三角形的证明,解直角三角形,属于中考常考题型.23.(10分)(2020•滨州)如图,点E是△ABC的内心,AE的延长线交BC于点F,交△ABC的外接圆⊙O于点D,连接BD,过点D作直线DM,使∠BDM=∠DAC.(1)求证:直线DM是⊙O的切线;(2)求证:DE2=DF•DA.【分析】(1)根据垂径定理的推论即可得到OD⊥BC,再根据∠BDM=∠DBC,即可判定BC∥DM,进而得到OD⊥DM,据此可得直线DM是⊙O的切线;(2)根据三角形内心的定义以及圆周角定理,得到∠BED=∠EBD,即可得出DB=DE,再判定△DBF∽△DAB,即可得到DB2=DF•DA,据此可得DE2=DF•DA.【解答】解:(1)如图所示,连接OD,∵点E是△ABC的内心,∴∠BAD=∠CAD,∴=,∴OD⊥BC,又∵∠BDM=∠DAC,∠DAC=∠DBC,∴∠BDM=∠DBC,∴BC∥DM,∴OD⊥DM,∴直线DM是⊙O的切线;(2)如图所示,连接BE,∵点E是△ABC的内心,∴∠BAE=∠CAE=∠CBD,∠ABE=∠CBE,∴∠BAE+∠ABE=∠CBD+∠CBE,即∠BED=∠EBD,∴DB=DE,∵∠DBF=∠DAB,∠BDF=∠ADB,∴△DBF∽△DAB,∴=,即DB2=DF•DA,∴DE2=DF•DA.【点评】本题主要考查了三角形的内心与外心,圆周角定理以及垂径定理的综合应用,解题时注意:平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧;三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.24.(14分)(2020•滨州)如图,直线y=kx+b(k、b为常数)分别与x轴、y轴交于点A(﹣4,0)、B(0,3),抛物线y=﹣x2+2x+1与y轴交于点C.(1)求直线y=kx+b的函数解析式;(2)若点P(x,y)是抛物线y=﹣x2+2x+1上的任意一点,设点P到直线AB的距离为d,求d关于x的函数解析式,并求d取最小值时点P的坐标;(3)若点E在抛物线y=﹣x2+2x+1的对称轴上移动,点F在直线AB上移动,求CE+EF的最小值.【分析】(1)由A、B两点的坐标,利用待定系数法可求得直线解析式;(2)过P作PH⊥AB于点H,过H作HQ⊥x轴,过P作PQ⊥y轴,两垂线交于点Q,则可证明△PHQ∽△BAO,设H(m,m+3),利用相似三角形的性质可得到d与x的函数关系式,再利用二次函数的性质可求得d取得最小值时的P 点的坐标;(3)设C点关于抛物线对称轴的对称点为C′,由对称的性质可得CE=C′E,则可知当F、E、C′三点一线且C′F与AB垂直时CE+EF最小,由C点坐标可确定出C′点的坐标,利用(2)中所求函数关系式可求得d的值,即可求得CE+EF的最小值.【解答】解:(1)由题意可得,解得,∴直线解析式为y=x+3;(2)如图1,过P作PH⊥AB于点H,过H作HQ⊥x轴,过P作PQ⊥y轴,两垂线交于点Q,则∠AHQ=∠ABO,且∠AHP=90°,∴∠PHQ+∠AHQ=∠BAO+∠ABO=90°,∴∠PHQ=∠BAO,且∠AOB=∠PQH=90°,∴△PQH∽△BOA,∴==,设H(m,m+3),则PQ=x﹣m,HQ=m+3﹣(﹣x2+2x+1),∵A(﹣4,0),B(0,3),∴OA=4,OB=3,AB=5,且PH=d,∴==,整理消去m可得d=x2﹣x+=(x﹣)2+,∴d与x的函数关系式为d=(x﹣)2+,∵>0,∴当x=时,d有最小值,此时y=﹣()2+2×+1=,∴当d取得最小值时P点坐标为(,);(3)如图2,设C点关于抛物线对称轴的对称点为C′,由对称的性质可得CE=C′E,∴CE+EF=C′E+EF,∴当F、E、C′三点一线且C′F与AB垂直时CE+EF最小,∵C(0,1),∴C′(2,1),由(2)可知当x=2时,d=×(2﹣)2+=,即CE+EF的最小值为.【点评】本题为二次函数的综合应用,涉及待定系数法、相似三角形的判定和性质、二次函数的性质、轴对称的性质等知识.在(1)中注意待定系数法的应用,在(2)中构造相似三角形是解题的关键,在(3)中确定出E点的位置是解题的关键.本题考查知识点较多,综合性较强,难度适中.。

2020年山东省滨州市中考数学试卷解析版

2020年山东省滨州市中考数学试卷解析版

2020年山东省滨州市中考数学试卷题号一二三总分得分一、选择题(本大题共12小题,共36.0分)1.下列各式正确的是()A. -|-5|=5B. -(-5)=-5C. |-5|=-5D. -(-5)=52.如图,AB∥CD,点P为CD上一点,PF是∠EPC的平分线,若∠1=55°,则∠EPD的大小为()A. 60°B. 70°C. 80°D. 100°3.冠状病毒的直径约为80~120纳米,1纳米=1.0×10-9米,若用科学记数法表示110纳米,则正确的结果是()A. 1.1×10-9米B. 1.1×10-8米C. 1.1×10-7米D. 1.1×10-6米4.在平面直角坐标系的第四象限内有一点M,到x轴的距离为4,到y轴的距离为5,则点M的坐标为()A. (-4,5)B. (-5,4)C. (4,-5)D. (5,-4)5.下列图形:线段、等边三角形、平行四边形、圆,其中既是轴对称图形,又是中心对称图形的个数为()A. 1B. 2C. 3D. 46.如图,点A在双曲线y=上,点B在双曲线y=上,且AB∥x轴,点C、D在x轴上,若四边形ABCD为矩形,则它的面积为()A. 4B. 6C. 8D. 127.下列命题是假命题的是()A. 对角线互相垂直且相等的平行四边形是正方形B. 对角线互相垂直的矩形是正方形C. 对角线相等的菱形是正方形D. 对角线互相垂直且平分的四边形是正方形8.已知一组数据:5,4,3,4,9,关于这组数据的下列描述:①平均数是5,②中位数是4,③众数是4,④方差是4.4,其中正确的个数为()A. 1B. 2C. 3D. 49.在⊙O中,直径AB=15,弦DE⊥AB于点C,若OC:OB=3:5,则DE的长为()A. 6B. 9C. 12D. 1510.对于任意实数k,关于x的方程x2-(k+5)x+k2+2k+25=0的根的情况为()A. 有两个相等的实数根B. 没有实数根C. 有两个不相等的实数根D. 无法判定11.对称轴为直线x=1的抛物线y=ax2+bx+c(a、b、c为常数,且a≠0)如图所示,小明同学得出了以下结论:①abc<0,②b2>4ac,③4a+2b+c>0,④3a+c>0,⑤a+b≤m(am+b)(m为任意实数),⑥当x<-1时,y随x的增大而增大.其中结论正确的个数为()A. 3B. 4C. 5D. 612.如图,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平后再次折叠,使点A落在EF上的点A′处,得到折痕BM,BM与EF相交于点N.若直线BA′交直线CD于点O,BC=5,EN=1,则OD的长为()A. B. C. D.二、填空题(本大题共8小题,共40.0分)13.若二次根式在实数范围内有意义,则x的取值范围为______.14.在等腰△ABC中,AB=AC,∠B=50°,则∠A的大小为______.15.若正比例函数y=2x的图象与某反比例函数的图象有一个交点的纵坐标是2,则该反比例函数的解析式为______.16.如图,⊙O是正方形ABCD的内切圆,切点分别为E、F、G、H,ED与⊙O相交于点M,则sin∠MFG的值为______.17.现有下列长度的五根木棒:3,5,8,10,13,从中任取三根,可以组成三角形的概率为______.18.若关于x的不等式组无解,则a的取值范围为______.19.观察下列各式:a1=,a2=,a3=,a4=,a5=,…,根据其中的规律可得a n=______(用含n的式子表示).20.如图,点P是正方形ABCD内一点,且点P到点A、B、C的距离分别为2、、4,则正方形ABCD的面积为______.三、解答题(本大题共6小题,共74.0分)21.先化简,再求值:1-÷;其中x=cos30°×,y=(π-3)0-()-1.22.如图,在平面直角坐标系中,直线y=-x-1与直线y=-2x+2相交于点P,并分别与x轴相交于点A、B.(1)求交点P的坐标;(2)求△PAB的面积;(3)请把图象中直线y=-2x+2在直线y=-x-1上方的部分描黑加粗,并写出此时自变量x的取值范围.23.如图,过▱ABCD对角线AC与BD的交点E作两条互相垂直的直线,分别交边AB、BC、CD、DA于点P、M、Q、N.(1)求证:△PBE≌△QDE;(2)顺次连接点P、M、Q、N,求证:四边形PMQN是菱形.24.某水果商店销售一种进价为40元/千克的优质水果,若售价为50元/千克,则一个月可售出500千克;若售价在50元/千克的基础上每涨价1元,则月销售量就减少10千克.(1)当售价为55元/千克时,每月销售水果多少千克?(2)当月利润为8750元时,每千克水果售价为多少元?(3)当每千克水果售价为多少元时,获得的月利润最大?25.如图,AB是⊙O的直径,AM和BN是它的两条切线,过⊙O上一点E作直线DC,分别交AM、BN于点D、C,且DA=DE.(1)求证:直线CD是⊙O的切线;(2)求证:OA2=DE•CE.26.如图,抛物线的顶点为A(h,-1),与y轴交于点B(0,-),点F(2,1)为其对称轴上的一个定点.(1)求这条抛物线的函数解析式;(2)已知直线l是过点C(0,-3)且垂直于y轴的定直线,若抛物线上的任意一点P(m,n)到直线l的距离为d,求证:PF=d;(3)已知坐标平面内的点D(4,3),请在抛物线上找一点Q,使△DFQ的周长最小,并求此时△DFQ周长的最小值及点Q的坐标.答案和解析1.【答案】D【解析】解:A、∵-|-5|=-5,∴选项A不符合题意;B、∵-(-5)=5,∴选项B不符合题意;C、∵|-5|=5,∴选项C不符合题意;D、∵-(-5)=5,∴选项D符合题意.故选:D.根据绝对值的性质和相反数的定义对各选项分析判断即可.此题主要考查相反数的定义以及绝对值的含义和求法,解答此题的关键是要明确一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.【答案】B【解析】解:∵AB∥CD,∴∠1=∠CPF=55°,∵PF是∠EPC的平分线,∴∠CPE=2∠CPF=110°,∴∠EPD=180°-110°=70°,故选:B.根据平行线和角平分线的定义即可得到结论.本题考查了平行线的性质以及角平分线的定义,熟练掌握平行线的性质是解题的关键.3.【答案】C【解析】解:110纳米=110×10-9米=1.1×10-7米.故选:C.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.【答案】D【解析】解:∵在平面直角坐标系的第四象限内有一点M,到x轴的距离为4,到y轴的距离为5,∴点M的纵坐标为:-4,横坐标为:5,即点M的坐标为:(5,-4).故选:D.直接利用点的坐标特点进而分析得出答案.此题主要考查了点的坐标,正确掌握第四象限点的坐标特点是解题关键.5.【答案】B【解析】解:线段是轴对称图形,也是中心对称图形;等边三角形是轴对称图形,不是中心对称图形;平行四边形不是轴对称图形,是中心对称图形;圆是轴对称图形,也是中心对称图形;则既是轴对称图形又是中心对称图形的有2个.故选:B.根据轴对称图形与中心对称图形的概念求解.此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.【答案】C【解析】解:过A点作AE⊥y轴,垂足为E,∵点A在双曲线y=上,∴四边形AEOD的面积为4,∵点B在双曲线线y=上,且AB∥x轴,∴四边形BEOC的面积为12,∴矩形ABCD的面积为12-4=8.故选:C.根据双曲线的图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的矩形的面积S的关系S=|k|即可判断.本题主要考查了反比例函数y=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.7.【答案】D【解析】解:A、对角线互相垂直且相等的平行四边形是正方形是真命题,故选项A不合题意;B、对角线互相垂直的矩形是正方形是真命题,故选项B不合题意;C、对角线相等的菱形是正方形是真命题,故选项C不合题意;D、对角线互相垂直且平分的四边形是菱形,即对角线互相垂直且平分的四边形是正方形是假命题,故选项D符合题意;故选:D.利用正方形的判定依次判断,可求解.本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8.【答案】D【解析】解:数据由小到大排列为3,4,4,5,9,它的平均数为=5,数据的中位数为4,众数为4,数据的方差=[(3-5)2+(4-5)2+(4-5)2+(5-5)2+(9-5)2]=4.4.所以A、B、C、D都正确.故选:D.先把数据由小到大排列为3,4,4,5,9,然后根据算术平均数、中位数和众数的定义得到数据的平均数,中位数和众数,再根据方差公式计算数据的方差,然后利用计算结果对各选项进行判断.本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差,也考查了平均数,中位数和众数的定义.9.【答案】C【解析】解:如图所示:∵直径AB=15,∴BO=7.5,∵OC:OB=3:5,∴CO=4.5,∴DC==6,∴DE=2DC=12.故选:C.直接根据题意画出图形,再利用垂径定理以及勾股定理得出答案.此题主要考查了垂径定理和勾股定理,正确得出CO的长是解题关键.10.【答案】B【解析】解:x2-(k+5)x+k2+2k+25=0,△=[-(k+5)]2-4××(k2+2k+25)=-k2+6k-25=-(k-3)2-16,不论k为何值,-(k-3)2≤0,即△=-(k-3)2-16<0,所以方程没有实数根,故选:B.先根据根的判别式求出“△”的值,再根据根的判别式的内容判断即可.本题考查了根的判别式,能熟记根的判别式的内容是解此题的关键,注意:一元二次方程ax2-bx+c=0(a、b、c为常数,a≠0),当△=b2-4ac>0时,方程有两个不相等的实数根,当△=b2-4ac=0时,方程有两个相等的实数根,当△=b2-4ac<0时,方程没有实数根.11.【答案】A【解析】解:①由图象可知:a>0,c<0,∵-=1,∴b=-2a<0,∴abc<0,故①错误;②∵抛物线与x轴有两个交点,∴b2-4ac>0,∴b2>4ac,故②正确;③当x=2时,y=4a+2b+c<0,故③错误;④当x=-1时,y=a-b+c>0,∴3a+c>0,故④正确;⑤当x=1时,y的值最小,此时,y=a+b+c,而当x=m时,y=am2+bm+c,所以a+b+c≤am2+bm+c,故a+b≤am2+bm,即a+b≤m(am+b),故⑤正确,⑥当x<-1时,y随x的增大而减小,故⑥错误,故选:A.由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.本题考查了二次函数图象与系数的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴和抛物线与y轴的交点、抛物线与x轴交点的个数确定.12.【答案】B【解析】解:∵EN=1,∴由中位线定理得AM=2,由折叠的性质可得A′M=2,∵AD∥EF,∴∠AMB=∠A′NM,∵∠AMB=∠A′MB,∴∠A′NM=∠A′MB,∴A′N=2,∴A′E=3,A′F=2过M点作MG⊥EF于G,∴NG=EN=1,∴A′G=1,由勾股定理得MG==,∴BE=OF=MG=,∴OF:BE=2:3,解得OF=,∴OD=-=.故选:B.根据中位线定理可得AM=2,根据折叠的性质和等腰三角形的性质可得A′M=A′N=2,过M点作MG⊥EF于G,可求A′G,根据勾股定理可求MG,进一步得到BE,再根据平行线分线段成比例可求OF,从而得到OD.考查了翻折变换(折叠问题),矩形的性质,勾股定理,关键是得到矩形的宽和A′E 的长.13.【答案】x≥5【解析】解:要使二次根式在实数范围内有意义,必须x-5≥0,解得:x≥5,故答案为:x≥5.根据二次根式有意义的条件得出x-5≥0,求出即可.本题考查了二次根式有意义的条件和解一元一次不等式,能得出关于x的不等式是解此题的关键.14.【答案】80°【解析】解:∵AB=AC,∠B=50°,∴∠C=∠B=50°,∴∠A=180°-2×50°=80°.故答案为:80°.根据等腰三角形两底角相等可求∠C,再根据三角形内角和为180°列式进行计算即可得解.本题考查了等腰三角形的性质,主要利用了等腰三角形两底角相等的性质.15.【答案】y=【解析】解:当y=2时,即y=2x=2,解得:x=1,故该点的坐标为(1,2),将(1,2)代入反比例函数表达式y=并解得:k=2,故答案为:y=.当y=2时,即y=2x=2,解得:x=1,故该点的坐标为(1,2),将(1,2)代入反比例函数表达式y=,即可求解.本题考查的是反比例函数与一次函数的交点问题,解题的关键是通过正比例函数确定交点的坐标,进而求解.16.【答案】【解析】解:∵⊙O是正方形ABCD的内切圆,∴AE=AB,EG=BC;根据圆周角的性质可得:∠MFG=∠MEG.∵sin∠MFG=sin∠MEG==,∴sin∠MFG=.故答案为:.根据同弧所对的圆周角相等,可以把求三角函数的问题,转化为直角三角形的边的比的问题.本题考查圆周角的性质及锐角三角函数的概念:在直角三角形中,正弦等于对边比斜边;余弦等于邻边比斜边;正切等于对边比邻边.17.【答案】【解析】解:3,5,8,10,13,从中任取三根,所有情况为:3、5、8;3、5、10;3、5、13;3、8、10;3、8、13;3,10,13;5、8、10;5、8、13;5、10、13;8、10、13;共有10种等可能的结果数,其中可以组成三角形的结果数为4,所以可以组成三角形的概率==.故答案为.利用完全列举法展示所有可能的结果数,再利用三角形三边的关系得到组成三角形的结果数,然后根据概率公式计算.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了三角形三边的关系.18.【答案】a≥1【解析】解:解不等式x-a>0,得:x>2a,解不等式4-2x≥0,得:x≤2,∵不等式组无解,∴2a≥2,解得a≥1,故答案为:a≥1.分别求出每一个不等式的解集,根据口诀:大大小小无解了可得答案.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.【答案】【解析】解:由分析可得a n=.故答案为:.观察分母的变化为3、5、7,…,2n+1次幂;分子的变化为:奇数项为n2+1;偶数项为n2-1;依此即可求解.本题考查学生通过观察、归纳、抽象出数列的规律的能力,要求学生首先分析题意,找到规律,并进行推导得出答案.20.【答案】14+4【解析】解:如图,将△ABP绕点B顺时针旋转90°得到△CBM,连接PM,过点B作BH⊥PM于H.∵BP=BM=,∠PBM=90°,∴PM=PB=2,∵PC=4,PA=CM=2,∴PC2=CM2+PM2,∴∠PMC=90°,∵∠BPM=∠BMP=45°,∴∠CNB=∠APB=135°,∴∠APB+∠BPM=180°,∴A,P,M共线,∵BH⊥PM,∴PH=HM,∴BH=PH=HM=1,∴AH=2+1,∴AB2=AH2+BH2=(2+1)2+12=14+4,∴正方形ABCD的面积为14+4.故答案为14+4.如图,将△ABP绕点B顺时针旋转90°得到△CBM,连接PM,过点B作BH⊥PM于H.首先证明∠PMC=90°,推出∠CMB=∠APB=135°,推出A,P,M共线,利用勾股定理求出AB2即可.本题考查旋转的性质,全等三角形的判定和性质,正方形的性质,解直角三角形等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题.21.【答案】解:原式=1-÷=1+•=1+==,∵x=cos30°×=×2=3,y=(π-3)0-()-1=1-3=-2,∴原式==0.【解析】直接利用分式的混合运算法则化简,再计算x,y的值,进而代入得出答案.此题主要考查了分式的化简求值,正确进行分式的混合运算是解题关键.22.【答案】解:(1)由解得,∴P(2,-2);(2)直线y=-x-1与直线y=-2x+2中,令y=0,则-x-1=0与-2x+2=0,解得x=-2与x=1,∴A(-2,0),B(1,0),∴AB=3,∴S△PAB===3;(3)如图所示:自变量x的取值范围是x<2.【解析】(1)解析式联立,解方程组即可求得交点P的坐标;(2)求得A、B的坐标,然后根据三角形面积公式求得即可;(3)根据图象求得即可.本题考查了两条直线平行或相交问题,两条直线的交点坐标是两条直线的解析式构成的方程组的解.23.【答案】(1)证明:∵四边形ABD是平行四边形,∴EB=ED,AB∥CD,∴∠EBP=∠EDQ,在△PBE和△QDE中,,∴△PBE≌△QDE(ASA);(2)证明:如图所示:∵△PBE≌△QDE,∴EP=EQ,同理:△BME≌△DNE(ASA),∴EM=EN,∴四边形PMQN是平行四边形,∵PQ⊥MN,∴四边形PMQN是菱形.【解析】(1)由ASA证△PBE≌△QDE即可;(2)由全等三角形的性质得出EP=EQ,同理△BME≌△DNE(ASA),得出EM=EN,证出四边形PMQN是平行四边形,由对角线PQ⊥MN,即可得出结论.本题考查了平行四边形的判定与性质,菱形的判定,全等三角形的判定与性质;熟练掌握菱形的判定和平行四边形的判定与性质,证明三角形全等是解题的关键.24.【答案】解:(1)当售价为55元/千克时,每月销售水果=500-10×(55-50)=450千克;(2)设每千克水果售价为x元,由题意可得:8750=(x-40)[500-10(x-50)],解得:x1=65,x2=75,答:每千克水果售价为65元或75元;(3)设每千克水果售价为m元,获得的月利润为y元,由题意可得:y=(m-40)[500-10(m-50)]=-10(m-70)2+9000,∴当m=70时,y有最大值为9000元,答:当每千克水果售价为70元时,获得的月利润最大值为9000元.【解析】(1)由月销售量=500-(销售单价-50)×10,可求解;(2)设每千克水果售价为x元,由利润=每千克的利润×销售的数量,可列方程,即可求解;(3)设每千克水果售价为m元,获得的月利润为y元,由利润=每千克的利润×销售的数量,可得y与x的关系式,有二次函数的性质可求解.本题主要考查二次函数的应用,解题的关键是熟练掌握销售问题中关于销售总利润的相等关系,并据此列出函数解析式及熟练掌握二次函数的性质.25.【答案】解:(1)连接OD,OE,如图1,在△OAD和△OED中,,∴△OAD≌△OED(SSS),∴∠OAD=∠OED,∵AM是⊙O的切线,∴∠OAD=90°,∴∠OED=90°,∴直线CD是⊙O的切线;(2)过D作DF⊥BC于点F,如图2,则∠DFB=∠RFC=90°,∵AM、BN都是⊙O的切线,∴∠ABF=∠BAD=90°,∴四边形ABFD是矩形,∴DF=AB=2OA,AD=BF,∵CD是⊙O的切线,∴DE=DA,CE=CB,∴CF=CB-BF=CE-DE,∵DE2=CD2-CF2,∴4OA2=(CE+DE)2-(CE-DE)2,即4OA2=4DE•CE,∴OA2=DE•CE.【解析】(1)连接OD,OE,证明△OAD≌△OED,得∠OAD=∠OED=90°,进而得CD 是切线;(2)过D作DF⊥BC于点F,得四边形ABFD为矩形,得DF=20A,再证明CF=CE-DE,进而根据勾股定理得结论.本题主要考查了圆的切线的性质与判定,勾股定理,矩形的性质与判定,全等三角形的性质与判定,关键是正确作辅助线构造全等三角形与直角三角形.26.【答案】(1)解:由题意抛物线的顶点A(2,-1),可以假设抛物线的解析式为y=a(x-2)2-1,∵抛物线经过B(0,-),∴-=4a-1,∴a=,∴抛物线的解析式为y=(x-2)2-1.(2)证明:∵P(m,n),∴n=(m-2)2-1=m2-m-,∴P(m,m2-m-),∴d=m2-m--(-3)=m2-m+,∵F(2,1),∴PF==,∵d2=m4-m3+m2-m+,PF2=m4-m3+m2-m+,∴d2=PF2,∴PF=d.(3)如图,过点Q作QH⊥直线l于H,过点D作DN⊥直线l于N.∵△DFQ的周长=DF+DQ+FQ,DF是定值==2,∴DQ+QF的值最小时,△DFQ的周长最小,∵QF=QH,∴DQ+DF=DQ+QH,根据垂线段最短可知,当D,Q,H共线时,DQ+QH的值最小,此时点H与N重合,点Q在线段DN上,∴DQ+QH的最小值为3,∴△DFQ的周长的最小值为2+3,此时Q(4,-)【解析】(1)由题意抛物线的顶点A(2,-1),可以假设抛物线的解析式为y=a(x-2)2-1,把点B坐标代入求出a即可.(2)由题意P(m,m2-m-),求出d2,PF2(用m表示)即可解决问题.(3)如图,过点Q作QH⊥直线l于H,过点D作DN⊥直线l于N.因为△DFQ的周长=DF+DQ+FQ,DF是定值==2,推出DQ+QF的值最小时,△DFQ的周长最小,再根据垂线段最短解决问题即可.本题属于二次函数综合题,考查了待定系数法,两点间距离公式,垂线段最短等知识,解题的关键是学会利用参数解决问题,学会用转化的思想思考问题,属于中考常考题型.。

