过程设备设计第四章(4.1-4.2)资料

合集下载

第四章 实验室仪器设备的使用

第四章 实验室仪器设备的使用

4.2 生物实验室常用仪器设备的使用规范
01 基础设备
生物实验室 常用仪器设备
02 生物培养仪器设备 03 其他生物类仪器
04 其他大型仪器
4.2 生物实验室常用仪器设备的使用规范
1. 基础仪器
(1)电子天平 —— 实验室常用称量仪器 (2)显微镜 (光学显微镜)—— 用于观察细胞的显微结构 (3)离心机 —— 用于分离溶液中的物质
• 1.常温或加热条件下作大量物质的反应 容器;
• 2.配制溶液用。
• 1.反应液体不得超过烧杯容量的2/3; • 2.加热前将烧杯外壁擦干,烧杯底要垫
石棉网。
⑦酒精灯
• 加热用。
• 操作要领: • 1.加入的酒精以酒精灯的容积的1/2至2/3为宜,使用时用漏
斗添加酒精; • 2.用火柴点燃,绝对不能用燃着的酒精灯去点另一酒精灯; • 3.熄灭时要用酒精灯灯盖盖灭,不可以用嘴吹灭。
钟。 • 4.校正 — 首次使用天平必须进行校正,按校正键CAL,BS系列电子平
将显示所需校正砝码质量,放上砝码直至出现g,校正结束;BT系列电 子天平自动进行内部校准直至出现g,校正结束。
①电子天平
5. 称量 — 使用除皮键Tare,除皮清零。 放置样品进行称量。 6. 关机 — 天平应一直保持通电状(24小 时),不使用时将开关键关至待机状态, 使天平保持保温状态,可延长天平使用寿 命。
⑩移液管
准确地移取一定量的液体。
清洗→润洗→吸取→定容→注液
1.应把吸球内的空气尽量挤压干净,并把吸球贴近移液管。 2.右手持管插入液面下约1cm,左手释放吸球,并让它吸取烧杯中的液体。在吸取少量液 体时要留心不要吸入空气,以免污染吸球。 3.洗耳球轻轻吸取液体,当液面上升至刻度标线1cm时,迅速用右手食指堵住管口,松动 食指调整液面使其与标线相切; 4.释放液体时,将移液管插入接受容器中,使尖端接触器壁,使容器微倾斜,移液管直 立,然后松开手指使溶液顺壁流下。 5.当把液体由移液管释放出来时,由于水分子的附着力,会有部分液体附在管尖,这是 正常现象,若移液管标有“吹“字,则应将管内剩余的溶液吹出。

章4 往复运动结构设计

章4 往复运动结构设计
动方式划分,常用间歇运动可分为间歇直线运动和间歇转 动两种。 间歇转动获得比较方便,槽轮机构棘轮机构、圆柱分度凸轮机 构等都可以可靠地实现间歇转动,甚至还可以使用步进电机等 通过合理的控制方式实现。 直接能够实现间歇直线运动的机构几乎没有,因此通常通过一 定的传动方式将间歇转动转换为直线间歇运动。如直线式自动 生产线,通常由槽轮机构带动链轮,利用链传动,在链条上获 得直线间歇运动。
第四章、往复、间歇运动机构设计
4.1概述 4.2往复运动机构 4.3间歇运动机构
4.1、概述
一、往复运动机构
往复运动从形式上有往复直线运动、往复摆动、往复曲线运动 和往名,实现往复运动的常用机构有凸轮机构、 曲柄滑块机构、曲柄摇杆机构等。
图4-30所示的外槽轮 是槽轮机构的最简单 和基本形式。
图4-31为内槽轮的 结构,其工作原理 与外槽轮相似。
外槽轮主要用于转速较高、间歇短及机构负荷比较重的场合。 内槽轮机构运动内冲击小、动力性能好,适于要求运转平稳的 场合。特殊槽轮主要用于对转、停时间比例有特殊要求及不等 速间歇转动等场合。
利用电磁原理也可实现 往复移动和摆动,在现 代电子产品特别是数字 控制产品中,使用电磁 原理的机构可实现精密 的运动控制,图4-1为 计算机硬盘结构,其寻 道机构的运动控制就是 利用电磁原理实现的。
往复曲线运动通常由连杆机构实现,主要用于有特殊执行动作 要求的连续循环工作机械,如缝纫机的缝纫引线动作、织布机 的编织动作等。
图4-44为一种 适合于加工、 组装等作业自 动机或生产线 的启动棘轮步 进传送机构。 其中,气缸通 过齿条、齿轮 驱动棘轮机构 间歇运动,棘 轮再场将运动 传给同轴链 轮,从而使固 于链条上的工 件存放架进行 间歇直线移动。
图4-45为另一种 常见于轻工、包 装自动生产线的 直线转位机构。 其中,气缸为驱 动源,棘轮4上有 摩擦止回装置, 链轮系统有尼龙 张紧滚轮。

