自整角机的工作原理
自整角机工作原理
自整角机工作原理自整角机是一种用于自动测量和修整角度的设备。
它广泛应用于建筑、制造业、航空航天等领域,能够提高工作效率和精度。
本文将介绍自整角机的工作原理和应用。
我们来了解一下自整角机的结构。
自整角机主要由支架、测量装置、控制系统和修整装置组成。
支架是用于固定和支撑整个设备的框架,测量装置用于测量角度,控制系统用于处理测量数据并控制修整装置进行调整。
自整角机的工作原理可以简单地分为三个步骤:测量、分析和修整。
首先,测量装置通过激光、电子传感器或光电传感器等技术测量出待测角度的数值。
测量装置将测量到的数据传输给控制系统进行分析。
控制系统接收到测量数据后,会根据设定的目标角度和精度要求进行分析。
控制系统会计算出待测角度与目标角度之间的差异,并根据差异的大小和方向来判断修整方向。
控制系统会生成修整指令,并将其传输给修整装置。
修整装置根据控制系统的指令进行调整。
修整装置可以是驱动机构、液压装置或电动机等,用于实现对待测物体的调整。
修整装置会根据控制系统的指令,按照设定的修整步骤和修整量对待测物体进行微调或大范围调整,以使待测角度逐渐接近目标角度。
自整角机的工作原理看似简单,但实际上需要精确的测量和控制技术的支持。
测量装置需要具备高精度和高稳定性,以确保测量结果的准确性。
控制系统需要具备强大的计算和分析能力,能够处理大量的测量数据,并根据结果生成修整指令。
修整装置需要具备高精度的运动控制能力,能够按照指令进行微调或大范围调整。
自整角机的应用十分广泛。
在建筑领域,自整角机可以用于测量和修整建筑物的角度,使建筑物的结构更加稳定和均衡。
在制造业中,自整角机可以用于测量和修整零件的角度,以确保产品的质量和精度。
在航空航天领域,自整角机可以用于测量和修整飞行器的角度,以确保飞行器的飞行稳定性和安全性。
自整角机通过测量、分析和修整的过程,能够自动化地测量和修整角度。
它在建筑、制造业、航空航天等领域发挥着重要的作用,提高了工作效率和精度。
自整角机的工作原理
自整角机的工作原理1 控制式自整角机的工作原理控制式自整角机的工作原理可以由左图来说明。
图中由结构、参数均相同的两台自整角机构成自整角机组。
一台用来发送转角信号,它的励磁绕组接到单相交流电源上,称为自整角发送机,用ZKF表示。
另一台用来接收转角信号并将转角信号转换成励磁绕组中的感应电动势输出,称之为自整角接收机,用ZKJ表示。
两台自整角机定子中的整步绕组均接成星形,三对相序相同的相绕组分别接成回路。
图7-31 控制式自整角机工作原理图 在自整角发送机的励磁绕组中通入单相交流电流时,两台自整角机的气隙中都将产生脉振磁场,其大小随时间按余弦规律变化。
脉振磁场使自整角发送机整步绕组的各相绕组生成时间上同相位的感应电动势,电动势的大小取决于整步绕组中各相绕组的轴线与励磁绕组轴线之间的相对位置。
当整步绕组中的某一相绕组轴线与励磁绕组轴线重合时,该相绕组中的感应电动势为最大值,用EFm表示电动势的最大值。
设发送机整步绕组中的A相绕组轴线与其对应的励磁绕组轴线的夹角为θJ,接收机整步绕组中的A相绕组轴线与其对应的励磁绕组轴线的夹角为θF,如图上图所示。
发送机整步绕组中各相绕组的感应电动势有效值为 可以证明:接收机励磁绕组的合成电动势,即输出电动势E0为式中E0m ——最大输出电动势有效值从上式看出,失调角=0 时,接收机的输出电动势为最大而不是零,且与失调角有余弦关系的输出电动势不能反映发送机转子的偏转方向,故很不实用。
实际的控制式自整角机是将接收机转子绕组轴线与发送机转子绕组轴线垂直时的位置作为计算的起始位置。
此时,输出电动势表示为 由于接收机转子不能转动,即是恒定的。
J控制式自整角机的输出电动势的大小反映了发送机转子的偏转角度,输出电动势的极性反映了发送机转子的偏转方向,从而实现了将转角转换成电信号。
2 力矩式自整角机的工作原理力矩式自整角机的工作原理可以由左图来说明。
图中由结构、参数均相同的两台自整角机构成自整角机组,一台用来发送转角信号,称自整角发送机,用ZLF表示;另一台用来接收转角信号,称为自整角接收机,用ZLJ表示。
第三章_自整角机课件
二、 力矩式自整角机的运行性能
发送机和接收机的整步绕组各相回路中的合成电势为:
Ea E2 a E1a 2 E sin
1 2
2
sin
2
0
Eb E2b E1b 2 E sin( Ec E2c E1c 2 E sin(
1 2
2 2
120 ) sin 120 ) sin
接收机
力矩式 差动发送机
ZLJ
ZCF
TR
TDX
差动接收机 发送机 变压器 控制式 差动发送机
ZCJ ZKF ZKB ZKC