2020年山东省滨州市中考数学试卷及其答案

2020年山东省滨州市中考数学试卷及其答案

2020年山东省滨州市中考数学试卷一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,用2B铅笔把答题卡上对应题目的答案标号涂黑.每小题涂对得3分,满分36分.1.(3分)下列各式正确的是()A.﹣|﹣5|=5B.﹣(﹣5)=﹣5C.|﹣5|=﹣5D.﹣(﹣5)=52.(3分)如图,AB∥CD,点P为CD上一点,PF是∠EPC的平分线,若∠1=55°,则∠EPD的大小为()A.60°B.70°C.80°D.100°3.(3分)冠状病毒的直径约为80~120纳米,1纳米=1.0×10﹣9米,若用科学记数法表示110纳米,则正确的结果是()A.1.1×10﹣9米B.1.1×10﹣8米C.1.1×10﹣7米D.1.1×10﹣6米4.(3分)在平面直角坐标系的第四象限内有一点M,到x轴的距离为4,到y轴的距离为5,则点M 的坐标为()A.(﹣4,5)B.(﹣5,4)C.(4,﹣5)D.(5,﹣4)5.(3分)下列图形:线段、等边三角形、平行四边形、圆,其中既是轴对称图形,又是中心对称图形的个数为()A.1B.2C.3D.46.(3分)如图,点A在双曲线y=上,点B在双曲线y=上,且AB∥x轴,点C、D在x轴上,若四边形ABCD为矩形,则它的面积为()A.4B.6C.8D.127.(3分)下列命题是假命题的为()A.对角线相等的菱形是正方形B.对角线互相垂直的矩形是正方形C.对角线互相垂直且相等的平行四边形是正方形D.对角线互相垂直且平分的四边形是正方形8.(3分)已知一组数据:5,4,3,4,9,关于这组数据的下列描述:①平均数是5,②中位数是4,③众数是4,④方差是4.4,其中正确的个数为()A.1B.2C.3D.49.(3分)在⊙O中,直径AB=15,弦DE⊥AB于点C,若OC:OB=3:5,则DE的长为()A.6B.9C.12D.1510.(3分)对于任意实数k,关于x的方程x2﹣(k+5)x+k2+2k+25=0的根的情况为()A.有两个相等的实数根B.没有实数根C.有两个不相等的实数根D.无法判定11.(3分)对称轴为直线x=1的抛物线y=ax2+bx+c(a、b、c为常数,且a≠0)如图所示,小明同学得出了以下结论:①abc<0,②b2>4ac,③4a+2b+c>0,④3a+c>0,⑤a+b≤m(am+b)(m 为任意实数),⑥当x<﹣1时,y随x的增大而增大.其中结论正确的个数为()A.3B.4C.5D.612.(3分)如图,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平后再次折叠,使点A落在EF上的点A′处,得到折痕BM,BM与EF相交于点N.若直线BA′交直线CD于点O,BC =5,EN=1,则OD的长为()A.B.C.D.二、填空题:本大题共8个小题.每小题5分,满分40分.13.(5分)若二次根式在实数范围内有意义,则x的取值范围为.14.(5分)在等腰△ABC中,AB=AC,∠B=50°,则∠A的大小为.15.(5分)若正比例函数y =2x 的图象与某反比例函数的图象有一个交点的纵坐标是2,则该反比例函数的解析式为.16.(5分)如图,⊙O 是正方形ABCD 的内切圆,切点分别为E 、F 、G 、H ,ED 与⊙O 相交于点M ,则sin∠MFG 的值为.17.(5分)现有下列长度的五根木棒:3,5,8,10,13,从中任取三根,可以组成三角形的概率为.18.(5分)若关于x 的不等式组无解,则a 的取值范围为.19.(5分)观察下列各式:a 1=,a 2=,a 3=,a 4=,a 5=,…,根据其中的规律可得a n =(用含n 的式子表示).20.(5分)如图,点P 是正方形ABCD 内一点,且点P 到点A 、B 、C 的距离分别为2、、4,则正方形ABCD 的面积为.三、解答题:本大题共6个小题,满分74分,解答时请写出必要的演推过程.21.(10分)先化简,再求值:1﹣÷;其中x =cos30°×,y =(π﹣3)0﹣()﹣1.22.(12分)如图,在平面直角坐标系中,直线y =﹣x ﹣1与直线y =﹣2x +2相交于点P ,并分别与x 轴相交于点A 、B .(1)求交点P 的坐标;(2)求△PAB 的面积;(3)请把图象中直线y=﹣2x+2在直线y=﹣x﹣1上方的部分描黑加粗,并写出此时自变量x 的取值范围.23.(12分)如图,过▱ABCD对角线AC与BD的交点E作两条互相垂直的直线,分别交边AB、BC、CD、DA于点P、M、Q、N.(1)求证:△PBE≌△QDE;(2)顺次连接点P,M,Q,N,求证:四边形PMQN是菱形.24.(13分)某水果商店销售一种进价为40元/千克的优质水果,若售价为50元/千克,则一个月可售出500千克;若售价在50元/千克的基础上每涨价1元,则月销售量就减少10千克.(1)当售价为55元/千克时,每月销售水果多少千克?(2)当月利润为8750元时,每千克水果售价为多少元?(3)当每千克水果售价为多少元时,获得的月利润最大?25.(13分)如图,AB是⊙O的直径,AM和BN是它的两条切线,过⊙O上一点E作直线DC,分别交AM、BN于点D、C,且DA=DE.(1)求证:直线CD是⊙O的切线;(2)求证:OA2=DE•CE.26.(14分)如图,抛物线的顶点为A(h,﹣1),与y轴交于点B(0,﹣),点F(2,1)为其对称轴上的一个定点.(1)求这条抛物线的函数解析式;(2)已知直线l是过点C(0,﹣3)且垂直于y轴的定直线,若抛物线上的任意一点P(m,n)到直线l的距离为d,求证:PF=d;(3)已知坐标平面内的点D(4,3),请在抛物线上找一点Q,使△DFQ的周长最小,并求此时△DFQ周长的最小值及点Q的坐标.2020年山东省滨州市中考数学试卷参考答案与试题解析一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,用2B铅笔把答题卡上对应题目的答案标号涂黑.每小题涂对得3分,满分36分.1.(3分)下列各式正确的是()A.﹣|﹣5|=5B.﹣(﹣5)=﹣5C.|﹣5|=﹣5D.﹣(﹣5)=5【解答】解:A、∵﹣|﹣5|=﹣5,∴选项A不符合题意;B、∵﹣(﹣5)=5,∴选项B不符合题意;C、∵|﹣5|=5,∴选项C不符合题意;D、∵﹣(﹣5)=5,∴选项D符合题意.故选:D.2.(3分)如图,AB∥CD,点P为CD上一点,PF是∠EPC的平分线,若∠1=55°,则∠EPD的大小为()A.60°B.70°C.80°D.100°【解答】解:∵AB∥CD,∴∠1=∠CPF=55°,∵PF是∠EPC的平分线,∴∠CPE=2∠CPF=110°,∴∠EPD=180°﹣110°=70°,故选:B.3.(3分)冠状病毒的直径约为80~120纳米,1纳米=1.0×10﹣9米,若用科学记数法表示110纳米,则正确的结果是()A.1.1×10﹣9米B.1.1×10﹣8米C.1.1×10﹣7米D.1.1×10﹣6米【解答】解:110纳米=110×10﹣9米=1.1×10﹣7米.4.(3分)在平面直角坐标系的第四象限内有一点M,到x轴的距离为4,到y轴的距离为5,则点M 的坐标为()A.(﹣4,5)B.(﹣5,4)C.(4,﹣5)D.(5,﹣4)【解答】解:∵在平面直角坐标系的第四象限内有一点M,到x轴的距离为4,到y轴的距离为5,∴点M的纵坐标为:﹣4,横坐标为:5,即点M的坐标为:(5,﹣4).故选:D.5.(3分)下列图形:线段、等边三角形、平行四边形、圆,其中既是轴对称图形,又是中心对称图形的个数为()A.1B.2C.3D.4【解答】解:线段是轴对称图形,也是中心对称图形;等边三角形是轴对称图形,不是中心对称图形;平行四边形不是轴对称图形,是中心对称图形;圆是轴对称图形,也是中心对称图形;则既是轴对称图形又是中心对称图形的有2个.故选:B.6.(3分)如图,点A在双曲线y=上,点B在双曲线y=上,且AB∥x轴,点C、D在x轴上,若四边形ABCD为矩形,则它的面积为()A.4B.6C.8D.12【解答】解:延长BA交y轴于E,则BE⊥y轴,∵点A在双曲线y=上,∴四边形AEOD的面积为4,∵点B在双曲线y=上,且AB∥x轴,∴四边形BEOC的面积为12,∴矩形ABCD的面积为12﹣4=8.7.(3分)下列命题是假命题的为()A.对角线相等的菱形是正方形B.对角线互相垂直的矩形是正方形C.对角线互相垂直且相等的平行四边形是正方形D.对角线互相垂直且平分的四边形是正方形【解答】解:对角线相等的菱形是正方形,故A是真命题,不符合题意;对角线互相垂直的矩形是正方形,故B是真命题,不符合题意;对角线互相垂直且相等的平行四边形是正方形,故C是真命题,不符合题意;对角线互相垂直且平分的四边形是菱形,故D是假命题,符合题意;故选:D.8.(3分)已知一组数据:5,4,3,4,9,关于这组数据的下列描述:①平均数是5,②中位数是4,③众数是4,④方差是4.4,其中正确的个数为()A.1B.2C.3D.4【解答】解:数据由小到大排列为3,4,4,5,9,它的平均数为=5,数据的中位数为4,众数为4,数据的方差=[(3﹣5)2+(4﹣5)2+(4﹣5)2+(5﹣5)2+(9﹣5)2]=4.4.所以①②③④都正确.故选:D.9.(3分)在⊙O中,直径AB=15,弦DE⊥AB于点C,若OC:OB=3:5,则DE的长为()A.6B.9C.12D.15【解答】解:如图所示:连接OD,∵直径AB=15,∴BO=7.5,∵OC:OB=3:5,∴DC==6,∴DE=2DC=12.故选:C.10.(3分)对于任意实数k,关于x的方程x2﹣(k+5)x+k2+2k+25=0的根的情况为()A.有两个相等的实数根B.没有实数根C.有两个不相等的实数根D.无法判定【解答】解:x2﹣(k+5)x+k2+2k+25=0,Δ=b2﹣4ac=[﹣(k+5)]2﹣4××(k2+2k+25)=﹣k2+6k﹣25=﹣(k﹣3)2﹣16,不论k为何值,﹣(k﹣3)2≤0,即Δ=﹣(k﹣3)2﹣16<0,所以方程没有实数根,故选:B.11.(3分)对称轴为直线x=1的抛物线y=ax2+bx+c(a、b、c为常数,且a≠0)如图所示,小明同学得出了以下结论:①abc<0,②b2>4ac,③4a+2b+c>0,④3a+c>0,⑤a+b≤m(am+b)(m 为任意实数),⑥当x<﹣1时,y随x的增大而增大.其中结论正确的个数为()A.3B.4C.5D.6【解答】解:①由图象可知:a>0,c<0,∵﹣=1,∴b=﹣2a<0,∴abc>0,故①错误;②∵抛物线与x轴有两个交点,∴b2﹣4ac>0,∴b2>4ac,故②正确;③当x=2时,y=4a+2b+c<0,故③错误;④当x=﹣1时,y=a﹣b+c=a﹣(﹣2a)+c>0,∴3a+c>0,故④正确;⑤当x=1时,y取到值最小,此时,y=a+b+c,而当x=m时,y=am2+bm+c,所以a+b+c≤am2+bm+c,故a+b≤am2+bm,即a+b≤m(am+b),故⑤正确,⑥当x<﹣1时,y随x的增大而减小,故⑥错误,故选:A.12.(3分)如图,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平后再次折叠,使点A落在EF上的点A′处,得到折痕BM,BM与EF相交于点N.若直线BA′交直线CD于点O,BC =5,EN=1,则OD的长为()A.B.C.D.【解答】解一:∵EN=1,∴由中位线定理得AM=2,由折叠的性质可得A′M=2,∵AD∥EF,∴∠AMB=∠A′NM,∵∠AMB=∠A′MB,∴∠A′NM=∠A′MB,∴A′N=2,∴A′E=3,A′F=2过M点作MG⊥EF于G,∴NG=EN=1,∴A′G=1,由勾股定理得MG==,∴BE=DF=MG=,∴OF:BE=2:3,解得OF=,∴OD=﹣=.故选:B.解二:连接AA'.∵EN=1,∴由中位线定理得AM=2,∵对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,∴A'A=A'B,∵把纸片展平后再次折叠,使点A落在EF上的点A′处,得到折痕BM,∴A'B=AB,∠ABM=∠A'BM,∴△ABA'为等边三角形,∴∠ABA′=∠BA′A=∠A′AB=60°,又∵∠ABC=∠BAM=90°,∴∠ABM=∠A'BM=∠A'BC=30°,∴BM=2AM=4,AB=AM=2=CD.在直角△OBC中,∵∠C=90°,∠OBC=30°,∴OC=BC•tan∠OBC=5×=,∴OD=CD﹣OC=2﹣=.故选:B.方法3:∵N是BM中点,∴BN=NA′,∴∠NBA′=∠NA′B,又∵∠ABN=∠A′BN,又∵∠BEN=90°,∴∠ABN=∠NBA′=∠A′BN=30°,又∵EN=1,∴AM=A′M=2=A′N,∴BE=,AB=DC=2,∠OBC=30°,BC=5,∴OC=,∴DO=2﹣=.故选:B.二、填空题:本大题共8个小题.每小题5分,满分40分.13.(5分)若二次根式在实数范围内有意义,则x的取值范围为x≥5.【解答】解:要使二次根式在实数范围内有意义,必须x﹣5≥0,解得:x≥5,故答案为:x≥5.14.(5分)在等腰△ABC中,AB=AC,∠B=50°,则∠A的大小为80°.【解答】解:∵AB=AC,∠B=50°,∴∠C=∠B=50°,∴∠A=180°﹣2×50°=80°.故答案为:80°.15.(5分)若正比例函数y=2x的图象与某反比例函数的图象有一个交点的纵坐标是2,则该反比例函数的解析式为y=.【解答】解:当y=2时,即y=2x=2,解得:x=1,故该点的坐标为(1,2),将(1,2)代入反比例函数表达式y=并解得:k=2,故答案为:y=.16.(5分)如图,⊙O是正方形ABCD的内切圆,切点分别为E、F、G、H,ED与⊙O相交于点M,则sin∠MFG的值为.【解答】解:连接EG,∵E、G是切点,∴E、G、O三点共线,∵⊙O是正方形ABCD的内切圆,∴AE=AB,EG=BC,根据圆周角的性质可得:∠MFG=∠MEG.设正方形边长a,则DG=a,DE=a∵sin∠MFG=sin∠MEG===,∴sin∠MFG=.故答案为:.17.(5分)现有下列长度的五根木棒:3,5,8,10,13,从中任取三根,可以组成三角形的概率为.【解答】解:3,5,8,10,13,从中任取三根,所有情况为:3、5、8;3、5、10;3、5、13;3、8、10;3、8、13;3,10,13;5、8、10;5、8、13;5、10、13;8、10、13;共有10种等可能的结果数,其中可以组成三角形的结果数为4,所以可以组成三角形的概率==.故答案为.18.(5分)若关于x 的不等式组无解,则a 的取值范围为a ≥1.【解答】解:解不等式x ﹣a >0,得:x >2a ,解不等式4﹣2x ≥0,得:x ≤2,∵不等式组无解,∴2a ≥2,解得a ≥1,故答案为:a ≥1.19.(5分)观察下列各式:a 1=,a 2=,a 3=,a 4=,a 5=,…,根据其中的规律可得a n =(用含n 的式子表示).【解答】解:由分析可得a n =.故答案为:.20.(5分)如图,点P 是正方形ABCD 内一点,且点P 到点A 、B 、C 的距离分别为2、、4,则正方形ABCD 的面积为14+4.【解答】解:如图,将△ABP 绕点B 顺时针旋转90°得到△CBM ,连接PM ,过点B 作BH ⊥PM 于H .∵BP =BM =,∠PBM =90°,∴PM =PB =2,∵PC =4,PA =CM =2,∴PC 2=CM 2+PM 2,∴∠PMC=90°,∵∠BPM=∠BMP=45°,∴∠CMB=∠APB=135°,∴∠APB+∠BPM=180°,∴A,P,M共线,∵BH⊥PM,∴PH=HM,∴BH=PH=HM=1,∴AH=2+1,∴AB2=AH2+BH2=(2+1)2+12=14+4,∴正方形ABCD的面积为14+4.解法二:连接AC,利用勾股定理求出AC即可.故答案为14+4.三、解答题:本大题共6个小题,满分74分,解答时请写出必要的演推过程.21.(10分)先化简,再求值:1﹣÷;其中x=cos30°×,y=(π﹣3)0﹣()﹣1.【解答】解:原式=1﹣÷=1+•=1+==,∵x=cos30°×=×2=3,y=(π﹣3)0﹣()﹣1=1﹣3=﹣2,∴原式==0.22.(12分)如图,在平面直角坐标系中,直线y=﹣x﹣1与直线y=﹣2x+2相交于点P,并分别与x轴相交于点A、B.(1)求交点P的坐标;(2)求△PAB的面积;(3)请把图象中直线y=﹣2x+2在直线y=﹣x﹣1上方的部分描黑加粗,并写出此时自变量x 的取值范围.【解答】解:(1)由解得,∴P(2,﹣2);(2)直线y=﹣x﹣1与直线y=﹣2x+2中,令y=0,则﹣x﹣1=0与﹣2x+2=0,解得x=﹣2与x=1,∴A(﹣2,0),B(1,0),∴AB=3,∴S===3;△PAB(3)如图所示:自变量x的取值范围是x<2.23.(12分)如图,过▱ABCD对角线AC与BD的交点E作两条互相垂直的直线,分别交边AB、BC、CD、DA于点P、M、Q、N.(1)求证:△PBE≌△QDE;(2)顺次连接点P,M,Q,N,求证:四边形PMQN是菱形.【解答】证明:(1)∵四边形ABCD是平行四边形,∴EB=ED,AB∥CD,∴∠EBP=∠EDQ,在△PBE和△QDE中,,∴△PBE≌△QDE(ASA);(2)如图所示:由(1)得:△PBE≌△QDE,∴EP=EQ,同理:△BME≌△DNE(ASA),∴EM=EN,∴四边形PMQN是平行四边形,∵PQ⊥MN,∴平行四边形PMQN是菱形.24.(13分)某水果商店销售一种进价为40元/千克的优质水果,若售价为50元/千克,则一个月可售出500千克;若售价在50元/千克的基础上每涨价1元,则月销售量就减少10千克.(1)当售价为55元/千克时,每月销售水果多少千克?(2)当月利润为8750元时,每千克水果售价为多少元?(3)当每千克水果售价为多少元时,获得的月利润最大?【解答】解:(1)当售价为55元/千克时,每月销售水果=500﹣10×(55﹣50)=450千克;(2)设每千克水果售价为x元,由题意可得:8750=(x﹣40)[500﹣10(x﹣50)],解得:x1=65,x2=75,答:每千克水果售价为65元或75元;(3)设每千克水果售价为m元,获得的月利润为y元,由题意可得:y=(m﹣40)[500﹣10(m﹣50)]=﹣10(m﹣70)2+9000,∴当m=70时,y有最大值为9000元,答:当每千克水果售价为70元时,获得的月利润最大值为9000元.25.(13分)如图,AB是⊙O的直径,AM和BN是它的两条切线,过⊙O上一点E作直线DC,分别交AM、BN于点D、C,且DA=DE.(1)求证:直线CD是⊙O的切线;(2)求证:OA2=DE•CE.【解答】解:(1)连接OD,OE,如图1,在△OAD和△OED中,,∴△OAD≌△OED(SSS),∴∠OAD=∠OED,∵AM是⊙O的切线,∴∠OAD=90°,∴∠OED=90°,∴直线CD是⊙O的切线;(2)过D作DF⊥BC于点F,如图2,则∠DFB=∠DFC=90°,∵AM、BN都是⊙O的切线,∴∠ABF=∠BAD=90°,∴四边形ABFD是矩形,∴DF=AB=2OA,AD=BF,∵CD是⊙O的切线,∴DE=DA,CE=CB,∴CF=CB﹣BF=CE﹣DE,∵DF2=CD2﹣CF2,∴4OA2=(CE+DE)2﹣(CE﹣DE)2,即4OA2=4DE•CE,∴OA2=DE•CE.26.(14分)如图,抛物线的顶点为A(h,﹣1),与y轴交于点B(0,﹣),点F(2,1)为其对称轴上的一个定点.(1)求这条抛物线的函数解析式;(2)已知直线l是过点C(0,﹣3)且垂直于y轴的定直线,若抛物线上的任意一点P(m,n)到直线l的距离为d,求证:PF=d;(3)已知坐标平面内的点D(4,3),请在抛物线上找一点Q,使△DFQ的周长最小,并求此时△DFQ周长的最小值及点Q的坐标.【解答】(1)解:由题意抛物线的顶点A(2,﹣1),可以假设抛物线的解析式为y=a(x﹣2)2﹣1,∵抛物线经过B(0,﹣),∴﹣=4a﹣1,∴a=∴抛物线的解析式为y=(x﹣2)2﹣1.(2)证明:过点P作PJ⊥AF于J.∵P(m,n),∴n=(m﹣2)2﹣1=m2﹣m﹣,∴P(m,m2﹣m﹣),∴d=m2﹣m﹣﹣(﹣3)=m2﹣m+,∵F(2,1),∴PF===,∵d2=m4﹣m3+m2﹣m+,PF2=m4﹣m3+m2﹣m+,∴d2=PF2,∴PF=d.(3)如图,过点Q作QH⊥直线l于H,过点D作DN⊥直线l于N.∵△DFQ的周长=DF+DQ+FQ,DF是定值==2,∴DQ+QF的值最小时,△DFQ的周长最小,由(2)可知QF=QH,∴DQ+QF=DQ+QH,根据垂线段最短可知,当D,Q,H共线时,DQ+QH的值最小,此时点H与N重合,点Q在线段DN 上,∴DQ+QH的最小值为6,∴△DFQ的周长的最小值为2+6,此时Q(4,﹣).。

2020年山东省滨州市中考数学试卷(解析版)

2020年山东省滨州市中考数学试卷(解析版)

