2018最新三年级奥数.几何.一笔画与多笔画(B级)学生版
(完整word版)三年级奥数.几何.一笔画与多笔画
![(完整word版)三年级奥数.几何.一笔画与多笔画](https://img.taocdn.com/s3/m/6f9ef75cc1c708a1294a4481.png)
一笔画与多笔画知识框架一、一笔画的认识所谓图的一笔画,指的就是:从图的一点出发,笔不离纸,遍历每条边恰好一次,即每条边都只画一次,不准重复.从上图中容易看出:能一笔画出的图首先必须是连通图.但是否所有的连通图都可以一笔画出呢?下面,我们就来探求解决这个问题的方法。
什么样的图形能一笔画成呢?这就是一笔画问题,它是一种有名的数学游戏.所谓一笔画,就是从图形上的某点出发,笔不离开纸,而且每条线都只画一次不准重复.我们把一个图形中与偶数条线相连接的点叫做偶点.相应的把与奇数条线相连接的点叫做奇点. 二、一笔画问题(1)能一笔画出的图形必须是连通的图形;(2)凡是只由偶点组成的连通图形.一定可以一笔画出.画时可以由任一偶点作为起点.最后仍回到这点;(3)凡是只有两个奇点的连通图形一定可以一笔画出.画时必须以一个奇点作为起点.以另一个奇点作为终点;(4)奇点个数超过两个的图形,一定不能一笔画.三、多笔画问题我们把不能一笔画成的图,归纳为多笔画.多笔画图形的笔画数恰等于奇点个数的一半.事实上,对于任意的连通图来说,如果有2n个奇点(n为自然数),那么这个图一定可以用n笔画成.重难点(1)知道什么样的的是奇点?什么样的点是偶点。
(2)知道什么样的图形可以一笔画出。
(3)不能一笔画出的图形叫做多笔画图形,多笔画图形的笔画数与什么有关呢?例题精讲【例 1】我们把一个图形上与偶数条线相连的点叫做偶点,与奇数条线相连的点叫做奇点.下图中,哪些点是偶点?哪些点是奇点?【巩固】 下图中,哪些点是奇点,哪些点是偶点?【例 2】 观察下面的图形,说明哪些图可以一笔画完,哪些不能,为什么?对于可以一笔画的图形,指明画法.【巩固】 下面的图形,哪些能一笔画出?哪些不能一笔画出?J O I H G FED CBA GF E D CBA【例 3】 同学们野营时建了9个营地,连接营地之间的道路如图所示,贝贝要给每个营地插上一面旗帜,要求相邻营地的旗帜色彩不同,则贝贝最少需要 种颜色的旗子,如果贝贝从某营地出发,不走重复路线就 (填“能”或“不能”)完成任务.【例 4】 右图是某展览厅的平面图,它由五个展室组成,任两展室之间都有门相通,整个展览厅还有一个进口和一个出口,问游人能否一次不重复地穿过所有的门,并且从入口进,从出口出?【巩固】 右图是某展览馆的平面图,一个参观者能否不重复地穿过每一扇门?如果不能,请说明理由.如果能,应从哪开始走?【例 5】 下图中的线段表示小路,请你仔细观察,认真思考,能够不重复的爬遍小路的是甲蚂蚁还是乙蚂蚁?该怎样爬?E CDB A 乙甲【例 6】 邮递员叔叔向11个地点送信一次信,不走重复路,怎样走最合适?【例 7】 (2010年第8届走美杯3年级初赛第6题)有16个点排成的44 方阵。
小学奥数习题版三年级几何一笔画学生版
![小学奥数习题版三年级几何一笔画学生版](https://img.taocdn.com/s3/m/136bda74fad6195f302ba603.png)
知识要点一笔画一笔画【例1】 判断下列各图能否一笔画出,并说明理由。
【例2】 判断下列各图能否一笔画出,并说明理由。
(6)(4)(3)(2)(1)多笔画【例3】 下面各图至少需要几笔才能画成?(3)(2)(1)【例4】判断图中的三个图形各需要几笔才能画出?请把能一笔画的图形的画法用字母和箭头表示出来。
【例5】观察下面的图形,判断其需要几笔才能画出?多笔画改一笔画【例6】下图中的两个图形均不能一笔画出,你能将原图形中的某一线段取消使之能够一笔画成吗?【例7】下图能一笔画成吗?如果不能,请你添上或减去一根线段使它能一笔画出来。
【例8】 判断下列图形能否一笔画.若能,请给出一种画法,若不能,请说明需要几笔才能画出,并请加一条线或去一条线,将其改成可一笔画的图形.FI H EBA G图aD C 图 bJ I H GDCLKF E BA 图 c【例9】 将下图改为一笔画.生活中的一笔画【例10】 (第十二届“华罗庚金杯”少年数学邀请赛初赛试题(小学组))同学们野营时建了9个营地,连接营地之间的道路如图所示,贝贝要给每个营地插上一面旗帜,要求相邻的旗帜色彩不同,则贝贝至少需要___种颜色的旗子。
如果贝贝从某营地出发,不走重复的路就______(填“能”或“不能”)完成这项任务。
【例11】 下图是一个公园的道路平面图,要使游客走遍每条路且不重复,问出、入口应设在哪里?HI FED CBA【例12】下图中每个小正方形的边长都是100米。