TDR CX CT CDX
自整角机的功能与分类
力矩式自整角机本身不能放大力矩,要带动接收机轴上的机械负载,
必须由自整角机一方的驱动装置供给转矩。力矩式自整如远距离指示液面的高度、
0
2
1 2
2
二、 力矩式自整角机的运行性能
在ZLF与ZLJ的整步绕组回路中产生电流
Ia Ib Ea E sin 1 2 sin I sin 1 2 sin 2Z a Z a 2 2 2 2 Eb E sin( 1 2 1200 ) sin I sin( 1 2 1200 ) sin 2Z a Z a 2 2 2 2
Ec E 1 2 1 2 0 0 Ic sin( 120 ) sin I sin( 120 ) sin 2Z a Z a 2 2 2 2
二、 力矩式自整角机的运行性能
2.磁势 每相、每对极整步绕组基波磁势的幅值为:
F1a F2 a 4
4
2 I a N K
第02章自整角机
F
F
F
n1
n1
F
•
E Fa
发送机
F n1
F F n1
•
Ia
J
•
E Ja
•
Ic
接收机
•
Ib
图2-2 单相力矩式自整角机
-8-
第二章 自整角机
三、整步转矩的分析 为分析方便,先作如下假定: (1) 气隙磁场按正弦规律分布,即不计空间高次谐
波的影响。 (2) 磁路是线性的,即不计铁心的磁饱和效应。 (3) 不考虑整步绕组磁动势对励磁绕组磁动势的影
•
•
T1 K ( d Fq q Fd )
(2-16)
转矩系数
δ很小
Fd 0
•
T1 K d Fq
(2-17)
-23-
第二章 自整角机
直轴磁通和交轴磁动势的相位关系如图2-5所示,因 此上式可以写为
•
d
T1 Kd Fq cos
•
(2-18)
E
•
I (Fq )
图2-5 力矩式自整角机的相量图
Fm Fm
c os ( F c os ( F
2π ) 3 2π ) 3
(2-28)
Fm
4 π
2INkw
TF
TJ
3EFIF cosF
1 3EJ IJ cosJ
1
F 90 o J 90 o
cosF 0
cosJ 0
(2-1)
TF 0 TJ 0
0
-5-
第二章 自整角机 根据旋转磁场和电磁转矩的基本概念,当电磁转矩
为正时,其方向是使转子顺着旋转磁场方向转动;而当 电磁转矩为负时,其方向是使转子逆着旋转磁场方向转
自整角机工作原理
自整角机工作原理
自整角机是一种常见的机械设备,广泛应用于各种行业中。
它的主要作用是将板材或管材进行角度调整,以满足不同的加工需求。
那么,自整角机的工作原理是什么呢?
自整角机的工作原理可以简单地概括为:通过机械力的作用,将板材或管材弯曲到所需的角度。
具体来说,自整角机主要由以下几个部分组成:
1. 机架:支撑整个设备的主体结构,通常由钢板焊接而成,具有足够的强度和稳定性。
2. 上下模具:分别位于机架的上部和下部,用于夹紧板材或管材,并施加弯曲力。
3. 液压系统:通过液压油缸提供弯曲力,控制上下模具的运动。
4. 控制系统:用于控制液压系统的工作,实现自动化操作。
当需要对板材或管材进行角度调整时,首先将其放置在自整角机的上下模具之间,然后启动液压系统,使上下模具夹紧材料。
接着,液压
系统开始施加弯曲力,使材料弯曲到所需的角度。
最后,停止液压系
统的工作,松开上下模具,取出已经完成角度调整的材料。
需要注意的是,自整角机的工作原理虽然简单,但在实际操作中需要
注意以下几点:
1. 材料的选择:不同的材料具有不同的强度和韧性,需要根据实际情
况选择合适的材料。
2. 弯曲角度的控制:液压系统需要精确控制弯曲力的大小和持续时间,以确保弯曲角度的精度和一致性。
3. 安全操作:自整角机涉及到高压液压系统和机械力的作用,需要严
格遵守安全操作规程,确保操作人员的安全。
总之,自整角机是一种常见的机械设备,其工作原理简单明了,但在
实际操作中需要注意各种细节,以确保操作的安全和效率。
自整角机工作原理
自整角机工作原理
自整角机是一种常见的数控机床,它的工作原理是通过数控系统控制机床的运动,实现对工件进行加工。
自整角机主要用于对金属板材进行切割、折弯、成型等加工,广泛应用于航空、汽车、电子、建筑等领域。
自整角机的工作原理可以分为以下几个步骤:
1. 设计加工程序:首先,操作人员需要根据工件的要求,设计出相应的加工程序。
这个过程通常是通过计算机辅助设计软件完成的,可以实现对工件的三维建模、切割路径规划等操作。
2. 加载工件:将待加工的金属板材放置在机床工作台上,并通过夹具固定住。
这个过程需要注意工件的位置和方向,以确保加工的精度和质量。
3. 调整机床参数:根据加工程序的要求,操作人员需要对机床的参数进行调整。
这些参数包括切割速度、切割深度、刀具半径等,可以通过数控系统进行设置。