第四章操作分析

第四章操作分析

四、人机操作分析的案例分析
图4-2 滚齿加工的人机操作图(现行方法)
四、人机操作分析的案例分析






1.人机作业活动分析 由图4-2可以看出,人的空闲时间太多,人的时间利 用率仅为27%。则采用“5W1H”提问技术和 “ECRS”原则进行分析改进: 1)分析得取加工件为人的独立工作与装夹工件前后顺 序不紧密。 问:为什么是先取加工件再装夹工件后滚齿? 答:这是加工操作的习惯和顺序。 问:可不可以在机器滚齿过程中取加工件为装夹工作 做准备? 答:可以,这样还可以减少机器空闲时间。
四、人机操作分析的案例分析




2)分析得去毛刺和检查尺寸为人的独立工作。 问:为什么去毛刺和检查尺寸要在机器停止时进行? 答:过去一直是这样的。 问:有无改进的可能性? 答:有。 问:如何改进? 答:可将操作重排,在滚齿机加工齿轮时,可以对上 一个已加工好的齿轮进行去毛刺和检查尺寸的作业。 改进后的人机操作图如图4-3所示。
4.1 操作分析概述



4.操作分析的类型 操作分析的种类,按照不同的工序作业对象和调查目 的,可分为三类: (1)人机操作分析; (2)联合操作分析; (3)双手操作分析。
4.2 人机操作分析
一、人机操作分析概述


1.人机操作分析的概念 人机操作分析是应用于机器作业的一种分析方法,通 过现场观察记录一个操作周期(加工完一个零件的整 个过程称为一个操作周期或周程)内操作者和机器设 备在同一时间内的工作情况与相互关系,绘制人机操 作图并加以分析,研究人与机器的闲余时间,寻求合 理的操作方法,使人和机器的配合更加协调,充分发 挥人和机器的效率。

《过程设备设计基础》

《过程设备设计基础》

《过程设备设计基础》习题集樊玉光西安石油大学2007.1前言本习题集为配合过程装备与控制工程专业《过程设备设计基础》课程的教学参考用书。

本书是编者在过去多年教学经验的基础上整理编写而成,旨在帮助加深对课程中一些基本概念的理解,巩固所学的知识,提高分析和解决工程设计问题的能力,因此编写过程中力求选题广泛,突出重点,注重解题方法和工程概念的训练。

本书与《过程设备设计基础》教材中各章教学要求基本对应。

各章中包含思考题和习题。

目录第一章压力容器导言 (2)第一章思考题 (2)第二章压力容器应力分析 (3)第二章思考题 (3)第二章习题 (7)第三章压力容器材料及环境和时间对其性能的影响 (13)第三章思考题 (13)第四章压力容器设计 (14)第四章思考题 (14)第四章习题 (16)第五章储存设备 (19)第五章思考题 (19)第五章习题 (19)第一章压力容器导言1.1压力容器总体结构,1.2压力容器分类,1.3压力容器规范标准。

第一章思考题思考题1.1.压力容器主要有哪几部分组成?分别起什么作用?思考题1.2.介质的毒性程度和易燃特性对压力容器的设计、制造、使用和管理有何影响?思考题1.3.《压力容器安全技术监察规程》在确定压力容器类别时,为什么不仅要根据压力高低,还要视压力与容积的乘积pV大小进行分类?思考题1.4.《压力容器安全技术监察规程》与GB150的适用范围是否相同?为什么?思考题1.5.GB150、JB4732和JB/T4735三个标准有何不同?他们的适用范围是什么?思考题 1.6.化工容器和一般压力容器相比较有哪些异同点?为什么压力容器的安全问题特别重要?思考题1.7.从容器的安全、制造、使用等方面说明对压力容器机械设计有哪些基本要求?思考题 1.8.为什么对压力容器分类时不仅要根据压力高低,还要考虑压力乘容积PV的大小?思考题1.9.毒性为高度或极度危害介质PV>0.2MP a·m3的低压容器应定为几类容器?思考题1.10.所谓高温容器是指哪一种情况?第二章压力容器应力分析2.1 载荷分析,2.2回转薄壳应力分析,2.3 厚壁圆筒应力分析,2.4 平板应力分析,2.5 壳体的稳定性分析,2.6 典型局部应力。