小明沿线段从A点到B点,不许走重复路,他最多能走多少米?【例13】小明假日去看画展,展览分四个展区,展览馆内外一共有六扇门,平面图如下,请问小明能否不重复地穿过每一扇门?如果不能,请说明理由。
如果能,应从哪开始走?【例14】下图是某博物馆的平面图,共有五个主题展馆,相邻两馆之间有门相通,并且设有入口.博物馆的入口以及展馆门口挂了颜色各异的彩旗,请问你能否从入口进入一次不重复地穿过所有的门采集到所有颜色的彩旗吗?如果可以,请指明穿行路线,如果不能,应关闭哪个门就可以办到?【例15】在一条河的中间有两个小岛,周围有六座桥与两岸相通.问能否找到一条路线,从一岸出发,不重复走遍所有的桥,然后到达对岸?【例16】如下图所示,两条河流的交汇处有两个岛,有七座桥连接这两个岛及河岸.问:一个散步者能否一次不重复地走遍这七座桥?两条支流在城市中心汇合,汇合处有一座小岛A和一座半岛D,人们在这里建了一座公园,公园中有七座桥把河两岸和两个岛连接起来(如下图所示).如果游人要一次走过这七座桥,而且对每座桥只许走一次,问如何走才能成功?这个有趣的问题引起了著名数学家欧拉的注意,他证明了七桥问题中提到的走法根本不存在.下面,我们考虑如下两个问题:⑴若再架一座桥,游人能否走遍所有这八座桥?若能,这座桥应架在何处?若不能,请说明理由.⑵架设几座桥可以使游人走遍所有的桥回到出发地?【例18】下图是某博物馆的平面图,相邻两个展厅之间有一扇门相通,每一个展厅都有一门通往馆外.问参观者能否不重复地一次穿过每一扇门?若能,请找出一条可行路径,若不能,请说明理由.如果允许关闭某一扇门,问参观者能否不重复地穿过每一扇开着的门?【例19】(2008年中国台湾小学数学竞赛选拔赛复赛)有一个城市的街道图是由一些矩形所构成,如下图。
小学三年级奥数专题(二十九)一笔画(2)
![小学三年级奥数专题(二十九)一笔画(2)](https://img.taocdn.com/s3/m/61822551f01dc281e53af059.png)
小学三年级奥数专题(二十九)一笔画(2)关键词:笔画复地图中奇点展室右图奥数千米邮局年级摘要:《小学三年级奥数专题(二十九)一笔画(2)》...是一笔画,所以答案是肯定的,应该从A或D展室开始走。
例1的关键是如何把一个实际问题变为判断是否一笔画问题,就像欧拉在解决哥尼斯堡七桥问题时做的那样。
例2 一个邮递员投递信件要走的街道如下页左上图所示...利用一笔画原理,我们可以解决许多有趣的实际问题。
例1 右图是某展览馆的平面图,一个参观者能否不重复地穿过每一扇门?如果不能,请说明理由。
如果能,应从哪开始走?分析与解:我们将每个展室看成一个点,室外看成点E,将每扇门看成一条线段,两个展室间有门相通表示两个点间有线段相连,于是得到右图。
能否不重复地穿过每扇门的问题,变为右图是否一笔画问题。
右图中只有A,D两个奇点,是一笔画,所以答案是肯定的,应该从A或D展室开始走。
例1的关键是如何把一个实际问题变为判断是否一笔画问题,就像欧拉在解决哥尼斯堡七桥问题时做的那样。
例2 一个邮递员投递信件要走的街道如下页左上图所示,图中的数字表示各条街道的千米数,他从邮局出发,要走遍各街道,最后回到邮局。
怎样走才能使所走的行程最短?全程多少千米?分析与解:图中共有8个奇点,必须在8 个奇点间添加4条线,才能消除所有奇点,成为能从邮局出发最后返回邮局的一笔画。
在距离最近的两个奇点间添加一条连线,如左上图中虚线所示,共添加4条连线,这4条连线表示要重复走的路,显然,这样重复走的路程最短,全程30千米。
走法参考右上图(走法不唯一)。
例3右图中每个小正方形的边长都是100米。
小明沿线段从A点到B点,不许走重复路,他最多能走多少米?分析与解:这道题大多数同学都采用试画的方法,实际上可以用一笔画原理求解。
首先,图中有8个奇点,在8个奇点之间至少要去掉4条线段,才能使这8个奇点变成偶点;其次,从A点出发到B点,A,B两点必须是奇点,现在A,B都是偶点,必须在与A,B连接的线段中各去掉1条线段,使A,B成为奇点。
2018最新三年级奥数.几何.一笔画与多笔画(C级)学生版
![2018最新三年级奥数.几何.一笔画与多笔画(C级)学生版](https://img.taocdn.com/s3/m/21966223de80d4d8d15a4fed.png)
21
2
2 2
3 1
教学反馈
学生对本次课的评价
○特别满意
○满意
家长意见及建议
○一般 家长签字:
例题精讲
【例 1】 下图是某地区所有街道的平面图.甲、乙二人同时分别从 A、B 出发,以相同的速度走遍所有的 街道,最后到达 C.如果允许两人在遵守规则的条件下可以选择最短路径的话,问两人谁能最先 到达 C?余老师薇芯:69039270
【例 2】 右图是某展览厅的平面图,它由五个展室组成,任两展室之间都有门相通,整个展览厅还有一 个进口和一个出口,问游人能否一次不重复地穿过所有的门,并且从入口进,从出口出?