4. 开始加工:当机床参数设置完成后,操作人员可以启动机床,开始加工。
在加工过程中,数控系统会根据加工程序的要求,控制机床的运动轨迹和刀具的位置,实现对工件的切割、折弯、成型等操作。
5. 完成加工:当加工完成后,机床会自动停止运动。
操作人员可以将加工好的工件取下,并进行检查和质量控制。
总的来说,自整角机的工作原理是通过数控系统控制机床的运动,实现对金属板材进行加工。
这种机床具有加工精度高、生产效率高、操作简单等优点,是现代制造业中不可或缺的设备之一。
第14章-自整角机
目 录
2
接收机转子从起始位置逆时针方向偏转的角度。
由于发送机和接收机是由同一励磁电源励磁的,因此两机定 子绕组电动势在时间上是同成电动势为两机定子电动势之差,
E1 EF 1 EJ 1 Em (cos 1 cos 2 ) 2 Em sin
1 2
2
sin
1 2
退 出
下 页
上 页
目 录
控制式自整角机与力矩式自整角机接线图有两点不同: 1)、上图接收机转子绕组从单相电源断开,并能输出讯号电压。 2)、转子绕组的轴线位置预先转过了90°。 自整角变压器转子绕组输出电压信号 E Em sin 式中Em——接收机转子绕组感应电动势最大 值,即发送机转子与接收机转子位置相 一致时感应电动势的有效值。 电压经放大器放大后,接到伺服电动机的控制绕组,使伺 服电动机转动。伺服电动机一方面拖动负载,另一方面在机械 上也有自整角变压器转子相连,这样就可以使得负载跟随发送
如图表示一液面位置指示器。浮 子随着液面的上升或下降,通过 绳索带动自整角发送机转子转动, 将液面位置转换成发送机转子的 转角。自整角发送机和接收机之 1-浮子 2-平衡锤3-发送机4-接收机 间再通过导线可以远距离联 接,于是自整角接收机转子就带动指针准确地跟随着发送机 转子的转角变化而偏转,从而实现远距离的位置指示。
目 录 退 出 下 页 上 页
减小速度误差方法:
1)选用高频自整角机 2)应当限制发送机和接收机的转速。
14.4 选用时应注意的问题及应用举例
目 录 退 出 下 页 上 页
力矩式自整角机常应用于精度较低的指示系统。如液面的高 低,阐门的开启度,液压电磁阀的开闭,船舶的舵角、方位 和船体倾斜的指示等等。下面通过一个实例来加以说明。
自整角机的工作原理
自整角机的工作原理
自整角机是一种用于调整和矫正眼镜框架的设备。
它的工作原理主要包括以下几个步骤:
1. 夹住眼镜框架:将眼镜框架的两个眼镜腿夹住,并确保夹紧力度适中,不会对框架造成损害。
2. 定位参考点:通过调整机器的定位器,使机器能准确地识别眼镜框架的各个关键点,如鼻托位置、镜腿长度等。
3. 框架矫正:根据定位器的数据,自整角机会根据设定的参数和算法,对眼镜框架进行自动或半自动矫正。
矫正包括框架的整体调整和镜腿的调整,以确保框架的形状符合人的脸型,并且能够正确地适应使用者的鼻梁和耳朵。
4. 检测和确认:矫正完成后,自整角机会对眼镜框架进行检测,以确保矫正的效果达到要求。
这可能包括检测框架的鼻托位置和距离、镜腿的长度和弯曲度等。
5. 可选的其他功能:一些自整角机还可以具备其他功能,如清洁镜片、调整镜片倾斜度或旋转角度等。
总的来说,自整角机通过夹紧眼镜框架,并利用定位器和算法对眼镜框架进行自动或半自动的矫正,以确保眼镜框架的形状和调整符合人的需求,提供更好的佩戴体验和视觉效果。
自整角机工作原理
自整角机工作原理自整角机是一种常见的工业机械设备,它的工作原理是通过机械结构以及电子控制系统的配合,实现对金属材料进行整形加工的过程。
本文将从机械结构和电子控制系统两个方面来详细介绍自整角机的工作原理。
一、机械结构自整角机的机械结构主要包括机架、辊子、定位装置和压力系统等部分。
机架是整个设备的基础,承载着整个设备的工作负荷。
辊子是自整角机的关键部件,用于将金属材料进行整形加工。
定位装置的作用是确保金属材料的精确定位,以保证加工的准确性。
压力系统则用于提供加工所需的压力,保证整个加工过程的顺利进行。
自整角机的工作过程中,金属材料首先通过定位装置进行精确定位,然后被辊子夹紧。
接下来,压力系统提供所需的压力,使辊子对金属材料施加一定的力,使其发生塑性变形。
辊子的旋转运动将金属材料逐渐弯曲成所需的角度。
整个加工过程中,机架保持稳定,以确保加工的精度和质量。
二、电子控制系统自整角机的电子控制系统主要包括PLC控制器、传感器和执行器等部分。
PLC控制器是整个系统的大脑,通过程序控制各个执行器的动作,实现对整个加工过程的控制。
传感器用于实时检测加工过程中的各种参数,如金属材料的位置、角度、压力等,将这些信息传输给PLC控制器。