2020年滨州市初中学业水平考试试题数学参考答案一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,用2B铅笔把答题卡上对应题目的答案标号涂黑.每小题涂对得3分,满分36分.1.下列各式正确的是()A.﹣|﹣5|=5 B.﹣(﹣5)=﹣5 C.|﹣5|=﹣5 D.﹣(﹣5)=5【分析】根据绝对值的性质和相反数的定义对各选项分析判断即可.解:A、∵﹣|﹣5|=﹣5,∴选项A不符合题意;B、∵﹣(﹣5)=5,∴选项B不符合题意;C、∵|﹣5|=5,∴选项C不符合题意;D、∵﹣(﹣5)=5,∴选项D符合题意.故选:D.2.如图,AB∥CD,点P为CD上一点,PF是∠EPC的平分线,若∠1=55°,则∠EPD的大小为()A.60°B.70°C.80°D.100°【分析】根据平行线和角平分线的定义即可得到结论.解:∵AB∥CD,∴∠1=∠CPF=55°,∵PF是∠EPC的平分线,∴∠CPE=2∠CPF=110°,∴∠EPD=180°﹣110°=70°,故选:B.3.冠状病毒的直径约为80~120纳米,1纳米=1.0×10﹣9米,若用科学记数法表示110纳米,则正确的结果是()A.1.1×10﹣9米B.1.1×10﹣8米C.1.1×10﹣7米D.1.1×10﹣6米【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.解:110纳米=110×10﹣9米=1.1×10﹣7米.故选:C.4.在平面直角坐标系的第四象限内有一点M,到x轴的距离为4,到y轴的距离为5,则点M的坐标为()A.(﹣4,5)B.(﹣5,4)C.(4,﹣5)D.(5,﹣4)【分析】直接利用点的坐标特点进而分析得出答案.解:∵在平面直角坐标系的第四象限内有一点M,到x轴的距离为4,到y轴的距离为5,∴点M的纵坐标为:﹣4,横坐标为:5,即点M的坐标为:(5,﹣4).故选:D.5.下列图形:线段、等边三角形、平行四边形、圆,其中既是轴对称图形,又是中心对称图形的个数为()A.1 B.2 C.3 D.4【分析】根据轴对称图形与中心对称图形的概念求解.解:线段是轴对称图形,也是中心对称图形;等边三角形是轴对称图形,不是中心对称图形;平行四边形不是轴对称图形,是中心对称图形;圆是轴对称图形,也是中心对称图形;则既是轴对称图形又是中心对称图形的有2个.故选:B.6.如图,点A在双曲线y=上,点B在双曲线y=上,且AB∥x轴,点C、D在x轴上,若四边形ABCD为矩形,则它的面积为()A.4 B.6 C.8 D.12【分析】根据双曲线的图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的矩形的面积S的关系S=|k|即可判断.解:过A点作AE⊥y轴,垂足为E,∵点A在双曲线y=上,∴四边形AEOD的面积为4,∵点B在双曲线线y=上,且AB∥x轴,∴四边形BEOC的面积为12,∴矩形ABCD的面积为12﹣4=8.故选:C.7.下列命题是假命题的是()A.对角线互相垂直且相等的平行四边形是正方形B.对角线互相垂直的矩形是正方形C.对角线相等的菱形是正方形D.对角线互相垂直且平分的四边形是正方形【分析】利用正方形的判定依次判断,可求解.解:A、对角线互相垂直且相等的平行四边形是正方形是真命题,故选项A不合题意;B、对角线互相垂直的矩形是正方形是真命题,故选项B不合题意;C、对角线相等的菱形是正方形是真命题,故选项C不合题意;D、对角线互相垂直且平分的四边形是菱形,即对角线互相垂直且平分的四边形是正方形是假命题,故选项D符合题意;故选:D.8.已知一组数据:5,4,3,4,9,关于这组数据的下列描述:①平均数是5,②中位数是4,③众数是4,④方差是4.4,其中正确的个数为()A.1 B.2 C.3 D.4【分析】先把数据由小到大排列为3,4,4,5,9,然后根据算术平均数、中位数和众数的定义得到数据的平均数,中位数和众数,再根据方差公式计算数据的方差,然后利用计算结果对各选项进行判断.解:数据由小到大排列为3,4,4,5,9,它的平均数为=5,数据的中位数为4,众数为4,数据的方差=[(3﹣5)2+(4﹣5)2+(4﹣5)2+(5﹣5)2+(9﹣5)2]=4.4.所以A、B、C、D都正确.故选:D.9.在⊙O中,直径AB=15,弦DE⊥AB于点C,若OC:OB=3:5,则DE的长为()A.6 B.9 C.12 D.15【分析】直接根据题意画出图形,再利用垂径定理以及勾股定理得出答案.解:如图所示:∵直径AB=15,∴BO=7.5,∵OC:OB=3:5,∴CO=4.5,∴DC==6,∴DE=2DC=12.故选:C.10.对于任意实数k,关于x的方程x2﹣(k+5)x+k2+2k+25=0的根的情况为()A.有两个相等的实数根B.没有实数根C.有两个不相等的实数根D.无法判定【分析】先根据根的判别式求出“△”的值,再根据根的判别式的内容判断即可.解:x2﹣(k+5)x+k2+2k+25=0,△=[﹣(k+5)]2﹣4××(k2+2k+25)=﹣k2+6k﹣25=﹣(k﹣3)2﹣16,不论k为何值,﹣(k﹣3)2≤0,即△=﹣(k﹣3)2﹣16<0,所以方程没有实数根,故选:B.11.对称轴为直线x=1的抛物线y=ax2+bx+c(a、b、c为常数,且a≠0)如图所示,小明同学得出了以下结论:①abc<0,②b2>4ac,③4a+2b+c>0,④3a+c>0,⑤a+b≤m(am+b)(m为任意实数),⑥当x<﹣1时,y随x的增大而增大.其中结论正确的个数为()A.3 B.4 C.5 D.6【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解:①由图象可知:a>0,c<0,∵﹣=1,∴b=﹣2a<0,∴abc<0,故①错误;②∵抛物线与x轴有两个交点,∴b2﹣4ac>0,∴b2>4ac,故②正确;③当x=2时,y=4a+2b+c<0,故③错误;④当x=﹣1时,y=a﹣b+c>0,∴3a+c>0,故④正确;⑤当x=1时,y的值最小,此时,y=a+b+c,而当x=m时,y=am2+bm+c,所以a+b+c≤am2+bm+c,故a+b≤am2+bm,即a+b≤m(am+b),故⑤正确,⑥当x<﹣1时,y随x的增大而减小,故⑥错误,故选:A.12.如图,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平后再次折叠,使点A落在EF上的点A′处,得到折痕BM,BM与EF相交于点N.若直线BA′交直线CD于点O,BC=5,EN=1,则OD的长为()A.B.C.D.【分析】根据中位线定理可得AM=2,根据折叠的性质和等腰三角形的性质可得A′M=A′N=2,过M点作MG⊥EF于G,可求A′G,根据勾股定理可求MG,进一步得到BE,再根据平行线分线段成比例可求OF,从而得到OD.解:∵EN=1,∴由中位线定理得AM=2,由折叠的性质可得A′M=2,∵AD∥EF,∴∠AMB=∠A′NM,∵∠AMB=∠A′MB,∴∠A′NM=∠A′MB,∴A′N=2,∴A′E=3,A′F=2过M点作MG⊥EF于G,∴NG=EN=1,∴A′G=1,由勾股定理得MG==,∴BE=OF=MG=,∴OF:BE=2:3,解得OF=,∴OD=﹣=.故选:B.二、填空题:本大题共8个小题.每小题5分,满分40分.13.若二次根式在实数范围内有意义,则x的取值范围为x≥5.【分析】根据二次根式有意义的条件得出x﹣5≥0,求出即可.解:要使二次根式在实数范围内有意义,必须x﹣5≥0,解得:x≥5,故答案为:x≥5.14.在等腰△ABC中,AB=AC,∠B=50°,则∠A的大小为80°.【分析】根据等腰三角形两底角相等可求∠C,再根据三角形内角和为180°列式进行计算即可得解.解:∵AB=AC,∠B=50°,∴∠C=∠B=50°,∴∠A=180°﹣2×50°=80°.故答案为:80°.15.若正比例函数y=2x的图象与某反比例函数的图象有一个交点的纵坐标是2,则该反比例函数的解析式为y=.【分析】当y=2时,即y=2x=2,解得:x=1,故该点的坐标为(1,2),将(1,2)代入反比例函数表达式y=,即可求解.解:当y=2时,即y=2x=2,解得:x=1,故该点的坐标为(1,2),将(1,2)代入反比例函数表达式y=并解得:k=2,故答案为:y=.16.如图,⊙O是正方形ABCD的内切圆,切点分别为E、F、G、H,ED与⊙O相交于点M,则sin∠MFG 的值为.【分析】根据同弧所对的圆周角相等,可以把求三角函数的问题,转化为直角三角形的边的比的问题.解:∵⊙O是正方形ABCD的内切圆,∴AE=AB,EG=BC;根据圆周角的性质可得:∠MFG=∠MEG.∵sin∠MFG=sin∠MEG==,∴sin∠MFG=.故答案为:.17.现有下列长度的五根木棒:3,5,8,10,13,从中任取三根,可以组成三角形的概率为.【分析】利用完全列举法展示所有可能的结果数,再利用三角形三边的关系得到组成三角形的结果数,然后根据概率公式计算.解:3,5,8,10,13,从中任取三根,所有情况为:3、5、8;3、5、10;3、5、13;3、8、10;3、8、13;3,10,13;5、8、10;5、8、13;5、10、13;8、10、13;共有10种等可能的结果数,其中可以组成三角形的结果数为4,所以可以组成三角形的概率==.故答案为.18.若关于x的不等式组无解,则a的取值范围为a≥1.【分析】分别求出每一个不等式的解集,根据口诀:大大小小无解了可得答案.解:解不等式x﹣a>0,得:x>2a,解不等式4﹣2x≥0,得:x≤2,∵不等式组无解,∴2a≥2,解得a≥1,故答案为:a≥1.19.观察下列各式:a1=,a2=,a3=,a4=,a5=,…,根据其中的规律可得a n=(用含n的式子表示).【分析】观察分母的变化为3、5、7,…,2n+1次幂;分子的变化为:奇数项为n2+1;偶数项为n2﹣1;依此即可求解.解:由分析可得a n=.故答案为:.20.如图,点P是正方形ABCD内一点,且点P到点A、B、C的距离分别为2、、4,则正方形ABCD 的面积为14+4.【分析】如图,将△ABP绕点B顺时针旋转90°得到△CBM,连接PM,过点B作BH⊥PM于H.首先证明∠PMC=90°,推出∠CMB=∠APB=135°,推出A,P,M共线,利用勾股定理求出AB2即可.解:如图,将△ABP绕点B顺时针旋转90°得到△CBM,连接PM,过点B作BH⊥PM于H.∵BP=BM=,∠PBM=90°,∴PM=PB=2,∵PC=4,PA=CM=2,∴PC2=CM2+PM2,∴∠PMC=90°,∵∠BPM=∠BMP=45°,∴∠CNB=∠APB=135°,∴∠APB+∠BPM=180°,∴A,P,M共线,∵BH⊥PM,∴PH=HM,∴BH=PH=HM=1,∴AH=2+1,∴AB2=AH2+BH2=(2+1)2+12=14+4,∴正方形ABCD的面积为14+4.故答案为14+4.三、解答题:本大题共6个小题,满分74分,解答时请写出必要的演推过程.21.先化简,再求值:1﹣÷;其中x=cos30°×,y=(π﹣3)0﹣()﹣1.【分析】直接利用分式的混合运算法则化简,再计算x,y的值,进而代入得出答案.解:原式=1﹣÷=1+•=1+==,∵x=cos30°×=×2=3,y=(π﹣3)0﹣()﹣1=1﹣3=﹣2,∴原式==0.22.如图,在平面直角坐标系中,直线y=﹣x﹣1与直线y=﹣2x+2相交于点P,并分别与x轴相交于点A、B.(1)求交点P的坐标;(2)求△PAB的面积;(3)请把图象中直线y=﹣2x+2在直线y=﹣x﹣1上方的部分描黑加粗,并写出此时自变量x的取值范围.【分析】(1)解析式联立,解方程组即可求得交点P的坐标;(2)求得A、B的坐标,然后根据三角形面积公式求得即可;(3)根据图象求得即可.解:(1)由解得,∴P(2,﹣2);(2)直线y=﹣x﹣1与直线y=﹣2x+2中,令y=0,则﹣x﹣1=0与﹣2x+2=0,解得x=﹣2与x=1,∴A(﹣2,0),B(1,0),∴AB=3,∴S△PAB===3;(3)如图所示:自变量x的取值范围是x<2.23.如图,过▱ABCD对角线AC与BD的交点E作两条互相垂直的直线,分别交边AB、BC、CD、DA于点P、M、Q、N.(1)求证:△PBE≌△QDE;(2)顺次连接点P、M、Q、N,求证:四边形PMQN是菱形.【分析】(1)由ASA证△PBE≌△QDE即可;(2)由全等三角形的性质得出EP=EQ,同理△BME≌△DNE(ASA),得出EM=EN,证出四边形PMQN 是平行四边形,由对角线PQ⊥MN,即可得出结论.【解答】(1)证明:∵四边形ABD是平行四边形,∴EB=ED,AB∥CD,∴∠EBP=∠EDQ,在△PBE和△QDE中,,∴△PBE≌△QDE(ASA);(2)证明:如图所示:∵△PBE≌△QDE,∴EP=EQ,同理:△BME≌△DNE(ASA),∴EM=EN,∴四边形PMQN是平行四边形,∵PQ⊥MN,∴四边形PMQN是菱形.24.某水果商店销售一种进价为40元/千克的优质水果,若售价为50元/千克,则一个月可售出500千克;若售价在50元/千克的基础上每涨价1元,则月销售量就减少10千克.(1)当售价为55元/千克时,每月销售水果多少千克?(2)当月利润为8750元时,每千克水果售价为多少元?(3)当每千克水果售价为多少元时,获得的月利润最大?【分析】(1)由月销售量=500﹣(销售单价﹣50)×10,可求解;(2)设每千克水果售价为x元,由利润=每千克的利润×销售的数量,可列方程,即可求解;(3)设每千克水果售价为m元,获得的月利润为y元,由利润=每千克的利润×销售的数量,可得y与x 的关系式,有二次函数的性质可求解.解:(1)当售价为55元/千克时,每月销售水果=500﹣10×(55﹣50)=450千克;(2)设每千克水果售价为x元,由题意可得:8750=(x﹣40)[500﹣10(x﹣50)],解得:x1=65,x2=75,答:每千克水果售价为65元或75元;(3)设每千克水果售价为m元,获得的月利润为y元,由题意可得:y=(m﹣40)[500﹣10(m﹣50)]=﹣10(m﹣70)2+9000,∴当m=70时,y有最大值为9000元,答:当每千克水果售价为70元时,获得的月利润最大值为9000元.25.如图,AB是⊙O的直径,AM和BN是它的两条切线,过⊙O上一点E作直线DC,分别交AM、BN于点D、C,且DA=DE.(1)求证:直线CD是⊙O的切线;(2)求证:OA2=DE•CE.【分析】(1)连接OD,OE,证明△OAD≌△OED,得∠OAD=∠OED=90°,进而得CD是切线;(2)过D作DF⊥BC于点F,得四边形ABFD为矩形,得DF=20A,再证明CF=CE﹣DE,进而根据勾股定理得结论.解:(1)连接OD,OE,如图1,在△OAD和△OED中,,∴△OAD≌△OED(SSS),∴∠OAD=∠OED,∵AM是⊙O的切线,∴∠OAD=90°,∴∠OED=90°,∴直线CD是⊙O的切线;(2)过D作DF⊥BC于点F,如图2,则∠DFB=∠RFC=90°,∵AM、BN都是⊙O的切线,∴∠ABF=∠BAD=90°,∴四边形ABFD是矩形,∴DF=AB=2OA,AD=BF,∵CD是⊙O的切线,∴DE=DA,CE=CB,∴CF=CB﹣BF=CE﹣DE,∵DE2=CD2﹣CF2,∴4OA2=(CE+DE)2﹣(CE﹣DE)2,即4OA2=4DE•CE,∴OA2=DE•CE.26.如图,抛物线的顶点为A(h,﹣1),与y轴交于点B(0,﹣),点F(2,1)为其对称轴上的一个定点.(1)求这条抛物线的函数解析式;(2)已知直线l是过点C(0,﹣3)且垂直于y轴的定直线,若抛物线上的任意一点P(m,n)到直线l 的距离为d,求证:PF=d;(3)已知坐标平面内的点D(4,3),请在抛物线上找一点Q,使△DFQ的周长最小,并求此时△DFQ 周长的最小值及点Q的坐标.【分析】(1)由题意抛物线的顶点A(2,﹣1),可以假设抛物线的解析式为y=a(x﹣2)2﹣1,把点B 坐标代入求出a即可.(2)由题意P(m,m2﹣m﹣),求出d2,PF2(用m表示)即可解决问题.(3)如图,过点Q作QH⊥直线l于H,过点D作DN⊥直线l于N.因为△DFQ的周长=DF+DQ+FQ,DF是定值==2,推出DQ+QF的值最小时,△DFQ的周长最小,再根据垂线段最短解决问题即可.【解答】(1)解:由题意抛物线的顶点A(2,﹣1),可以假设抛物线的解析式为y=a(x﹣2)2﹣1,∵抛物线经过B(0,﹣),∴﹣=4a﹣1,∴a=,∴抛物线的解析式为y=(x﹣2)2﹣1.(2)证明:∵P(m,n),∴n=(m﹣2)2﹣1=m2﹣m﹣,∴P(m,m2﹣m﹣),∴d=m2﹣m﹣﹣(﹣3)=m2﹣m+,∵F(2,1),∴PF==,∵d2=m4﹣m3+m2﹣m+,PF2=m4﹣m3+m2﹣m+,∴d2=PF2,∴PF=d.(3)如图,过点Q作QH⊥直线l于H,过点D作DN⊥直线l于N.∵△DFQ的周长=DF+DQ+FQ,DF是定值==2,∴DQ+QF的值最小时,△DFQ的周长最小,∵QF=QH,∴DQ+DF=DQ+QH,根据垂线段最短可知,当D,Q,H共线时,DQ+QH的值最小,此时点H与N重合,点Q在线段DN上,∴DQ+QH的最小值为3,∴△DFQ的周长的最小值为2+3,此时Q(4,﹣)。

山东省滨州市2020年中考数学试题(Word版,含答案与解析)

山东省滨州市2020年中考数学试题(Word版,含答案与解析)

山东省滨州市2020年中考数学试卷一、单选题(共12题;共24分)1.下列式子中,正确的是()A. |﹣5|=﹣5B. ﹣|﹣5|=5C. ﹣(﹣5)=﹣5D. ﹣(﹣5)=5【答案】 D【考点】相反数及有理数的相反数,绝对值及有理数的绝对值【解析】【解答】解:A. |﹣5|=5,故原选项不符合题意;B. ﹣|﹣5|=-5,故原选项不符合题意;C. ﹣(﹣5)=5,故原选项不符合题意;D. ﹣(﹣5)=5,故符合题意.故答案为:D.【分析】根据负数的绝对值为它的相反数对A、B项进行判断;-(-5)表示-5的相反数,根据只有符号不同的两个数互为相反数对C、D选项进行判断.2.如图,AB//CD,点P为CD上一点,PF是∠EPC的平分线,若∠1=55°,则∠EPD的大小为()A. 60°B. 70°C. 80°D. 100°【答案】B【考点】平行线的性质,角平分线的定义【解析】【解答】解:∵AB∥CD,∴∠1=∠CPF=55°,∵PF是∠EPC的平分线,∴∠CPE=2∠CPF=110°,∴∠EPD=180°-110°=70°,故答案为:B.【分析】根据平行线和角平分线的定义即可得到结论.3.冠状病毒的直径约为80~120纳米,1纳米==1.0×10−9米,若用科学记数法表示110纳米,则正确的结果是()A. 1.1×10−9米B. 1.1×10−8米C. 1.1×10−7米D. 1.1×10−6米【答案】C【考点】科学记数法—表示绝对值较小的数【解析】【解答】解:110纳米=110×10-9米=1.1×10-7米.故答案为:C.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.4.在平面直角坐标系的第四象限内有一点M,到x轴的距离为4,到y轴的距离为5,则点M的坐标为()A. (−4,5)B. (−5,4)C. (4,−5)D. (5,−4)【答案】D【考点】点的坐标与象限的关系【解析】【解答】设点M的坐标为(x,y),∵点M到x轴的距离为4,∴|y|=4,∴y=±4,∵点M到y轴的距离为5,∴|x|=5,∴x=±5,∵点M在第四象限内,∴x=5,y=-4,即点M的坐标为(5,-4)故答案为:D.【分析】根据点到坐标轴的距离及点所在的象限解答即可.5.下列图形:线段、等边三角形、平行四边形、圆,其中既是轴对称图形,又是中心对称图形的个数为()A. 1B. 2C. 3D. 4【答案】B【考点】轴对称图形,中心对称及中心对称图形【解析】【解答】解:线段是轴对称图形,也是中心对称图形;等边三角形是轴对称图形,不是中心对称图形;平行四边形不是轴对称图形,是中心对称图形;圆是轴对称图形,也是中心对称图形;则既是轴对称图形又是中心对称图形的有2个.故答案为:B.【分析】根据轴对称图形与中心对称图形的概念求解.6.如图,点A在双曲线y=4x 上,点B在双曲线y=12x上,且AB//x轴,点C、D在x轴上,若四边形ABCD为矩形,则它的面积为()A. 4B. 6C. 8D. 12【答案】C【考点】反比例函数系数k的几何意义,矩形的性质【解析】【解答】过点A作AE⊥y轴于点E,∵点A在双曲线y=4上,x∴四边形AEOD的面积为4,∵点B在双曲线y=12上,且AB//x轴,x∴四边形BEOC的面积为12,∴矩形ABCD的面积为12-4=8,故答案为:C.【分析】过点A作AE⊥y轴于点E,利用反比例函数系数k的几何意义,分别得到四边形AEOD的面积为4,四边形BEOC的面积为12,即可得到矩形ABCD的面积.7.下列命题是假命题的是()A. 对角线互相垂直且相等的平行四边形是正方形.B. 对角线互相垂直的矩形是正方形.C. 对角线相等的菱形是正方形.D. 对角线互相垂直平分的四边形是正方形.【答案】 D【考点】正方形的判定【解析】【解答】解:对角线互相垂直且相等的平行四边形是正方形,符合题意;对角线互相垂直的矩形是正方形,符合题意;对角线相等的菱形是正方形,符合题意;对角线互相垂直平分且相等的四边形是正方形;可知选项D是错误的.故答案为:D.【分析】根据正方形的各种判定方法逐项分析即可.8.已知一组数据5,4,3,4,9,关于这组数据的下列描述:①平均数是5,②中位数是4,③众数是4,④方差是4.4,其中正确的个数为()A. 1B. 2C. 3D. 4【答案】 D【考点】分析数据的集中趋势【解析】【解答】解:数据由小到大排列为3,4,4,5,9,=5,它的平均数为3+4+4+5+95数据的中位数为4,众数为4,[(3-5)2+(4-5)2+(4-5)2+(5-5)2+(9-5)2]=4.4.数据的方差= 15所以①②③④都符合题意.故答案为:D.【分析】先把数据由小到大排列为3,4,4,5,9,然后根据算术平均数、中位数和众数的定义得到数据的平均数,中位数和众数,再根据方差公式计算数据的方差,然后利用计算结果对各选项进行判断.9.在⊙O中,直径AB=15,弦DE⊥AB于点C.若OC:OB=3 :5,则DE的长为()A. 6B. 9C. 12D. 15【答案】C【考点】勾股定理,垂径定理【解析】【解答】解:如图所示:∵直径AB=15,∴BO=7.5,∵OC:OB=3:5,∴CO=4.5,∵DE⊥AB,∴DC=√DO2−OC2=√7.52−4.52=6,∴DE=2DC=12.故答案为:C.【分析】根据题意画出图形,然后利用垂径定理和勾股定理解答即可.x2−(k+5)x+k2+2k+25=0的根的情况为()10.对于任意实数k,关于x的方程12A. 有两个相等的实数根B. 没有实数根C. 有两个不相等的实数根D. 无法判定【答案】B【考点】一元二次方程根的判别式及应用x2−(k+5)x+k2+2k+25=0,【解析】【解答】解:12×(k2+2k+25)=−k2+6k−25=−(k−3)2−16,Δ=[−(k+5)]2−4×12不论k为何值,−(k−3)2⩽0,即Δ=−(k−3)2−16<0,所以方程没有实数根,故答案为:B.【分析】先根据根的判别式求出“△”的值,再根据根的判别式的内容判断即可.11.对称轴为直线x=1的抛物线y=ax2+bx+c(a、b、c为常数,且a≠0)如图所示,小明同学得出了以下结论:①abc<0,②b2>4ac,③4a+2b+c>0,④3a+c>0,⑤a+b≤m(am+b)(m为任意实数),⑥当x<-1时,y随x的增大而增大,其中结论正确的个数为()A. 3B. 4C. 5D. 6【答案】A【考点】二次函数图象与系数的关系,二次函数图象上点的坐标特征,二次函数y=ax^2+bx+c的性质【解析】【解答】解:①由图象可知:a>0,c<0,∵- b=1,2a∴b=-2a<0,∴abc>0,故①不符合题意;②∵抛物线与x轴有两个交点,∴b2-4ac>0,故②符合题意;③当x=2时,y=4a+2b+c<0,故③不符合题意;④当x=-1时,y=a-b+c=a-(-2a)+c>0,∴3a+c>0,故④符合题意;⑤当x=1时,y取到值最小,此时,y=a+b+c,而当x=m时,y=am2+bm+c,所以a+b+c≤am2+bm+c,故a+b≤am2+bm,即a+b≤m(am+b),故⑤符合题意,⑥当x<-1时,y随x的增大而减小,故⑥不符合题意,故答案为:A.【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.12.如图,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF;把纸片展平后再次折叠,使点A落在EF 上的点A′处,得到折痕BM,BM与FF相交于点N.若直线B A’交直线CD于点O,BC=5,EN=1,则OD的长为()A. 12√3 B. 13√3 C. 14√3 D. 15√3【答案】B【考点】勾股定理,矩形的性质,翻折变换(折叠问题),三角形的中位线定理【解析】【解答】解:∵EN=1,∴由中位线定理得AM=2,由折叠的性质可得A′M=2,∵AD∥EF,∴∠AMB=∠A′NM,∵∠AMB=∠A′MB,∴∠A′NM=∠A′MB,∴A′N=2,∴A′E=3,A′F=2过M点作MG⊥EF于G,∴NG=EN=1,∴A′G=1,由勾股定理得MG= √22−12=√3,∴BE=DF=MG= √3,∴OF:BE=2:3,解得OF= 2√33,∴OD= √3- 2√33= √33.故答案为:B.【分析】根据中位线定理可得AM=2,根据折叠的性质和等腰三角形的性质可得A′M=A′N=2,过M点作MG⊥EF于G,可求A′G,根据勾股定理可求MG,进一步得到BE,再根据平行线分线段成比例可求OF,从而得到OD.二、填空题(共8题;共8分)13.若式子√x−5在实数范围内有意义,则x的取值范围是________.【答案】x≥5【考点】二次根式有意义的条件【解析】【解答】∵√x−5在实数范围内有意义,∴x−5⩾0,解得x⩾5.故答案为:x≥5.【分析】使二次根式有意义,即是使被开方数大于等于0,据此解答即可.14.在等腰△ABC中,AB=AC,∠B=50°,则∠A的大小为________.【答案】80°【考点】三角形内角和定理,等腰三角形的性质【解析】【解答】解:∵AB=AC,∠B=50°,∴∠C=∠B=50°,∴∠A=180°-2×50°=80°.故答案为:80°.【分析】根据等腰三角形两底角相等可求∠C,再根据三角形内角和为180°列式进行计算即可得解.15.若正比例函数y=2x的图象与某反比例函数的图象有一个交点的纵坐标是2,则该反比例函数的解析式为________.【答案】y=2x【考点】反比例函数与一次函数的交点问题,反比例函数图象上点的坐标特征【解析】【解答】令y=2x中y=2,得到2x=2,解得x=1,∴正比例函数y=2x的图象与某反比例函数的图象交点的坐标是(1,2),设反比例函数解析式为y=kx,将点(1,2)代入,得k=1×2=2,∴反比例函数的解析式为y=2x,故答案为:y=2x.【分析】利用正比例函数解析式求出交点的横坐标,再将交点的坐标代入反比例函数解析式y=kx中求出k即可得到答案.16.如图,⊙O是正方形ABCD的内切圆,切点分别为E、F,G,H,ED与⊙O相交于点M,则sin∠MFG的值为________.【答案】√55【考点】正方形的性质,圆周角定理,切线的性质,圆内接正多边形,锐角三角函数的定义【解析】【解答】如图,连接EG、HF由正方形内切圆的性质得:EG与HF的交点即为圆心O∵四边形ABCD是正方形∴∠A=∠ADC=90°由圆的切线的性质得:OH⊥AD,OG⊥CD∴四边形ADGE和四边形OHDG均为矩形∴EG=AD,OH=DG设正方形ABCD的边长为2a,则AD=2a∴EG=2a∴⊙O的半径为12EG=a∴DG=OH=a在Rt△DEG中,DE=√EG2+DG2=√5a∴sin∠DEG=DGDE=√5a=√55由圆周角定理得: ∠MFG =∠DEG则 sin ∠MFG =sin ∠DEG =√55故答案为: √55 . 【分析】先根据正方形内切圆的性质得出圆心O 的位置,再根据正方形的性质、圆的切线的性质可得 ∠A =∠ADC =90° , OH ⊥AD,OG ⊥CD ,从而可得四边形ADGE 和四边形OHDG 均为矩形,又根据矩形的性质可得 EG =AD , OH =DG ,设正方形ABCD 的边长为 2a ,从而可得 EG =2a , DG =a ,然后在 Rt △DEG 中,根据正弦三角函数的定义可得 sin ∠DEG =√55,最后根据圆周角定理可得 ∠MFG =∠DEG ,由此即可得出答案.17.现有下列长度的五根木棒:3,5,8,10,13,从中任取三根,可以组成三角形的概率为________.【答案】 25【考点】三角形三边关系,概率公式【解析】【解答】五根木棒,任意取三根共有10种情况:3、5、8;3、5、10;3、5、13;3、8、10;3、8、13;3、10、13;5、10、13;5、8、10;5、8、13;8、10、13其中能组成三角形的有:①3、8、10,由于8-3<10<8+3,所以能构成三角形;②5、10、13,由于10-5<13<10+5,所以能构成三角形;③5、8、10,由于8-5<10<8+5,所以能构成三角形;④8、10、13,由于10-8<13<10+8,所以能构成三角形;所以有4种方案符合要求,故能构成三角形的概率是P= 410 = 25 ,故答案为: 25 .【分析】求出任取三根木棒的所有情况,再求出能组成三角形的所有情况,利用概率公式直接计算即可.18.若关于x 的不等式组 {12x −a >04−2x ≥0无解,则a 的取值范围为________. 【答案】 a≥1【考点】解一元一次不等式组【解析】【解答】解:对不等式组 {12x −a >0①4−2x ≥0②, 解不等式①,得 x >2a ,解不等式②,得 x ≤2 ,∵原不等式组无解,∴ 2a ≥2 ,解得: a ≥1 .故答案为: a ≥1 .【分析】先解不等式组中的两个不等式,然后根据不等式组无解可得关于a的不等式,解不等式即得答案.19.观察下列各式:a1=23,a2=35,a3=107,a4=159,a5=2611,⋯,根据其中的规律可得a n=________(用含n的式子表示).【答案】n2+(−1)n+12n+1【考点】探索数与式的规律【解析】【解答】解:由分析得a n=n2+(−1)n+12n+1,故答案为:a n=n2+(−1)n+12n+1【分析】观察发现,每一项都是一个分数,分母依次为3、5、7,…,那么第n项的分母是2n+1;分子依次为2,3,10,15,26,…,变化规律为:奇数项的分子是n2+1,偶数项的分子是n2-1,即第n项的分子是n2+(-1)n+1;依此即可求解.20.如图,点P是正方形ABCD内一点,且点P到点A、B、C的距离分别为2√3,√2,4则正方形ABCD的面积为________【答案】4√3+14【考点】勾股定理,勾股定理的逆定理,正方形的性质,旋转的性质【解析】【解答】解:如图,将△ABP绕点B顺时针旋转90°得到△CBM,连接PM,过点B作BH⊥PM于H.∵BP=BM= √2,∠PBM=90°,∴PM= √2PB=2,∵PC=4,PA=CM=2 √3,∴PC2=CM2+PM2,∴∠PMC=90°,∵∠BPM=∠BMP=45°,∴∠CMB=∠APB=135°,∴∠APB+∠BPM=180°,∴A,P,M共线,∵BH⊥PM,∴PH=HM,∴BH=PH=HM=1,∴AH=2 √3+1,∴AB2=AH2+BH2=(2 √3+1)2+12=14+4 √3,∴正方形ABCD的面积为14+4 √3.故答案为14+4 √3.【分析】如图,将△ABP绕点B顺时针旋转90°得到△CBM,连接PM,过点B作BH⊥PM于H.首先证明∠PMC=90°,推出∠CMB=∠APB=135°,推出A,P,M共线,利用勾股定理求出AB2即可.三、解答题(共6题;共70分)21.先化筒,再求值:1−y−xx+2y ÷x2−y2x2+4xy+4y2其中x=cos30°×√12,y=(π−3)°−(13)−1【答案】解:1−y−xx+2y ÷x2−y2x2+4xy+4y2=1+x−yx+2y ÷(x+y)(x−y)(x+2y)2,=1+x−yx+2y ×(x+2y)2(x+y)(x−y),=1+x+2yx+y,=2x+3yx+y;∵x=cos30°×√12=√32×2√3=3,y=(π−3)0−(13)−1=1−3=−2所以,原式=2×3+3×(−2)3+(−2)=0.【考点】利用分式运算化简求值【解析】【分析】直接利用分式的混合运算法则化简,再计算x,y的值,进而代入得出答案.22.如图,在平面直角坐标系中,直线y=−12x−1与直线y=−2x+2相交于点P,并分别与x轴相交于点A、B.(1)求交点P 的坐标;(2)求 △ PAB 的面积;(3)请把图象中直线 y =−2x +2 在直线 y =−12x −1 上方的部分描黑加粗,并写出此时自变量x 的取值范围.【答案】 (1)解: 根据题意,交点 P 的横、纵坐标是方程组 {y =−12x −1y =−2x +2的解 解这个方程组,得 {x =2y =−2∴ 交点 P 的坐标为 (2,−2)(2)解: 直线 y =−12x −1 与 x 轴的交点 A 的坐标为 (−2,0)直线 y =−2x +2 与 x 轴交点 B 的坐标为 (1,0),∴ΔPAB 的面积为 12×[1−(−2)]×2=12×3×2=3(3)解: 在图象中把直线 y =−2x +2 在直线 y =−12x −1 上方的部分描黑加粗,图示如下:此时自变量 x 的取值范围为 x <2.【考点】一次函数与不等式(组)的综合应用,两一次函数图象相交或平行问题【解析】【分析】(1)解析式联立,解方程组即可求得交点P 的坐标;(2)求得A 、B 的坐标,然后根据三角形面积公式求得即可;(3)根据图象求得即可.23.如图,过□AB CD 对角线AC 与BD 的交点E 作两条互相垂直的直线,分别交边AB 、BC .CD 、DA 于点P 、M 、Q 、N .(1)求证: △ PBE ≌ △ QDE ;(2)顺次连接点P 、M 、Q 、N ,求证:四边形PMQN 是菱形.【答案】 (1)证明:∵四边形ABCD 是平行四边形,∴EB=ED ,AB ∥CD ,∴∠EBP=∠EDQ ,在△PBE 和△QDE 中,{∠EBP =∠EDQEB =ED ∠BEP =∠DEQ,∴△PBE ≌△QDE (ASA );(2)证明:如图所示:∵△PBE ≌△QDE ,∴EP=EQ ,同理:△BME ≌△DNE (ASA ),∴EM=EN ,∴四边形PMQN 是平行四边形,∵PQ ⊥MN ,∴四边形PMQN 是菱形.【考点】三角形全等及其性质,平行四边形的性质,菱形的判定,三角形全等的判定(ASA )【解析】【分析】(1)由ASA 证△PBE ≌△QDE 即可;(2)由全等三角形的性质得出EP=EQ ,同理△BME ≌△DNE (ASA ),得出EM=EN ,证出四边形PMQN 是平行四边形,由对角线PQ ⊥MN ,即可得出结论.24.某水果商店销售一种进价为40元/千克的优质水果,若售价为50元/千克,则一个月可售出500千克;若售价在50元/千克的基础上每涨价1元,则月销售量就减少10千克.(1)当售价为55元/千克时,每月销售水果多少千克?(2)当月利润为8750元时,每千克水果售价为多少元?(3)当每千克水果售价为多少元时,获得的月利润最大?【答案】 (1)解:当售价为 55 元/千克时,每月销售量为 500−10×(55−50)=500−50=450 千克.(2)解:设每千克水果售价为x 元,由题意,得(x −40)[500−10(x −50)]=8750,即 −10x 2+1400x −40000=8750,整理,得 x 2−140x =−4875,配方,得(x−70)2=4900−4875,解得x1=65,x2=75.∴当月销售利润为元8750时,每千克水果售价为65元或75元(3)解:设月销售利润为y元,每千克水果售价为x元,由题意,得y=(x−40)[500−10(x−50)],即y=−10x2+1400x−40000(40≤x≤100),配方,得y=−10(x−70)2+9000,∵−10<0,∴当x=70时,y有最大值∴当该优质水果每千克售价为70元时,获得的月利润最大.【考点】一元二次方程的实际应用-销售问题,二次函数的实际应用-销售问题【解析】【分析】(1)根据销售量的规律:500减去减少的数量即可求出答案;(2)设每千克水果售价为x元,根据题意列方程解答即可;(3)设月销售利润为y元,每千克水果售价为x元,根据题意列函数关系式,再根据顶点式函数关系式的性质解答即可.25.如图,AB是⊙O的直径,AM和BN是它的两条切线,过⊙O上一点E作直线DC,分别交AM、BN 于点D、C,且DA=DE.(1)求证:直线CD是⊙O的切线;(2)求证:OA2=DE⋅CE【答案】(1)证明:如图,连接OE、OD,∵DA是⊙O的切线,∠OAD=90°在ΔAOD和ΔEOD中, OA=OE,DA=DE,OD=OD,∴ΔAOD≌ΔEOD(SSS)∴∠OAD=∠OED=90°,∴OE⊥CD,∴CD是⊙O的切线.(2)解:连接OC,∵AM、BN、DC是⊙O的切线,∴∠OAD=∠OBC=∠DEO=∠OEC=90°∴AM//BN,∴∠ADE+∠BCE=180°又∵AM、BN、DC是⊙O的切线,∴CE=CB,OD平分∠ADE,OC平分∠BCE,.∴∠ODE+∠OCE=12(∠ADE+∠BCE)=12×180°=90°又∵∠ODE+∠DOE=90°∴∠OCE=∠DOE,又∵∠DEO=∠OEC=90°, ∴ΔDEO∼ΔOEC,∴OECE =DEOE∴OE2=DE•CE.又∵OA=OE,∴OA2=DE•CE.【考点】三角形全等及其性质,切线的性质,切线的判定,相似三角形的判定与性质,三角形全等的判定(SSS)【解析】【分析】(1)连接OD,OE,证明△OAD≌△OED,得∠OAD=∠OED=90°,进而得CD是切线;(2)连接OC,得AM∥BN,得ΔDEO∼ΔOEC,,再证明OE2=DE•CE.,进而得出结论OA2=DE•CE..26.如图,抛物线的顶点为A(h,-1),与y轴交于点B (0,−12),点F(2,1)为其对称轴上的一个定点.(1)求这条抛物线的函数解析式;(2)已知直线l是过点C(0,-3)且垂直于y轴的定直线,若抛物线上的任意一点P(m,n)到直线l的距离为d,求证:PF=d;(3)已知坐标平面内的点D(4,3),请在抛物线上找一点Q,使△DFQ的周长最小,并求此时△DFQ周长的最小值及点Q的坐标.【答案】(1)解:设抛物线的函数解析式为y=a(x−ℎ)2+k,由题意,抛物线的顶点为A(2,−1),∴y=a(x−2)2−1.又∵抛物线与y轴交于点B(0,−12)∴−12=a(0−2)2−1∴a=18∴抛物线的函数解析式为y=18(x−2)2−1(2)证明:∵P(m,n),∴n=18(m−2)2−1=18m2−12m−12,∴P(m,18m2−12m−12),∴d=18m2−12m−12−(−3)=18m2−12m+52,∵F(2,1),∴PF=√(m−2)2+(18m2−12m−12−1)2=√164m4−18m3+78m2−52m+254,∵d2=164m4−18m3+78m2−52m+254,PF2=164m4−18m3+78m2−52m+254,∴d2=PF2,∴PF=d.(3)解:如图,过点Q作QH⊥直线l于H,过点D作DN⊥直线l于N.∵△DFQ的周长=DF+DQ+FQ,DF是定值= √22+22=2√2,∴DQ+QF的值最小时,△DFQ的周长最小,∵QF=QH,∴DQ+DF=DQ+QH,根据垂线段最短可知,当D,Q,H共线时,DQ+QH的值最小,此时点H与N重合,点Q在线段DN上,∴DQ+QH的最小值为6,∴△DFQ的周长的最小值为2√2+6,此时Q(4,- 12).【考点】待定系数法求二次函数解析式,垂线段最短,勾股定理,二次函数图象上点的坐标特征【解析】【分析】(1)由题意抛物线的顶点A(2,-1),可以假设抛物线的解析式为y=a(x-2)2-1,把点B坐标代入求出a即可.(2)由题意P(m,18m2−12m−12),求出d2,PF2(用m表示)即可解决问题.(3)如图,过点Q作QH⊥直线l于H,过点D作DN⊥直线l于N.因为△DFQ的周长=DF+DQ+FQ,DF是定值= √22+22=2√2,推出DQ+QF的值最小时,△DFQ的周长最小,再根据垂线段最短解决问题即可.。