【作业 5】 在六面体的顶点 B 和 E 处各有一只蚂蚁(见右图),它们比赛看谁能爬过所有的棱线,最终到 达终点 D.已知它们的爬速相同,哪只蚂蚁能获胜?
【作业 6】 下图是一个街区街道的平面图.邮递员从邮局出发,跑遍所有街道投送信件.请你为他安排一 条最短的路线,并按图中标出的千米数算出这条路线的长度(单位:千米).
我们把一个图形中与偶数条线相连接的点叫做偶点.相应的把与奇数条线相连接的点叫做奇点.
二、一笔画问题
(1) 能一笔画出的图形必须是连通的图形; (2) 凡是只由偶点组成的连通图形.一定可以一笔画出.画时可以由任一偶点作为起点.最后仍回到这
点; (3) 凡是只有两个奇点的连通图形一定可以一笔画出.画时必须以一个奇点作为起点.以另一个奇点作
【例 5】 在 3×3 的方阵中每个小正方形的边长都是 100 米.小明沿线段从 A 点到 B 点,不许走重复路, 他最多能走多少米?欢迎关注:“奥数轻松学”
【例 6】 如图是某餐厅的平面图,共有五个小厅,相邻两厅之间有门相通,并且设有入口.请问你能否 从入口进入一次不重复地穿过所有的门.如果可以,请指明穿行路线, 如果不能,应关闭哪个 门就可以办到?
三年级上册数学试题-奥数.几何.一笔画与多笔画(B级)
![三年级上册数学试题-奥数.几何.一笔画与多笔画(B级)](https://img.taocdn.com/s3/m/b5238290e009581b6bd9ebda.png)
一、 一笔画的认识所谓图的一笔画,指的就是:从图的一点出发,笔不离纸,遍历每条边恰好一次,即每条边都只画一次,不准重复.从上图中容易看出:能一笔画出的图首先必须是连通图.但是否所有的连通图都可以一笔画出呢?下面,我们就来探求解决这个问题的方法。
什么样的图形能一笔画成呢?这就是一笔画问题,它是一种有名的数学游戏.所谓一笔画,就是从图形上的某点出发,笔不离开纸,而且每条线都只画一次不准重复.我们把一个图形中与偶数条线相连接的点叫做偶点.相应的把与奇数条线相连接的点叫做奇点.二、 一笔画问题(1) 能一笔画出的图形必须是连通的图形;(2) 凡是只由偶点组成的连通图形.一定可以一笔画出.画时可以由任一偶点作为起点.最后仍回到这点;(3) 凡是只有两个奇点的连通图形一定可以一笔画出.画时必须以一个奇点作为起点.以另一个奇点作为终点;(4) 奇点个数超过两个的图形,一定不能一笔画.三、 多笔画问题我们把不能一笔画成的图,归纳为多笔画.多笔画图形的笔画数恰等于奇点个数的一半.事实上,对于任意的连通图来说,如果有2n 个奇点(n 为自然数),那么这个图一定可以用n 笔画成.(1) 知道什么样的的是奇点?什么样的点是偶点。
(2) 知道什么样的图形可以一笔画出。
(3) 不能一笔画出的图形叫做多笔画图形,多笔画图形的笔画数与什么有关呢?【例 1】 判断下列图a 、图b 、图c 能否一笔画.【考点】一笔画问题 【难度】2星 【题型】解答【解析】 图a 能,因为有2个奇点,图aNML KF DECBA 图bODCBA图cGFEDCBA一笔画与多笔画B知识框架重难点例题精讲图b 不能,因为图形不是连通的, 图c 能,因为因为图中全是奇点【答案】a 能,b 不能,c 能【例 2】 同学们野营时建了9个营地,连接营地之间的道路如图所示,贝贝要给每个营地插上一面旗帜,要求相邻营地的旗帜色彩不同,则贝贝最少需要 种颜色的旗子,如果贝贝从某营地出发,不走重复路线就 (填“能”或“不能”)完成任务.【考点】一笔画问题【难度】2星【题型】填空【关键词】2007年,第十二届,华杯赛,六年级,初赛,第10题【解析】最少需要4种颜色的旗子。
三年级奥数.几何.一笔画与多笔画(B级)学生版
![三年级奥数.几何.一笔画与多笔画(B级)学生版](https://img.taocdn.com/s3/m/d4b5affe172ded630b1cb682.png)
一、一笔画的认识所谓图的一笔画,指的就是:从图的一点出发,笔不离纸,遍历每条边恰好一次,即每条边都只画一次,不准重复.从上图中容易看出:能一笔画出的图首先必须是连通图.但是否所有的连通图都可以一笔画出呢?下面,我们就来探求解决这个问题的方法。
什么样的图形能一笔画成呢?这就是一笔画问题,它是一种有名的数学游戏.所谓一笔画,就是从图形上的某点出发,笔不离开纸,而且每条线都只画一次不准重复.我们把一个图形中与偶数条线相连接的点叫做偶点.相应的把与奇数条线相连接的点叫做奇点.二、 一笔画问题(1) 能一笔画出的图形必须是连通的图形;(2) 凡是只由偶点组成的连通图形.一定可以一笔画出.画时可以由任一偶点作为起点.最后仍回到这点;(3) 凡是只有两个奇点的连通图形一定可以一笔画出.画时必须以一个奇点作为起点.以另一个奇点作为终点;(4) 奇点个数超过两个的图形,一定不能一笔画.三、多笔画问题我们把不能一笔画成的图,归纳为多笔画.多笔画图形的笔画数恰等于奇点个数的一半.事实上,对于任意的连通图来说,如果有2n 个奇点(n 为自然数),那么这个图一定可以用n 笔画成.(1) 知道什么样的的是奇点?什么样的点是偶点。