执行器则根据PLC控制器的指令,控制机械结构的运动,实现加工过程的自动化。
自整角机的工作过程中,PLC控制器根据预设的程序,通过传感器实时获取金属材料的位置和角度等信息。
根据这些信息,PLC控制器计算出所需的辊子的运动轨迹和压力大小,并通过执行器控制辊子的运动和压力的施加,实现对金属材料的整形加工。
整个过程中,PLC控制器可以根据需要进行参数的调整,以适应不同的加工要求。
自整角机的工作原理是通过机械结构和电子控制系统的配合,实现对金属材料进行整形加工的过程。
机械结构通过辊子、定位装置和压力系统等部分,实现金属材料的夹紧、塑性变形和加工角度的控制。
电子控制系统通过PLC控制器、传感器和执行器等部分,实现对加工过程的自动化控制。
自整角机结构及原理
第二节
力矩式自整角机
力矩式自整角机结构
力矩式自整角发送机和接收机大都采用两极的凸极机 结构。只有在频率较高而尺寸又较大的力矩式自整角 机中才采用隐极式结构。选用两极电机是为了保证在 整个圆周范围内只有唯一的转子对应位置,从而达到 准确指示。选用凸极式结构是为了能获得较好的参数 配合关系,以提高运行性能。
送机:主要与力矩式差动发送机、力矩式接收机一起工作,将
转子转角的变化转变为电信号输出。目前,我国生产的力矩式自整角发 送机其型号为ZLF。 ✓ 力矩式接收机:主要与力矩式发送机、力矩式差动发送机一起工作。其 作用是,接收了力矩式发送机或力矩式差动发送机的电信号后,使其转 子自动地转到对应于发送机转子的位置,或使转于转动的角度对应子发 送机转子和差动发送机转于转角变化的和或差)。目前,我国生产的力矩 式自整角接收机其型号为ZLJ。 ✓ 力矩式差动发送机:串接于力矩式发送机与接收机之间,将发送机的转 子转角及其自身的转子转角之和(或差)变换成电信号,传输给接收机。目 前,我国生产的力矩式差动自整角发送机其型号为ZCF ✓ 力矩式差动接收机:串接于两台力矩式发送机之间,接收它们输出的电 信号,使其转子转角为两台发送机转子转角之和(或差)。日前,我国生产 的力矩式差动自整角接收机其型号为ZCJ。
采用控制式自整角机和伺服机构组成的随动系统中,其驱动负载能力取决于系统 中的伺服电动机的容量,故能带动较大的负载。又控制式自整角机组成的闭环系 统,精度较高。
控制式自整角机分类
控制式自整角机按其用途可分为三种: 控制式发送机:主要用来与控制式自整角变压器或控制式差动发送机一
起工作。其作用是将转子转角的变化转变为电信号输出。目前,我国生 产的控制式自镑角发送机其型号为ZKF。 控制式自整角变压器:主要用来与控制式发送机及控制式差动发送机一 起工作。其作用是接收从控制式发送机或控制式差动发送机发送来的电 信号,使之变成与失调角呈正弦函数关系的输出电压。目前。我国生产 的控制式自锭角变压器其型号为ZKB。 控制式差动发送机:串接于控制式发送机与控制式自整角变压器之间, 将发送机转子转角及其自身转子转角的和(或差)变换成电信号送人自整角 变压器。目前,我国生产的控制式差动自整角发送机其型号为ZKC。
自整角机结构、工作原理
3.2 定子绕组的感应电流
自整角机发送机转子上的励磁绕组通过电流 if 后,将产生相位彼此相同, 而感应电势的大小则与转子绕组在空间的位置有关。 为便于分析, 将图 5 - 11 中的“ZKF”画成图 5 - 15, 用以求出D1相绕组所匝链的磁通。 而且仅用一匝线圈Z1 - Z2表示在转子上的励磁绕组, 用另一匝线圈D1 - D4 表示在定子上的D1相绕组。
式中, E2max 为ZKB输出绕组感应电势有效值达到最大时的值, 即输出绕组轴线与定子合成磁场轴线重合时的电势大小。 由于ZKF的励磁绕组外加电压Uf一般为固定值, 成对运行的自整角机的参数也不变, 所以E2max 是一个常数。
图 5 - 22 随动系统中的ZKF-ZKB
以上所分析的内容就是控制式自整角机的工作原理。 简单归纳如下:
力矩式自整角机的功用是直接达到转角随动的目的, 即将机械角度变换为力矩输出, 但无力矩放大作用, 接收误差稍大, 负载能力较差, 其静态误差范围为 0.5°~2°。 因此, 力矩式自整角机只适用于轻负载转矩及精度要求不太高的开环控制的伺服系统里。
无论自整角机作力矩式运行或者是控制式运行, 每一种运行方式在自动控制系统中自整角机通常必须是两个(或两个以上)组合起来才能使用, 不能单机使用。 力矩式运行时:发送机和接收机 控制式运行时:发送机和变压器
1 自整角机用途
自整角机属于自动控制系统中的测位用微特电机。 测位用微特电机包括: 自整角机、 旋转变压器(下一章讲) 。 自整角机若按使用要求不同可分为力矩式自整角机和控制式自整角机两大类。
