油气层渗流力学
油气层渗流力学第二版第二章(张建国版中国石油大学出版社).
运动方程 v K p
连续性方程
(v) 0
( K p) 0
K/μ是常数
( K p) 0
x
p x
y
p y
z
p z
0
2 p 2 p 2 p 0 x 2 y 2 z 2
单相不可压缩液体在均质地层中稳定渗流的数学模型
2 p 2 p 2 p 0
x 2 y 2 z 2
描述运动要素(速度、密度、饱和度、浓度)随时间和坐 标的变化关系,在稳定渗流时则是描述这些要素和坐标之间的 变化。
常见连续性方程 单相流体连续性方程 两相流体连续性方程 带传质扩散过程的连续性方程
连续性方程建立方法 微分法建立连续性方程 积分法建立连续性方程
➢ 微分法建立连续性方程 渗流环境 渗流系统
➢ 积分法建立连续性方程
dt
( )
t
dV
dt
s
vndS
根据奥高定律
s vndS (v)dv
Ώ的任意性假定被积函数在Ώ连续,单相渗流的连续性方程为
( ) (v)
t
( ) (v) 0
t
第五节 典型油气渗流微分 方程的推导
一、单相不可压缩性液体稳定渗流微分方程
假设单相液体在均质介质中的渗流为满足线性渗流规律 的等温稳定渗流过程,不考虑多孔介质及流体的压缩性。
利用渗流物理基础实验认识力学现象和规律,是建 立数学模型的关键。
➢ 科学的数学方法
无穷小微元体上:分析力学现象,物理量之间内在联 系,建立微分方程(数学模型)。数学模型建立后,用数 学理论论证是否有解?连续?唯一?
二、渗流数学模型的结构
渗流数学模型要综合反映渗流过程中,各种现象(力 学、物理学、化学及相互作用)的内在联系,其内容包括:
油气层渗流力学第三章1
1 d (r dP ) 0 积分 r dr dr
再积分
r
dP dr
c1
P c1 ln r c2 ①
代入边界条件得:
Pe c1 ln re c2 ② Pwf c1 ln rw c2 ③
②-③
c1
Pe Pwf ln re
rw
②-①或①-③并代
入边界条件 c1
P Pe
Pe Pwf ln re
★降低原油粘度 可提高产量,如热力采油等;
★供给半径 re 和油井半径rw 均在对数内,其变化对产量 q 影响较小。
②实际应用时,产量公式中各物理量可如下确定:
★ Pwf 可以实测;
2a
★ Pe 用目前地层压力代替; L
★ re 一般根据实际井网形状
A
确定,如图所示则:
→泄油面积: A 2aL
q 2Kh(Pe Pwf ) ln re
rw
又由产量公式变形:Pe Pwf q 代入压力分布公式得: ln re 2Kh
rw
P
Pe
q 2Kh
ln
re r
或
P
Pwf
q ln 2Kh
r rw
3. 结果分析
P ●压力分布公式表
明:压力与坐标 r 呈对
数关系,从整个地层看 Pe
P
,地层各点压力分布是
解: 方法Ⅰ:由稳定流连续性关系求。
rw r1
PrrPrrPe1Pwef区区间间22qq内 内K21K压压21hh力力llnn分分rrrrew布布规规律律为为渗::透K率2突P变wKf 的1 rP1r圆e1 形地Pe层r
由稳定流连续性关系:
q1 q2 q
可求出产量 q 为:
油气层渗流力学
次生孔隙发育程度
粘土充填孔隙
全直径岩心X-CT二维扫描002号切片,可见 大孔洞与裂缝连通
油气层渗流力学的基本概念
的渗流理论;
↓1923年,列宾宗首先提出气体在多孔介质中 ↓ 1937年,马斯凯特发表了关于均质流体渗 ↓ 30年代初,人们研究了液体弹性及岩石压
流的重要著作;
缩性对渗流的影响。到1948年,谢尔加乔夫发 表了弹性液体在弹性多孔介质中的渗流理论; 建立了混气液体的渗流理论;
↓ 1936年,在研究相渗透率的基础上,初步
油气层渗流力学的研究方法
油气层渗流力学是流体力学的一个分支,因此, 它的研究方法也主要是数学力学方法。但由于流动环 境的特殊性,使得研究方法也具有一些特点,概括地 说分三步: 1.建立地质模型 地质模型描述了流体渗流的地质条件,如地层的 几何形态、孔隙结构、油层物理参数等。 2.建立力学模型 力学模型描述了渗流过程中所发生的力学规律和 物理化学规律。
v v
vx
x
vy o
y
M
§2.2 渗流基本微分方程的建立
二、状态方程
状态方程:描述液体、气体、岩石的状态参数随压力变化 规律的数学方程。 1.液体的状态方程 ( ρ )
CL = − 1 ΔVL VL ΔP CL = −
取全微分 整理
油气层渗流力学的发展概况
●现阶段研究特征及发展趋势 1.广泛应用计算机及现代数学方法进行渗 流力学研究。 展。 2.油气渗流理论的研究内容日趋向纵深发 ①物理化学渗流的研究; ② 裂缝、双重介质、三重介质渗流规律 的研究; ③地层非均质性对渗流影响的研究。