(2) 知道什么样的图形可以一笔画出。
(3) 不能一笔画出的图形叫做多笔画图形,多笔画图形的笔画数与什么有关呢?重难点知识框架一笔画与多笔画【例 1】 判断下列图a 、图b 、图c 能否一笔画.【例 2】 同学们野营时建了9个营地,连接营地之间的道路如图所示,贝贝要给每个营地插上一面旗帜,要求相邻营地的旗帜色彩不同,则贝贝最少需要种颜色的旗子,如果贝贝从某营地出发,不走重复路线就(填“能”或“不能”)完成任务.【例 3】 右图是某展览厅的平面图,它由五个展室组成,任两展室之间都有门相通,整个展览厅还有一个进口和一个出口,问游人能否一次不重复地穿过所有的门,并且从入口进,从出口出?图a例题精讲【巩固】 右图是某展览馆的平面图,一个参观者能否不重复地穿过每一扇门?如果不能,请说明理由.如果能,应从哪开始走?【例 4】 能否用剪刀从左下图中一次连续剪下三个正方形和两个三角形?【巩固】 下图是儿童乐园的道路平面图,要使游客走遍每条路并且不重复,那么出、入口应设在哪里?【例 5】 (2010年第8届走美杯3年级初赛第6题)有16个点排成的44 方阵。
小学奥数-三年级-一笔画
![小学奥数-三年级-一笔画](https://img.taocdn.com/s3/m/676ee7beb307e87100f6964f.png)
(3)凡是图形中只有一个或者两个单数点,一定可以一笔画成。 画时必须从一个单数点为起点,以另一单数点为终点。 (4)凡是图形中单数点的个数多于两个时,此图肯定是不能一笔
画成。
第十二页,共26页。
【随堂练习4】下列哪些图形能一笔画出来,哪些不
能?
第十三页,共26页。
第十五页,共26页。
【例4】下面的图形都不能一笔画成,你能否在 图中添上一条线段,使它能一笔画成。
第十六页,共26页。
【例4】下面的图形都不能一笔画成,你能否在
图中添上一条线段,使它能一笔画成。
第十七页,共26页。
【例4】下面的图形都不能一笔画成,你能否在
图中添上一条线段,使它能一笔画成。
第十八页,共26页。
随堂练习5
根据今天学习知识,先判断下列图形能不能 一笔画成?再想一想该从哪里开始画?最后 再动手画画看。
第十四页,共26页。
例3
一辆洒水车要给某城市的街道洒水,街道地 图如下:你能否设计一条洒水车洒水的路线 ,使洒水车不重复地走过所有的街道,再回 到出发点?
小广场
超市 菜市场
文具店 电器城
服装城
第四页,共26页。
【随堂练习1】
数一数下列图形各有几个交点?
( 4 )个
( 2 )个
( 9 )个
第五页,共26页。
( 5 )个
交点分为两种
(1)从这点出发的线的数目 是双数的,叫双数点(偶点)。 (2)从这点出发的线的数目 是单数的,叫单数点(奇点)。
第六页,共26页。
①从这点出发的线的数目是单数的,叫单数点(奇点)。如 :
图2
图3
图4
图5
2018三年级奥数.几何.一笔画与多笔画(C级)学生版
![2018三年级奥数.几何.一笔画与多笔画(C级)学生版](https://img.taocdn.com/s3/m/44420de5bb4cf7ec4afed096.png)
知识框架一、一笔画的认识所谓图的一笔画,指的就是:从图的一点出发,笔不离纸,遍历每条边恰好一次,即每条边都只画一次,不准重复.从上图中容易看出:能一笔画出的图首先必须是连通图.但是否所有的连通图都可以一笔画出呢?下面,我们就来探求解决这个问题的方法.什么样的图形能一笔画成呢?这就是一笔画问题,它是一种有名的数学游戏.所谓一笔画,就是从图形上的某点出发,笔不离开纸,而且每条线都只画一次不准重复.我们把一个图形中与偶数条线相连接的点叫做偶点.相应的把与奇数条线相连接的点叫做奇点.二、一笔画问题(1)能一笔画出的图形必须是连通的图形;(2)凡是只由偶点组成的连通图形.一定可以一笔画出.画时可以由任一偶点作为起点.最后仍回到这点;(3)凡是只有两个奇点的连通图形一定可以一笔画出.画时必须以一个奇点作为起点.以另一个奇点作为终点;(4)奇点个数超过两个的图形,一定不能一笔画.三、多笔画问题我们把不能一笔画成的图,归纳为多笔画.多笔画图形的笔画数恰等于奇点个数的一半.事实上,对于任意的连通图来说,如果有2n个奇点(n为自然数),那么这个图一定可以用n笔画成.重难点(1)知道什么样的的是奇点?什么样的点是偶点.(2)知道什么样的图形可以一笔画出.