控制式自整角机的功用是作为角度和位置的检测元件, 它可将机械角度转换为电信号或将角度的数字量转变为电压模拟量, 而且精密程度较高, 误差范围仅有3′~14′。 因此,控制式自整角机用于精密的闭环控制的伺服系统中是很适宜的。
力矩式自整角机工作原理及应用
定期检查设备的紧固件和连接 部分,确保其紧固可靠,防止 松动或脱落。
根据制造商的建议,定期更换 易损件和消耗品,确保设备的 正常运行和延长使用寿命。
06 未来发展趋势与展望
技术创新方向
新型材料应用
01
探索高强度、轻质材料,提高自整角机性能,降低能耗和成本。
智能化技术融合
02
引入先进传感器和算法,实现自整角机的自适应、自学习和自
力矩式自整角机工作原理及应用
contents
目录
• 引言 • 工作原理 • 性能特点 • 应用领域 • 选型与使用注意事项 • 未来发展趋势与展望
01 引言
目的和背景
介绍力矩式自整角机 的基本概念和原理
分析力矩式自整角机 的优缺点及未来发展 趋势
探讨力矩式自整角机 在各个领域的应用
力矩式自整角机概述
强化产学研结合
加强企业与高校、科研机构的合作,推动技术创 新和成果转化,促进力矩式自整角机技术的实际 应用和产业发展。
THANKS FOR WATCHING
感谢您的观看
优化。
高效能驱动技术
03
研发高效能、低噪音、长寿命的驱动技术,提升自整角机整体
性能。
行业应用前景预测
航空航天领域
力矩式自整角机在航空航天器的姿态控制、稳定系统等方面具有 广泛应用前景。
机器人与自动化设备
随着机器人和自动化设备的普及,力矩式自整角机将在关节控制、 精准定位等方面发挥重要作用。
新能源与节能环保领域
控制电路根据传感器信号调整 定子绕组电流,从而控制电机
转矩和转速。
当负载发生变化时,控制电路 自动调整定子绕组电流,使电 机保持恒定转速或一种闭环控制系统, 通过不断检测和调整来实现高精度控 制。
第5章 自整角机-4
=0
第五章 自整角机
控制电机 (Control Electrical Machine)
因此,定子三相合成磁场为
B Bx B y Bx 3 Bm sin t 2
ic 2I c sin t
隙上降落的磁势相同——两
N c ic H dl Fm
l
段气隙上的磁压降相同,均 为Fm/2
注:自整角机转子交流电频
率为400Hz或50Hz
第五章 自整角机
控制电机 (Control Electrical Machine)
t
2
0
ic 2I c
B1x B1 cos1 B2 x B2 cos(1 120 ) B3 x B3 cos(1 240 )
B1 y B1 sin 1 B2 y B2 sin(1 120 ) B3 y B3 sin(1 240 )
保持相同的转角变化,或同步旋转。电机的这种性能称为自整步特性。
在伺服系统中,产生信号一方所用的自整角机称为发送机,接收信号一 方所用自整角机称为接收机。自整角机广泛应用于冶金、航海等位置和 方位同步指示系统和火炮、雷达等伺服系统中。
第五章 自整角机
控制电机 (Control Electrical Machine)
Introduction
As a circuit element, the selsynchro is essentially a variable-
coupling transformer. The magnitude of the magnetic coupling
自整角机的工作原理
由于?J≠?F时,整步绕组各相回路中存在均衡电流,带电的整步绕组在气隙磁场的作用下产生电磁转矩,电磁转矩作用于整步绕组而试图使定子旋转。只要发送机转子转过一个角度,接收机的转子就会在接收机本身生成的电磁转矩作用下转过一个相同的角度,?J=?F , 从而实现了转角远距离再现。
?????
???????? 式中E0m ——最大输出电动势有效值
??????????? 从上式看出,失调角=0 时,接收机的输出电动势为最大而不是零,且与失调角有余弦关系的输出电动势不能反映发送机转子的偏转方向,故很不实用。实际的控制式自整角机是将接收机转子绕组轴线与发送机转子绕组轴线垂直时的位置作为计算的起始位置。此时,输出电动势表示为
图7-31 控制式自整角机工作原理图
在自整角发送机的励磁绕组中通入单相交流电流时,两台自整角机的气隙中都将产生脉振磁场,其大小随时间按余弦规律变化。脉振磁场使自整角发送机整步绕组的各相绕组生成时间上同相位的感应电动势,电动势的大小取决于整步绕组中各相绕组的轴线与励磁绕组轴线之间的相对位置。当整步绕组中的某一相绕组轴线与励磁绕组轴线重合时,该相绕组中的感应电动势为最大值,用EFm表示电动势的最大值。
????????????