第四章多媒体技术基础总结

第四章多媒体技术基础总结
28
ASF文件—— .ASF/.WMA ASF和WMA都是微软公司针对Real公司开发的 新一代网上流式数字音频压缩技术。这种压缩技 术的特点是同时兼顾了保真度和网络传输需求, 所以具有一定的先进性。可以利用WinAMP或媒 体播放机播放。
AIFF文件——.AIF/.AIFF
苹果公司开发的声音文件格式,被Macintosh平 台和应用程序所支持。
奈奎斯特采样定理:采样频率≥2×信号最高频率。 目前最常用的三种采样频率分别为:电话效果(11 kHz)、FM电台效果(22 kHz)和CD效果(44.1 kHz)。
20
2)量化
量化:对声波波形幅度的数字化。
量化位数:量化时采用的二进制位数,位数 越多,精度也越高,音质越细腻。 例如, 用16个二进制位(bit)表示声音,可将声 音强度分为216 =65536级。 每秒声音的数据量 =采样频率×量化位数×声道数/8(字节)
2)图像量化是将采样值划分成各种等级,用一 定位数的二进制数(量化字长)来表示采样 的值。
量化字长(也称颜色深度)越大,则越能真 实地反映原有图像的颜色。但得到的数字图 像的容量也越大。
3)图像编码是按一定的规则,将量化后的数据 用二进制数据存储在文件中。 位图文件(.bmp):Microsoft Windows 中使用的一种非压缩图像文件格 35 式。
RGB模型(显示):将红(Red)、绿 (Green)、蓝(Blue)三原色的色光以不同 的比例相加,以产生多种多样的色光。 CMYK模型(打印):印刷四分色模式利用色 料的三原色混色原理,加上黑色油墨,共计四 种颜色混合叠加,形成所谓“全彩印刷”。四 种标准颜色是:

C:Cyan = 青色;
M:Magenta = 品红色(洋红色)。 Y:Yellow = 黄色。

第4章工艺设计标准化

第4章工艺设计标准化
标准化:在优化的基础上统一。
4.1 概述
•4.1.2工艺标准化的意义
➢传统工艺设计存在的问题
重视设计、轻视工艺,造成工艺设计水平较低: ✓工艺设计的质量取决于工艺人员,且存在工艺多样 性,使得工艺装备品种、规格、数量增加,生产计划 管理复杂,增加生产成本,延长生产周期 ✓一份工艺只针对一个零件,忽略同类零件之间的联 系,很少继承同类零件的优秀工艺;工艺人员工作繁 重,没有时间研究新工艺
4.2 工艺过程标准化的方法
4.2 工艺过程标准化的方法
✓复合路线法 将零件族中各零件需加工的工序都列在工艺卡片上
,然后进行工序叠加,形成零件族的成组工艺。 首先分析零件族内全部零件的工艺路线,从中选出
工序较多、流程合理、代表性强的一条作为基础工艺 路线,然后将其他零件的工序按合理的位置安插到基 础工艺路线中,就可得到一条适于整个零件族的成组 工艺路线。
4.1 概述
•4.1.3工艺标准化与CAPP的关系
工艺设计标准化是CAPP的基础,CAPP的产 生是工艺标准化发展的必然趋势,两者相辅相 成。
随着制造技术的不断发展,CAPP和工艺标 准化有着各自不同的工作范围和侧重点。
标准化和CAPP都是企业制造技术发展必不 可少的组成部分。
4.2 工艺过程标准化的方法
•4.2.1工艺标准化的方法
➢典型工艺法
典型工艺是最早的工艺设计标准化的体现,它的着眼 点在于使零件整个工艺过程(工序顺序和工序内容)实 现标准化。
典型工艺主要适用于产品品种和零件结构形状比较稳 定的系列产品或批量较大的场合。
4.2 工艺过程标准化的方法
➢成组工艺法
成组工艺首先着眼于缩小工艺标准化的范围,从构成 零件工艺过程的每一个工序入手,实现工序标准化;不 要求零件属于同一型,只要一组零件的某个工序能在同 一型号设备上,采用相同的工艺装备和调整方法进行加 工,则这组零件在该工序上便可归并成组。这种方式尤 其适合于产品加工由刚性制造向柔性制造转化。