油气层渗流力学第二版绪论(张建国版中国石油大学出版社)
五、渗流力学发展历史
1、1856年,法国工程师达西,用砂土层、渗水试验→渗流 基本规律→达西规律。 2、二十年代后,石油,天然气工业发展→形成石油天然气 渗流理论;
1923年,列宾亲→气体在多孔介质里渗流理论; 1937年,麦斯盖特→均质液体渗流,油气渗流的各种水动力 学问题(不可压缩,均质,渗流问题); 30年代初,研究液体弹性和岩石压缩性影响各种布井方式下 油井产量计算方法; 1948年,苏:射尔加乔夫→弹性渗流理论; 1956年,溶解气驱,气顶驱渗流理论
16
七、现代渗流力学研究的进展及有待解决问题
目的:研究流体和多孔介质→状态及流动规律 经典渗流力学:均质(匀)孔隙性介质(单重介质) 1、不可压缩液体→稳定渗流理论; 2、微可压缩液体→弹性不稳定流理论(应用试井); 3、气体渗流理论; 4、油气、油水两项流理论 数学上体现:求解Laplace和热传导方程;
4、认识油气水在岩层中流动的客观规律,形成油气
层渗流力学,已深入到油气田开发工作的各个环节。 5、是现代流体力学分支→流体力学和多孔介质理论, 表面物理,物理化学,固体力学,生物学交叉渗透的一 个边缘学科。
三、学习本课程的主要难点 课程内容抽象 各种公式多 推导较为复杂 单位制复杂 作业较多且难 四、学习本课程的要求 认真听课,积极思考,作好课堂笔记 课后及时进行复习、总结 按时完成布置的作业
水
渗流(如水净化处理)
多 孔 介 质
净化水
前 言
工程渗流——指各种人造多孔介质和工程装置中的流体渗流
前 言
地下渗流——指土壤、岩石和地表堆积物中的流体渗流
前 言
• 为什么学习渗流力学 • 学习渗流力学有什么意义 • 工作后有什么作用
渗流力学 第一章 渗流基本概念和定律
3)相对渗透率Krw、Kro:多相同时流动时,相渗透率与绝对 渗透率的比值。
3、大的比面
多孔介质比面很大,使得流体流动时粘滞阻力很大。
多孔介质的分类:
1)单纯介质:由孔隙或纯裂缝组成,渗流形式简单。
1、孔隙性
储层岩石具有孔隙性,并被流体所充满,孔隙性大小用孔隙
度表示:
a
Vt V
Φa—绝对孔隙度;Φ—有效孔隙度;
V0 V
V—岩石视体积;Vt—岩石总孔隙体积; V0—岩石有效孔隙体积。
2、渗透性
多孔介质让流体通过的性质,叫渗透性。渗透性的大小用渗透 率表示。
1)绝对渗透率K:岩石孔隙中液体为一相时,岩石允许流体 通过的能力。绝对渗透率只与岩石本身性质有关。
二、渗流的分类
1)地下渗流:存在于地层中,如油气水在地层中的流动; 2)工程渗流:化工、冶金、环保中的渗流问题; 3)生物渗流:动物和植物中的渗流问题。
三、渗流力学的发展(地下渗流)
1、古典渗流力学: 1920年以前 动因:开发利用地下水; 代表:法国水利工程师达西(Darcy); 定律:达西定律(Darcy’s Law,1856)。
F—内摩擦力(粘滞力),N; μ—粘滞系数(又称绝对粘度),Pa·s。
• 粘度单位通常用mPa·s表示: 1Pa·s=103mPa·s
• 粘度单位以g/(cm·S)表示时称为“泊”: 1泊=100厘泊(cP)
• cP与mPa·s的换算关系为: 1mPa·s=lcP
• 在渗流中,粘滞力为阻力,且动力消耗主要用于渗流 时克服流体粘滞阻力。
1.2 渗流中的力学分析及驱动类型
1_油气层渗流力学基础解析
边水
底水
1、第一章油气层渗流力学基础
油气 界面
油水 界面 实际上,油气接触面和油水接触面是不存在的,而 是存在油气过渡带和油水过渡带。
15
1、第一章油气层渗流力学基础
pc
O WOC1 WOC2 FWL O+W W
油水界面划分
ps
转折压力
pd
排驱压力
sw
pc=ps pc=pd pc=0
WOC1(第一油水界面),以上产纯油 WOC2(第二油水界面),以下产纯水 FWL (自由水面)
6
1、第一章油气层渗流力学基础
(1)油(气)藏高度
油藏高度
油水接触面与油藏最高点的高度差,称为油藏高度。
7
1、第一章油气层渗流力学基础
气藏高度
气水接触面与气藏最高点间的高度差,称为气藏高度。
8
1、第一章油气层渗流力学基础
气顶高度 油藏高度
油气藏高度
油藏高度:油水接触面和油气接触面之间的高度差
地层不整合圈闭
潜山圈闭
地层超覆圈闭
23
1、第一章油气层渗流力学基础
24
1、第一章油气层渗流力学基础
岩性圈闭:非储层岩石包围储层岩石。 分散、不连续。如岩性尖灭、砂岩透镜体
地层不整合圈闭:因构造运动而倾斜抬升,后 因沉降作用而与上覆地层形成不整合接触。
• 地层圈闭 储层岩石性质 变化而引起 潜山圈闭:古山峰沉降掩埋后形成。古山峰长 期暴露大气,遭受风化、日晒、雨淋、冰冻等 剥蚀作用,发育大量溶蚀孔洞,优良储层。