设发送机整步绕组中的A相绕组轴线与其对应的励磁绕组轴线的夹角为θJ,接收机整步绕组中的A相绕组轴线与其对应的励磁绕组轴线的夹角为θF ,如图上图所示。发送机整步绕组中各相绕组的感应电
?????????????????????????
由于接收机转子不能转动,即是恒定的。 ?J控制式自整角机的输出电动势的大小反映了发送机转子的偏转角度,输出电动势的极性反映了发送机转子的偏转方向,从而实现了将转角转换成电信号。
2? 力矩式自整角机的工作原理
自整角机的工作原理
自整角机的工作原理自整角机是一种常见的机械设备,广泛应用于建筑、制造、航空和汽车工业等领域。
它的主要功能是将金属或非金属材料的角度进行修整,使其达到预期的形状和规格。
在本文中,我们将探讨自整角机的工作原理以及其在工业中的应用。
自整角机是由机械构件、液压系统、电气控制系统等组成的复杂设备。
它的工作原理主要是通过一系列的步骤来实现角度修整。
首先,材料被放置在机械构件中的夹具上。
夹具被设计成能够固定材料并保持其稳定性,以便进行后续的加工操作。
接下来,液压系统开始发挥作用。
液压系统是自整角机的核心部分,它通过液压油的压力来产生足够的力量,以使角度得到修整。
液压系统中的液压泵会将液压油从液压油箱中吸入,然后通过管道输送到液压缸中。
液压泵产生的压力使得液压缸的活塞向外伸出,施加力量到夹具上的材料上。
材料受到施加的力量后,会发生弹性和塑性变形。
在弹性变形过程中,材料会稍微弯曲,但在去掉外力后可以恢复到原来的形状。
而在塑性变形过程中,材料则会保持变形的形状。
当施加的力量被去掉后,液压系统的液压泵将停止工作,压力也会减小。
此时,夹具上的材料会开始恢复到其原始形状,但由于塑性变形的发生,材料的角度会有微小的变化。
为了达到预期的角度要求,需要进行多次循环操作。
每次循环中,施加的力量会使材料进行微小的变形,直到达到所需的角度。
在每次循环之后,材料会通过夹具上的指示器进行检查,以确保达到所需的角度。
自整角机的可靠性和精确性取决于其液压系统和控制系统的性能。
液压系统必须能够产生足够的力量,以对材料进行准确的角度修整。
而控制系统则需要能够准确地控制液压系统的工作,以确保每次循环中力量的施加和去除都能够精确到位。
在工业应用中,自整角机被广泛用于金属制造、航空制造、汽车制造等领域。
它可以对金属材料进行弯曲、翻边、折叠等加工操作,以满足不同行业对于材料角度的要求。
总结起来,自整角机是一种通过液压系统施加力量来修整材料角度的机械设备。
力矩式自整角机工作原理及应用
力矩式自整角机工作原理及应用一、工作原理1.传感器测量力矩:力矩传感器采用一种特殊的结构,当受到力矩作用时,传感器会产生相应的位移或变形。
传感器通过测量这一位移或变形来得到受到的力矩大小。
2.控制器分析输入信号:传感器测量到的位移或变形信号被传输到控制器中,控制器会根据输入的信号进行分析和处理,并计算出当前物体的力矩大小。
3.电动机自动调整:控制器会将计算得出的力矩大小与预设的目标力矩进行比较,如果两者不一致,控制器会根据差异的大小和方向来控制电动机的转动。
电动机通过改变输出的力矩来使物体保持在平衡的状态。
4.执行机构调整物体:根据电动机的转动,执行机构会相应地调整物体的位置或角度,使物体受到的力矩等于目标力矩,从而达到自动调整的效果。
二、应用领域1.机器人:力矩式自整角机在机器人中起到非常重要的作用。
通过测量机器人关节处的力矩,控制器可以精确地调整机器人的姿态和位置,使其保持平衡或完成特定动作。
2.汽车悬挂系统:力矩式自整角机可以用于汽车悬挂系统中,通过测量车轮受到的力矩来实现自动调整。
这可以提高车辆的稳定性和行驶舒适度。
3.航空航天领域:在航空航天领域中,力矩式自整角机可以应用于飞机和航天器的姿态控制。
它可以通过测量受到的力矩来调整飞机或航天器的姿态,并保持它们的稳定性和平衡。
4.医疗领域:力矩式自整角机可以应用于医疗设备中,如手术机器人和康复设备。
通过测量受到的力矩,可以帮助医生或康复师调整机器人或设备的姿态,准确地进行手术或康复治疗。
5.工业生产:力矩式自整角机还可以应用于工业生产中的自动化系统。
它可以通过测量工业设备受到的力矩,实现设备的自动调整和控制,提高生产效率和产品质量。
6.体育训练:力矩式自整角机可以应用于体育训练中,如体操、滑雪和击球运动等。
通过测量运动员受到的力矩,可以帮助教练和运动员调整姿态和动作,提高训练效果和竞技表现。
总之,力矩式自整角机通过测量物体受到的力矩并自动调整,可以应用于多个领域,实现力矩的精确测量和自动控制,提高系统的稳定性和性能。