第四章 干燥过程与设备

第四章 干燥过程与设备

①干空气+水汽的混合物
水汽分压Pw 湿空气=干空气+水蒸汽,即:P=Pa+Pw
pwV nw RT ( p pw )V na RT Pw Pw nw Pa P Pw na
饱和湿空气:即水蒸气分压达到该空气温度 下的饱和蒸气压。(表5-1)
②湿度性质(绝对湿度,相对湿度, 湿含量)
平衡水分与自由水分—能否用干燥方法除去 平衡水分:不能用干燥方法除去的水分物料 表面水份产生的蒸汽压力与空气中水蒸汽 分压相同时,物料中的含水量为在该空气 条件(温度,湿度)下物料的平衡含水量。 自由水分:可用干燥方法除去的水分。 平衡水分一定是结合水分。
湿含量( Humidity)
湿含量:单位质量干空气中所含水汽的质量, 单位:kg水汽· -1干空气 kg
nw M w 湿空气中水汽的质量 X ng M g 湿空气中绝干空气的质量
对于水蒸气~空气系统:
0.622nw 18 nw X 29 ng ng
nw pw pw ng p g P pw
L, t0 , X0
新鲜空气
预热器 L, t1 , X1
干 燥 器
废气
L, t2 , X2
产品 Gw2, (v2)
干燥流程图
湿物料 Gw1, (v1)
进干燥器的湿物料与出干燥器的湿物料之 差为被蒸发的水分质量。
mw Gw1 Gw2
因干燥前后的绝干物料量是相等的,即:
100 v1 100 v2 Gd Gw1 Gw2 100 100
100 v2 代入: 可得: Gw1 Gw 2 100 v1 v1 v2 mw Gw 2 100 v1
干燥介质消耗量计算

第四章 加工过程的智能监测与控制

第四章 加工过程的智能监测与控制
图像分割的目的是将图像划分成若干个有 意义的互补交互的小区域,或者是将目标区域 从背景中分离出来,小区域是具有共同属性并 且在空间上相互连接的像素的集合。
图像匹配:图像分割后,对多幅图片进 行同名点匹配,从匹配结果中可以获得同一 目标在多幅图片上的视差,最后计算出该目 标的实际坐标。
左侧CCD
右侧CCD
4.1.2 智能监测与控制的内容
NC
传感器与检
程 序
加工中心
测系统
参数调 整、误 差补偿
预先建好的系 统控制模型
切削振动、变 形、温度、刀具 磨损、零件表面 质量、设备运行
状态...
监测、控制与 故障诊断
车间管理 MES系统
图 4-1 加工过程监测与控制实现流程
(1)加工过程仿真与优化:针对 不同零件的加工工艺、切削参数、进给 速度等加工过程中影响零件加工质量的各种参数,通过基于加工过程模型的 仿真,进行参数的预测和优化选取,生成优化的加工过程控制指令。
(2)过程监控与误差补偿:利用各种传感器、远程监控与故障诊断技术, 对加工过程中的振动、切削温度、刀具磨损、加工变形以及设备的运行状 态与健康状况进行监测;根据预先建立的系统控制模型,实时调整加工参 数,并对加工过程中产生的误差 进行实时补偿。
(3)通讯等其他辅助智能:将实时信息传递给远程监控与故障诊断系统, 以及车间管理MES系统。
4.1.3加工过程的智能监测与控制发展趋势 加工过程的智能监控技术的发展将主要包括: (1)加工过程监控更适合于精密加工和自适应控制的要求; (2)由单一信号的监控向多传感器、多信号监控的发展, 充分利用多传感器的功能来消除外界干扰,避免漏报误报 情况; (3)智能技术与加工过程监控结合更加紧密;充分利用智 能技术的优点,突出监控的智能性和柔性;提高监控系统 的可靠性和实用性。

过程设备设计第4章习题

过程设备设计第4章习题

C.二次应力是指由相邻部件的约束或结构的自身约束所引起的正应力或切应力。 D.二次应力是局部结构不连续性和局部热应力的影响而叠加道一次应力之上的应力增量 4.8 交变载荷 以下载荷属于交变载荷的有: ( ) A.压力波动 B.开车停车 C.加热或冷却时温度变化引起的热应力变化 D.振动或容器接管引起的附加载荷 4.9 设计准则 下列有关压力容器设计准则的叙述,正确的有: ( ) A.弹性失效设计准则以容器整个危险面屈服作为实效状态。 B.弹塑性失效设计准则认为只要载荷变化范围达到安定载荷,容器就失效。 C.弹性失效设计准则较塑性失效设计准则更保守。 D.爆破失效设计准则认为压力达到全屈服压力时容器失效。 4.10 加强圈 为提高外压圆筒稳定性,需设置加强圈,下列有关加强圈的设计,正确的有: ( ) A.加强圈的最小间距应小于失稳临界长度。 B.在设计过程中,有可能通过增加加强圈的数量使圆筒厚度减薄。 C.加强圈与圆筒的连接可采用连续的或间断地焊接。 D.加强圈不可设置在筒体内部 4.11 封头 压力容器封头较多,下列叙述正确的有: ( ) A.凸形封头包括半球形封头、椭圆形封头、碟形封头、球冠形封头和锥壳。 B.由筒体与封头连接处的不连续效应产生的应力增强影响以应力增强系数的形式引入厚度 计算式。 C.半球形封头受力均匀,因其形状高度对称,整体冲压简单。 D.椭圆形封头主要用于中、低压容器。 4.12 高压密封 下列属于提高高压密封性能的措施有: ( ) A.改善密封接触表面 B.改进垫片结构 C.采用焊接密封元件 D.增加预紧螺栓数量 4.13 安全阀 安全阀的优点包括: () A.完全密封 B.多次使用 C.泄压反应快 D.只排出高于规定压力的部分压力 4.14 支座 在立式容器支座中,中小型直立容器常采用( )高大的塔设备则广泛采用( ) ,大型卧式 储存采用( ) A.耳式支座 B.裙式支座