2020年山东省滨州市中考数学试卷和答案解析

2020年山东省滨州市中考数学试卷和答案解析

2020年山东省滨州市中考数学试卷和答案解析一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,用2B铅笔把答题卡上对应题目的答案标号涂黑.每小题涂对得3分,满分36分.1.(3分)下列各式正确的是()A.﹣|﹣5|=5B.﹣(﹣5)=﹣5C.|﹣5|=﹣5D.﹣(﹣5)=5解析:根据绝对值的性质和相反数的定义对各选项分析判断即可.参考答案:解:A、∵﹣|﹣5|=﹣5,∴选项A不符合题意;B、∵﹣(﹣5)=5,∴选项B不符合题意;C、∵|﹣5|=5,∴选项C不符合题意;D、∵﹣(﹣5)=5,∴选项D符合题意.故选:D.点拨:此题主要考查相反数的定义以及绝对值的含义和求法,解答此题的关键是要明确一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3分)如图,AB∥CD,点P为CD上一点,PF是∠EPC的平分线,若∠1=55°,则∠EPD的大小为()A.60°B.70°C.80°D.100°解析:根据平行线和角平分线的定义即可得到结论.参考答案:解:∵AB∥CD,∴∠1=∠CPF=55°,∵PF是∠EPC的平分线,∴∠CPE=2∠CPF=110°,∴∠EPD=180°﹣110°=70°,故选:B.点拨:本题考查了平行线的性质以及角平分线的定义,熟练掌握平行线的性质是解题的关键.3.(3分)冠状病毒的直径约为80~120纳米,1纳米=1.0×10﹣9米,若用科学记数法表示110纳米,则正确的结果是()A.1.1×10﹣9米B.1.1×10﹣8米C.1.1×10﹣7米D.1.1×10﹣6米解析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.参考答案:解:110纳米=110×10﹣9米=1.1×10﹣7米.故选:C.点拨:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.(3分)在平面直角坐标系的第四象限内有一点M,到x轴的距离为4,到y轴的距离为5,则点M的坐标为()A.(﹣4,5)B.(﹣5,4)C.(4,﹣5)D.(5,﹣4)解析:直接利用点的坐标特点进而分析得出答案.参考答案:解:∵在平面直角坐标系的第四象限内有一点M,到x 轴的距离为4,到y轴的距离为5,∴点M的纵坐标为:﹣4,横坐标为:5,即点M的坐标为:(5,﹣4).故选:D.点拨:此题主要考查了点的坐标,正确掌握第四象限点的坐标特点是解题关键.5.(3分)下列图形:线段、等边三角形、平行四边形、圆,其中既是轴对称图形,又是中心对称图形的个数为()A.1B.2C.3D.4解析:根据轴对称图形与中心对称图形的概念求解.参考答案:解:线段是轴对称图形,也是中心对称图形;等边三角形是轴对称图形,不是中心对称图形;平行四边形不是轴对称图形,是中心对称图形;圆是轴对称图形,也是中心对称图形;则既是轴对称图形又是中心对称图形的有2个.故选:B.点拨:此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.(3分)如图,点A在双曲线y=上,点B在双曲线y=上,且AB∥x轴,点C、D在x轴上,若四边形ABCD为矩形,则它的面积为()A.4B.6C.8D.12解析:根据双曲线的图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的矩形的面积S的关系S=|k|即可判断.参考答案:解:过A点作AE⊥y轴,垂足为E,∵点A在双曲线y=上,∴四边形AEOD的面积为4,∵点B在双曲线线y=上,且AB∥x轴,∴四边形BEOC的面积为12,∴矩形ABCD的面积为12﹣4=8.故选:C.点拨:本题主要考查了反比例函数y=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.7.(3分)下列命题是假命题的是()A.对角线互相垂直且相等的平行四边形是正方形B.对角线互相垂直的矩形是正方形C.对角线相等的菱形是正方形D.对角线互相垂直且平分的四边形是正方形解析:利用正方形的判定依次判断,可求解.参考答案:解:A、对角线互相垂直且相等的平行四边形是正方形是真命题,故选项A不合题意;B、对角线互相垂直的矩形是正方形是真命题,故选项B不合题意;C、对角线相等的菱形是正方形是真命题,故选项C不合题意;D、对角线互相垂直且平分的四边形是菱形,即对角线互相垂直且平分的四边形是正方形是假命题,故选项D符合题意;故选:D.点拨:本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8.(3分)已知一组数据:5,4,3,4,9,关于这组数据的下列描述:①平均数是5,②中位数是4,③众数是4,④方差是4.4,其中正确的个数为()A.1B.2C.3D.4解析:先把数据由小到大排列为3,4,4,5,9,然后根据算术平均数、中位数和众数的定义得到数据的平均数,中位数和众数,再根据方差公式计算数据的方差,然后利用计算结果对各选项进行判断.参考答案:解:数据由小到大排列为3,4,4,5,9,它的平均数为=5,数据的中位数为4,众数为4,数据的方差=[(3﹣5)2+(4﹣5)2+(4﹣5)2+(5﹣5)2+(9﹣5)2]=4.4.所以①②③④都正确.故选:D.点拨:本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差,也考查了平均数,中位数和众数的定义.9.(3分)在⊙O中,直径AB=15,弦DE⊥AB于点C,若OC:OB=3:5,则DE的长为()A.6B.9C.12D.15解析:直接根据题意画出图形,再利用垂径定理以及勾股定理得出答案.参考答案:解:如图所示:∵直径AB=15,∴BO=7.5,∵OC:OB=3:5,∴CO=4.5,∴DC==6,∴DE=2DC=12.故选:C.点拨:此题主要考查了垂径定理和勾股定理,正确得出CO的长是解题关键.10.(3分)对于任意实数k,关于x的方程x2﹣(k+5)x+k2+2k+25=0的根的情况为()A.有两个相等的实数根B.没有实数根C.有两个不相等的实数根D.无法判定解析:先根据根的判别式求出“△”的值,再根据根的判别式的内容判断即可.参考答案:解:x2﹣(k+5)x+k2+2k+25=0,△=[﹣(k+5)]2﹣4××(k2+2k+25)=﹣k2+6k﹣25=﹣(k﹣3)2﹣16,不论k为何值,﹣(k﹣3)2≤0,即△=﹣(k﹣3)2﹣16<0,所以方程没有实数根,故选:B.点拨:本题考查了根的判别式,能熟记根的判别式的内容是解此题的关键,注意:一元二次方程ax2﹣bx+c=0(a、b、c为常数,a ≠0),当△=b2﹣4ac>0时,方程有两个不相等的实数根,当△=b2﹣4ac=0时,方程有两个相等的实数根,当△=b2﹣4ac<0时,方程没有实数根.11.(3分)对称轴为直线x=1的抛物线y=ax2+bx+c(a、b、c为常数,且a≠0)如图所示,小明同学得出了以下结论:①abc<0,②b2>4ac,③4a+2b+c>0,④3a+c>0,⑤a+b≤m(am+b)(m 为任意实数),⑥当x<﹣1时,y随x的增大而增大.其中结论正确的个数为()A.3B.4C.5D.6解析:由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.参考答案:解:①由图象可知:a>0,c<0,∵﹣=1,∴b=﹣2a<0,∴abc<0,故①错误;②∵抛物线与x轴有两个交点,∴b2﹣4ac>0,∴b2>4ac,故②正确;③当x=2时,y=4a+2b+c<0,故③错误;④当x=﹣1时,y=a﹣b+c>0,∴3a+c>0,故④正确;⑤当x=1时,y的值最小,此时,y=a+b+c,而当x=m时,y=am2+bm+c,所以a+b+c≤am2+bm+c,故a+b≤am2+bm,即a+b≤m(am+b),故⑤正确,⑥当x<﹣1时,y随x的增大而减小,故⑥错误,故选:A.点拨:本题考查了二次函数图象与系数的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴和抛物线与y轴的交点、抛物线与x轴交点的个数确定.12.(3分)如图,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平后再次折叠,使点A落在EF上的点A′处,得到折痕BM,BM与EF相交于点N.若直线BA′交直线CD于点O,BC=5,EN=1,则OD的长为()A.B.C.D.解析:根据中位线定理可得AM=2,根据折叠的性质和等腰三角形的性质可得A′M=A′N=2,过M点作MG⊥EF于G,可求A′G,根据勾股定理可求MG,进一步得到BE,再根据平行线分线段成比例可求OF,从而得到OD.参考答案:解:∵EN=1,∴由中位线定理得AM=2,由折叠的性质可得A′M=2,∵AD∥EF,∴∠AMB=∠A′NM,∵∠AMB=∠A′MB,∴∠A′NM=∠A′MB,∴A′N=2,∴A′E=3,A′F=2过M点作MG⊥EF于G,∴NG=EN=1,∴A′G=1,由勾股定理得MG==,∴BE=DF=MG=,∴OF:BE=2:3,解得OF=,∴OD=﹣=.故选:B.点拨:考查了翻折变换(折叠问题),矩形的性质,勾股定理,关键是得到矩形的宽和A′E的长.二、填空题:本大题共8个小题.每小题5分,满分40分.13.(5分)若二次根式在实数范围内有意义,则x的取值范围为x≥5.解析:根据二次根式有意义的条件得出x﹣5≥0,求出即可.参考答案:解:要使二次根式在实数范围内有意义,必须x﹣5≥0,解得:x≥5,故答案为:x≥5.点拨:本题考查了二次根式有意义的条件和解一元一次不等式,能得出关于x的不等式是解此题的关键.14.(5分)在等腰△ABC中,AB=AC,∠B=50°,则∠A的大小为80°.解析:根据等腰三角形两底角相等可求∠C,再根据三角形内角和为180°列式进行计算即可得解.参考答案:解:∵AB=AC,∠B=50°,∴∠C=∠B=50°,∴∠A=180°﹣2×50°=80°.故答案为:80°.点拨:本题考查了等腰三角形的性质,主要利用了等腰三角形两底角相等的性质.15.(5分)若正比例函数y=2x的图象与某反比例函数的图象有一个交点的纵坐标是2,则该反比例函数的解析式为y=.解析:当y=2时,即y=2x=2,解得:x=1,故该点的坐标为(1,2),将(1,2)代入反比例函数表达式y=,即可求解.参考答案:解:当y=2时,即y=2x=2,解得:x=1,故该点的坐标为(1,2),将(1,2)代入反比例函数表达式y=并解得:k=2,故答案为:y=.点拨:本题考查的是反比例函数与一次函数的交点问题,解题的关键是通过正比例函数确定交点的坐标,进而求解.16.(5分)如图,⊙O是正方形ABCD的内切圆,切点分别为E、F、G、H,ED与⊙O相交于点M,则sin∠MFG的值为.解析:根据同弧所对的圆周角相等,可以把求三角函数的问题,转化为直角三角形的边的比的问题.参考答案:解:∵⊙O是正方形ABCD的内切圆,∴AE=AB,EG=BC;根据圆周角的性质可得:∠MFG=∠MEG.∵sin∠MFG=sin∠MEG==,∴sin∠MFG=.故答案为:.点拨:本题考查圆周角的性质及锐角三角函数的概念:在直角三角形中,正弦等于对边比斜边;余弦等于邻边比斜边;正切等于对边比邻边.17.(5分)现有下列长度的五根木棒:3,5,8,10,13,从中任取三根,可以组成三角形的概率为.解析:利用完全列举法展示所有可能的结果数,再利用三角形三边的关系得到组成三角形的结果数,然后根据概率公式计算.参考答案:解:3,5,8,10,13,从中任取三根,所有情况为:3、5、8;3、5、10;3、5、13;3、8、10;3、8、13;3,10,13;5、8、10;5、8、13;5、10、13;8、10、13;共有10种等可能的结果数,其中可以组成三角形的结果数为4,所以可以组成三角形的概率==.故答案为.点拨:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了三角形三边的关系.18.(5分)若关于x的不等式组无解,则a的取值范围为a≥1.解析:分别求出每一个不等式的解集,根据口诀:大大小小无解了可得答案.参考答案:解:解不等式x﹣a>0,得:x>2a,解不等式4﹣2x≥0,得:x≤2,∵不等式组无解,∴2a≥2,解得a≥1,故答案为:a≥1.点拨:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.(5分)观察下列各式:a1=,a2=,a3=,a4=,a5=,…,根据其中的规律可得a n=(用含n的式子表示).解析:观察发现,每一项都是一个分数,分母依次为3、5、7,…,那么第n项的分母是2n+1;分子依次为2,3,10,15,26,…,变化规律为:奇数项的分子是n2+1,偶数项的分子是n2﹣1,即第n项的分子是n2+(﹣1)n+1;依此即可求解.参考答案:解:由分析可得a n=.故答案为:.点拨:本题考查学生通过观察、归纳、抽象出数列的规律的能力,要求学生首先分析题意,找到规律,并进行推导得出答案.20.(5分)如图,点P是正方形ABCD内一点,且点P到点A、B、C的距离分别为2、、4,则正方形ABCD的面积为14+4.解析:如图,将△ABP绕点B顺时针旋转90°得到△CBM,连接PM,过点B作BH⊥PM于H.首先证明∠PMC=90°,推出∠CMB=∠APB=135°,推出A,P,M共线,利用勾股定理求出AB2即可.参考答案:解:如图,将△ABP绕点B顺时针旋转90°得到△CBM,连接PM,过点B作BH⊥PM于H.∵BP=BM=,∠PBM=90°,∴PM=PB=2,∵PC=4,PA=CM=2,∴PC2=CM2+PM2,∴∠PMC=90°,∵∠BPM=∠BMP=45°,∴∠CMB=∠APB=135°,∴∠APB+∠BPM=180°,∴A,P,M共线,∵BH⊥PM,∴PH=HM,∴BH=PH=HM=1,∴AH=2+1,∴AB2=AH2+BH2=(2+1)2+12=14+4,∴正方形ABCD的面积为14+4.解法二:连接AC,利用勾股定理求出AC即可.故答案为14+4.点拨:本题考查旋转的性质,全等三角形的判定和性质,正方形的性质,解直角三角形等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题.三、解答题:本大题共6个小题,满分74分,解答时请写出必要的演推过程.21.(10分)先化简,再求值:1﹣÷;其中x=cos30°×,y=(π﹣3)0﹣()﹣1.解析:直接利用分式的混合运算法则化简,再计算x,y的值,进而代入得出答案.参考答案:解:原式=1﹣÷=1+•=1+==,∵x=cos30°×=×2=3,y=(π﹣3)0﹣()﹣1=1﹣3=﹣2,∴原式==0.点拨:此题主要考查了分式的化简求值,正确进行分式的混合运算是解题关键.22.(12分)如图,在平面直角坐标系中,直线y=﹣x﹣1与直线y=﹣2x+2相交于点P,并分别与x轴相交于点A、B.(1)求交点P的坐标;(2)求△PAB的面积;(3)请把图象中直线y=﹣2x+2在直线y=﹣x﹣1上方的部分描黑加粗,并写出此时自变量x的取值范围.解析:(1)解析式联立,解方程组即可求得交点P的坐标;(2)求得A、B的坐标,然后根据三角形面积公式求得即可;(3)根据图象求得即可.参考答案:解:(1)由解得,∴P(2,﹣2);(2)直线y=﹣x﹣1与直线y=﹣2x+2中,令y=0,则﹣x﹣1=0与﹣2x+2=0,解得x=﹣2与x=1,∴A(﹣2,0),B(1,0),∴AB=3,∴S△PAB===3;(3)如图所示:自变量x的取值范围是x<2.点拨:本题考查了两条直线平行或相交问题,两条直线的交点坐标是两条直线的解析式构成的方程组的解.23.(12分)如图,过▱ABCD对角线AC与BD的交点E作两条互相垂直的直线,分别交边AB、BC、CD、DA于点P、M、Q、N.(1)求证:△PBE≌△QDE;(2)顺次连接点P、M、Q、N,求证:四边形PMQN是菱形.解析:(1)由ASA证△PBE≌△QDE即可;(2)由全等三角形的性质得出EP=EQ,同理△BME≌△DNE (ASA),得出EM=EN,证出四边形PMQN是平行四边形,由对角线PQ⊥MN,即可得出结论.参考答案:(1)证明:∵四边形ABCD是平行四边形,∴EB=ED,AB∥CD,∴∠EBP=∠EDQ,在△PBE和△QDE中,,∴△PBE≌△QDE(ASA);(2)证明:如图所示:∵△PBE≌△QDE,∴EP=EQ,同理:△BME≌△DNE(ASA),∴EM=EN,∴四边形PMQN是平行四边形,∵PQ⊥MN,∴四边形PMQN是菱形.点拨:本题考查了平行四边形的判定与性质,菱形的判定,全等三角形的判定与性质;熟练掌握菱形的判定和平行四边形的判定与性质,证明三角形全等是解题的关键.24.(13分)某水果商店销售一种进价为40元/千克的优质水果,若售价为50元/千克,则一个月可售出500千克;若售价在50元/千克的基础上每涨价1元,则月销售量就减少10千克.(1)当售价为55元/千克时,每月销售水果多少千克?(2)当月利润为8750元时,每千克水果售价为多少元?(3)当每千克水果售价为多少元时,获得的月利润最大?解析:(1)由月销售量=500﹣(销售单价﹣50)×10,可求解;(2)设每千克水果售价为x元,由利润=每千克的利润×销售的数量,可列方程,即可求解;(3)设每千克水果售价为m元,获得的月利润为y元,由利润=每千克的利润×销售的数量,可得y与x的关系式,由二次函数的性质可求解.参考答案:解:(1)当售价为55元/千克时,每月销售水果=500﹣10×(55﹣50)=450千克;(2)设每千克水果售价为x元,由题意可得:8750=(x﹣40)[500﹣10(x﹣50)],解得:x1=65,x2=75,答:每千克水果售价为65元或75元;(3)设每千克水果售价为m元,获得的月利润为y元,由题意可得:y=(m﹣40)[500﹣10(m﹣50)]=﹣10(m﹣70)2+9000,∴当m=70时,y有最大值为9000元,答:当每千克水果售价为70元时,获得的月利润最大值为9000元.点拨:本题主要考查二次函数的应用,解题的关键是熟练掌握销售问题中关于销售总利润的相等关系,并据此列出函数解析式及熟练掌握二次函数的性质.25.(13分)如图,AB是⊙O的直径,AM和BN是它的两条切线,过⊙O上一点E作直线DC,分别交AM、BN于点D、C,且DA =DE.(1)求证:直线CD是⊙O的切线;(2)求证:OA2=DE•CE.解析:(1)连接OD,OE,证明△OAD≌△OED,得∠OAD=∠OED =90°,进而得CD是切线;(2)过D作DF⊥BC于点F,得四边形ABFD为矩形,得DF=2OA,再证明CF=CE﹣DE,进而根据勾股定理得结论.参考答案:解:(1)连接OD,OE,如图1,在△OAD和△OED中,,∴△OAD≌△OED(SSS),∴∠OAD=∠OED,∵AM是⊙O的切线,∴∠OAD=90°,∴∠OED=90°,∴直线CD是⊙O的切线;(2)过D作DF⊥BC于点F,如图2,则∠DFB=∠DFC=90°,∵AM、BN都是⊙O的切线,∴∠ABF=∠BAD=90°,∴四边形ABFD是矩形,∴DF=AB=2OA,AD=BF,∵CD是⊙O的切线,∴DE=DA,CE=CB,∴CF=CB﹣BF=CE﹣DE,∵DF2=CD2﹣CF2,∴4OA2=(CE+DE)2﹣(CE﹣DE)2,即4OA2=4DE•CE,∴OA2=DE•CE.点拨:本题主要考查了圆的切线的性质与判定,勾股定理,矩形的性质与判定,全等三角形的性质与判定,关键是正确作辅助线构造全等三角形与直角三角形.26.(14分)如图,抛物线的顶点为A(h,﹣1),与y轴交于点B (0,﹣),点F(2,1)为其对称轴上的一个定点.(1)求这条抛物线的函数解析式;(2)已知直线l是过点C(0,﹣3)且垂直于y轴的定直线,若抛物线上的任意一点P(m,n)到直线l的距离为d,求证:PF =d;(3)已知坐标平面内的点D(4,3),请在抛物线上找一点Q,使△DFQ的周长最小,并求此时△DFQ周长的最小值及点Q的坐标.解析:(1)由题意抛物线的顶点A(2,﹣1),可以假设抛物线的解析式为y=a(x﹣2)2﹣1,把点B坐标代入求出a即可.(2)由题意P(m,m2﹣m﹣),求出d2,PF2(用m表示)即可解决问题.(3)如图,过点Q作QH⊥直线l于H,过点D作DN⊥直线l 于N.因为△DFQ的周长=DF+DQ+FQ,DF是定值==2,推出DQ+QF的值最小时,△DFQ的周长最小,再根据垂线段最短解决问题即可.参考答案:(1)解:由题意抛物线的顶点A(2,﹣1),可以假设抛物线的解析式为y=a(x﹣2)2﹣1,∵抛物线经过B(0,﹣),∴﹣=4a﹣1,∴a=,∴抛物线的解析式为y=(x﹣2)2﹣1.(2)证明:∵P(m,n),∴n=(m﹣2)2﹣1=m2﹣m﹣,∴P(m,m2﹣m﹣),∴d=m2﹣m﹣﹣(﹣3)=m2﹣m+,∵F(2,1),∴PF==,∵d2=m4﹣m3+m2﹣m+,PF2=m4﹣m3+m2﹣m+,∴d2=PF2,∴PF=d.(3)如图,过点Q作QH⊥直线l于H,过点D作DN⊥直线l 于N.∵△DFQ的周长=DF+DQ+FQ,DF是定值==2,∴DQ+QF的值最小时,△DFQ的周长最小,∵QF=QH,∴DQ+DF=DQ+QH,根据垂线段最短可知,当D,Q,H共线时,DQ+QH的值最小,此时点H与N重合,点Q在线段DN上,∴DQ+QH的最小值为6,∴△DFQ的周长的最小值为2+6,此时Q(4,﹣).点拨:本题属于二次函数综合题,考查了待定系数法,两点间距离公式,垂线段最短等知识,解题的关键是学会利用参数解决问题,学会用转化的思想思考问题,属于中考常考题型.。