(3)不能一笔画出的图形叫做多笔画图形,多笔画图形的笔画数与什么有关呢?一笔画与多笔画例题精讲【例1】下图是某地区所有街道的平面图.甲、乙二人同时分别从A、B 出发,以相同的速度走遍所有的街道,最后到达C.如果允许两人在遵守规则的条件下可以选择最短路径的话,问两人谁能最先到达C?【例2】右图是某展览厅的平面图,它由五个展室组成,任两展室之间都有门相通,整个展览厅还有一个进口和一个出口,问游人能否一次不重复地穿过所有的门,并且从入口进,从出口出?【巩固】右图是某展览馆的平面图,一个参观者能否不重复地穿过每一扇门?如果不能,请说明理由.如果能,应从哪开始走?E CDB A 【例3】下图中的每条线都表示一条街道,线上的数字表示这条街道的里数.邮递员从邮局出发,要走遍各条街道,最后回到邮局.问:邮递员怎样走,路线最合理?【例4】右图是某地区街道的平面图,图上的数字表示那条街道的长度.清晨,洒水车从A出发,要洒遍所有的街道,最后再回到A.问:如何设计洒水路线最合理?欢迎关注:奥数轻松学余老师薇芯:69039270【例5】在3×3的方阵中每个小正方形的边长都是100米.小明沿线段从A点到B点,不许走重复路,他最多能走多少米?欢迎关注:奥数轻松学余老师薇芯:69039270【例6】如图是某餐厅的平面图,共有五个小厅,相邻两厅之间有门相通,并且设有入口.请问你能否从入口进入一次不重复地穿过所有的门.如果可以,请指明穿行路线,如果不能,应关闭哪个门就可以办到?【例7】(2009“数学解题能力展示"读者评选活动五年级初赛6题)某城市的交通系统由若干个路口(右图中线段的交点)和街道(右图中的线段)组成,每条街道都连接着两个路口.所有街道都是双向通行的,且每条街道都有一个长度值(标在图中相应的线段处).一名邮递员传送报纸和信件,要从邮局出发经过他所管辖的每一条街道最后返回邮局(每条街道可以经过不止一次).他合理安排路线,可以使得自己走过最短的总长度是.【例8】18世纪的哥尼斯堡城是一座美丽的城市,在这座城市中有一条布勒格尔河横贯城区,这条河有两条支流在城市中心汇合,汇合处有一座小岛A和一座半岛D,人们在这里建了一座公园,公园中有七座桥把河两岸和两个小岛连接起来(如图a).如果游人要一次走过这七座桥,而且对每座桥只许走一次,问如何走才能成功?【巩固】如下图所示,两条河流的交汇处有两个岛,有七座桥连接这两个岛及河岸.问:一个散步者能否一次不重复地走遍这七座桥?【例9】一个邮递员投递信件要走的街道如右图所示,图中的数字表示各条街道的千米数,他从邮局出发,要走遍各街道,最后回到邮局.怎样走才能使所走的行程最短?全程多少千米?课堂检测【随练1】一辆清洁车清扫街道,每段街道长1公里,清洁车由A出发,走遍所有的街道再回到A.怎样走路程最短,全程多少公里?【随练2】右图是某展览馆的平面图,一个参观者能否不重复地穿过每一扇门?如果不能,请说明理由.如果能,应从哪开始走?家庭作业【作业1】下列图形分别是几笔画?怎样画?【作业2】从A点出发,走遍右上图中所有的线段,再回到A点,怎样走才能使重复走的路程最短?【作业3】邮递员要从邮局出发,走遍左下图(单位:千米)中所有街道,最后回到邮局,怎样走路程最短?全程多少千米?【作业4】有一个邮局,负责21个村庄的投递工作,下图中的点表示村庄,线段表示道路.邮递员从邮局出发,怎样才能不重复地经过每一个村庄,最后回到邮局?欢迎关注:奥数轻松学【作业5】在六面体的顶点B和E处各有一只蚂蚁(见右图),它们比赛看谁能爬过所有的棱线,最终到达终点D.已知它们的爬速相同,哪只蚂蚁能获胜?【作业6】下图是一个街区街道的平面图.邮递员从邮局出发,跑遍所有街道投送信件.请你为他安排一条最短的路线,并按图中标出的千米数算出这条路线的长度(单位:千米).教学反馈学生对本次课的评价○特别满意○满意○一般家长意见及建议家长签字:2122△邮局2113。
三年级奥数专题:一笔画
![三年级奥数专题:一笔画](https://img.taocdn.com/s3/m/3b65e8eb83c4bb4cf6ecd1a1.png)