第四章离子注入介绍

第四章离子注入介绍

离子束从<111>轴偏斜7°入射
入射离子进入沟道并不意味着一定发生沟 道效应, 只有当入射离子的入射角小于某 一角度时才会发生, 这个角称为临界角
沟道效应与离子注入方向的关系
沟道效应与单晶靶取向的关系
硅的<110 >方向沟道开口约
1.8 Å, <100 >方向沟道开口
约11.22 Å, <111>方向沟道开口介
3. 射程估算
a. 离子注入能量可分为三个区域:
低能区— 核阻滞能力占主导地位,电子阻滞可被忽略;
中能区— 在这个比较宽的区域,核阻滞和电子阻滞能力同等重要, 必须同时考虑; 主导地位, 核阻滞可被忽略。 超出高实能际区应—用电范子围阻;滞能力占
b.Sn(E) 和 Se(E) 的能量变 化曲线都有最大值。分别在低 能区和高能区;
能量为E的注入离子在单位密度靶内运动单位长度时,损失
给靶原子核的能量S n。E
dE dx
n
能量为E的一个注入离子与靶原子核碰撞,离子能量转移到 原子核上,结果将使离子改变运动方向,而靶原子核可 能离开原位,成为间隙原子核,或只是能量增加。
❖低能量时核阻止本领随能量的增加呈线性增加, 而在某个中等能量达到最大值, 在高 能量时, 因快速运动的离子没有足够的时间与靶原子进行有效的能量交换, 所以核阻止 变小。
❖ 5、离子注入是非平衡过程,因此产生的载流子 浓度不是受热力学限制,而是受掺杂剂在基质晶 格中的活化能力的限制。故加入半导体中的杂质 浓度可以不受固溶度的限制。
❖ 6.离子注入时衬底温度较低,避免高温扩散所引 起的热缺陷。
❖ 7、由于注入是直进性,注入杂质是按照掩模的 图形垂直入射,横向效应比热扩散小,有利于器 件特征尺寸缩小。

4过程能力分析

4过程能力分析

x
6S 6 × 0.0055 p = 2Φ(−3C p ) = 2Φ(−3 × 0.909)
= 2Φ(−2.727) = 2 × 0.003197 = 0.006394
8
= 0.909
计量值—双侧规格界限
(2)有偏——规格中心Tm与分布 中心 不重合 ●计算公式: e 绝对偏移量 : = Tm − x (图中曲线1) 1 偏移系数 : k = e = 2 (T + T ) − x 过程能力指数 (值得讨论?) 或:
TU + T L = 19 . 005 ≠ x = 19 . 0101 2
计算Cpk
C pk =
T − 2 e 0 .07 − 2 × 0 .0051 = ≈ 0 .70 6S 6 × 0 .0143 19 .005 − 19 .0101 = 0 .145 k = 0 .07 2
0 .07 = 0 .816 6 × 0 .0143 C pk = (1 − k ) C p = (1 − 0 .145 ) × 0 .816 ≈ 0 .7 p = 1−[Φ 19.04−19.0101 −Φ 18.97−19.0101 ] Cp =
二 过程能力指数
1 概念:过程能力指数是衡量过程能力对产品规格要求满足程 度的数量值,记为Cp。通常以规格范围T与过程能力B的比 值来表示。即: T T
Cp = B = 6S
T=规格上限TU - 规格下限TL。 2 过程能力与过程能力指数的区别: 过程能力是过程具有的实际加工能力,而过程能力指数是 指过程能力对规格要求满足的程 度,这是两个完全不同的概念。 过程能力强并不等于 对规格要求的满足程度高,相反,过程 能 力弱并不等于对 规格要求的满足程度低。 当质量特性服从正态分布,而且其分布中心 与规格中心 Tm重合时,一定的过程能力指数将与一定的不合格品率相对应。 因此,工序能力指数越大,说明过程能力的贮备越充足,质量 保证能力越强,潜力越大,不合格品率 越低。但这并不意味着 加工精度和技术水平越高。