岩浆岩
(1)岩性(储层)
变质岩
碎屑岩:砂岩
沉积岩
结晶岩:碳酸盐岩
21
1、第一章油气层渗流力学基础
油气层渗流力学课件
稳定流是指流动参数不随时间变化的流动,通常发生在压力 梯度保持恒定的条件下。非稳定流是指流动参数随时间变化 的流动,如启动流动和边界层流动。
相对渗透率
总结词
相对渗透率是描述多孔介质中流体可流动的孔隙体积与总孔隙体积之比。
详细描述
相对渗透率取决于流体的粘度、孔隙结构和流体与固体表面之间的相互作用力。对于同一介质,不同流体的相对 渗透率可能不同,这影响了流体在多孔介质中的流动特性。
数值模拟与实验相结合
通过数值模拟预测油气层渗流规律,然后通过实验验证模拟结果的 准确性。
05 油气层渗流的应用实例
油气藏评价
油气藏类型识别
通过渗流力学原理,判断油气藏的类型,如块状、 裂缝性、孔隙性等。
油气藏储量估算
基于渗流力学模型,估算油气藏的储量,为后续 开发提供依据。
油气藏产能预测
通过渗流力学模型预测油气藏的产能,评估开发 的经济效益。
油气开采方案设计
开发方式选择
根据渗流力学原理,选择 合适的开发方式,如自喷、 机械采油等。
井网优化
基于渗流力学模型,优化 井网布置,提高采收率。
生产参数优化
根据渗流力学原理,优化 生产参数,如采油速度、 采油温度等。
提高采收率方法
化学驱油
利用化学剂改变油、水、岩石之间的界面张力,提高采收率。
热力驱油
流动的过程。
该模型考虑了时间变化 的影响,能够描述流体 的动态变化和油气层的
动态产能。
非稳态渗流模型通常用 于评估油气层的短期流
动行为和产能预测。
多相渗流模型
多相渗流模型描述的是油气层中多相流体(如油、 气、水)同时流动的过程。
该模型考虑了不同相之间的相互作用和流动特性 差异,能够更准确地模拟多相流体的流动行为。
油气层渗流力学
三、建立数学模型的步骤
3、确定未知量和其它物理量之间的关系
运动方程:速度和压力梯度的关系
dp
vi
f ( A, B, ) dx
状态方程:物理参数和压力关系 Ai fi ( p), Bi fi ( p)
连续性方程:渗流速度V和坐标及时间 或饱和度与坐标和时间的关系
[ vx
(vx )
x
dx ]dydzdt 2
dt 时间内,从右侧面流出微元体的质量流量为:
[ vx
(vx )
x
dx ]dydzdt 2
则微元体在dt 时间内,沿 x 方向流入流出的质量流量差为:
同理:
y方向
z 方向
(vx ) dxdydzdt
x
(vy ) dxdydzdt
流体力学、物理学和化学问题的总和,并且还要描述这些现象 的内在联系。因此,建立基本渗流微分方程要考虑包括以下几 方面的因素:
﹡ 渗流过程是流体运动的过程,必然受运动方程支配; ﹡ 渗流过程又是流体和岩石的状态不断改变的过程,所 以需要建立流体和岩石的状态方程; ﹡ 质量守恒定律是自然界的一般规律,因此基本渗流微 分方程的建立必须以表示物质守恒的连续性方程为基础;
单相微可压缩流体在微可压缩地层中按达西定律渗流的 渗流基本微分方程。
式中 2 为拉普拉斯算子(算符)。
2 2 2 2
x2 y2 z 2
为哈密尔顿算子(算符)。
i
j
k
x y z
v () (v) 0 t v K P
《油气层渗流力学》讲授内容及作业
《油气层渗流力学》讲授内容及作业第一章油气渗流力学基础第一节油气藏类型及其外部形态的简化(全讲)第二节油气藏内部储集空间结构的简化(全讲)第三节多孔介质及连续介质场(全讲)第四节渗流过程中的概念及渗流形态的简化(全讲)第二章油气渗流的基本规律第一节油气渗流的力学分析(全讲)第二节油气渗流的达西定律(全讲)第三节油气渗流的非达西定律(全讲)第四节两相渗流规律(全讲)第三章单相液体渗流数学模型第一节渗流数学模型的建立原则(全讲)第二节渗流数学模型的微分方程(全讲)第三节渗流数学模型的定解条件(全讲)第四章单相液体稳定渗流理论第一节单相液体稳定渗流理论(全讲)第二节井的不完善性对渗流的影响(全讲)第三节多井干扰与势的叠加理论(全讲)第四节等值渗流阻力法(简要提到)第五章单相液体不稳定渗流理论第一节弹性不稳定渗流的物理过程(全讲)第二节弹性液体不稳定渗流理论(全讲)第三节不稳定渗流的井间干扰(全讲)第六章气体渗流理论第一节气体渗流微分方程(全讲)第二节气体稳定渗流理论(全讲)第三节气体不稳定渗流理论(全讲)第七章油水两相渗流理论第一节影响水驱油非活塞性的因素(全讲)第二节油水两相渗流理论(全讲)第三节油水两相渗流理论的应用(全讲)第八章油气两相渗流理论第一节油气两相渗流的物理过程(全讲)第二节油气两相渗流的微分方程(重点阐述微分方程的建立方法)第三节油气两相稳定渗流理论(重点阐述稳定渗流研究的目的)第四节油气两相不稳定渗流理论(重点阐述不稳定渗流研究的目的)第九章双重介质渗流理论第一节双重介质油藏模型(全讲)第二节双重介质油藏渗流微分方程(全讲)第三节双重介质油藏渗流理论(全讲)第十章复杂渗流理论(简要提到)第一节传质扩散流体渗流理论第二节非牛顿液体渗流理论《油气层渗流力学》作业第一章油气层渗流力学基础:p26,第1、2、3题。