自整角机工作原理
自整角机工作原理
自整角机是一种能够自动调整角度的机械设备,其工作原理是通过激光测距和电动机的控制,实现对角度的精准调整。
自整角机广泛应用于建筑、测绘、航空等领域,能够提高工作效率和准确性。
自整角机的工作原理可以简单概括为以下几个步骤:激光测距、计算角度、控制电动机、调整角度。
自整角机通过激光测距技术获取目标物体与自身的距离。
激光发射器发射出一束激光,并通过光电二极管接收激光反射回来的信号,根据光的传播速度和信号的时间延迟计算出目标物体与自身的距离。
接着,自整角机根据测得的距离和设定的参考点,计算出目标物体与参考点之间的角度。
通过激光测距仪内部的算法,将距离转化为角度,并将计算结果传输给控制系统。
然后,控制系统根据计算得到的角度,通过电动机控制机械结构的旋转,使其达到设定的角度。
电动机根据控制信号转动,带动机械结构的旋转,使得自整角机的角度得到精确调整。
自整角机完成角度调整后,可以进行下一步的工作。
例如,在建筑领域中,自整角机可以用于测量建筑物的角度,确保建筑物的垂直度和水平度;在测绘领域中,自整角机可以用于测量地形地貌的角度,提供准确的地理信息;在航空领域中,自整角机可以用于飞行器的导航和姿态控制,确保飞行的稳定性和安全性。
自整角机通过激光测距和电动机的控制,实现对角度的自动调整。
其工作原理简单明了,通过精确的测量和计算,实现对目标物体与参考点之间角度的准确调整。
自整角机的应用广泛,可以提高工作效率和准确性,对于建筑、测绘、航空等领域具有重要意义。
第5章自整角机
以 代替sin 所造成
的误差不大于5%。
控制电机
失调角很小时,输出电势看成与失调角成 正比,这样输出电势的大小反映了发送轴和接
收轴转角差值的大小。 E0 E0max
自整角变压器输出绕组接上交流放大器时, 可认为输出绕组电压为:
U0= U0max
D’1
B’
该电压经放大后,送给
D’3
5.4 控制式自整角机的性能指标
一、误差概述
控制式自整角机在失调角很小时,其变压器
的输出电压为U0= U0max ,当 = 0 时,U0= 0 。
这个结论是在理想的自整角机中得出来的。
实际上,由于结构和工艺上的各种因素,即
使在协调位置 = 0 输出绕组中仍有电压U0存在。
D’1
B’
一般情况下,这个
Z’1 D’1 1 B’
当 = 0,cos =1 即转子绕组轴
线重合时,
E0= E0max ,变压器输出电势达
D’2
D’3 到最大。
控制电机
E0
2
1 Z’2
Z’1 D’1 1 B’
E0= E0max cos
把 = 0 作为协调位置,那么
协调时反而输出最大电势, 这是随动系统所不希望的。 系统希望协调位置时输出绕 组电势为 0 。
控制式自整角接收机输出的是与两 轴转角差成一定关系的电压,该电压控 制交流伺服电动机去带动被动轴旋转, 故能带动较大负载。由于接收机工作在 变压器状态,故通常称为自整角变压器。
控制电机
力矩式接收机直接输出力矩并带动负 载,但带载能力差,只能带动指针、刻度 盘等轻负载,常用于角度传输精度要求不 很高的指示系统中。
置定义为协调位置。协调时,输出电势E0= 0。相
自整角机工作原理
自整角机工作原理一、什么是自整角机自整角机是一种用于金属加工中的机械设备,主要用于对金属材料进行角度修整和整形。
它能够精确地调整金属材料的角度,使其达到所需的要求。
自整角机广泛应用于机械制造、汽车制造、船舶制造等领域。
二、自整角机的组成部分自整角机由以下几个主要组成部分构成:1. 机架机架是自整角机的基础支撑结构,通常由坚固的钢材制成。
机架的稳定性和刚性对于自整角机的工作效果至关重要。
2. 主轴主轴是自整角机的核心部件,它通过电机驱动,并且具有可调节的转速。
主轴上安装有刀具,用于对金属材料进行切削和修整。
3. 刀具刀具是自整角机上用于切削和修整金属材料的工具。
常见的刀具有切削刀具、车削刀具等。
刀具的选择和使用对于自整角机的工作效果和加工质量有着重要的影响。
4. 控制系统控制系统是自整角机的重要组成部分,它通过对主轴的转速、刀具的位置和运动轨迹进行控制,实现对金属材料角度的精确调整。
控制系统通常由电气元件、传感器和计算机等设备组成。
三、自整角机的工作原理自整角机的工作原理可以简单概括为以下几个步骤:1. 材料夹持首先,需要将待加工的金属材料夹持在自整角机的工作台上。
夹持方式可以根据具体的加工要求选择,常见的夹持方式有机械夹持和液压夹持。
2. 刀具定位在金属材料夹持好之后,需要将刀具定位到待修整的角度位置。