山东省滨州市2020年中考数学试卷

山东省滨州市2020年中考数学试卷

山东省滨州市2020年中考数学试卷一、单选题(共12题;共24分)1. ( 2分) 下列式子中,正确的是()A. |﹣5|=﹣5B. ﹣|﹣5|=5C. ﹣(﹣5)=﹣5D. ﹣(﹣5)=52. ( 2分) 如图,AB//CD,点P为CD上一点,PF是∠EPC的平分线,若∠1=55°,则∠EPD的大小为()A. 60°B. 70°C. 80°D. 100°3. ( 2分) 冠状病毒的直径约为80~120纳米,1纳米=米,若用科学记数法表示110纳米,则正确的结果是()A. 米B. 米C. 米D. 米4. ( 2分) 在平面直角坐标系的第四象限内有一点M,到x轴的距离为4,到y轴的距离为5,则点M的坐标为()A. B. C. D.5. ( 2分) 下列图形:线段、等边三角形、平行四边形、圆,其中既是轴对称图形,又是中心对称图形的个数为()A. 1B. 2C. 3D. 46. ( 2分) 如图,点A在双曲线上,点B在双曲线上,且AB//x轴,点C、D在x轴上,若四边形ABCD为矩形,则它的面积为()A. 4B. 6C. 8D. 127. ( 2分) 下列命题是假命题的是()A. 对角线互相垂直且相等的平行四边形是正方形.B. 对角线互相垂直的矩形是正方形.C. 对角线相等的菱形是正方形.D. 对角线互相垂直平分的四边形是正方形.8. ( 2分) 已知一组数据5,4,3,4,9,关于这组数据的下列描述:①平均数是5,②中位数是4,③众数是4,④方差是4.4,其中正确的个数为()A. 1B. 2C. 3D. 49. ( 2分) 在中,直径AB=15,弦DE⊥AB于点C.若OC:OB=3 :5,则DE的长为()A. 6B. 9C. 12D. 1510. ( 2分) 对于任意实数k,关于x的方程的根的情况为()A. 有两个相等的实数根B. 没有实数根C. 有两个不相等的实数根D. 无法判定11. ( 2分) 对称轴为直线x=1的抛物线(a、b、c为常数,且a≠0)如图所示,小明同学得出了以下结论:①abc<0,②b2>4ac,③4a+2b+c>0,④3a+c>0,⑤a+b≤m(am+b)(m为任意实数),⑥当x<-1时,y随x的增大而增大,其中结论正确的个数为()A. 3B. 4C. 5D. 612. ( 2分) 如图,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF;把纸片展平后再次折叠,使点A 落在EF上的点处,得到折痕BM,BM与FF相交于点N.若直线B A’交直线CD于点O,BC=5,EN=1,则OD的长为()A. B. C. D.二、填空题(共8题;共8分)13. ( 1分) 若式子在实数范围内有意义,则x的取值范围是________.14. ( 1分) 在等腰ABC中,AB=AC,∠B=50°,则∠A的大小为________.15. ( 1分) 若正比例函数的图象与某反比例函数的图象有一个交点的纵坐标是2,则该反比例函数的解析式为________.16. ( 1分) 如图,是正方形ABCD的内切圆,切点分别为E、F,G,H,ED与相交于点M,则sin∠MFG的值为________.17. ( 1分) 现有下列长度的五根木棒:3,5,8,10,13,从中任取三根,可以组成三角形的概率为________.18. ( 1分) 若关于x的不等式组无解,则a的取值范围为________.19. ( 1分) 观察下列各式:,根据其中的规律可得________(用含n的式子表示).20. ( 1分) 如图,点P是正方形ABCD内一点,且点P到点A、B、C的距离分别为则正方形ABCD的面积为________三、解答题(共6题;共70分)21. ( 5分) 先化筒,再求值:其中22. ( 15分) 如图,在平面直角坐标系中,直线与直线相交于点P,并分别与x轴相交于点A、B.(1)求交点P的坐标;(2)求PAB的面积;(3)请把图象中直线在直线上方的部分描黑加粗,并写出此时自变量x的取值范围.23. ( 10分) 如图,过□ABCD对角线AC与BD的交点E作两条互相垂直的直线,分别交边AB、BC.CD、DA于点P、M、Q、N.(1)求证:PBE≌QDE;(2)顺次连接点P、M、Q、N,求证:四边形PMQN是菱形.24. ( 15分) 某水果商店销售一种进价为40元/千克的优质水果,若售价为50元/千克,则一个月可售出500千克;若售价在50元/千克的基础上每涨价1元,则月销售量就减少10千克.(1)当售价为55元/千克时,每月销售水果多少千克?(2)当月利润为8750元时,每千克水果售价为多少元?(3)当每千克水果售价为多少元时,获得的月利润最大?25. ( 10分) 如图,AB是的直径,AM和BN是它的两条切线,过上一点E作直线DC,分别交AM、BN于点D、C,且DA=DE.(1)求证:直线CD是的切线;(2)求证:26. ( 15分) 如图,抛物线的顶点为A(h,-1),与y轴交于点B ,点F(2,1)为其对称轴上的一个定点.(1)求这条抛物线的函数解析式;(2)已知直线l是过点C(0,-3)且垂直于y轴的定直线,若抛物线上的任意一点P(m,n)到直线l的距离为d,求证:PF=d;(3)已知坐标平面内的点D(4,3),请在抛物线上找一点Q,使△DFQ的周长最小,并求此时DFQ周长的最小值及点Q的坐标.答案解析部分一、单选题1.【答案】D【考点】相反数及有理数的相反数,绝对值及有理数的绝对值【解析】【解答】解:A. |﹣5|=5,故原选项不符合题意;B. ﹣|﹣5|=-5,故原选项不符合题意;C. ﹣(﹣5)=5,故原选项不符合题意;D. ﹣(﹣5)=5,故符合题意.故答案为:D.【分析】根据负数的绝对值为它的相反数对A、B项进行判断;-(-5)表示-5的相反数,根据只有符号不同的两个数互为相反数对C、D选项进行判断.2.【答案】B【考点】角的平分线,平行线的性质【解析】【解答】解:∵AB∥CD,∴∠1=∠CPF=55°,∵PF是∠EPC的平分线,∴∠CPE=2∠CPF=110°,∴∠EPD=180°-110°=70°,故答案为:B.【分析】根据平行线和角平分线的定义即可得到结论.3.【答案】C【考点】科学记数法—表示绝对值较小的数【解析】【解答】解:110纳米=110×10-9米=1.1×10-7米.故答案为:C.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.4.【答案】D【考点】点的坐标与象限的关系【解析】【解答】设点M的坐标为(x,y),∵点M到x轴的距离为4,∴,∴,∵点M到y轴的距离为5,∴,∴,∵点M在第四象限内,∴x=5,y=-4,即点M的坐标为(5,-4)故答案为:D.【分析】根据点到坐标轴的距离及点所在的象限解答即可.5.【答案】B【考点】轴对称图形,中心对称及中心对称图形【解析】【解答】解:线段是轴对称图形,也是中心对称图形;等边三角形是轴对称图形,不是中心对称图形;平行四边形不是轴对称图形,是中心对称图形;圆是轴对称图形,也是中心对称图形;则既是轴对称图形又是中心对称图形的有2个.故答案为:B.【分析】根据轴对称图形与中心对称图形的概念求解.6.【答案】C【考点】反比例函数系数k的几何意义,矩形的性质【解析】【解答】过点A作AE⊥y轴于点E,∵点A在双曲线上,∴四边形AEOD的面积为4,∵点B在双曲线上,且AB//x轴,∴四边形BEOC的面积为12,∴矩形ABCD的面积为12-4=8,故答案为:C.【分析】过点A作AE⊥y轴于点E,利用反比例函数系数k的几何意义,分别得到四边形AEOD的面积为4,四边形BEOC的面积为12,即可得到矩形ABCD的面积.7.【答案】D【考点】正方形的判定【解析】【解答】解:对角线互相垂直且相等的平行四边形是正方形,符合题意;对角线互相垂直的矩形是正方形,符合题意;对角线相等的菱形是正方形,符合题意;对角线互相垂直平分且相等的四边形是正方形;可知选项D是错误的.故答案为:D.【分析】根据正方形的各种判定方法逐项分析即可.8.【答案】D【考点】分析数据的集中趋势【解析】【解答】解:数据由小到大排列为3,4,4,5,9,它的平均数为=5,数据的中位数为4,众数为4,数据的方差= [(3-5)2+(4-5)2+(4-5)2+(5-5)2+(9-5)2]=4.4.所以①②③④都符合题意.故答案为:D.【分析】先把数据由小到大排列为3,4,4,5,9,然后根据算术平均数、中位数和众数的定义得到数据的平均数,中位数和众数,再根据方差公式计算数据的方差,然后利用计算结果对各选项进行判断.9.【答案】C【考点】勾股定理,垂径定理【解析】【解答】解:如图所示:∵直径AB=15,∴BO=7.5,∵OC:OB=3:5,∴CO=4.5,∵DE⊥AB,∴DC==6,∴DE=2DC=12.故答案为:C.【分析】根据题意画出图形,然后利用垂径定理和勾股定理解答即可.10.【答案】B【考点】一元二次方程根的判别式及应用【解析】【解答】解:,,不论k为何值,,即,所以方程没有实数根,故答案为:B.【分析】先根据根的判别式求出“△”的值,再根据根的判别式的内容判断即可.11.【答案】A【考点】二次函数图象与系数的关系,二次函数图象上点的坐标特征,二次函数y=ax^2+bx+c的性质【解析】【解答】解:①由图象可知:a>0,c<0,∵- =1,∴b=-2a<0,∴abc>0,故①不符合题意;②∵抛物线与x轴有两个交点,∴b2-4ac>0,故②符合题意;③当x=2时,y=4a+2b+c<0,故③不符合题意;④当x=-1时,y=a-b+c=a-(-2a)+c>0,∴3a+c>0,故④符合题意;⑤当x=1时,y取到值最小,此时,y=a+b+c,而当x=m时,y=am2+bm+c,所以a+b+c≤am2+bm+c,故a+b≤am2+bm,即a+b≤m(am+b),故⑤符合题意,⑥当x<-1时,y随x的增大而减小,故⑥不符合题意,故答案为:A.【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.12.【答案】B【考点】勾股定理,三角形中位线定理,矩形的性质,翻折变换(折叠问题)【解析】【解答】解:∵EN=1,∴由中位线定理得AM=2,由折叠的性质可得A′M=2,∵AD∥EF,∴∠AMB=∠A′NM,∵∠AMB=∠A′MB,∴∠A′NM=∠A′MB,∴A′N=2,∴A′E=3,A′F=2过M点作MG⊥EF于G,∴NG=EN=1,∴A′G=1,由勾股定理得MG= ,∴BE=DF=MG= ,∴OF:BE=2:3,解得OF= ,∴OD= - = .故答案为:B.【分析】根据中位线定理可得AM=2,根据折叠的性质和等腰三角形的性质可得A′M=A′N=2,过M点作MG⊥EF于G,可求A′G,根据勾股定理可求MG,进一步得到BE,再根据平行线分线段成比例可求OF,从而得到OD.二、填空题13.【答案】x≥5【考点】二次根式有意义的条件【解析】【解答】∵在实数范围内有意义,∴x−5⩾0,解得x⩾5.故答案为:x≥5.【分析】使二次根式有意义,即是使被开方数大于等于0,据此解答即可.14.【答案】80°【考点】三角形内角和定理,等腰三角形的性质【解析】【解答】解:∵AB=AC,∠B=50°,∴∠C=∠B=50°,∴∠A=180°-2×50°=80°.故答案为:80°.【分析】根据等腰三角形两底角相等可求∠C,再根据三角形内角和为180°列式进行计算即可得解.15.【答案】【考点】反比例函数与一次函数的交点问题,反比例函数图象上点的坐标特征【解析】【解答】令y=2x中y=2,得到2x=2,解得x=1,∴正比例函数的图象与某反比例函数的图象交点的坐标是(1,2),设反比例函数解析式为,将点(1,2)代入,得,∴反比例函数的解析式为,故答案为:.【分析】利用正比例函数解析式求出交点的横坐标,再将交点的坐标代入反比例函数解析式中求出k即可得到答案.16.【答案】【考点】正方形的性质,圆周角定理,切线的性质,正多边形和圆,锐角三角函数的定义【解析】【解答】如图,连接EG、HF由正方形内切圆的性质得:EG与HF的交点即为圆心O四边形ABCD是正方形由圆的切线的性质得:四边形ADGE和四边形OHDG均为矩形,设正方形ABCD的边长为,则的半径为在中,由圆周角定理得:则故答案为:.【分析】先根据正方形内切圆的性质得出圆心O的位置,再根据正方形的性质、圆的切线的性质可得,,从而可得四边形ADGE和四边形OHDG均为矩形,又根据矩形的性质可得,,设正方形ABCD的边长为,从而可得,,然后在中,根据正弦三角函数的定义可得,最后根据圆周角定理可得,由此即可得出答案.17.【答案】【考点】三角形三边关系,概率公式【解析】【解答】五根木棒,任意取三根共有10种情况:3、5、8;3、5、10;3、5、13;3、8、10;3、8、13;3、10、13;5、10、13;5、8、10;5、8、13;8、10、13其中能组成三角形的有:①3、8、10,由于8-3<10<8+3,所以能构成三角形;②5、10、13,由于10-5<13<10+5,所以能构成三角形;③5、8、10,由于8-5<10<8+5,所以能构成三角形;④8、10、13,由于10-8<13<10+8,所以能构成三角形;所以有4种方案符合要求,故能构成三角形的概率是P= = ,故答案为:.【分析】求出任取三根木棒的所有情况,再求出能组成三角形的所有情况,利用概率公式直接计算即可.18.【答案】a≥1【考点】解一元一次不等式组【解析】【解答】解:对不等式组,解不等式①,得,解不等式②,得,∵原不等式组无解,∴,解得:.故答案为:.【分析】先解不等式组中的两个不等式,然后根据不等式组无解可得关于a的不等式,解不等式即得答案.19.【答案】【考点】探索数与式的规律【解析】【解答】解:由分析得,故答案为:【分析】观察发现,每一项都是一个分数,分母依次为3、5、7,…,那么第n项的分母是2n+1;分子依次为2,3,10,15,26,…,变化规律为:奇数项的分子是n2+1,偶数项的分子是n2-1,即第n项的分子是n2+(-1)n+1;依此即可求解.20.【答案】【考点】勾股定理,勾股定理的逆定理,正方形的性质,旋转的性质【解析】【解答】解:如图,将△ABP绕点B顺时针旋转90°得到△CBM,连接PM,过点B作BH⊥PM于H.∵BP=BM= ,∠PBM=90°,∴PM= PB=2,∵PC=4,PA=CM=2 ,∴PC2=CM2+PM2,∴∠PMC=90°,∵∠BPM=∠BMP=45°,∴∠CMB=∠APB=135°,∴∠APB+∠BPM=180°,∴A,P,M共线,∵BH⊥PM,∴PH=HM,∴BH=PH=HM=1,∴AH=2 +1,∴AB2=AH2+BH2=(2 +1)2+12=14+4 ,∴正方形ABCD的面积为14+4 .故答案为14+4 .【分析】如图,将△ABP绕点B顺时针旋转90°得到△CBM,连接PM,过点B作BH⊥PM于H.首先证明∠PMC=90°,推出∠CMB=∠APB=135°,推出A,P,M共线,利用勾股定理求出AB2即可.三、解答题21.【答案】解:,,,;∵,所以,原式.【考点】利用分式运算化简求值【解析】【分析】直接利用分式的混合运算法则化简,再计算x,y的值,进而代入得出答案.22.【答案】(1)解: 根据题意,交点的横、纵坐标是方程组的解解这个方程组,得交点的坐标为(2)解: 直线与轴的交点的坐标为直线与轴交点的坐标为的面积为(3)解: 在图象中把直线在直线上方的部分描黑加粗,图示如下:此时自变量的取值范围为【考点】一次函数与不等式(组)的综合应用,两一次函数图象相交或平行问题【解析】【分析】(1)解析式联立,解方程组即可求得交点P的坐标;(2)求得A、B的坐标,然后根据三角形面积公式求得即可;(3)根据图象求得即可.23.【答案】(1)证明:∵四边形ABCD是平行四边形,∴EB=ED,AB∥CD,∴∠EBP=∠EDQ,在△PBE和△QDE中,,∴△PBE≌△QDE(ASA);(2)证明:如图所示:∵△PBE≌△QDE,∴EP=EQ,同理:△BME≌△DNE(ASA),∴EM=EN,∴四边形PMQN是平行四边形,∵PQ⊥MN,∴四边形PMQN是菱形.【考点】全等三角形的性质,平行四边形的性质,菱形的判定【解析】【分析】(1)由ASA证△PBE≌△QDE即可;(2)由全等三角形的性质得出EP=EQ,同理△BME≌△DNE (ASA),得出EM=EN,证出四边形PMQN是平行四边形,由对角线PQ⊥MN,即可得出结论.24.【答案】(1)解:当售价为元/千克时,每月销售量为千克.(2)解:设每千克水果售价为x元,由题意,得即整理,得配方,得解得当月销售利润为元8750时,每千克水果售价为65元或75元(3)解:设月销售利润为y元,每千克水果售价为x元,由题意,得即配方,得,当时,y有最大值当该优质水果每千克售价为70元时,获得的月利润最大.【考点】一元二次方程的实际应用-销售问题,二次函数的实际应用-销售问题【解析】【分析】(1)根据销售量的规律:500减去减少的数量即可求出答案;(2)设每千克水果售价为x元,根据题意列方程解答即可;(3)设月销售利润为y元,每千克水果售价为x元,根据题意列函数关系式,再根据顶点式函数关系式的性质解答即可.25.【答案】(1)证明:如图,连接是的切线,在和中,是的切线.(2)解:连接是的切线,又是的切线,平分平分又又,又【考点】全等三角形的性质,切线的性质,切线的判定,相似三角形的判定与性质【解析】【分析】(1)连接OD,OE,证明△OAD≌△OED,得∠OAD=∠OED=90°,进而得CD是切线;(2)连接OC,得AM∥BN,得,再证明,进而得出结论.26.【答案】(1)解:设抛物线的函数解析式为由题意,抛物线的顶点为又抛物线与y轴交于点抛物线的函数解析式为(2)证明:∵P(m,n),∴,∴P(m,),∴,∵F(2,1),∴,∵,,∴d2=PF2,∴PF=d.(3)解:如图,过点Q作QH⊥直线l于H,过点D作DN⊥直线l于N.∵△DFQ的周长=DF+DQ+FQ,DF是定值= ,∴DQ+QF的值最小时,△DFQ的周长最小,∵QF=QH,∴DQ+DF=DQ+QH,根据垂线段最短可知,当D,Q,H共线时,DQ+QH的值最小,此时点H与N重合,点Q在线段DN上,∴DQ+QH的最小值为6,∴△DFQ的周长的最小值为,此时Q(4,- ).【考点】待定系数法求二次函数解析式,垂线段最短,勾股定理,二次函数图象上点的坐标特征【解析】【分析】(1)由题意抛物线的顶点A(2,-1),可以假设抛物线的解析式为y=a(x-2)2-1,把点B坐标代入求出a即可.(2)由题意P(m,),求出d2,PF2(用m表示)即可解决问题.(3)如图,过点Q作QH⊥直线l于H,过点D作DN⊥直线l于N.因为△DFQ的周长=DF+DQ+FQ,DF是定值= ,推出DQ+QF的值最小时,△DFQ的周长最小,再根据垂线段最短解决问题即可.试卷分析部分1. 试卷总体分布分析2. 试卷题量分布分析3. 试卷难度结构分析4. 试卷知识点分析。