第二章油气渗流的基本规律:p44,第1、2题。
第三章单相液体渗流数学模型:p62,第7、8题。
油气层渗流
镜像反映的基本原则: 不渗透边界是“同号”等产量反映,反映后不渗透边界保
持微分流线;供给边界是“异号”等产量反映,反映后供给 边界保持为等势线。
(3)复杂断层的反映 a
习题:
两断层相交成120度角,在分角线上有一口生产井,求该井 的产量(t/d)。
r1r2
C
等势线族方程为: r1 r2 C0
x a2 y2 x a2 y2 C02
在生产井的井壁上, q
w 2 ln 2a Rw C
在供给边缘上,
e
q
2
ln
Re 2
C
整理得,
Q
2Kh(Pe Pw ln Re2
)
2a Rw
5 考虑边界效应的镜像反映法
(1)直线供给边缘附近一口生产井的反映 汇源反映法
4圆形供给边界偏心井的反映2are弹性不稳定渗流的物理过程1水压弹性驱动油井以定产量生产时地层内压力传播规律油井以定压生产时地层内压力传播规律1水压弹性驱动油井以定产量生产时地层内压力传播规律油井以定压生产时地层内压力传播规律2封闭弹性驱动油井以定产量生产时地层内压力传播规律拟稳定状态油井以定压生产时地层内压力传播规律2封闭弹性驱动油井以定产量生产时地层内压力传播规律油井以定压生产时地层内压力传播规律数学模型求解方法
油气层渗流力学
一.渗流的基本概念和基本规律 二.渗流的数学模型 三 .单相液体稳定渗流理论 四 .弹性微可压缩液体不稳定渗流 五 .两相渗流理论
一 渗流的基本概念和基本规律
1 基本概念
多孔介质 由毛细管或微毛细管结构组成的介质。
渗流
流体通过多孔介质的流动。
渗流力学 研究渗流的运动形态和运动规律的科学。
油气层渗流力学课程设计
油气层渗流力学课程设计课程简介本课程旨在介绍油气田开发过程中的渗流力学原理及其应用方法,深入探讨油气层渗流特性、规律以及开发工艺等方面的问题,以培养学生的系统性思维和实际应用能力,为学生今后从事相关领域的研究和实践奠定基础。
课程目标1.掌握油气层渗流力学基本知识和理论模型。
2.了解油气层产能评价方法,掌握预测油气田产能的技术方法。
3.培养运用现代数值模拟工具分析油气层渗流特性的能力。
4.掌握油气田开发的技术方法和决策过程,提高协同工作能力。
课程内容第一章油气层渗流力学基础1.1 渗流力学基本概念 - 渗透率、压力梯度、渗透压等基本概念 - 渗透率的测定方法、与地质条件的关系1.2 渗流力学方程组 - 矩阵压力方程组及其解法 - 油气层砂体力学性质的传递模型 - 渗流方程的物理意义及其解法1.3 渗流特性模拟 - 有限元法与有限差分法的基本原理 - 油气层的地质建模及数值模拟方法 - 渗流特性模拟软件及其应用第二章油气田产能预测方法2.1 油气层动态特性分析 - 油气层动态特性与产能的关系 - 常用的分析方法及其优缺点2.2 产能评价方法 - 储量/产能的估算方法及其特点 - 产能预测模型的构建与优化2.3 产能监测技术 - 产量及产量分布的监测技术 - 现场数据采集与处理技术第三章油气田开发工艺3.1 油气田集输工艺 - 收集地面原油/天然气的方法及其特点 - 压缩、输送、储运等技术的应用3.2 油气地面设备 - 变压器、变频器等设备的应用 - 液化/气化设备的原理及其应用3.3 油田注水工艺 - 注水技术的原理及其适用条件 - 常见的注水方法及其特点课程要求1.认真学习课堂内容,积极参加课堂讨论,每周提交一篇思考作业,按时完成课程设计任务。
2.考核方式:课堂出勤、作业、课程设计、期末考试。
3.合格标准:作业满分率不低于80%,课程设计优秀率不低于60%,期末考试成绩不低于60分。
参考文献1.杨洋,张三. 油气层渗流力学及应用[M]. 石油工业出版社, 2012.2.孙春田,张四. 油气田开发工艺及设备[M]. 石油工业出版社, 2014.3.刘建华,李五. 油气田产能评价方法与技术[M]. 石油工业出版社,2018.。
第四章 油气层渗流力学
第四章油气渗流力学基础§4-1 油气层渗流的基本概念一、油气渗流的基本知识流体在孔隙中的流动叫渗流。
由于油层中渗流的流道非常小而又特别复杂,因而渗流的阻力很大,所以渗流的速度是十分缓慢的。
(一)单相渗流在油层的孔隙中,如果渗流仅能满足单一流体的要求,即只有石油或天然气,其渗流状况可称为单相渗流。