4.3.4 密封装置设计——【过程设备设计】

4.3.4 密封装置设计——【过程设备设计】
图4-22 螺栓法兰连接结构 1-螺栓;2-垫片;3-法兰
过程设备设计
4
4.3.4 密封装置设计
4.3.4 密封装置设计
过程设备设计
密封装置的失效形式主要表现为泄露
刚度 问题
泄露量控制在工艺和 环境允许的范围内
5
4.3.4 密封装置设计
4.3.4 密封装置设计 密封机理及分类
过程设备设计
本节主要内容
4.3.4 密封装置设计
第四章 压力容器设计 CHAPTER Ⅳ Design of Pressure Vessels
4.3 常规设计
4.3.4 密封装置设计
1
ห้องสมุดไป่ตู้
4.3.4 密封装置设计
4.1 概述 4.2 设计准则 4.3 常规设计 4.4 分析设计 4.5 疲劳分析 4.6 压力容器设计技术进展
(c)操作13 工况 图4-23 密封机理图
4.3.4 密封装置设计
由以上分析,在确立 法兰设计方法时,把 预紧工况与操作工况 分开处理,从而大大 简化了法兰设计。为 此,对两个不同的工 况分别引进两个垫片 性能参数,即“最小 压紧应力”或“比压 力”y以及“垫片系 数”m。
过程设备设计
预紧比压力y: 定义为预紧(无内压)时,迫使垫片 变形与压紧面密合,以形成初始密 封条件,此时垫片所必需的最小压 紧载荷,应以单位接触面积上的压 紧载荷计算,故也称“最小压紧应 力”,单位为MPa。y值仅与垫片材 料、结构与厚度有关。
过程设备设计
a. 强制密封 完全依靠连接件的作用力强行挤压密封元件达到密封。
特点 预紧力大,约为工作压力产生的轴向力的1.1~1.6倍。
影响密封性能的主要参数
螺栓法兰连接设计

第四章压力容器基本知识

第四章压力容器基本知识
2)验收级别: 容器对接接头进行100%的无损检测,RT检测合格级别为Ⅱ级且透照量
不低于AB级、UT检测合格级别为Ⅰ级; 局部无损检测的,RT检测合格级别为Ⅲ级且透照量不低于AB级、UT检
测合格级别为Ⅱ级(评定标准为JB4730)。 局部100%RT或UT的接头,其验收级别与壳体接头相同。
压力容器焊接接头的无损检测
压力容器用钢板的无损检测
③移动式压力容器用钢板UT检测质量等级不低于Ⅱ级。 ④厚度大于30mm的20R、16MnR;厚度大于25mm的
15MnVR、15MnVNR、18MnMoNbR、13MnNiMoNbR 和Cr-Mo钢板;厚度大于20mm的16MnDR、15MnNiDR、 09Mn2VDR、09MnNiDR的压力容器用钢板UT检测质量等级 不低于Ⅲ级。 ⑤多层包扎压力容器内筒用钢板UT检测质量等级不低于Ⅱ级。 ⑥调质状态供货的压力容器用钢板UT检测质量等级不低于Ⅱ级。
压力容器封头
2、椭圆形和碟形封头 椭圆形封头的曲率半径变化是连续的,所以封
头中的应力分布也比较均匀,其受力情况仅次 于半球形封头。由半个椭球壳和直边组成,是目 前中、低压压力容器中应用最广泛的封头形式。 碟形封头又称带折边球形封头,它由几何形状 不同的三部分组成,第一部分是以R为半径的 部分球面;第二部分是高度为h的圆筒形部分; 第三部分是连接以上两部分的过渡部分 椭圆形封头和碟形封头的圆筒部分,又称直边 部分,其目的是为了使边缘应力不直接作用在 封头与筒体相连接的焊缝上。直边高度一般为 25~50mm。
C.对有无损检测要求的角接及T型接头,不能进行RT或UT检测时, 应做100%的表面无损检测。
D.铁磁性材料压力容器焊接接头表面无损检测应优先选用MT检 测。
压力容器焊接接头的无损检测

过程设备设计-内压容器设计

过程设备设计-内压容器设计

成型厚度就是实际厚度
6、内压凸形封头的设计
椭圆封头
Kpc Di d C t 2[ ] 0.5 p c
pc Di d C t 2[ ] 0.5 p c
dபைடு நூலகம்
2 0.5 pc
t
pc Ri
M C
1 M 3 4
第四章
内压容器设计 ChapterⅣ
Design of Pressure Vessel
常规设计
4.1 常规设计
1、压力容器的失效
失效的原因多种多样
2、压力容器的失效形式
严格按规范设计选材,配备 相应的安全附件,且运输、 安装、使用和检验遵循有关 的规定
韧性断裂是可以避免的
3、强度失效设计准则
pc Di 2[ ]t pc
4-14
式中:pc设计压力, Mpa;