2020年山东省滨州市中考数学试卷及答案.doc

2020年山东省滨州市中考数学试卷及答案.doc

2020年山东省滨州市中考数学试卷一.选择题:本大题共12个小题,在每个小题的四个选项中只有一个是正确的,请把正确的选出来,并将其字母标号填写在答题栏内.每小题选对得3分,选错、不选或选出的答案超过一个均记0分,满分36分.1.(2020滨州)32- 等于( )A .6-B .6C .8-D .8考点:有理数的乘方。

解答:解:328-=-.故选C .2.(2020滨州)以下问题,不适合用全面调查的是( )A .了解全班同学每周体育锻炼的时间B .鞋厂检查生产的鞋底能承受的弯折次数C .学校招聘教师,对应聘人员面试D .黄河三角洲中学调查全校753名学生的身高 考点:全面调查与抽样调查。

解答:解:A 、数量不大,应选择全面调查;B 、数量较大,具有破坏性的调查,应选择抽样调查;C 、事关重大,调查往往选用普查;D 、数量较不大应选择全面调查.故选B .3.(2020滨州)借助一副三角尺,你能画出下面哪个度数的角( )A .65°B .75°C .85°D .95°考点:角的计算。

解答:解:利用一副三角板可以画出75°角,用45°和30°的组合即可,故选:B .4.(2020滨州)一个三角形三个内角的度数之比为2:3:7,这个三角形一定是( )A .等腰三角形B .直角三角形C .锐角三角形D .钝角三角形 考点:三角形内角和定理。

解答:解:三角形的三个角依次为180°×=30°,180°×=45°,180°×=105°,所以这个三角形是钝角三角形.故选D .5.(2020滨州)不等式211841x x x x -≥+⎧⎨+≤-⎩的解集是( ) A .3x ≥ B .2x ≥ C .23x ≤≤ D .空集考点:解一元一次不等式组。

解答:解:21 1 84 1 x x x x -≥+⎧⎨+≤-⎩①②,解①得:2x ≥,解②得:3x ≥.则不等式组的解集是:3x ≥.故选A .6.(2020滨州)某几何体的三视图如图所示,则这个几何体是( )A .圆柱B .正方体C .球D .圆锥考点:由三视图判断几何体。

2020年山东省滨州市中考数学试卷及答案解析

2020年山东省滨州市中考数学试卷及答案解析

2020年山东省滨州市中考数学试卷一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,用2B铅笔把答题卡上对应题目的答案标号涂黑.每小题涂对得3分,满分36分.1.(3分)下列各式正确的是()A.﹣|﹣5|=5B.﹣(﹣5)=﹣5C.|﹣5|=﹣5D.﹣(﹣5)=5 2.(3分)如图,AB∥CD,点P为CD上一点,PF是∠EPC的平分线,若∠1=55°,则∠EPD的大小为()A.60°B.70°C.80°D.100°3.(3分)冠状病毒的直径约为80~120纳米,1纳米=1.0×10﹣9米,若用科学记数法表示110纳米,则正确的结果是()A.1.1×10﹣9米B.1.1×10﹣8米C.1.1×10﹣7米D.1.1×10﹣6米4.(3分)在平面直角坐标系的第四象限内有一点M,到x轴的距离为4,到y轴的距离为5,则点M的坐标为()A.(﹣4,5)B.(﹣5,4)C.(4,﹣5)D.(5,﹣4)5.(3分)下列图形:线段、等边三角形、平行四边形、圆,其中既是轴对称图形,又是中心对称图形的个数为()A.1B.2C.3D.46.(3分)如图,点A在双曲线y=4x上,点B在双曲线y=12x上,且AB∥x轴,点C、D在x轴上,若四边形ABCD为矩形,则它的面积为()A .4B .6C .8D .127.(3分)下列命题是假命题的是( )A .对角线互相垂直且相等的平行四边形是正方形B .对角线互相垂直的矩形是正方形C .对角线相等的菱形是正方形D .对角线互相垂直且平分的四边形是正方形8.(3分)已知一组数据:5,4,3,4,9,关于这组数据的下列描述: ①平均数是5,②中位数是4,③众数是4,④方差是4.4, 其中正确的个数为( ) A .1B .2C .3D .49.(3分)在⊙O 中,直径AB =15,弦DE ⊥AB 于点C ,若OC :OB =3:5,则DE 的长为( ) A .6B .9C .12D .1510.(3分)对于任意实数k ,关于x 的方程12x 2﹣(k +5)x +k 2+2k +25=0的根的情况为( ) A .有两个相等的实数根 B .没有实数根 C .有两个不相等的实数根D .无法判定11.(3分)对称轴为直线x =1的抛物线y =ax 2+bx +c (a 、b 、c 为常数,且a ≠0)如图所示,小明同学得出了以下结论:①abc <0,②b 2>4ac ,③4a +2b +c >0,④3a +c >0,⑤a +b ≤m (am +b )(m 为任意实数),⑥当x <﹣1时,y 随x 的增大而增大.其中结论正确的个数为( )A .3B .4C .5D .612.(3分)如图,对折矩形纸片ABCD ,使AD 与BC 重合,得到折痕EF ,把纸片展平后再次折叠,使点A 落在EF 上的点A ′处,得到折痕BM ,BM 与EF 相交于点N .若直线BA ′交直线CD 于点O ,BC =5,EN =1,则OD 的长为( )A .12√3B .13√3C .14√3D .15√3二、填空题:本大题共8个小题.每小题5分,满分40分.13.(5分)若二次根式√x −5在实数范围内有意义,则x 的取值范围为 . 14.(5分)在等腰△ABC 中,AB =AC ,∠B =50°,则∠A 的大小为 .15.(5分)若正比例函数y =2x 的图象与某反比例函数的图象有一个交点的纵坐标是2,则该反比例函数的解析式为 .16.(5分)如图,⊙O 是正方形ABCD 的内切圆,切点分别为E 、F 、G 、H ,ED 与⊙O 相交于点M ,则sin ∠MFG 的值为 .17.(5分)现有下列长度的五根木棒:3,5,8,10,13,从中任取三根,可以组成三角形的概率为 .18.(5分)若关于x 的不等式组{12x −a >0,4−2x ≥0无解,则a 的取值范围为 .19.(5分)观察下列各式:a 1=23,a 2=35,a 3=107,a 4=159,a 5=2611,…,根据其中的规律可得a n = (用含n 的式子表示).20.(5分)如图,点P 是正方形ABCD 内一点,且点P 到点A 、B 、C 的距离分别为2√3、√2、4,则正方形ABCD 的面积为 .三、解答题:本大题共6个小题,满分74分,解答时请写出必要的演推过程.21.(10分)先化简,再求值:1−y−x x+2y ÷x 2−y 2x 2+4xy+4y 2;其中x =cos30°×√12,y =(π﹣3)0﹣(13)﹣1.22.(12分)如图,在平面直角坐标系中,直线y =−12x ﹣1与直线y =﹣2x +2相交于点P ,并分别与x 轴相交于点A 、B . (1)求交点P 的坐标; (2)求△P AB 的面积;(3)请把图象中直线y =﹣2x +2在直线y =−12x ﹣1上方的部分描黑加粗,并写出此时自变量x 的取值范围.23.(12分)如图,过▱ABCD 对角线AC 与BD 的交点E 作两条互相垂直的直线,分别交边AB 、BC 、CD 、DA 于点P 、M 、Q 、N . (1)求证:△PBE ≌△QDE ;(2)顺次连接点P 、M 、Q 、N ,求证:四边形PMQN 是菱形.24.(13分)某水果商店销售一种进价为40元/千克的优质水果,若售价为50元/千克,则一个月可售出500千克;若售价在50元/千克的基础上每涨价1元,则月销售量就减少10千克.(1)当售价为55元/千克时,每月销售水果多少千克? (2)当月利润为8750元时,每千克水果售价为多少元? (3)当每千克水果售价为多少元时,获得的月利润最大?25.(13分)如图,AB是⊙O的直径,AM和BN是它的两条切线,过⊙O上一点E作直线DC,分别交AM、BN于点D、C,且DA=DE.(1)求证:直线CD是⊙O的切线;(2)求证:OA2=DE•CE.26.(14分)如图,抛物线的顶点为A(h,﹣1),与y轴交于点B(0,−12),点F(2,1)为其对称轴上的一个定点.(1)求这条抛物线的函数解析式;(2)已知直线l是过点C(0,﹣3)且垂直于y轴的定直线,若抛物线上的任意一点P (m,n)到直线l的距离为d,求证:PF=d;(3)已知坐标平面内的点D(4,3),请在抛物线上找一点Q,使△DFQ的周长最小,并求此时△DFQ周长的最小值及点Q的坐标.2020年山东省滨州市中考数学试卷参考答案与试题解析一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,用2B铅笔把答题卡上对应题目的答案标号涂黑.每小题涂对得3分,满分36分.1.(3分)下列各式正确的是()A.﹣|﹣5|=5B.﹣(﹣5)=﹣5C.|﹣5|=﹣5D.﹣(﹣5)=5【解答】解:A、∵﹣|﹣5|=﹣5,∴选项A不符合题意;B、∵﹣(﹣5)=5,∴选项B不符合题意;C、∵|﹣5|=5,∴选项C不符合题意;D、∵﹣(﹣5)=5,∴选项D符合题意.故选:D.2.(3分)如图,AB∥CD,点P为CD上一点,PF是∠EPC的平分线,若∠1=55°,则∠EPD的大小为()A.60°B.70°C.80°D.100°【解答】解:∵AB∥CD,∴∠1=∠CPF=55°,∵PF是∠EPC的平分线,∴∠CPE=2∠CPF=110°,∴∠EPD=180°﹣110°=70°,故选:B.3.(3分)冠状病毒的直径约为80~120纳米,1纳米=1.0×10﹣9米,若用科学记数法表示110纳米,则正确的结果是()A.1.1×10﹣9米B.1.1×10﹣8米C.1.1×10﹣7米D.1.1×10﹣6米【解答】解:110纳米=110×10﹣9米=1.1×10﹣7米.故选:C.4.(3分)在平面直角坐标系的第四象限内有一点M,到x轴的距离为4,到y轴的距离为5,则点M的坐标为()A.(﹣4,5)B.(﹣5,4)C.(4,﹣5)D.(5,﹣4)【解答】解:∵在平面直角坐标系的第四象限内有一点M,到x轴的距离为4,到y轴的距离为5,∴点M的纵坐标为:﹣4,横坐标为:5,即点M的坐标为:(5,﹣4).故选:D.5.(3分)下列图形:线段、等边三角形、平行四边形、圆,其中既是轴对称图形,又是中心对称图形的个数为()A.1B.2C.3D.4【解答】解:线段是轴对称图形,也是中心对称图形;等边三角形是轴对称图形,不是中心对称图形;平行四边形不是轴对称图形,是中心对称图形;圆是轴对称图形,也是中心对称图形;则既是轴对称图形又是中心对称图形的有2个.故选:B.6.(3分)如图,点A在双曲线y=4x上,点B在双曲线y=12x上,且AB∥x轴,点C、D在x轴上,若四边形ABCD为矩形,则它的面积为()A.4B.6C.8D.12【解答】解:过A点作AE⊥y轴,垂足为E,∵点A在双曲线y=4x上,∴四边形AEOD的面积为4,∵点B在双曲线线y=12x上,且AB∥x轴,∴四边形BEOC的面积为12,∴矩形ABCD的面积为12﹣4=8.故选:C.7.(3分)下列命题是假命题的是()A.对角线互相垂直且相等的平行四边形是正方形B.对角线互相垂直的矩形是正方形C.对角线相等的菱形是正方形D.对角线互相垂直且平分的四边形是正方形【解答】解:A、对角线互相垂直且相等的平行四边形是正方形是真命题,故选项A不合题意;B、对角线互相垂直的矩形是正方形是真命题,故选项B不合题意;C、对角线相等的菱形是正方形是真命题,故选项C不合题意;D、对角线互相垂直且平分的四边形是菱形,即对角线互相垂直且平分的四边形是正方形是假命题,故选项D符合题意;故选:D.8.(3分)已知一组数据:5,4,3,4,9,关于这组数据的下列描述:①平均数是5,②中位数是4,③众数是4,④方差是4.4,其中正确的个数为()A.1B.2C.3D.4【解答】解:数据由小到大排列为3,4,4,5,9, 它的平均数为3+4+4+5+95=5,数据的中位数为4,众数为4,数据的方差=15[(3﹣5)2+(4﹣5)2+(4﹣5)2+(5﹣5)2+(9﹣5)2]=4.4. 所以A 、B 、C 、D 都正确. 故选:D .9.(3分)在⊙O 中,直径AB =15,弦DE ⊥AB 于点C ,若OC :OB =3:5,则DE 的长为( ) A .6B .9C .12D .15【解答】解:如图所示:∵直径AB =15, ∴BO =7.5, ∵OC :OB =3:5, ∴CO =4.5,∴DC =√DO 2−CO 2=6, ∴DE =2DC =12. 故选:C .10.(3分)对于任意实数k ,关于x 的方程12x 2﹣(k +5)x +k 2+2k +25=0的根的情况为( )A .有两个相等的实数根B .没有实数根C .有两个不相等的实数根D .无法判定【解答】解:12x 2﹣(k +5)x +k 2+2k +25=0,△=[﹣(k +5)]2﹣4×12×(k 2+2k +25)=﹣k 2+6k ﹣25=﹣(k ﹣3)2﹣16, 不论k 为何值,﹣(k ﹣3)2≤0, 即△=﹣(k ﹣3)2﹣16<0, 所以方程没有实数根, 故选:B .11.(3分)对称轴为直线x=1的抛物线y=ax2+bx+c(a、b、c为常数,且a≠0)如图所示,小明同学得出了以下结论:①abc<0,②b2>4ac,③4a+2b+c>0,④3a+c>0,⑤a+b≤m(am+b)(m为任意实数),⑥当x<﹣1时,y随x的增大而增大.其中结论正确的个数为()A.3B.4C.5D.6【解答】解:①由图象可知:a>0,c<0,∵−b2a=1,∴b=﹣2a<0,∴abc<0,故①错误;②∵抛物线与x轴有两个交点,∴b2﹣4ac>0,∴b2>4ac,故②正确;③当x=2时,y=4a+2b+c<0,故③错误;④当x=﹣1时,y=a﹣b+c>0,∴3a+c>0,故④正确;⑤当x=1时,y的值最小,此时,y=a+b+c,而当x=m时,y=am2+bm+c,所以a+b+c≤am2+bm+c,故a+b≤am2+bm,即a+b≤m(am+b),故⑤正确,⑥当x<﹣1时,y随x的增大而减小,故⑥错误,故选:A.12.(3分)如图,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平后再次折叠,使点A落在EF上的点A′处,得到折痕BM,BM与EF相交于点N.若直线BA′交直线CD于点O,BC=5,EN=1,则OD的长为()A .12√3B .13√3C .14√3D .15√3【解答】解:∵EN =1,∴由中位线定理得AM =2,由折叠的性质可得A ′M =2,∵AD ∥EF ,∴∠AMB =∠A ′NM ,∵∠AMB =∠A ′MB ,∴∠A ′NM =∠A ′MB ,∴A ′N =2,∴A ′E =3,A ′F =2过M 点作MG ⊥EF 于G ,∴NG =EN =1,∴A ′G =1,由勾股定理得MG =√22−12=√3,∴BE =OF =MG =√3,∴OF :BE =2:3,解得OF =2√33, ∴OD =√3−2√33=√33.故选:B .二、填空题:本大题共8个小题.每小题5分,满分40分.13.(5分)若二次根式√x −5在实数范围内有意义,则x 的取值范围为 x ≥5 .【解答】解:要使二次根式√x −5在实数范围内有意义,必须x ﹣5≥0,解得:x ≥5,故答案为:x ≥5.14.(5分)在等腰△ABC 中,AB =AC ,∠B =50°,则∠A 的大小为 80° .【解答】解:∵AB =AC ,∠B =50°,∴∠C =∠B =50°,∴∠A =180°﹣2×50°=80°.故答案为:80°.15.(5分)若正比例函数y =2x 的图象与某反比例函数的图象有一个交点的纵坐标是2,则该反比例函数的解析式为 y =2x.【解答】解:当y =2时,即y =2x =2,解得:x =1,故该点的坐标为(1,2),将(1,2)代入反比例函数表达式y =k x 并解得:k =2,故答案为:y =2x .16.(5分)如图,⊙O 是正方形ABCD 的内切圆,切点分别为E 、F 、G 、H ,ED 与⊙O 相交于点M ,则sin ∠MFG 的值为 √55 .【解答】解:∵⊙O 是正方形ABCD 的内切圆,∴AE =12AB ,EG =BC ;根据圆周角的性质可得:∠MFG =∠MEG .∵sin ∠MFG =sin ∠MEG =DG DE =√55,∴sin ∠MFG =√55.故答案为:√55.17.(5分)现有下列长度的五根木棒:3,5,8,10,13,从中任取三根,可以组成三角形的概率为 25 .【解答】解:3,5,8,10,13,从中任取三根,所有情况为:3、5、8;3、5、10;3、5、13;3、8、10;3、8、13;3,10,13;5、8、10;5、8、13;5、10、13;8、10、13;共有10种等可能的结果数,其中可以组成三角形的结果数为4,所以可以组成三角形的概率=410=25. 故答案为25.18.(5分)若关于x 的不等式组{12x −a >0,4−2x ≥0无解,则a 的取值范围为 a ≥1 . 【解答】解:解不等式12x ﹣a >0,得:x >2a , 解不等式4﹣2x ≥0,得:x ≤2,∵不等式组无解,∴2a ≥2,解得a ≥1,故答案为:a ≥1.19.(5分)观察下列各式:a 1=23,a 2=35,a 3=107,a 4=159,a 5=2611,…,根据其中的规律可得a n = {n 2+12n+1(n 为奇数)n 2−12n+1(n 为偶数) (用含n 的式子表示). 【解答】解:由分析可得a n ={n 2+12n+1(n 为奇数)n 2−12n+1(n 为偶数). 故答案为:{n 2+12n+1(n 为奇数)n 2−12n+1(n 为偶数). 20.(5分)如图,点P 是正方形ABCD 内一点,且点P 到点A 、B 、C 的距离分别为2√3、√2、4,则正方形ABCD的面积为14+4√3.【解答】解:如图,将△ABP绕点B顺时针旋转90°得到△CBM,连接PM,过点B作BH⊥PM于H.∵BP=BM=√2,∠PBM=90°,∴PM=√2PB=2,∵PC=4,P A=CM=2√3,∴PC2=CM2+PM2,∴∠PMC=90°,∵∠BPM=∠BMP=45°,∴∠CMB=∠APB=135°,∴∠APB+∠BPM=180°,∴A,P,M共线,∵BH⊥PM,∴PH=HM,∴BH=PH=HM=1,∴AH=2√3+1,∴AB2=AH2+BH2=(2√3+1)2+12=14+4√3,∴正方形ABCD的面积为14+4√3.故答案为14+4√3.三、解答题:本大题共6个小题,满分74分,解答时请写出必要的演推过程.21.(10分)先化简,再求值:1−y−x x+2y ÷x 2−y 2x 2+4xy+4y 2;其中x =cos30°×√12,y =(π﹣3)0﹣(13)﹣1. 【解答】解:原式=1−y−x x+2y ÷(x+y)(x−y)(x+2y)2=1+x−y x+2y •(x+2y)2(x+y)(x−y) =1+x+2y x+y=x+y+x+2y x+y =2x+3y x+y, ∵x =cos30°×√12=√32×2√3=3,y =(π﹣3)0﹣(13)﹣1=1﹣3=﹣2, ∴原式=2×3+3×(−2)3−2=0. 22.(12分)如图,在平面直角坐标系中,直线y =−12x ﹣1与直线y =﹣2x +2相交于点P ,并分别与x 轴相交于点A 、B .(1)求交点P 的坐标;(2)求△P AB 的面积;(3)请把图象中直线y =﹣2x +2在直线y =−12x ﹣1上方的部分描黑加粗,并写出此时自变量x 的取值范围.【解答】解:(1)由{y =−12x −1y =−2x +2解得{x =2y =−2, ∴P (2,﹣2);(2)直线y =−12x ﹣1与直线y =﹣2x +2中,令y =0,则−12x ﹣1=0与﹣2x +2=0, 解得x =﹣2与x =1,∴A (﹣2,0),B (1,0),∴AB =3,∴S △P AB =12AB ⋅|y P |=12×3×2=3;(3)如图所示:自变量x 的取值范围是x <2.23.(12分)如图,过▱ABCD 对角线AC 与BD 的交点E 作两条互相垂直的直线,分别交边AB 、BC 、CD 、DA 于点P 、M 、Q 、N .(1)求证:△PBE ≌△QDE ;(2)顺次连接点P 、M 、Q 、N ,求证:四边形PMQN 是菱形.【解答】(1)证明:∵四边形ABD 是平行四边形,∴EB =ED ,AB ∥CD ,∴∠EBP =∠EDQ ,在△PBE 和△QDE 中,{∠EBP =∠EDQEB =ED ∠BEP =∠DEQ,∴△PBE ≌△QDE (ASA );(2)证明:如图所示:∵△PBE ≌△QDE ,∴EP =EQ ,同理:△BME ≌△DNE (ASA ),∴EM =EN ,∴四边形PMQN是平行四边形,∵PQ⊥MN,∴四边形PMQN是菱形.24.(13分)某水果商店销售一种进价为40元/千克的优质水果,若售价为50元/千克,则一个月可售出500千克;若售价在50元/千克的基础上每涨价1元,则月销售量就减少10千克.(1)当售价为55元/千克时,每月销售水果多少千克?(2)当月利润为8750元时,每千克水果售价为多少元?(3)当每千克水果售价为多少元时,获得的月利润最大?【解答】解:(1)当售价为55元/千克时,每月销售水果=500﹣10×(55﹣50)=450千克;(2)设每千克水果售价为x元,由题意可得:8750=(x﹣40)[500﹣10(x﹣50)],解得:x1=65,x2=75,答:每千克水果售价为65元或75元;(3)设每千克水果售价为m元,获得的月利润为y元,由题意可得:y=(m﹣40)[500﹣10(m﹣50)]=﹣10(m﹣70)2+9000,∴当m=70时,y有最大值为9000元,答:当每千克水果售价为70元时,获得的月利润最大值为9000元.25.(13分)如图,AB是⊙O的直径,AM和BN是它的两条切线,过⊙O上一点E作直线DC,分别交AM、BN于点D、C,且DA=DE.(1)求证:直线CD是⊙O的切线;(2)求证:OA2=DE•CE.【解答】解:(1)连接OD ,OE ,如图1,在△OAD 和△OED 中,{OA =OE AD =ED OD =OD,∴△OAD ≌△OED (SSS ),∴∠OAD =∠OED ,∵AM 是⊙O 的切线,∴∠OAD =90°,∴∠OED =90°,∴直线CD 是⊙O 的切线;(2)过D 作DF ⊥BC 于点F ,如图2,则∠DFB =∠RFC =90°,∵AM 、BN 都是⊙O 的切线,∴∠ABF =∠BAD =90°,∴四边形ABFD 是矩形,∴DF =AB =2OA ,AD =BF ,∵CD 是⊙O 的切线,∴DE =DA ,CE =CB ,∴CF =CB ﹣BF =CE ﹣DE ,∵DE 2=CD 2﹣CF 2,∴4OA2=(CE+DE)2﹣(CE﹣DE)2,即4OA2=4DE•CE,∴OA2=DE•CE.26.(14分)如图,抛物线的顶点为A(h,﹣1),与y轴交于点B(0,−12),点F(2,1)为其对称轴上的一个定点.(1)求这条抛物线的函数解析式;(2)已知直线l是过点C(0,﹣3)且垂直于y轴的定直线,若抛物线上的任意一点P (m,n)到直线l的距离为d,求证:PF=d;(3)已知坐标平面内的点D(4,3),请在抛物线上找一点Q,使△DFQ的周长最小,并求此时△DFQ周长的最小值及点Q的坐标.【解答】(1)解:由题意抛物线的顶点A(2,﹣1),可以假设抛物线的解析式为y=a (x﹣2)2﹣1,∵抛物线经过B(0,−1 2),∴−12=4a﹣1,∴a=1 8,∴抛物线的解析式为y=18(x﹣2)2﹣1.(2)证明:∵P (m ,n ),∴n =18(m ﹣2)2﹣1=18m 2−12m −12,∴P (m ,18m 2−12m −12), ∴d =18m 2−12m −12−(﹣3)=18m 2−12m +52,∵F (2,1),∴PF =√(m −2)2+(18m 2−12m −12−1)2=√164m 4−18m 3+78m 2−52m +254, ∵d 2=164m 4−18m 3+78m 2−52m +254,PF 2=164m 4−18m 3+78m 2−52m +254, ∴d 2=PF 2,∴PF =d .(3)如图,过点Q 作QH ⊥直线l 于H ,过点D 作DN ⊥直线l 于N .∵△DFQ 的周长=DF +DQ +FQ ,DF 是定值=√22+22=2√2,∴DQ +QF 的值最小时,△DFQ 的周长最小,∵QF =QH ,∴DQ +DF =DQ +QH ,根据垂线段最短可知,当D ,Q ,H 共线时,DQ +QH 的值最小,此时点H 与N 重合,点Q 在线段DN 上,∴DQ +QH 的最小值为3,∴△DFQ 的周长的最小值为2√2+3,此时Q (4,−12)。

山东省滨州市2020年中考数学试卷

山东省滨州市2020年中考数学试卷

A.1
B.2
C.3
D.4
6.如图,点 A 在双曲线 y= 上,点 B 在双曲线 y= 上,且 AB∥x 轴,点 C、D 在 x 轴上,若四边形
ABCD 为矩形,则它的面积为( )
A.4
B.6
C.8
7.下列命题是假命题的是( ) A.对角线互相垂直且相等的平行四边形是正方形 B.对角线互相垂直的矩形是正方形
24.某水果商店销售一种进价为 40 元/千克的优质水果,若售价为 50 元/千克,则一个月可售出 500 千克;
第 4 页 共 21 页
若售价在 50 元/千克的基础上每涨价 1 元,则月销售量就减少 10 千克. (1)当售价为 55 元/千克时,每月销售水果多少千克? (2)当月利润为 8750 元时,每千克水果售价为多少元? (3)当每千克水果售价为多少元时,获得的月利润最大?
25.如图,AB 是⊙O 的直径,AM 和 BN 是它的两条切线,过⊙O 上一点 E 作直线 DC,分别交 AM、BN 于 点 D、C,且 DA=DE. (1)求证:直线 CD 是⊙O 的切线; (2)求证:OA2=DE•CE.
26.如图,抛物线的顶点为 A(h,﹣1),与 y 轴交于点 B(0,﹣ ),点 F(2,1)为其对称轴上的一 个定点. (1)求这条抛物线的函数解析式; (2)已知直线 l 是过点 C(0,﹣3)且垂直于 y 轴的定直线,若抛物线上的任意一点 P(m,n)到直线 l 的距离为 d,求证:PF=d; (3)已知坐标平面内的点 D(4,3),请在抛物线上找一点 Q,使△DFQ 的周长最小,并求此时△DFQ 周长的最小值及点 Q 的坐标.