由于储油岩层绝大多数是在水体中沉积的,因此在岩石的孔隙中,首先是充满了水,油气是以后运移进来的。
这些后期进来的油气,只有把原来充填在岩石孔隙中的水排挤出去,气才有存储之处。
但是岩石孔隙中的水是不能完全排挤出去的,总有一部分残留在孔隙中,叫做束缚水。
束缚水在油层中的含量,大约占油层孔隙体积的20%左右,它们总是附着在岩石颗粒的表面,不能流动。
因此,所谓石油或天然气在油层孔隙中的单相流动,实际上是在被束缚水占据而变小了的岩石孔隙中渗流。
(二)油、气两相渗流当油层压力高于饱和压力时,天然气完全溶解在油中,此时油层内只有油的单相渗流(束缚水是不能流动的)。
当油田没有外来能量的补充时,在开发过程中,油层本身能量不断被消耗,压力不断下降,以致油层平均压力低于饱和压力,油层孔隙中就会有油、气两种流体的流动,称为油、气两相渗流。
为了进一步了解油、气两相渗流的一些规律,下面介绍几个有关的概念:1.贾敏效应假若在岩石孔隙中渗流的液体里只含有一个小气泡,由于表面张力的作用,这个气泡要终保持它的圆球形状。
当这个气泡的体积小于孔隙的喉道很多时,气泡通过这些喉道是不费力的。
而当其截面积接近于孔隙喉道截面积时,在通过这些不是圆形的喉道截面,或喉道面积稍小于气泡截面积时,就必然要改变气泡的形状。
改变气泡的形状需要一定的力,这力是阻碍油流的阻力。
改变一个气泡不需要多大的力,而大量的气泡就会变成阻碍油流的大阻力,它消耗油藏驱动的能量,促使油层压力进一步降低。
气泡对油流造成阻碍作用的现象叫做贾敏效应。
2.吸留气泡实验证明,当油气层内气体的饱和度低于20%时,气体的相渗透率等于零,即油层孔里没有气体的渗流。
《油气层渗流力学》教学思考
《油气层渗流力学》教学思考《油气层渗流力学》课程是石油工程专业的核心课程,是油气田开发设计、动态分析、油气井开采、增产工艺、反求地层参数、提高采收率等的理论基础,是学好石油工程其它专业课如《油藏工程》、《采油工程》、《油藏数值模拟》、《试井分析》的关键课程之一。
本门课程的主要目的与任务是让学生掌握油气在储层中的渗流的基本概念、基本规律,学会研究油气在复杂工程问题中渗流的基本方法,为学好其它专业课程打好理论基础。
通过本课程的教学,使学生达到以下课程目标:1. 通过本门课程的学习,使学生系统地掌握油气层渗流的基本概念、基本规律。
在单相流体渗流部分,掌握稳定渗流时,各种情况下的水动力学场及其特征参数,井间干扰及叠加原理,不稳定渗流的压力传播规律、动态特征,气体渗流的特点,双重介质渗流的特征;在多相流部分,了解油气两相渗流物理过程及渗流数学模型,掌握油水两相流、非活塞式水驱油的理论和方法。
2. 培养学生利用油气层渗流的基本概念、基本规律对复杂油气层渗流过程进行识别和表达的能力,能够将实际的复杂渗流过程进行简化、组合,选择合理的表达方式,建立渗流数学模型。
3. 通过课程所属渗流力学实验,培养团队协作精神,在学生掌握实验基本原理、流程和操作步骤的基础上,通过综合渗流基本原理、数学方法、数据分1/ 8析等完成实验报告,得出正确认识与结论,具备解决石油工程复杂问题的实验研究能力,能够进行实验设计、实验操作。
4. 培养基于科学原理和石油工程专业基础知识对石油工程复杂问题开展深入专业研究的能力。
在掌握油气渗流的基本概念、渗流规律的基础上,初步具备研究复杂工程问题中油气层渗流相关问题的能力。
许多老师和学生都感觉到渗流力学理论比较抽象、数学模型复杂,非常难以理解。
的确是这样,其实油气藏渗流力学理论不外乎分为两部分,一部分不涉及到传热与传质的流体渗流理论,这部分理论相对简单些,其实就是常规油气藏的开采,即压力与产量的关系,单相流动与多相流动的关系;另一部分是涉及到传热与传质的渗流理论,第二部分理论要求更高,涉及到传热与传质理论,就是非常规油气藏的开采,比如稠油热采、聚合物驱、化学驱等,这部分内容在本科教学中暂时不讨论。
第一章 油气渗流力学基础
关键词:油气藏类型、外部形态、内部储集空间、简化
第二节 油气藏内部空间结构简化
一、储集层及储集空间类型 1、储集层类型 1)储集层:能储存和渗滤油气的岩层 (油气藏:由储集层+流体构成) 2)两类主要储集层 碎屑岩和碳酸盐岩,这两类油气藏的储量与产量均占 世界总量的99%以上 3)特殊(次要)岩类储集层 火山岩、变质岩及泥质岩
流体
第一节 油气藏类型及其外部形态的简化
二、油气藏类型
岩石类型 圈闭类型
油气藏分类依据
储集空间 流体性质 流体分布
岩浆岩 储层 岩石 类型 (岩性) 变质岩 沉积岩 结晶岩: 碳酸盐岩 油藏
储集空间 孔隙、喉道
碎屑岩: 砂岩油藏
渗流通道 喉道、微裂缝
储集空间 溶洞、裂缝、孔隙 渗流通道 裂缝
第一节 油气藏类型及其外部形态的简化
边水油气藏 底水油气藏 底水