三年级奥数专题:一笔画(一)如果一个图形可以用笔在纸上连续不断而且不重复地一笔画成,那么这个图形就叫一笔画.显然,在下面的图形中,(1)(2)不能一笔画成,故不是一笔画,(3)(4)可以一笔画成,是一笔画.同学们可能会问:为什么有的图形能一笔画成,有的图形却不能一笔画成呢?一笔画图形有哪些特点?关于这个问题有一个著名的数学故事——哥尼斯堡七桥问题.哥尼斯堡是立陶宛共和国的一座城市,布勒格尔河从城中穿过,河中有两个岛,18世纪时河上共有七座桥连接A,B两个岛以及河的两岸C,D(如下图).所谓七桥问题就是:一个散步者要一次走遍这七座桥,每座桥只走一次,怎样走才能成功?当时的许多人都热衷于解决七桥问题,但是都没成功.后来,这个问题引起了大数学家欧拉(1707-1783)的兴趣,许多人的不成功促使欧拉从反面来思考问题:是否根本就不存在这样一条路线呢?经过认真研究,欧拉终于在1736年圆满地解决了七桥问题,并发现了一笔画原理.欧拉是怎样解决七桥问题的呢?因为岛的大小,桥的长短都与问题无关,所以欧拉把A,B两岛以及陆地C,D用点表示,桥用线表示,那么七桥问题就变为右图是否可以一笔画的问题了.我们把一个图形上与偶数条线相连的点叫做偶点,与奇数条线相连的点叫做奇点.如下图中,A,B,C,E,F,G,I是偶点,D,H,J,O是奇点.欧拉的一笔画原理是:(1)一笔画必须是连通的(图形的各部分之间连接在一起);(2)没有奇点的连通图形是一笔画,画时可以以任一偶点为起点,最后仍回到这点;(3)只有两个奇点的连通图形是一笔画,画时必须以一个奇点为起点,以另一个奇点为终点;(4)奇点个数超过两个的图形不是一笔画.利用一笔画原理,七桥问题很容易解决.因为图中A,B,C,D都是奇点,有四个奇点的图形不是一笔画,所以一个散步者不可能不重复地一次走遍这七座桥.顺便补充两点:(1)一个图形的奇点数目一定是偶数.因为图形中的每条线都有两个端点,所以图形中所有端点的总数必然是偶数.如果一个图形中奇点的数目是奇数,那么这个图形中与奇点相连接的端点数之和是奇数(奇数个奇数之和是奇数),与偶点相连的线的端点数之和是偶数(任意个偶数之和是偶数),于是得到所有端点的总数是奇数,这与前面的结论矛盾.所以一个图形的奇点数目一定是偶数.(2)有K个奇点的图形要K÷2笔才能画成.例如:下页左上图中的房子共有B,E,F,G,I,J六个奇点,所以不是一笔画.如果我们将其中的两个奇点间的连线去掉一条,那么这两个奇点都变成了偶点,如果能去掉两条这样的连线,使图中的六个奇点变成两个,那么新图形就是一笔画了.将线段GF和BJ去掉,剩下I和E两个奇点(见右下图),这个图形是一笔画,再添上线段GF和BJ,共需三笔,即( 6 ÷2)笔画成.一个K(K>1)笔画最少要添加几条连线才能变成一笔画呢?我们知道K笔画有2K个奇点,如果在任意两个奇点之间添加一条连线,那么这两个奇点同时变成了偶点.如左下图中的B,C两个奇点在右下图中都变成了偶点.所以只要在K笔画的2K个奇点间添加(K-1)笔就可以使奇点数目减少为2个,从而变成一笔画.到现在为止,我们已经学会了如何判断一笔画和多笔画,以及怎样添加连线将多笔画变成一笔画.练习281.下列图形分别是几笔画?怎样画?2.能否用剪刀从左下图中一次连续剪下三个正方形和两个三角形?3.从A点出发,走遍右上图中所有的线段,再回到A点,怎样走才能使重复走的路程最短?4.如下图所示,两条河流的交汇处有两个岛,有七座桥连接这两个岛及河岸.问:一个散步者能否一次不重复地走遍这七座桥?答案与提示练习281.(1)(3)是一笔画,(2)是两笔画.2.能,因为是一笔画.3.见右图,走法不唯一.4.能.例如下图的走法.第29讲一笔画(二)利用一笔画原理,我们可以解决许多有趣的实际问题.例1右图是某展览馆的平面图,一个参观者能否不重复地穿过每一扇门?如果不能,请说明理由.如果能,应从哪开始走?分析与解:我们将每个展室看成一个点,室外看成点E,将每扇门看成一条线段,两个展室间有门相通表示两个点间有线段相连,于是得到右图.能否不重复地穿过每扇门的问题,变为右图是否一笔画问题.右图中只有A,D两个奇点,是一笔画,所以答案是肯定的,应该从A或D展室开始走.例1的关键是如何把一个实际问题变为判断是否一笔画问题,就像欧拉在解决哥尼斯堡七桥问题时做的那样.例2一个邮递员投递信件要走的街道如下页左上图所示,图中的数字表示各条街道的千米数,他从邮局出发,要走遍各街道,最后回到邮局.怎样走才能使所走的行程最短?全程多少千米?分析与解:图中共有8个奇点,必须在8个奇点间添加4条线,才能消除所有奇点,成为能从邮局出发最后返回邮局的一笔画.在距离最近的两个奇点间添加一条连线,如左上图中虚线所示,共添加4条连线,这4条连线表示要重复走的路,显然,这样重复走的路程最短,全程30千米.走法参考右上图(走法不唯一).例3右图中每个小正方形的边长都是100米.小明沿线段从A点到B 点,不许走重复路,他最多能走多少米?分析与解:这道题大多数同学都采用试画的方法,实际上可以用一笔画原理求解.首先,图中有8个奇点,在8个奇点之间至少要去掉4条线段,才能使这8个奇点变成偶点;其次,从A点出发到B点,A,B两点必须是奇点,现在A,B都是偶点,必须在与A,B连接的线段中各去掉1条线段,使A,B成为奇点.所以至少要去掉6条线段,也就是最多能走1800米,走法如下页上图.