焊缝系数
计算壁厚, mm。
pc Di d C t 2[ ] pc
筒体最大允许的工作压力[Pw]
4-14
2[ ] e [ pw ] Di e
t
4-15
5、设计技术参数的确定
3厚度和厚度附加量
Ri r1
M称为弯曲应力修正系数或形状系数
五、锥形封头
例:某厂需设计一回流液罐,罐的最高工作
压力为2.4Mpa,温度为,罐的内径为1m,罐 体长度为3.2m,试决定罐体的厚度及封头的 型式及厚度。
7、内压容器的压力试验
目的
(2)夹套容 器
(3)液压试验应力效核
2、任意应力状态
3、应力强度或相当应力
p203
4、内压圆筒的强度设计
内压薄壁圆筒设计

过程设备设计第四章(4.3.2.4)

过程设备设计第四章(4.3.2.4)

特点:反复试算,比较繁琐。
5
过程设备设计
二、图算法原理:(标准规范采用)
假设:圆筒仅受径向均匀外压,而不受轴向外压, 与圆环一样处于单向(周向)应力状态。 算图来源:
将式
t pcr 2.2 E D o
(2-92)
3
中的中面直径D、
厚度t相应改为外
径Do、有效厚度 δe,得:
2 2 B E cr cr 3 3
(4-25)
由该试建立B与A的关系图
以A作为横坐标,B作为纵坐标,
材料温度线作为参量绘成曲线:见图4-7~4-9
2 实质: 反映 3 cr cr 关系,按材料的拉伸曲线在纵坐标
方向按2/3比例缩小绘制而成。
12
讨论:a. 不同材料 s、B f ( A) 拐点不同 ∴不同材料有不同曲线
p
Do e
B
13
过程设备设计
图4-7 外压圆筒、管子和球壳厚度计算图 (屈服点σ s>207MPa的碳素钢和0Cr13、1Cr13钢)
14
过程设备设计
图4-8 外压圆筒、管子和球壳厚度计算图(16MnR,15CrMo钢) 15
过程设备设计
图4-9 外压圆筒、管子和球壳厚度计算图(0Cr18Ni9钢)
(1)假设δn,令δe=δn-C,按式(4-31)计算系数A
0.094 A R i / e
(4-31)
(2)选用相应材料的厚度计算图查取B,此B值即为[ζ]cr。 若A值落在设计温度下材料线的左方,则表明筒体属于 弹性失稳,可直接由式(4-32)计算。
2 B EA 3
(4-32)
25
过程设备设计
30

最新环保设备教案——第四章 气态污染物控制设备设计与应用

最新环保设备教案——第四章 气态污染物控制设备设计与应用

第四章气态污染物控制设备设计与应用【课时安排】§4.1吸收设备的设计与应用1学时§4.2吸附设备的设计与应用1学时§4.3冷凝设备1学时§4.4气固催化反应器1学时总计4学时【掌握内容】1基本概念:气液相平衡、吸附平衡、吸附等温线2化学吸收的气液平衡3双膜理论4吸附理论吸附平衡和吸附速率5气固催化反应动力学【熟悉内容】1吸收传质速率方程2各种吸收设备3固定床吸附器的设计计算4气固相催化反应器的设计计算【教学难点】1气液相平衡2化学吸收的气液平衡3双膜理论4吸附理论吸附平衡和吸附速率5气固催化反应动力学6气态污染物的催化净化工艺【教学重点】1物理吸收和化学吸收的异同2化学吸收的气液平衡3双膜理论4不同吸附过程(物理、化学)的异同点5吸附理论—吸附平衡和吸附速率6气固催化反应动力学7气态污染物的催化净化工艺【教学目标】1掌握不同吸附过程(物理、化学)的异同点2常见的吸附剂及特点3吸附理论吸附平衡和吸附速率【教学内容】§4.1吸收设备的设计与应用【授课时间】1学时【教学手段】课堂讲授【教学过程】一、吸收设备液体吸收过程是在塔器内进行的。

为了强化吸收过程,降低设备的投资和运行费用,要求吸收设备满足以下基本要求:(1)气液之间应有较大的接触面积和一定的接触时间;气液之间扰动强烈,吸收阻力低,吸收效率高;(2)气流通过时的压力损失小,操作稳定;(3)结构简单,制作维修方便,造价低廉;(4)应具有相应的抗腐蚀和防堵塞能力。