油-气-水 相对分布
气顶(底水)油藏 底油(油环)气藏
第一节 油气藏类型及其外部形态的简化
二、油气藏类型
岩石类型 圈闭类型
油气藏分类依据
储集空间 流体性质 流体分布
边水油气藏 底水油气藏 底水
油-气-水 相对分布
气顶(底水)油藏 底油(油环)气藏
第一节 油气藏类型及其外部形态的简化
第一节 油气藏类型及其外部形态的简化
二、油气藏类型
岩石类型 圈闭类型
油气藏分类依据
储集空间 流体性质 流体分布
油藏 圈闭 类型
构造圈闭:由 地应力变化导 致的构造运动 而形成 地层圈闭:由 储层岩石性质 变化而形成
油气层渗流力学第四章2
§4.3 弹性不稳定渗流微分方程的典型解
一、无限大地层定产条件下微分方程的典型解
1.数学模型
2P r 2
1 r
P r
1
P t
P t0 Pi 初始条件
无限大
P r Pi 外边界条件
线源解
r P r
r0
Q 2Kh
(t 0) 内边界条件
2.数学模型的求解
*分离变量法 y R(r) T (t)
y
2 2! 33!
当y 0.01时,保留级数的前两项,可满足精度要求:
Ei( y)
0.5772 ln
1 y
ln
2.25t
r2
压力分布公式的简化形式
r 2 0.01
4t
r2 5
4t
2.25t
Ei( y) ln r 2 Ei( y) 0
P(r, t )
Pi
Q 4Kh
ln
2.25t
r2
P(r,t) Pi
y
d 2P dy 2
dP dy
y
dP dy
dy
dy
整理得
dP 1 y P
dy
y
分离变量 积分
ln P ln y y C1
整理得
P
C2
e y y
①
C1为积分常数,C2 eC1
利用边界条件 确定积分常数
r
P r
r0 r
dP dy
y r
r 0r
dP dy
Ct r
2Kt
2 y
r 0
dP dy
y0
压力波
◆压力波:井底压力变化的形式(井底压力下降或上升)在 地层中的传播。
弹性驱动时,渗流的基本特征: ●由于液体及岩石具有弹性,因此,井底压力的变化在地 层中的传播是非瞬时完成的; ●渗流的运动要素不仅是位置坐标的函数,而且是时间的 函数,说明考虑流体及岩石的渗流是不稳定渗流;
1 油气层渗流力学基础解析
建立起油气渗流的普遍规律。
16
第二节 油气藏内部空间结构简化
17
图1-7 岩石孔隙空间铸模图
图1-8 储集空间类型示意图
4
(1)油(气)藏高度
油藏高度
油水接触面与油藏最高点的高度差,称为油藏高度。
5
气藏高度
气水接触面与气藏最高点间的高度差,称为气藏高度。
6
气顶高度 油藏高度
油气藏高度
油藏高度:油水接触面和油气接触面之间的高度差
气顶高度:油气接触面和油气藏最高点之间的高度差
油气藏高度:油藏高度+气顶高度
7
(2)油(气)藏外(内)边缘
可以延伸很长距离。裂缝主要
分布在碳酸盐岩层中。
• 储油空间:孔隙+裂缝
21
溶洞
指地面水或地下水的深
蚀作用,形成的孔洞。它 是碳酸盐储集层常见的孔 隙类型之一。
• 储油空间:孔隙+溶洞
22
(2)储集空间大小分类
根据储层孔隙大小和储、渗流体能力,分三类: • 超毛细管孔隙
孔隙直径>0.5mm
裂缝宽度>0.25mm
33
2、渗流速度 • 流量
单位时间内通过一定横截面积油层的流体体积
• 渗流速度
a. 单位时间内通过单位横截面积油层的流体体积
34
b. 单位横截面积油层上的体积流量
位于油(气)藏外边缘以 外的水称边水。油藏的内 含油面积不为0,油藏部分 含油面积与水接触。 位于油(气)藏边缘以内 从下面承托着油(气)的 水称为底水。油藏的内含 油面积为0,油藏整个含 油面积与水接触。
渗流力学油工
旳运动规律,计算流体质点旳排出时间。
2024/10/1
Vp Ap
VA
HX-CHEuNG
v
或
v u
30
§1.3 渗流旳基本规律 和渗流方式
(2)渗流阻力
Q K A P P L P
L
KA R
(3)达西定律旳微分形式
一维:v K dP dx
vx
K
P x
三维:v K gradP
vy
HX-CHENG
16
§1.2 渗流过程中旳力学分析 及驱动类型
一、渗流过程中旳力学分析
1.流体旳重力和重力势能
A
B
动 力
M
液源水头
阻
压力
力
N
重力作用示意图
g 表达重力势能旳压力:
2024/10/1
Pz
gz HX-CHENG
重率:
17
§1.2 渗流过程中旳力学分析 及驱动类型
2.流体旳质量和惯性力
流线:在某一时刻t,经过流动空间旳许多点连接起来
旳一条光滑曲线,该曲线上各点旳流速矢量与曲线相切。
单向流 平面径向流
z
v1
v2
v4
v5
v3
渗流方式
球面径向流
x
y
2024/10/1
HX-CHENG
Ao
P
nf
8 Ao
ALv