15.若正比例函数 y=2x 的图象与某反比例函数的图象有一个交点的纵坐标是 2,则该反比例函数的解析式

山东省滨州市2020年中考数学试卷

山东省滨州市2020年中考数学试卷

2020年山东省滨州市中考数学试卷一、选择题1.下列式子中,正确的是()A. |﹣5|=﹣5B. ﹣|﹣5|=5C. ﹣(﹣5)=﹣5D. ﹣(﹣5)=5【答案】D【解析】试题解析:A. |﹣5|=5,故原选项错误;B. ﹣|﹣5|=-5,故原选项错误;C. ﹣(﹣5)=5,故原选项错误;D. ﹣(﹣5)=5,故正确.故选D.2.如图,AB//CD,点P为CD上一点,PF是∠EPC的平分线,若∠1=55°,则∠EPD的大小为()A. 60°B. 70°C. 80°D. 100°【答案】B【解析】【分析】根据平行线和角平分线的定义即可得到结论.【详解】解:∵AB∥CD,∴∠1=∠CPF=55°,∵PF是∠EPC的平分线,∴∠CPE=2∠CPF=110°,∴∠EPD=180°-110°=70°,故选:B.【点睛】本题考查了平行线的性质以及角平分线的定义,熟练掌握平行线的性质是解题的关键.3.冠状病毒的直径约为80~120纳米,1纳米=9=⨯米,若用科学记数法表示110纳米,则正确的结1.010-果是( )A. 91.110-⨯米B. 81.110-⨯米C. 71.110-⨯米D. 61.110-⨯米【答案】C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n 由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:110纳米=110×10-9米=1.1×10-7米.故选:C .【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.4.在平面直角坐标系的第四象限内有一点M ,到x 轴的距离为4,到y 轴的距离为5,则点M 的坐标为( ) A. ()4,5-B. (5,4)-C. (4,5)-D. (5,4)- 【答案】D【解析】【分析】根据点到坐标轴的距离及点所在的象限解答即可.【详解】设点M 的坐标为(x ,y ),∵点M 到x 轴的距离为4, ∴4y =,∴4y =±,∵点M 到y 轴的距离为5, ∴5x =,∴5x =±,∵点M 在第四象限内,∴x=5,y=-4,即点M 的坐标为(5,-4)故选:D.【点睛】此题考查平面直角坐标系中点到坐标轴的距离,象限内点的坐标的符号特点.5.下列图形:线段、等边三角形、平行四边形、圆,其中既是轴对称图形,又是中心对称图形的个数为( ) A. 1B. 2C. 3D. 4 【答案】B【解析】 【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:线段是轴对称图形,也是中心对称图形;等边三角形是轴对称图形,不是中心对称图形;平行四边形不是轴对称图形,是中心对称图形;圆是轴对称图形,也是中心对称图形; 则既是轴对称图形又是中心对称图形的有2个. 故选:B .【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与自身重合. 6.如图,点A 在双曲线4y x =上,点B 在双曲线12y x =上,且AB//x 轴,点C 、D 在x 轴上,若四边形ABCD 为矩形,则它的面积为( )A. 4B. 6C. 8D. 12【答案】C【解析】【分析】过点A 作AE ⊥y 轴于点E ,利用反比例函数系数k 的几何意义,分别得到四边形AEOD 的面积为4,四边形BEOC 的面积为12,即可得到矩形ABCD 的面积.【详解】过点A 作AE ⊥y 轴于点E ,∵点A 在双曲线4y x=上, ∴四边形AEOD 的面积为4,∵点B 在双曲线12y x=上,且AB//x 轴, ∴四边形BEOC 的面积为12,∴矩形ABCD 的面积为12-4=8,故选:C .【点睛】此题考查了反比例函数系数k 的几何意义,熟记k 的几何意义并灵活运用其解题是关键. 7.下列命题是假命题的是( ) A. 对角线互相垂直且相等的平行四边形是正方形. B. 对角线互相垂直的矩形是正方形. C. 对角线相等的菱形是正方形.D. 对角线互相垂直平分的四边形是正方形. 【答案】D【解析】【分析】根据正方形的各种判定方法逐项分析即可.【详解】解:对角线互相垂直且相等的平行四边形是正方形,正确;对角线互相垂直的矩形是正方形,正确;对角线相等的菱形是正方形,正确;对角线互相垂直平分且相等的四边形是正方形;可知选项D 是错误的.故选:D .【点睛】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8.已知一组数据5,4,3,4,9,关于这组数据的下列描述:①平均数是5,②中位数是4,③众数是4,④方差是4.4,其中正确的个数为()A. 1B. 2C. 3D. 4【答案】D【解析】【分析】先把数据由小到大排列为3,4,4,5,9,然后根据算术平均数、中位数和众数的定义得到数据的平均数,中位数和众数,再根据方差公式计算数据的方差,然后利用计算结果对各选项进行判断.【详解】解:数据由小到大排列为3,4,4,5,9,它的平均数为344595++++=5,数据的中位数为4,众数为4,数据的方差=15[(3-5)2+(4-5)2+(4-5)2+(5-5)2+(9-5)2]=4.4.所以①②③④都正确.故选:D.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差,也考查了平均数,中位数和众数的定义.9.在O中,直径AB=15,弦DE⊥AB于点C.若OC:OB=3 :5,则DE的长为()A. 6B. 9C. 12D. 15【答案】C【解析】【分析】根据题意画出图形,然后利用垂径定理和勾股定理解答即可.【详解】解:如图所示:∵直径AB=15,∴BO=7.5,∵OC:OB=3:5,∴CO =4.5,∵DE ⊥AB ,∴DC =22227.5 4.5DO OC -=-=6, ∴DE =2DC =12.故选:C .【点睛】此题主要考查了垂径定理和勾股定理,属于常考题型,正确得出CO 的长、熟练掌握上述知识是解题关键.10.对于任意实数k ,关于x 的方程221(5)22502x k x k k -++++=的根的情况为( ) A. 有两个相等的实数根B. 没有实数根C. 有两个不相等的实数根D. 无法判定 【答案】B【解析】【分析】先根据根的判别式求出“△”的值,再根据根的判别式的内容判断即可.【详解】解:221(5)22502x k x k k -++++=, ()22221[(5)]4225625(3)162k k k k k k ∆=-+-⨯⨯++=-+-=---, 不论k 为何值,2(3)0k --, 即2(3)160k ∆=---<,所以方程没有实数根,故选:B .【点睛】本题考查了根的判别式,能熟记根的判别式的内容是解此题的关键,注意:一元二次方程ax 2-bx+c=0(a 、b 、c 为常数,a≠0),当△=b 2-4ac >0时,方程有两个不相等的实数根,当△=b 2-4ac=0时,方程有两个相等的实数根,当△=b 2-4ac <0时,方程没有实数根.11.对称轴为直线x =1的抛物线2y ax bx c =++(a 、b 、c 为常数,且a≠0)如图所示,小明同学得出了以下结论:①abc <0,②b 2>4ac ,③4a +2b +c >0,④3a +c >0,⑤a +b≤m(am +b)(m 为任意实数), ⑥当x <-1时,y 随x 的增大而增大,其中结论正确的个数为( )A. 3B. 4C. 5D. 6【答案】A【解析】【分析】 由抛物线的开口方向判断a 的符号,由抛物线与y 轴的交点判断c 的符号,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】解:①由图象可知:a >0,c <0,∵-2b a=1, ∴b=-2a <0,∴abc >0,故①错误;②∵抛物线与x 轴有两个交点,∴b 2-4ac >0,故②正确;③当x=2时,y=4a+2b+c <0,故③错误;④当x=-1时,y=a-b+c=a-(-2a )+c >0,∴3a+c >0,故④正确;⑤当x=1时,y 取到值最小,此时,y=a+b+c ,而当x=m 时,y=am 2+bm+c ,所以a+b+c≤am 2+bm+c ,故a+b≤am 2+bm ,即a+b≤m (am+b ),故⑤正确,⑥当x <-1时,y 随x 的增大而减小,故⑥错误,故选:A .【点睛】本题考查了二次函数图象与系数的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴和抛物线与y轴的交点确定.12.如图,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF;把纸片展平后再次折叠,使点A落在EF上的点A 处,得到折痕BM,BM与FF相交于点N.若直线B A’交直线CD于点O,BC=5,EN=1,则OD的长为()A. 132B.133C.134D.135【答案】B【解析】【分析】根据中位线定理可得AM=2,根据折叠的性质和等腰三角形的性质可得A′M=A′N=2,过M点作MG⊥EF 于G,可求A′G,根据勾股定理可求MG,进一步得到BE,再根据平行线分线段成比例可求OF,从而得到OD.【详解】解:∵EN=1,∴由中位线定理得AM=2,由折叠的性质可得A′M=2,∵AD∥EF,∴∠AMB=∠A′NM,∵∠AMB=∠A′MB,∴∠A′NM=∠A′MB,∴A′N=2,∴A′E=3,A′F=2过M点作MG⊥EF于G,∴NG=EN=1,∴A′G=1,由勾股定理得=,∴,∴OF:BE=2:3,,解得OF=3∴=故选:B.【点睛】考查了翻折变换(折叠问题),矩形的性质,勾股定理,关键是得到矩形的宽和A′E的长.二、填空题:本大题共8个小题.每小题5分,满分40分.13.在实数范围内有意义,则x的取值范围是_________.【答案】x≥5【解析】【分析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.∴x−5⩾0,解得x⩾5.故答案为x≥5.点睛:此题考查了二次根式有意义的条件.a⩾0,同时也考查了解一元一次不等式.14.在等腰ABC中,AB=AC,∠B=50°,则∠A的大小为________.【答案】80︒【解析】【分析】根据等腰三角形两底角相等可求∠C ,再根据三角形内角和为180°列式进行计算即可得解.【详解】解:∵AB=AC ,∠B=50°,∴∠C=∠B=50°,∴∠A=180°-2×50°=80°.故答案为:80°.【点睛】本题考查了等腰三角形的性质,解题的关键是掌握等腰三角形两底角相等的性质.15.若正比例函数2y x =的图象与某反比例函数的图象有一个交点的纵坐标是2,则该反比例函数的解析式为________. 【答案】2y x =【解析】【分析】 利用正比例函数解析式求出交点的横坐标,再将交点的坐标代入反比例函数解析式k y x =中求出k 即可得到答案.【详解】令y=2x 中y=2,得到2x=2,解得x=1,∴正比例函数2y x =的图象与某反比例函数的图象交点的坐标是(1,2), 设反比例函数解析式为k y x=, 将点(1,2)代入,得122k =⨯=, ∴反比例函数的解析式为2y x =, 故答案为:2y x=. 【点睛】此题考查函数图象上点的坐标,函数图象的交点坐标,待定系数法求反比例函数的解析式,正确计算解答问题.16.如图,O 是正方形ABCD 的内切圆,切点分别为E 、F ,G ,H ,ED 与O 相交于点M ,则sin ∠MFG 的值为________.5 【解析】【分析】 如图(见解析),先根据正方形内切圆的性质得出圆心O 的位置,再根据正方形的性质、圆的切线的性质可得90A ADC ∠=∠=︒,,OH AD OG CD ⊥⊥,从而可得四边形ADGE 和四边形OHDG 均为矩形,又根据矩形的性质可得EG AD =,OH DG =,设正方形ABCD 的边长为2a ,从而可得2EG a =,DG a =,然后在Rt DEG △中,根据正弦三角函数的定义可得5sin DEG ∠=,最后根据圆周角定理可得MFG DEG ∠=∠,由此即可得出答案.【详解】如图,连接EG 、HF由正方形内切圆的性质得:EG 与HF 的交点即为圆心O四边形ABCD 是正方形90A ADC ∴∠=∠=︒由圆的切线的性质得:,OH AD OG CD ⊥⊥∴四边形ADGE 和四边形OHDG 均为矩形EG AD ∴=,OH DG =设正方形ABCD 的边长为2a ,则2AD a =2EG a ∴=∴O 的半径为12EG a = DG OH a ∴==在Rt DEG △中,225DE EG DG a =+5sin 55DG DEG DE a∴∠===由圆周角定理得:MFG DEG∠=∠则5 sin sin5 MFG DEG∠=∠=故答案为:5.【点睛】本题考查了圆的切线的判定与性质、圆周角定理、正弦三角函数、正方形的性质等知识点,熟练掌握圆的切线的判定与性质是解题关键.17.现有下列长度的五根木棒:3,5,8,10,13,从中任取三根,可以组成三角形的概率为________.【答案】2 5【解析】【分析】求出任取三根木棒的所有情况,再求出能组成三角形的所有情况,利用概率公式直接计算即可. 【详解】五根木棒,任意取三根共有10种情况:3、5、83、5、103、5、133、8、103、8、133、10、135、10、135、8、105、8、138、10、13其中能组成三角形的有:①3、8、10,由于8-3<10<8+3,所以能构成三角形;②5、10、13,由于10-5<13<10+5,所以能构成三角形;③5、8、10,由于8-5<10<8+5,所以能构成三角形;④8、10、13,由于10-8<13<10+8,所以能构成三角形;所以有4种方案符合要求,故能构成三角形的概率是P=410=25, 故答案为:25. 【点睛】此题考查三角形的三边关系,列举法求事件的概率,列举法求概率的关键是在列举所有情况时考虑要全面,不能重复也不能遗漏.18.若关于x 的不等式组102420x a x ⎧->⎪⎨⎪-≥⎩无解,则a 的取值范围为________. 【答案】1a ≥【解析】【分析】先解不等式组中的两个不等式,然后根据不等式组无解可得关于a 的不等式,解不等式即得答案. 【详解】解:对不等式组102420x a x ⎧->⎪⎨⎪-≥⎩①②,解不等式①,得2x a >,解不等式②,得2x ≤,∵原不等式组无解,∴22a ≥,解得:1a ≥.故答案:1a ≥.【点睛】本题考查了一元一次不等式组的解法,属于常考题型,正确理解题意、熟练掌握解一元一次不等式组的方法是关键.19.观察下列各式:1234523101526,,,,,357911a a a a a =====, 根据其中的规律可得n a =________(用含n 的式子表示). 【答案】()12121n n n ++-+【解析】【分析】观察发现,每一项都是一个分数,分母依次为3、5、7,…,那么第n项的分母是2n+1;分子依次为2,3,10,15,26,…,变化规律为:奇数项的分子是n2+1,偶数项的分子是n2-1,即第n项的分子是n2+(-1)n+1;依此即可求解.【详解】解:由分析得21(1)21nnnan++-=+,故答案为:21(1)21nnnan++-=+【点睛】本题考查学生通过观察、归纳、抽象出数列的规律的能力,要求学生首先分析题意,找到规律,并进行推导得出答案.20.如图,点P是正方形ABCD内一点,且点P到点A、B、C的距离分别为23,2,4则正方形ABCD的面积为________【答案】4314+【解析】【分析】如图,将△ABP绕点B顺时针旋转90°得到△CBM,连接PM,过点B作BH⊥PM于H.首先证明∠PMC=90°,推出∠CMB=∠APB=135°,推出A,P,M共线,利用勾股定理求出AB2即可.【详解】解:如图,将△ABP绕点B顺时针旋转90°得到△CBM,连接PM,过点B作BH⊥PM于H.∵2,∠PBM=90°,∴PB=2,∵PC=4,∴PC 2=CM 2+PM 2,∴∠PMC=90°,∵∠BPM=∠BMP=45°,∴∠CMB=∠APB=135°,∴∠APB+∠BPM=180°,∴A ,P ,M 共线,∵BH ⊥PM ,∴PH=HM ,∴BH=PH=HM=1,∴,∴AB 2=AH 2+BH 2=()2+12∴正方形ABCD 的面积为故答案为【点睛】本题考查旋转的性质,全等三角形的判定和性质,正方形的性质,解直角三角形等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题.三、解答题:本大题共6个小题,满分74分,解答时请写出必要的演推过程.21.先化筒,再求值:22221244y x x y x y x xy y ---÷+++其中11cos30(3)()3x y π-==-︒-︒ 【答案】23x y x y++,0 【解析】【分析】直接利用分式的混合运算法则化简,再计算x ,y 的值,进而代入得出答案. 【详解】解:22221244y x x y x y x xy y ---÷+++ ()()()2122x y x y x y x y x y +--=+÷++,()()()2212x y x y x y x y x y +-=+⨯++-, 21x y x y +=++, 23x y x y+=+; ∵3cos3012233x =︒⨯=⨯=,()10131323y π-⎛⎫=--=-=- ⎪⎝⎭所以,原式()()2332032⨯+⨯-==+-. 【点睛】此题主要考查了分式的化简求值,正确进行分式的混合运算是解题的关键.22.如图,在平面直角坐标系中,直线112y x =--与直线22y x =-+相交于点P ,并分别与x 轴相交于点A 、B .(1)求交点P 的坐标;(2)求PAB 的面积;(3)请把图象中直线22y x =-+在直线112y x =--上方的部分描黑加粗,并写出此时自变量x 的取值范围.【答案】(1)()2,2-;(2)3;(3)2x <【解析】【分析】(1)解析式联立,解方程组即可求得交点P 的坐标;(2)求得A 、B 的坐标,然后根据三角形面积公式求得即可;(3)根据图象求得即可.【详解】解:()1根据题意,交点P的横、纵坐标是方程组11 222y xy x⎧=--⎪⎨⎪=-+⎩的解解这个方程组,得22xy=⎧⎨=-⎩∴交点P的坐标为()2,2-()2直线112y x=--与x轴的交点A的坐标为(2,0)-直线22y x=-+与x轴交点B的坐标为()1,0,PAB∴∆的面积为()1112232322⨯--⨯=⨯⨯=⎡⎤⎣⎦()3在图象中把直线22y x=-+在直线112y x=--上方的部分描黑加粗,图示如下:此时自变量x的取值范围为 2.x<【点睛】本题考查了两条直线平行或相交问题,两条直线的交点坐标是两条直线的解析式构成的方程组的解.23.如图,过□ABCD对角线AC与BD的交点E作两条互相垂直的直线,分别交边AB、BC.CD、DA于点P、M、Q、N.(1)求证:PBE≌QDE;(2)顺次连接点P、M、Q、N,求证:四边形PMQN是菱形.【答案】(1)见解析;(2)见解析【解析】【分析】(1)由ASA 证△PBE ≌△QDE 即可;(2)由全等三角形的性质得出EP=EQ ,同理△BME ≌△DNE (ASA ),得出EM=EN ,证出四边形PMQN 是平行四边形,由对角线PQ ⊥MN ,即可得出结论.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴EB=ED ,AB ∥CD ,∴∠EBP=∠EDQ ,在△PBE 和△QDE 中,EBP EDQ EB EDBEP DEQ ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△PBE ≌△QDE (ASA );(2)证明:如图所示:∵△PBE ≌△QDE ,∴EP=EQ ,同理:△BME ≌△DNE (ASA ),∴EM=EN ,∴四边形PMQN 是平行四边形,∵PQ ⊥MN ,∴四边形PMQN 是菱形.【点睛】本题考查了平行四边形的判定与性质,菱形的判定,全等三角形的判定与性质;熟练掌握菱形的判定和平行四边形的判定与性质,证明三角形全等是解题的关键.24.某水果商店销售一种进价为40元/千克的优质水果,若售价为50元/千克,则一个月可售出500千克;若售价在50元/千克的基础上每涨价1元,则月销售量就减少10千克.(1)当售价为55元/千克时,每月销售水果多少千克?(2)当月利润为8750元时,每千克水果售价为多少元?(3)当每千克水果售价为多少元时,获得的月利润最大?【答案】(1)450千克;(2)当月销售利润为元8750时,每千克水果售价为65元或75元;(3)当该优质水果每千克售价为70元时,获得的月利润最大【解析】【分析】(1)根据销售量的规律:500减去减少的数量即可求出答案;(2)设每千克水果售价为x 元,根据题意列方程解答即可;(3)设月销售利润为y 元,每千克水果售价为x 元,根据题意列函数关系式,再根据顶点式函数关系式的性质解答即可.【详解】解:()1当售价为55元/千克时,每月销售量为()50010555050050450-⨯-=-=千克. ()2设每千克水果售价为x 元,由题意,得()()4050010508750,x x ⎡⎤=⎦-⎣-- 即2101400400008750,x x -+-=整理,得21404875,x x -=-配方,得()27049004875,x -=-解得1265,75.x x == ∴当月销售利润为元8750时,每千克水果售价为65元或75元()3设月销售利润y 元,每千克水果售价为x 元,由题意,得()()405001050,y x x ⎡⎤=---⎣⎦即210140040(00040)100,y x x x =-+-≤≤配方,得()210709000,y x =--+100-<,∴当70x =时,y 有最大值∴当该优质水果每千克售价为70元时,获得的月利润最大.【点睛】此题考查一元二次方程的实际应用,顶点式二次函数的性质,正确理解题意,根据题意对应的列方程或是函数关系式进行解答,并正确计算.25.如图,AB 是O 的直径,AM 和BN 是它的两条切线,过O 上一点E 作直线DC ,分别交AM 、BN 于点D 、C ,且DA =DE .(1)求证:直线CD 是O 的切线;(2)求证:2OA DE CE =⋅【答案】(1)见解析;(2)见解析【解析】【分析】(1)连接OD ,OE ,证明△OAD ≌△OED ,得∠OAD=∠OED=90°,进而得CD 是切线;(2)连接OC ,得AM ∥BN ,得,DEOOEC ∆∆,再证明2.OE DE CE =•,进而得出结论2.OA DE CE =•.【详解】解(1)如图,连接,OE OD 、 DA 是O 的切线,90OAD ︒∠=在AOD ∆和EOD ∆中, , ,,OA OE DA DE OD OD ===()AOD EOD SSS ∴∆∆≌90,OAD OED ︒∴∠=∠=,OE CD ∴⊥CD ∴是O 的切线.(2)连接,OC AM BN DC 、、是O 的切线,90OAD OBC DEO OEC ︒∴∠=∠=∠=∠=//,AM BN ∴180ADE BCE ︒∴∠+∠=又AM BN DC 、、是O 的切线,CE CB ∴=,OD 平分,ADE OC ∠平分, .BCE ∠ ()111809022ODE OCE ADE BCE ︒︒∴∠+∠=∠+∠=⨯= 又90ODE DOE ︒∠+∠=,OCE DOE ∴∠=∠又90DEO OEC ︒∠=∠=,,DEOOEC ∴∆∆ OE DE CE OE∴= 2.OE DE CE ∴=•又,OA OE =2.OA DE CE ∴=•【点睛】本题考查了圆的切线的性质与判定,相似三角形的判定与性质,全等三角形的性质与判定,关键是正确作辅助线构造全等三角形与直角三角形.26.如图,抛物线的顶点为A(h ,-1),与y 轴交于点B 1(0,)2-,点F(2,1)为其对称轴上的一个定点. (1)求这条抛物线的函数解析式;(2)已知直线l 是过点C(0,-3)且垂直于y 轴的定直线,若抛物线上的任意一点P(m ,n)到直线l 的距离为d ,求证:PF =d ;(3)已知坐标平面内的点D(4,3),请在抛物线上找一点Q ,使△DFQ 的周长最小,并求此时DFQ 周长的最小值及点Q 的坐标.【答案】(1)()21218y x =--;(2)见解析;(3)226,14,2⎛⎫- ⎪⎝⎭ 【解析】【分析】 (1)由题意抛物线的顶点A (2,-1),可以假设抛物线的解析式为y=a (x-2)2-1,把点B 坐标代入求出a 即可.(2)由题意P (m ,2111822m m --),求出d 2,PF 2(用m 表示)即可解决问题. (3)如图,过点Q 作QH ⊥直线l 于H ,过点D 作DN ⊥直线l 于N .因为△DFQ 的周长=DF+DQ+FQ ,DF 是定值22222+=推出DQ+QF 的值最小时,△DFQ 的周长最小,再根据垂线段最短解决问题即可.【详解】解:()1设抛物线的函数解析式为()2,y a x h k =-+ 由题意,抛物线的顶点为()2, 1,A -()22 1.y a x ∴=-- 又抛物线与y 轴交于点10,2B ⎛⎫- ⎪⎝⎭ ()210212a ∴-=-- 18a ∴= ∴抛物线的函数解析式为()21218y x =-- (2)证明:∵P (m ,n ),∴221111(2)18822n m m m =--=--, ∴P (m ,2111822m m --), ∴22111115(3)822822d m m m m =----=-+, ∵F (2,1), ∴222432*********(2)1822648824PF m m m m m m m ⎛⎫=-+---=-+-+ ⎪⎝⎭, ∵2432117525648824d m m m m =-+-+,2432117525648824PF m m m m =-+-+, ∴d 2=PF 2,∴PF=d .(3)如图,过点Q 作QH ⊥直线l 于H ,过点D 作DN ⊥直线l 于N .∵△DFQ 的周长=DF+DQ+FQ ,DF 是定值22222+=∴DQ+QF 的值最小时,△DFQ 的周长最小,∵QF=QH ,∴DQ+DF=DQ+QH ,根据垂线段最短可知,当D ,Q ,H 共线时,DQ+QH 的值最小,此时点H 与N 重合,点Q 在线段DN 上, ∴DQ+QH 的最小值为6,∴△DFQ 的周长的最小值为226,此时Q (4,-12). 【点睛】本题属于二次函数综合题,考查了待定系数法,两点间距离公式,垂线段最短等知识,解题关键是学会利用参数解决问题,学会用转化的思想思考问题.。