或例2与例3的图中各有8个奇点,都是通过减少奇点个数,将多笔画变成一笔画的问题,但它们采用的方法却完全不同.因为例2中只要求走遍所有的线段,没有要求不能重复,所以通过添加线段的方法(实际是重复走添加线段的这段路),将奇点变为偶点,使多笔画变成一笔画.而在例3中,要求不能走重复的路,所以不能添加线段,只能通过减少线段的方法,将奇点变为偶点,使多笔画变成一笔画.区别就在于能否重复走!能“重复”就“添线”,不能“重复”就“减线”. 例4在六面体的顶点B和E处各有一只蚂蚁(见右图),它们比赛看谁能爬过所有的棱线,最终到达终点D.已知它们的爬速相同,哪只蚂蚁能获胜?分析与解:许多同学看不出这是一笔画问题,但利用一笔画的知识,能非常巧妙地解答这道题.这道题只要求爬过所有的棱,没要求不能重复.可是两只蚂蚁爬速相同,如果一只不重复地爬遍所有的棱,而另一只必须重复爬某些棱,那么前一只蚂蚁爬的路程短,自然先到达D点,因而获胜.问题变为从B到D与从E到D哪个是一笔画问题.图中只有E,D两个奇点,所以从E到D可以一笔画出,而从B到D却不能,因此E点的蚂蚁获胜.练习291.邮递员要从邮局出发,走遍左下图(单位:千米)中所有街道,最后回到邮局,怎样走路程最短?全程多少千米?2.有一个邮局,负责21个村庄的投递工作,右上图中的点表示村庄,线段表示道路.邮递员从邮局出发,怎样才能不重复地经过每一个村庄,最后回到邮局?3.一只木箱的长、宽、高分别为5,4,3厘米(见右图),有一只甲虫从A点出发,沿棱爬行,每条棱不允许重复,则甲虫回到A点时,最多能爬行多少厘米?答案与提示练习291.50千米,走法见左下图.2.见右上图.3.最多爬行34厘米.提示:8个点都是奇点,故至少要少爬4条棱.少爬3厘米的棱和4厘米的棱各两条是最合理的(见右图).。
三年级上册数学试题-奥数.几何.一笔画与多笔画(B级)沪教版(含答案)
![三年级上册数学试题-奥数.几何.一笔画与多笔画(B级)沪教版(含答案)](https://img.taocdn.com/s3/m/714bc43352ea551810a68796.png)
一、一笔画的认识所谓图的一笔画,指的就是:从图的一点出发,笔不离纸,遍历每条边恰好一次,即每条边都只画一次,不准重复.从上图中容易看出:能一笔画出的图首先必须是连通图.但是否所有的连通图都可以一笔画出呢?下面,我们就来探求解决这个问题的方法。
什么样的图形能一笔画成呢?这就是一笔画问题,它是一种有名的数学游戏.所谓一笔画,就是从图形上的某点出发,笔不离开纸,而且每条线都只画一次不准重复.我们把一个图形中与偶数条线相连接的点叫做偶点.相应的把与奇数条线相连接的点叫做奇点.二、一笔画问题(1)能一笔画出的图形必须是连通的图形;(2)凡是只由偶点组成的连通图形.一定可以一笔画出.画时可以由任一偶点作为起点.最后仍回到这点;(3)凡是只有两个奇点的连通图形一定可以一笔画出.画时必须以一个奇点作为起点.以另一个奇点作为终点;(4)奇点个数超过两个的图形,一定不能一笔画.三、多笔画问题我们把不能一笔画成的图,归纳为多笔画.多笔画图形的笔画数恰等于奇点个数的一半.事实上,对于任意的连通图来说,如果有2n个奇点(n为自然数),那么这个图一定可以用n笔画成.(1)知道什么样的的是奇点?什么样的点是偶点。
(2)知道什么样的图形可以一笔画出。
(3)不能一笔画出的图形叫做多笔画图形,多笔画图形的笔画数与什么有关呢?【例 1】判断下列图a 、图b 、图c 能否一笔画.【考点】一笔画问题【难度】2星【题型】解答【解析】图a 能,因为有2个奇点,图b 不能,因为图形不是连通的,图c 能,因为因为图中全是奇点【答案】a 能,b 不能,c 能【例 2】同学们野营时建了9个营地,连接营地之间的道路如图所示,贝贝要给每个营地插上一面旗帜,要求相邻营地的旗帜色彩不同,则贝贝最少需要种颜色的旗子,如果贝贝从某营地出发,不走重复路线就(填“能”或“不能”)完成任务.【考点】一笔画问题【难度】2星【题型】填空【关键词】2007年,第十二届,华杯赛,六年级,初赛,第10题【解析】最少需要4种颜色的旗子。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识框架
一、一笔画的认识
所谓图的一笔画,指的就是:从图的一点出发,笔不离纸,遍历每条边恰好一次,即每条边都只画一 次,不准重复.从上图中容易看出:能一笔画出的图首先必须是连通图.但是否所有的连通图都可以一笔画 出呢?下面,我们就来探求解决这个问题的方法。
什么样的图形能一笔画成呢?这就是一笔画问题,它是一种有名的数学游戏.所谓一笔画,就是从图 形上的某点出发,笔不离开纸,而且每条线都只画一次不准重复.
为终点; (4) 奇点个数超过两个的图形,一定不能一笔画.