§1.3 渗流旳基本规律 和渗流方式
二、渗流力学中常用物理量旳单位(单位制)
油气层渗流力学中常用旳单位制有:国际原则单位制
(SI制)和达西混合单位制。如表所示。
达西单位旳物理意义:当液体粘度为1厘泊,压降为1大
气压下,流体流过截面积为1平方厘米,长度为1厘米旳岩样,
油气层渗流力学第二版第一章(张建国版中国石油大学出版社)
油层
隔层
把层状构造油气层看层是一个等厚 度的薄板,叫做“平面等厚模型”。
11
L
条带状薄板
圆形薄板
12
位于油层下方的水层(底水)或边部的水层(边水)与油藏周
敞开式油藏 (定压油藏)
边水体或地面露头有好的连通性,且油藏开采过程中有良好的
水源供给 ,相当于在油藏供给边缘上保持一个恒定的压头, 这种油藏称为敞开式油藏。
敞开式油藏的 油藏边缘在水 平面的投影
供给边界
特点:供给边界压力不变
边 水
由于岩性变化或断层阻挡,位于油层下方的水层 封闭式油藏 与油藏周边的水体或地面水不连通,油藏开采过 程无水源供给,这种油藏称为封闭式油藏。
封闭式油藏的 油藏边缘在水 平面的投影 封闭边界
特点:油藏外流体不能通过边界进入油层
1、储层类型
能储存和渗滤油气的岩层就称为储层。
碎屑岩 碳酸盐岩 火山岩
♪ 最主要的储层类型 ♪ 油气储量与产量均占世界石油储量99%
变质岩
泥岩
2、储集空间类型及大小 1)储集空间类型
储集空间——岩石中未被固体物质充填的孔隙空间,简称孔隙。
孔隙
储集空间类型从成因上分为
裂缝 溶蚀孔洞
孔隙
体)为着眼点来研究介质的物理现象。
五、连续流体
流体是由很大数量的分子所组成的集合体。
统计力学的方法: 不以个别分子为对象 以由很多分子组成的“系统”为研究对 象 对流体的每一个分析结果和实验结果都 以统计学的形式表现出来。
47
把流体处理成连续的介质
把流体中的质点看成是在一个很小的体积 中包含着很多分子的集合体。 质点的大小既要比单个分子的自由路程大
块状油藏
油气层渗流力学第六章
sw Pc dPc sw dPc 0, 0, 由于 , x x dsw x dsw
油 水
v
水驱油方向
Pc sw
sw
毛管力曲线
饱和度分布曲线
x
Pc 所以 总为正值,毛管力的存在倾向于增大含水率。 x
§6.2 油水两相渗流微分方程 及其基本解
三、渗流微分方程的基本解
o
w
( Pw Po ) 两式相减得: vw vo [ ( w o ) g sin ] Kw Ko x
即: 其中:
w
o
Pc vw vo [ g sin ] ① Kw Ko x
毛管力Pc Po Pw, w o
w
o
●又:vt vo vw,vo vt vw 代入①式得:
Pc ( )v w vt g sin K w Ko Ko x
w
o
o
上式两边同除以vt,并整理得: o Pc
vw K o fw vt ( x
g sin )
w
关于饱和度的方程,也可称 此方程为忽略重力和毛管力 影响的油水两相渗流的基本 微分方程。
●该方程为一阶齐次拟线性偏微
分方程,其特征方程可表示为: dx dt dsw vt f w ( sw ) 0
vt f w ( sw )
sw s w 0 x t
欲使上式成立, 必须dsw 0,即sw C1 , 则有: dx dt vt f w ( sw )
、o、 w皆为常数。
3.连续性方程 ●油相:在单位时间内,纯流出单位体积岩石的油相体积 等于单位时间内单位体积岩石中油相体积的减少量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PBi c1 L c2
Pe PBi P Pe x L
或:
c2 Pe
单向渗流压力 分布公式
Pe PBi P PBi ( L x) L
2. 求解数学模型
压力梯度:
渗流速度:
流量:
3. 结果分析
● 压力沿
x 方向线性分布,压
Pe
P
力梯度为常数,说明单位长度
上的能量损耗为定值;
● 单向稳定渗流时,流速
PBi
和流量 q 与位置坐标
为常数;
v
o
x
x 无关,
单向渗流压力分布曲线
dP dx
L
x
● 流过 [0, x ]渗流段的渗流阻
力为:
v o
x
。
KBh
x
4. 单向渗流的渗流场图(水动力场图)
◆渗流场图:由一组等压线和一 组流线按一定规则构成的图形。 ◆等压线:渗流场中压力相同点
律;
●同一渗流场中,流线密的地方流速大,等压线密
的地方压力变化急剧(压力梯度大)。
§3.1 单相液体稳定渗流微分方程典型解
二、平面径向渗流
1. 数学模型
d 2 P 1 dP 0 2 dr r dr
Pe
Pwf
re
2rw
h
Pe
K
P
r rw
Pwf
(井底处) (供给边界)
Pe
P
r re
油气层渗流力学