2020年山东省滨州市中考数学试卷(含解析)

2020年山东省滨州市中考数学试卷(含解析)

2020年山东省滨州市中考数学试卷(考试时间:120分钟满分:150分)一、选择题(每小题3分,共36分)1.下列各式正确的是()A.﹣|﹣5|=5 B.﹣(﹣5)=﹣5 C.|﹣5|=﹣5 D.﹣(﹣5)=52.如图,AB∥CD,点P为CD上一点,PF是∠EPC的平分线,若∠1=55°,则∠EPD的大小为()A.60°B.70°C.80°D.100°3.冠状病毒的直径约为80~120纳米,1纳米=1.0×10﹣9米,若用科学记数法表示110纳米,则正确的结果是()A.1.1×10﹣9米B.1.1×10﹣8米C.1.1×10﹣7米D.1.1×10﹣6米4.在平面直角坐标系的第四象限内有一点M,到x轴的距离为4,到y轴的距离为5,则点M的坐标为()A.(﹣4,5)B.(﹣5,4)C.(4,﹣5)D.(5,﹣4)5.下列图形:线段、等边三角形、平行四边形、圆,其中既是轴对称图形,又是中心对称图形的个数为()A.1 B.2 C.3 D.46.如图,点A在双曲线y=上,点B在双曲线y=上,且AB∥x轴,点C、D在x轴上,若四边形ABCD 为矩形,则它的面积为()A.4 B.6 C.8 D.127.下列命题是假命题的是()A.对角线互相垂直且相等的平行四边形是正方形B.对角线互相垂直的矩形是正方形C.对角线相等的菱形是正方形D.对角线互相垂直且平分的四边形是正方形8.已知一组数据:5,4,3,4,9,关于这组数据的下列描述:①平均数是5,②中位数是4,③众数是4,④方差是4.4,其中正确的个数为()A.1 B.2 C.3 D.49.在⊙O中,直径AB=15,弦DE⊥AB于点C,若OC:OB=3:5,则DE的长为()A.6 B.9 C.12 D.1510.对于任意实数k,关于x的方程x2﹣(k+5)x+k2+2k+25=0的根的情况为()A.有两个相等的实数根B.没有实数根C.有两个不相等的实数根D.无法判定11.对称轴为直线x=1的抛物线y=ax2+bx+c(a、b、c为常数,且a≠0)如图所示,小明同学得出了以下结论:①abc<0,②b2>4ac,③4a+2b+c>0,④3a+c>0,⑤a+b≤m(am+b)(m为任意实数),⑥当x<﹣1时,y随x的增大而增大.其中结论正确的个数为()A.3 B.4 C.5 D.612.如图,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平后再次折叠,使点A落在EF 上的点A′处,得到折痕BM,BM与EF相交于点N.若直线BA′交直线CD于点O,BC=5,EN=1,则OD的长为()A.B.C.D.二、填空题(每小题5分,共40分)13.若二次根式在实数范围内有意义,则x的取值范围为.14.在等腰△ABC中,AB=AC,∠B=50°,则∠A的大小为.15.若正比例函数y=2x的图象与某反比例函数的图象有一个交点的纵坐标是2,则该反比例函数的解析式为.16.如图,⊙O是正方形ABCD的内切圆,切点分别为E、F、G、H,ED与⊙O相交于点M,则sin∠MFG的值为.17.现有下列长度的五根木棒:3,5,8,10,13,从中任取三根,可以组成三角形的概率为.18.若关于x的不等式组无解,则a的取值范围为.19.观察下列各式:a1=,a2=,a3=,a4=,a5=,…,根据其中的规律可得a n=(用含n的式子表示).20.如图,点P是正方形ABCD内一点,且点P到点A、B、C的距离分别为2、、4,则正方形ABCD 的面积为.三、解答题(本大题共6个小题,满分74分)21.(10分)先化简,再求值:1﹣÷;其中x=cos30°×,y=(π﹣3)0﹣()﹣1.22.(12分)如图,在平面直角坐标系中,直线y=﹣x﹣1与直线y=﹣2x+2相交于点P,并分别与x轴相交于点A、B.(1)求交点P的坐标;(2)求△PAB的面积;(3)请把图象中直线y=﹣2x+2在直线y=﹣x﹣1上方的部分描黑加粗,并写出此时自变量x的取值范围.23.(12分)如图,过▱ABCD对角线AC与BD的交点E作两条互相垂直的直线,分别交边AB、BC、CD、DA 于点P、M、Q、N.(1)求证:△PBE≌△QDE;(2)顺次连接点P、M、Q、N,求证:四边形PMQN是菱形.24.(13分)某水果商店销售一种进价为40元/千克的优质水果,若售价为50元/千克,则一个月可售出500千克;若售价在50元/千克的基础上每涨价1元,则月销售量就减少10千克.(1)当售价为55元/千克时,每月销售水果多少千克?(2)当月利润为8750元时,每千克水果售价为多少元?(3)当每千克水果售价为多少元时,获得的月利润最大?25.(13分)如图,AB是⊙O的直径,AM和BN是它的两条切线,过⊙O上一点E作直线DC,分别交AM、BN 于点D、C,且DA=DE.(1)求证:直线CD是⊙O的切线;(2)求证:OA2=DE•CE.26.(14分)如图,抛物线的顶点为A(h,﹣1),与y轴交于点B(0,﹣),点F(2,1)为其对称轴上的一个定点.(1)求这条抛物线的函数解析式;(2)已知直线l是过点C(0,﹣3)且垂直于y轴的定直线,若抛物线上的任意一点P(m,n)到直线l 的距离为d,求证:PF=d;(3)已知坐标平面内的点D(4,3),请在抛物线上找一点Q,使△DFQ的周长最小,并求此时△DFQ周长的最小值及点Q的坐标.参考答案与试题解析一、选择题1.【解答】解:A、∵﹣|﹣5|=﹣5,∴选项A不符合题意;B、∵﹣(﹣5)=5,∴选项B不符合题意;C、∵|﹣5|=5,∴选项C不符合题意;D、∵﹣(﹣5)=5,∴选项D符合题意.故选:D.2.【解答】解:∵AB∥CD,∴∠1=∠CPF=55°,∵PF是∠EPC的平分线,∴∠CPE=2∠CPF=110°,∴∠EPD=180°﹣110°=70°,故选:B.3.【解答】解:110纳米=110×10﹣9米=1.1×10﹣7米.故选:C.4.【解答】解:∵在平面直角坐标系的第四象限内有一点M,到x轴的距离为4,到y轴的距离为5,∴点M的纵坐标为:﹣4,横坐标为:5,即点M的坐标为:(5,﹣4).故选:D.5.【解答】解:线段是轴对称图形,也是中心对称图形;等边三角形是轴对称图形,不是中心对称图形;平行四边形不是轴对称图形,是中心对称图形;圆是轴对称图形,也是中心对称图形;则既是轴对称图形又是中心对称图形的有2个.故选:B.6.【解答】解:过A点作AE⊥y轴,垂足为E,∵点A在双曲线y=上,∴四边形AEOD的面积为4,∵点B在双曲线线y=上,且AB∥x轴,∴四边形BEOC的面积为12,∴矩形ABCD的面积为12﹣4=8.故选:C.7.【解答】解:A、对角线互相垂直且相等的平行四边形是正方形是真命题,故选项A不合题意;B、对角线互相垂直的矩形是正方形是真命题,故选项B不合题意;C、对角线相等的菱形是正方形是真命题,故选项C不合题意;D、对角线互相垂直且平分的四边形是菱形,即对角线互相垂直且平分的四边形是正方形是假命题,故选项D符合题意;故选:D.8.【解答】解:数据由小到大排列为3,4,4,5,9,它的平均数为=5,数据的中位数为4,众数为4,数据的方差=[(3﹣5)2+(4﹣5)2+(4﹣5)2+(5﹣5)2+(9﹣5)2]=4.4.所以A、B、C、D都正确.故选:D.9.【解答】解:如图所示:∵直径AB=15,∴BO=7.5,∵OC:OB=3:5,∴CO=4.5,∴DC==6,∴DE=2DC=12.故选:C.10.【解答】解:x2﹣(k+5)x+k2+2k+25=0,△=[﹣(k+5)]2﹣4××(k2+2k+25)=﹣k2+6k﹣25=﹣(k﹣3)2﹣16,不论k为何值,﹣(k﹣3)2≤0,即△=﹣(k﹣3)2﹣16<0,所以方程没有实数根,故选:B.11.【解答】解:①由图象可知:a>0,c<0,∵﹣=1,∴b=﹣2a<0,∴abc<0,故①错误;②∵抛物线与x轴有两个交点,∴b2﹣4ac>0,∴b2>4ac,故②正确;③当x=2时,y=4a+2b+c<0,故③错误;④当x=﹣1时,y=a﹣b+c>0,∴3a+c>0,故④正确;⑤当x=1时,y的值最小,此时,y=a+b+c,而当x=m时,y=am2+bm+c,所以a+b+c≤am2+bm+c,故a+b≤am2+bm,即a+b≤m(am+b),故⑤正确,⑥当x<﹣1时,y随x的增大而减小,故⑥错误,故选:A.12.【解答】解:∵EN=1,∴由中位线定理得AM=2,由折叠的性质可得A′M=2,∵AD∥EF,∴∠AMB=∠A′NM,∵∠AMB=∠A′MB,∴∠A′NM=∠A′MB,∴A′N=2,∴A′E=3,A′F=2过M点作MG⊥EF于G,∴NG=EN=1,∴A′G=1,由勾股定理得MG==,∴BE=OF=MG=,∴OF:BE=2:3,解得OF=,∴OD=﹣=.故选:B.二、填空题13.【解答】解:要使二次根式在实数范围内有意义,必须x﹣5≥0,解得:x≥5,故答案为:x≥5.14.【解答】解:∵AB=AC,∠B=50°,∴∠C=∠B=50°,∴∠A=180°﹣2×50°=80°.故答案为:80°.15.【解答】解:当y=2时,即y=2x=2,解得:x=1,故该点的坐标为(1,2),将(1,2)代入反比例函数表达式y=并解得:k=2,故答案为:y=.16.【解答】解:∵⊙O是正方形ABCD的内切圆,∴AE=AB,EG=BC;根据圆周角的性质可得:∠MFG=∠MEG.∵sin∠MFG=sin∠MEG==,∴sin∠MFG=.故答案为:.17.【解答】解:3,5,8,10,13,从中任取三根,所有情况为:3、5、8;3、5、10;3、5、13;3、8、10;3、8、13;3,10,13;5、8、10;5、8、13;5、10、13;8、10、13;共有10种等可能的结果数,其中可以组成三角形的结果数为4,所以可以组成三角形的概率==.故答案为.18.【解答】解:解不等式x﹣a>0,得:x>2a,解不等式4﹣2x≥0,得:x≤2,∵不等式组无解,∴2a≥2,解得a≥1,故答案为:a≥1.19.【解答】解:由分析可得a n=.故答案为:.20.【解答】解:如图,将△ABP绕点B顺时针旋转90°得到△CBM,连接PM,过点B作BH⊥PM于H.∵BP=BM=,∠PBM=90°,∴PM=PB=2,∵PC=4,PA=CM=2,∴PC2=CM2+PM2,∴∠PMC=90°,∵∠BPM=∠BMP=45°,∴∠CMB=∠APB=135°,∴∠APB+∠BPM=180°,∴A,P,M共线,∵BH⊥PM,∴PH=HM,∴BH=PH=HM=1,∴AH=2+1,∴AB2=AH2+BH2=(2+1)2+12=14+4,∴正方形ABCD的面积为14+4.故答案为14+4.三、解答题21.【解答】解:原式=1﹣÷=1+•=1+==,∵x=cos30°×=×2=3,y=(π﹣3)0﹣()﹣1=1﹣3=﹣2,∴原式==0.22.【解答】解:(1)由解得,∴P(2,﹣2);(2)直线y=﹣x﹣1与直线y=﹣2x+2中,令y=0,则﹣x﹣1=0与﹣2x+2=0,解得x=﹣2与x=1,∴A(﹣2,0),B(1,0),∴AB=3,∴S△PAB===3;(3)如图所示:自变量x的取值范围是x<2.23.【解答】(1)证明:∵四边形ABD是平行四边形,∴EB=ED,AB∥CD,∴∠EBP=∠EDQ,在△PBE和△QDE中,,∴△PBE≌△QDE(ASA);(2)证明:如图所示:∵△PBE≌△QDE,∴EP=EQ,同理:△BME≌△DNE(ASA),∴EM=EN,∴四边形PMQN是平行四边形,∵PQ⊥MN,∴四边形PMQN是菱形.24.【解答】解:(1)当售价为55元/千克时,每月销售水果=500﹣10×(55﹣50)=450千克;(2)设每千克水果售价为x元,由题意可得:8750=(x﹣40)[500﹣10(x﹣50)],解得:x1=65,x2=75,答:每千克水果售价为65元或75元;(3)设每千克水果售价为m元,获得的月利润为y元,由题意可得:y=(m﹣40)[500﹣10(m﹣50)]=﹣10(m﹣70)2+9000,∴当m=70时,y有最大值为9000元,答:当每千克水果售价为70元时,获得的月利润最大值为9000元.25.【解答】解:(1)连接OD,OE,如图1,在△OAD和△OED中,,∴△OAD≌△OED(SSS),∴∠OAD=∠OED,∵AM是⊙O的切线,∴∠OAD=90°,∴∠OED=90°,∴直线CD是⊙O的切线;(2)过D作DF⊥BC于点F,如图2,则∠DFB=∠RFC=90°,∵AM、BN都是⊙O的切线,∴∠ABF=∠BAD=90°,∴四边形ABFD是矩形,∴DF=AB=2OA,AD=BF,∵CD是⊙O的切线,∴DE=DA,CE=CB,∴CF=CB﹣BF=CE﹣DE,∵DE2=CD2﹣CF2,∴4OA2=(CE+DE)2﹣(CE﹣DE)2,即4OA2=4DE•CE,∴OA2=DE•CE.26.【解答】(1)解:由题意抛物线的顶点A(2,﹣1),可以假设抛物线的解析式为y=a(x﹣2)2﹣1,∵抛物线经过B(0,﹣),∴﹣=4a﹣1,∴a=,∴抛物线的解析式为y=(x﹣2)2﹣1.(2)证明:∵P(m,n),∴n=(m﹣2)2﹣1=m2﹣m﹣,∴P(m,m2﹣m﹣),∴d=m2﹣m﹣﹣(﹣3)=m2﹣m+,∵F(2,1),∴PF==,∵d2=m4﹣m3+m2﹣m+,PF2=m4﹣m3+m2﹣m+,∴d2=PF2,∴PF=d.(3)如图,过点Q作QH⊥直线l于H,过点D作DN⊥直线l于N.∵△DFQ的周长=DF+DQ+FQ,DF是定值==2,∴DQ+QF的值最小时,△DFQ的周长最小,∵QF=QH,∴DQ+DF=DQ+QH,根据垂线段最短可知,当D,Q,H共线时,DQ+QH的值最小,此时点H与N重合,点Q在线段DN上,∴DQ+QH的最小值为3,∴△DFQ的周长的最小值为2+3,此时Q(4,﹣)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

在△PBE 和△QDE 中,

∴△PBE≌△QDE(ASA); (2)证明:如图所示: ∵△PBE≌△QDE, ∴EP=EQ, 同理:△BME≌△DNE(ASA), ∴EM=EN, ∴四边形 PMQN 是平行四边形, ∵PQ⊥MN, ∴四边形 PMQN 是菱形.
24、解:(1)当售价为 55 元/千克时,每月销售水果=500﹣10×(55﹣50)= 450 千克; (2)设每千克水果售价为 x 元, 由题意可得:8750=(x﹣40)[500﹣10(x﹣50)], 解得:x1=65,x2=75, 答:每千克水果售价为 65 元或 75 元; (3)设每千克水果售价为 m 元,获得的月利润为 y 元, 由题意可得:y=(m﹣40)[500﹣10(m﹣50)]=﹣10(m﹣70)2+9000, ∴当 m=70 时,y 有最大值为 9000 元,
=2 ,
∴DQ+QF 的值最小时,△DFQ 的周长最小, ∵QF=QH, ∴DQ+DF=DQ+QH,
根据垂线段最短可知,当 D,Q,H 共线时,DQ+QH 的值最小,此时点 H 与 N 重合,点 Q 在线段 DN 上, ∴DQ+QH 的最小值为 3,
∴△DFQ 的周长的最小值为 2 +3,此时 Q(4,﹣ )
D.100°
3.冠状病毒的直径约为 80~120 纳米,1 纳米=1.0×10﹣9 米,若用科学记数法表示 110 纳
米,则正确的结果是( )
A.1.1×10﹣9 米
B.1.1×10﹣8 米
C.1.1×10﹣7 米
D.1.1×10﹣6 米
4.在平面直角坐标系的第四象限内有一点 M,到 x 轴的距离为 4,到 y 轴的距离为 5,则
A.有两个相等的实数根
B.没有实数根
C.有两个不相等的实数根
D.无法判定
11.对称轴为直线 x=1 的抛物线 y=ax2+bx+c(a、b、c 为常数,且 a≠0)如图所示,小
明同学得出了以下结论:①abc<0,②b2>4ac,③4a+2b+c>0,④3a+c>0,⑤a+b≤
m(am+b)(m 为任意实数),⑥当 x<﹣1 时,y 随 x 的增大而增大.其中结论正确的
①平均数是 5,②中位数是 4,③众数是 4,④方差是 4.4,
其中正确的个数为( )
A.1
B.2
C.3
D.4
9.在⊙O 中,直径 AB=15,弦 DE⊥AB 于点 C,若 OC:OB=3:5,则 DE 的长为( )
A.6
B.9
C.12
D.15
10.对于任意实数 k,关于 x 的方程 x2﹣(k+5)x+k2+2k+25=0 的根的情况为( )
得 an=
(用含 n 的式子表示).
20.如图,点 P 是正方形 ABCD 内一点,且点 P 到点 A、B、C 的距离分别为 2 、 、
4,则正方形 ABCD 的面积为

三、解答题:本大题共 6 个小题,满分 74 分,解答时请写出必要的演推过程.
21.先化简,再求值:1﹣
÷
;其中 x=cos30°× ,y=(π﹣3)0
例函数的解析式为

16.如图,⊙O 是正方形 ABCD 的内切圆,切点分别为 E、F、G、H,ED 与⊙O 相交于点
M,则 sin∠MFG 的值为

17.现有下列长度的五根木棒:3,5,8,10,13,从中任取三根,可以组成三角形的概率


18.若关于 x 的不等式组
无解,则 a 的取值范围为

19.观察下列各式:a1= ,a2= ,a3= ,a4= ,a5= ,…,根据其中的规律可
个数为( )
A.3
B.4
C.5
D.6
12.如图,对折矩形纸片 ABCD,使 AD 与 BC 重合,得到折痕 EF,把纸片展平后再次折
叠,使点 A 落在 EF 上的点 A′处,得到折痕 BM,BM 与 EF 相交于点 N.若直线 BA
′交直线 CD 于点 O,BC=5,EN=1,则 OD 的长为( )
﹣( )﹣1. 22.如图,在平面直角坐标系中,直线 y=﹣ x﹣1 与直线 y=﹣2x+2 相交于点 P,并分别
与 x 轴相交于点 A、B. (1)求交点 P 的坐标; (2)求△PAB 的面积; (3)请把图象中直线 y=﹣2x+2 在直线 y=﹣ x﹣1 上方的部分描黑加粗,并写出此时 自变量 x 的取值范围.
一、选择题 1—5DBCDB
数学试卷参考答案
6—10CDDCB 11-12AB 13、x≥5.
14、80° 15、y= 16、 .17、 18、a≥1 19、
20、14+4 21、解:原式=1﹣ ÷
=1+ •
=1+



∵x=cos30°× = ×2 =3,y=(π﹣3)0﹣( )﹣1=1﹣3=﹣2,
2020 年山东省滨州市中考数学试题及答案
一、选择题
1.下列各式正确的是( )
A.﹣|﹣5|=5
B.﹣(﹣5)=﹣5 C.|﹣5|=﹣5
D.﹣(﹣5)=5
2.如图,AB∥CD,点 P 为 CD 上一点,PF 是∠EPC 的平分线,若∠1=55°,则∠EPD
的大小为( )
A.60°
B.70°
C.80°
25.如图,AB 是⊙O 的直径,AM 和 BN 是它的两条切线,过⊙O 上一点 E 作直线 DC, 分别交 AM、BN 于点 D、C,且 DA=DE. (1)求证:直线 CD 是⊙O 的切线;
(2)求证:OA2=DE•CE.
26.如图,抛物线的顶点为 A(h,﹣1),与 y 轴交于点 B(0,﹣ ),点 F(2,1)为 其对称轴上的一个定点. (1)求这条抛物线的函数解析式; (2)已知直线 l 是过点 C(0,﹣3)且垂直于 y 轴的定直线,若抛物线上的任意一点 P (m,n)到直线 l 的距离为 d,求证:PF=d; (3)已知坐标平面内的点 D(4,3),请在抛物线上找一点 Q,使△DFQ 的周长最小, 并求此时△DFQ 周长的最小值及点 Q 的坐标.
∴d= m2﹣ m﹣ ﹣(﹣3)= m2﹣ m+ ,
∵F(2,1),
∴PF=


∵d2= m4﹣ m3+ m2﹣ m+ ,PF2= m4﹣ m3+ m2﹣ m+ ,
∴d2=PF2, ∴PF=d.
(3)如图,过点 Q 作 QH⊥直线 l 于 H,过点 D 作 DN⊥直线 l 于 N.
∵△DFQ 的周长=DF+DQ+FQ,DF 是定值=
26、(1)解:由题意抛物线的顶点 A(2,﹣1),可以假设抛物线的解析式为 y =a(x﹣2)2﹣1, ∵抛物线经过 B(0,﹣ ), ∴﹣ =4a﹣1, ∴a= , ∴抛物线的解析式为 y= (x﹣2)2﹣1.
(2)证明:∵P(m,n), ∴n= (m﹣2)2﹣1= m2﹣ m﹣ ,
∴P(m, m2﹣ m﹣ ),
点 M 的坐标为( )
A.(﹣4,5)
B.(﹣5,4)
C.(4,﹣5)
D.(5,﹣4)
5.下列图形:线段、等边三角形、平行四边形、圆,其中既是轴对称图形,又是中心对称
图形的个数为( )
A.1
B.2
C.3
D.4
6.如图,点 A 在双曲线 y= 上,点 B 在双曲线 y= 上,且 AB∥x 轴,点 C、D 在 x
A.
B.
C.
D.
二、填空题:本大题共 8 个小题.每小题 5 分,满分 40 分.
13.若二次根式
在实数范围内有意义,则 x 的取值范围为

14.在15.若正比例函数 y=2x 的图象与某反比例函数的图象有一个交点的纵坐标是 2,则该反比
轴上,若四边形 ABCD 为矩形,则它的面积为( )
A.4
B.6
7.下列命题是假命题的是( )
C.8
D.12
A.对角线互相垂直且相等的平行四边形是正方形
B.对角线互相垂直的矩形是正方形
C.对角线相等的菱形是正方形
D.对角线互相垂直且平分的四边形是正方形
8.已知一组数据:5,4,3,4,9,关于这组数据的下列描述:
∴原式=
=0.
22、解:(1)由
解得

∴P(2,﹣2);
(2)直线 y=﹣ x﹣1 与直线 y=﹣2x+2 中,令 y=0,则﹣ x﹣1=0 与﹣2x+2
=0, 解得 x=﹣2 与 x=1, ∴A(﹣2,0),B(1,0), ∴AB=3,
∴S△PAB=

=3;
(3)如图所示:
自变量 x 的取值范围是 x<2. 23、(1)证明:∵四边形 ABD 是平行四边形, ∴EB=ED,AB∥CD, ∴∠EBP=∠EDQ,
答:当每千克水果售价为 70 元时,获得的月利润最大值为 9000 元. 25、解:(1)连接 OD,OE,如图 1, 在△OAD 和△OED 中,

∴△OAD≌△OED(SSS), ∴∠OAD=∠OED, ∵AM 是⊙O 的切线, ∴∠OAD=90°, ∴∠OED=90°, ∴直线 CD 是⊙O 的切线;
23.如图,过▱ABCD 对角线 AC 与 BD 的交点 E 作两条互相垂直的直线,分别交边 AB、 BC、CD、DA 于点 P、M、Q、N. (1)求证:△PBE≌△QDE; (2)顺次连接点 P、M、Q、N,求证:四边形 PMQN 是菱形.
24.某水果商店销售一种进价为 40 元/千克的优质水果,若售价为 50 元/千克,则一个月可 售出 500 千克;若售价在 50 元/千克的基础上每涨价 1 元,则月销售量就减少 10 千克. (1)当售价为 55 元/千克时,每月销售水果多少千克? (2)当月利润为 8750 元时,每千克水果售价为多少元? (3)当每千克水果售价为多少元时,获得的月利润最大?
相关文档
最新文档