三、多笔画问题
我们把不能一笔画成的图,归纳为多笔画.多笔画图形的笔画数恰等于奇点个数的一半.事实上,对于 任意的连通图来说,如果有 2n 个奇点(n 为自然数),那么这个图一定可以用 n 笔画成.
重难点
(1) (2) (3)
知道什么样的的是奇点?什么样的点是偶点。 知道什么样的图形可以一笔画出。 不能一笔画出的图形叫做多笔画图形,多笔画图形的笔画数与什么有关呢?
例题精讲
【例 1】 判断下列图 a、图 b、图 c 能否一笔画.
N
M
A
BE F
K
L
CD
图a
A
D
O
B
C
图b
A
F
B
G
E
C 图c D
【例 2】 同学们野营时建了 9 个营地,连接营地之间的道路如图所示,贝贝要给每个营地插上一面旗帜,
要求相邻营地的旗帜色彩不同,则贝贝最少需要
种颜色的旗子,如果贝贝从某营地
我们把一个图形中与偶数条线相连接的点叫做偶点.相应的把与奇数条线相连接的点叫做奇点.
二、一笔画问题
(1) 能一笔画出的图形必须是连通的图形; (2) 凡是只由偶点组成的连通图形.一定可以一笔画出.画时可以由任一偶点作为起点.最后仍回到这
点; (3) 凡是只有两个奇点的连通图形一定可以一笔画出.画时必须以一个奇点作为起点.以另一个奇点作
【例 7】 观察下面的图形,并列出奇点的个数与笔画数(至少几笔画完此图)的关系表格。
【例 8】 下图是某个花房的平面图,它由六间展室组成,每相邻两室间有一门相通.请你设计一个出口, 使参观者能够从入口处 A 进去,一次不重复地经过所有的门,最后由出口走出花房。
【例 9】 判断下列图形能否一笔画.若能,请给出一种画法;若不能,请加一条线或去一条线,将其改 成可一笔画的图形.余老师薇芯:69039270
【作业 6】 一只木箱的长、宽、高分别为 5,4,3 厘米(见右图),有一只甲虫从 A 点出发,沿棱爬行, 每条棱不允许重复,则甲虫回到 A 点时,最多能爬行多少厘米?
教学反馈
学生对本次课的评价
○特别满意
○满意
家长意见及建议
○一般 家长签字:
【例 6】 一条小虫沿长 6 分米,宽 4 分米,高 5 分米的长方体的棱爬行.如果它只能进不能退,并且同 一条棱不能爬两次,那么它最多能爬多少分米?
【巩固】一只木箱的长、宽、高分别为 5,4,3 厘米(见右图),有一只甲虫从 A 点出发,沿棱爬行,每条 棱不允许重复,则甲虫回到 A 点时,最多能爬行多少厘米?
【作业 3】 右图是某展览馆的平面图,一个参观者能否不重复地穿过每一扇门?如果不能,请说明理由。 如果能,应从哪开始走?
【作业 4】 邮递员要从邮局出发,走遍左下图(单位:千米)中所有街道,最后回到邮局,怎样走路程最 短?全程多少千米?
【作业 5】 有一个邮局,负责 21 个村庄的投递工作,下图中的点表示村庄,线段表示道路。邮递员从 邮局出发,怎样才能不重复地经过每一个村庄,最后回到邮局?
出发,不走重复路线就
(填“能”或“不能”)完成任务.欢迎关注:“奥数轻松学”
【例 3】 右图是某展览厅的平面图,它由五个展室组成,任两展室之间都有门相通,整个展览厅还有一 个进口和一个出口,问游人能否一次不重复地穿过所有的门,并且从入口进,从出口出?
【巩固】右图是某展览馆的平面图,一个参观者能否不重复地穿过每一扇门?如果不能,请说明理由.如 果能,应从哪开始走?
E
A
B
D
C
【例 4】 能否用剪刀从左下图中一次连续剪下三个正方形和两个三角形?欢迎关注:“奥数轻松学”
【巩固】下图是儿童乐园的道路平面图,要使游客走遍每条路并且不重复,那么出、入口应设在哪里?
【例 5】 (2010 年第 8 届走美杯 3 年级初赛第 6 题)有16 个点排成的 4 4 方阵。如图,请不间断地一笔 画出 6 条直线经过每个点,且最后回到起点
王大爷 A 处进入花园,走遍花园的所有道路并从 A 处离开.如果他每分钟走 60 米,那么他从进
入花园到走出花园最少要用
分.
课堂检测
余老师薇芯:69039270
【随练 1】 下面各图能否一笔画成
【随练 2】 下列图形,至少几笔画出?
(1)
(2)
家庭作业
【作业 1】 下列图形分别是几笔画?怎样画?
【作业 2】 从 A 点出发,走遍右上图中所有的线段,再回到 A 点,怎样走才能使重复走的路程最短?
A
A
H
G
G
H
B
B
I
FA
I
J
F
EF
GH
B
KLຫໍສະໝຸດ ECCD
E
C
图a
图b
D
D
图c
【巩固】将下图改为一笔画.
【例 10】(2009“数学解题能力展示"读者评选活动四年级初赛 6 题)如图所示,某小区花园的道路为一
个长 480 米,宽 200 米的长方形;一个边长为 260 米的菱形和十字交叉的两条道路组成.一天,