第三章 单相液体稳定渗流理论
主要内容
§3.1 单相液体稳定渗流微分方程的解及应用
§3.2 井的不完善性对渗流的影响 §3.3 油井的稳定试井 §3.4 井间干扰现象和势的叠加 §3.5 势叠加原理的典型应用
§3.6 考虑边界效应的镜像反映法
§3.7 等值渗流阻力法
§3.8 复变函数理论在平面渗流问题中的应用
流线
yபைடு நூலகம்
等压线
的连线。
◆等压面:渗流场中压力相同的
o
L x
单向渗流渗流场图 ★ 等间距的水平线和垂 线构成的均匀网格
空间点组成的面。
⊙规则:各相邻两条等压线间的 压差值相等;各相邻两条流线间 通过的流量相等。
y C1 x C2
任意
常数
渗流场图描述渗流规律:直观、生动、具体。
●渗流场图中,流线给出了流体质点的运动轨迹, 描述了流体流向和流速分布规律; ●等压线形象地描绘了能量损耗规律和压力分布规
§3.9 平面渗流场的保角变换求解方法
基
本
概
念
◆单相流动:只有一种流体的流动叫单相流动。 多相流动:有两种或两种以上流体同时流动,叫两相 或多相流动。
◆稳定渗流:渗流的运动要素P、v 等只是空间坐标的函数,
与时间 t 无关。 不稳定渗流:渗流的运动要素不仅是空间坐标的函数, 也是时间的函数。即:
P f1 ( x , y , z , t ) v f 2 ( x, y, z , t )
刚性水压驱动; 忽略油水性质的差别。
§3.1 单相液体稳定渗流微分方程 的解及其应用
▲典型解:指三种简化的典型渗流方式下的解。 单向流 渗 流 方 式 平面径向流 球面径向流
§3.1 单相液体稳定渗流微分方程典型解
一、单向渗流(平面单向流)
1. 数学模型
供给边界
d P 0 2 dx
2
Pe
K
re q P Pe ln 2Kh r
q r ln 或 P Pwf 2Kh rw
3. 结果分析
●压力分布公式表明:
压力与坐标r呈对数关系
Pe Pwf r P Pwf ln re r w ln rw
P
,从整个地层看,地层
各点压力分布是此对数
Pe
曲线绕井轴旋转构成的
曲面,此曲面形似漏斗
w
rw
则计算结果如表所示:
Pe P Pe Pwf
r (米)
0.1 1
1 0.8
10 0.6
100 0.4
1000 0.2
K dP K Pe Pwf 1 渗流速度: v dr ln re r rw
平面径向流 产量公式 (裘比公式)
2Kh( Pe Pwf ) q re ln rw
产量公式: q Av 2rh v
Pe Pwf q 又由产量公式变形: 代入压力分布公式得: re 2Kh ln rw
排液道
PBi
h
L
单向渗流模型
P
x 0
Pe(供给边界)
(排液道) PBi
B A Bh x
P
x L
2. 求解数学模型
d 2P 0 2 dx
渗流微分 方程积分
dP c1 dx
再分离变 量积分
P c1 x c2
Pe PBi c1 L
代入边界条件
c2 Pe
积分常数为:
平面径向流渗流场图
等压线:一组与井轴同心的同心圆。
流线: 以井为中心的径向线。
r C1
C2
例3-1 圆形均质等厚地层中为单相液体稳定渗流,中 心一口井井半径 rw 0.1 米,供给半径 re 10000 米 ,试计算从供给边缘到距井1000、100、10、1米处的 从1米至0.1米处的压力损耗 能量(压力)损耗百分数。 re 与从一万米至一千米处的压 ln P P r e wf P P e 力损耗相等,同为 20 ﹪,说 e r ln 得: 解: 由 P Pe re r 明能量损耗主要集中在井底 re Pe Pwf ln ln 附近。 r
Pe
Pwf
平面径向渗流模型
2. 求解数学模型
dP 令 u dr
*降阶法求解 *直接积分法
积分
du u dr r
ln u ln r ln c1
ur c1
dP r c1 dr
代入边界条件得:
再积分
P c1 ln r c2 ①
②- ③
Pe c1 ln re c2 ② Pwf c1 ln rw c2 ③
Pe Pwf re P Pe ln r r ln e rw
Pe Pwf r P Pwf ln r rw ln e rw
Pe Pwf c1 re ln rw
②-①或①-③并代 入边界条件 c1
平面径向流压 力分布公式
dP c1 Pe Pwf 1 压力梯度: r r dr r ln e rw
P
Pwf
,习惯称为“压降漏斗
”。
r
o
re
r
平面径向流压力分布曲线
dP 1 , v 表明在井底附近,渗流截面积减小,渗流 ● dr r
速度大,压力梯度大,能量损耗也越大;
等压线
●平面径向流的渗流场图, 可以直观地反映出平面径向流的
流线
渗流规律:越靠近井壁,等压线
和流线越密集,渗流速度和压力 梯度也越大。