刀具的定位可以通过手动调整或者自动控制实现,具体方式取决于自整角机的设计和配置。
3. 开始加工一切准备就绪后,可以开始加工了。
自整角机的控制系统会根据预设的参数,控制主轴的转速和刀具的运动轨迹,对金属材料进行切削和修整。
加工过程中,自整角机会根据实际情况对刀具的位置进行微调,以确保加工精度和质量。
4. 完成加工当金属材料达到预设的角度要求后,加工过程结束。
此时,需要停止主轴的转动,并将金属材料从夹持装置中取出。
四、自整角机的优势和应用自整角机具有以下几个优势:1.精度高:自整角机通过控制系统的精确调整,能够实现对金属材料角度的精确控制,加工精度高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自整角机的工作原理
1 控制式自整角机的工作原理
控制式自整角机的工作原理可以由左图来说明。
图中由结构、参数均相同的两台自整角机构成自整角机组。
一台用来发送转角信号,它的励磁绕组接到单相交流电源上,称为自整角发送机,用ZKF表示。
另一台用来接收转角信号并将转角信号转换成励磁绕组中的感应电动势输出,称之为自整角接收机,用ZKJ表示。
两台自整角机定子中的整步绕组均接成星形,三对相序相同的相绕组分别接成回路。
图7-31 控制式自整角机工作原理图
在自整角发送机的励磁绕组中通入单相交流电流时,两台自整角机的气隙中都将产生脉振磁场,其大小随时间按余弦规律变化。
脉振磁场使自整角发送机整步绕组的各相绕组生成时间上同相位的感应电动势,电动势的大小取决于整步绕组中各相绕组的轴线与励磁绕组轴线之间的相对位置。
当整步绕组中的某一相绕组轴线与励磁绕组轴线重合时,该相绕组中的感应电动势为最大值,用EFm表示电动势的最大值。
设发送机整步绕组中的A相绕组轴线与其对应的励磁绕组轴线的夹角为θJ,接收机整步绕组中的A相绕组轴线与其对应的励磁绕组轴线的夹角为θF ,如图上图所示。
发送机整步绕组中各相绕组的感应电动势有效值为
可以证明:接收机励磁绕组的合成电动势,即输出电动势E0为
式中E0m ——最大输出电动势有效值
从上式看出,失调角=0 时,接收机的输出电动势为最大而不是零,
且与失调角有余弦关系的输出电动势不能反映发送机转子的偏转方向,故很不实用。
实际的控制式自整角机是将接收机转子绕组轴线与发送机转子绕组轴线
垂直时的位置作为计算的起始位置。
此时,输出电动势表示为
由于接收机转子不能转动,即是恒定的。
控制式自整角机的输出电动势的大小反映了发送机转子的偏转角度,输出电动势的极性反映了发送机转子的偏转方向,从而实现了将转角转换成电信号。
2力矩式自整角机的工作原理
力矩式自整角机的工作原理可以由左图来说明。
图中由结构、参数均相同的两台自整角机构成自整角机组,一台用来发送转角信号,称自整角发送机,用ZLF 表示;另一台用来接收转角信号,称为自整角接收机,用ZLJ表示。
两台自整角机中的整步绕组均接成星形,三对相序相同的相绕组分别连接成回路。
两台自整角机转子中的励磁绕组接在同一个单相交流电源上。
图7-35 力矩式自整角机接线图及磁动势图
在励磁绕组中通入单相交流电流时,两台自整角机的气隙中都将生成脉振磁场,其大小随时间按余弦规律变化。
脉振磁场使整步绕组的各相绕组生成时间上同相位的感应电动势,电动势的大小取决于整步绕组中各相绕组的轴线与励磁绕组轴线之间的相对位置。
当整步绕组中的某一相绕组轴线与其对应的励磁绕组轴线重合时,该相绕组中的感应电动势为最大,用Em表示电动势的最大值。
设发送机整步绕组中的A相绕组轴线与其对应的励磁绕组轴线的夹角为 F ,
接收机整步绕组中的A相绕组轴线与其对应的励磁绕组轴线的夹角为j ,如
图上图所示。
则整步绕组中各相绕组的感应电动势有效值如下。
当J≠ F ,即失调角≠0时,整步绕组中各相回路的合成电动势不为零,
使各相回路中产生均衡电流。
设整步绕组中的各相阻抗为Z,则各相回路的均衡电流有效值为
由于F时,整步绕组各相回路中存在均衡电流,带电的整步绕组在
气隙磁场的作用下产生电磁转矩,电磁转矩作用于整步绕组而试图使定子旋转。
只要发送机转子转过一个角度,接收机的转子就会在接收机本身生成的电磁转矩
作用下转过一个相同的角度,J=从而实现了转角远距离再现。
实际上,由于存在摩擦转矩,当电磁转矩随失调角减小而减小到等于或小于摩擦转矩时,接收机的转子就停转了,也就是说,均衡电流未下降到零时接收机转子就停转了,说明接收机转子的偏转角与发送机转子的偏转角还有一定的偏差,即仍存在失调角,此时的失调角称为静态误差角。
静态误差角越小,力矩式自整角机的精度越高。
Θαβ。