所以,正确地选择吸收设备的型式是保证经济有效地分离或净化废气的关键。

分类:目前,工业上常用的吸收设备的类型主要有表面吸收器、鼓泡式吸收器、喷洒吸收器三大类。

在每一大类中还根据吸收器的结构,气液两相接触方式的不同再分成多种型式的吸收器。

这将在每一大类吸收设备介绍中给预必要的阐述。

1.表面吸收器凡能使气液两相在接触表面(静止液面或流动的液膜表面)上进行吸收操作的设备均属表面吸收器。

第四章 汇编语言程序设计基础

第四章  汇编语言程序设计基础

4.2.2 分支程序的设计方法 ★条件控制 ★逻辑尺控制 ★地址跳转表控制
1. 条件控制——利用比较和条件转移指令实现分支,是最常用的 程序设计方法。
பைடு நூலகம்
例如,求解函数:
练习题2. 编写程序,比较两个字符串STRING1和STRING2所 含字符是否完全相同,若相同则显示“MATCH”,若不同则显示 “NO MATCH”。 答案: datarea segment string1 db ‘asfioa’ ;定义字符串STRING1 string2 db ‘xcviyoaf’ ;定义字符串STRING2 mess1 db ‘MATCH’,’$’ ;定义显示字串“MATCH” mess2 db ‘NO MATCH’,’$’ ;定义显示字串“NO MATCH” datarea ends prognam segment main proc far assume cs:prognam,ds:datarea start: push ds ;将ds:00入栈 sub ax,ax push ax mov ax,datarea ;装填数据段及附加段 mov ds,ax mov es,ax
程序流程图
mov ch,4 rotate: mov cl, 4 rol bx,cl mov al,bl and al,0fh add al,30h ;’0’-’9’ ASCII 30H-39H cmp al,3ah jl printit add al,7h ;’A’-’F’ ASCII 41H-46H printit: mov dl,al mov ah,2 int 21h dec ch jnz rotate
例4.3 将首地址为A的N字数组按照从小到大的次序整序(气 泡算法,多重循环) A dw 32,85,16,15, 8
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

设计的表现形式,是设计者的劳动体现
13
强度计算书:
过程设备设计
★包括设计条件、所用规范和标准、材料、腐蚀裕量、 计算厚度、名义厚度、计算应力等。
★装设安全泄放装置的压力容器,还应计算压力容器安全 泄放量、安全阀排量和爆破片泄放面积。
★当采用计算机软件进行计算时,软件必须经“全国锅炉 压力容器标准化技术委员会”评审鉴定,并在国家质量 监督检验检疫总局特种设备局认证备案,打印结果中 应有软件程序编号、输入数据和计算结果等内容。
22
4.2 设计准则
4.2 设计准则
过程设备设计
教学重点: 强度失效设计准则。
教学难点: 弹塑性失效设计准则。
23
过程设备设计
失效形式
4.2 设计准则
(选择)
失效判据
(相应)
设计准则
(判别)
设计是否合理
24
4.2.1 压力容器失效
过程设备设计
失效—压力容器在规定的 使用环境和时间内,因尺寸、 形状或材料性能发生改变而完全失去或不能达 到原设计要求(包括功能和寿命等)的现象。
是否稳定;对压力、 温度有波动时,应注明 变动频率及变化范围;对开、停车频繁的容 器应注明每年的开车、停车次数; (4)其它: 还应注明容积、材料、腐蚀速率、设计寿命、是否带安 全装置、是否保温等。
19
设计条件图
一般容器条件图 换热器条件图
塔器条件图 搅拌容器条件图
应注明搅拌器形式、转 速及转向、轴功率等。
过程设备设计
应注明换热管规格、 管长及根数、排列 形式、换热面积与 程数等;
应注明塔型(浮阀 塔、筛板塔或填料 塔)、塔板数量及 间距、基本风压和 地震设计烈度和场 地土类别等;
20
4.1.4 设计的基本步骤
一、设备工艺设计
1. 物料衡算: 2. 热量衡算: 3. 设备的类型选择: 4. 设备工艺尺寸确定: 二、设备机械设计
简图——示意性地画出容器本体、主要内件部分结构尺寸、 接管位置、支座形式及其它需要表达的内容。
18
过程设备设计
用户要求包括:
(1)工作介质: 介质学名或分子式、主要组分、比重及危害性等; (2)压力和温度: 工作压力、工作温度、环境温度等; (3)操作方式与要求: 注明连续操作或间隙操作,以及压力、温度
第四章 压力容器设计
CHAPTER Ⅳ
Design of Pressure Vessel
1

过程设备设计
4.1 概述 4.2 设计准则 4.3 常规设计 4.4 分析设计 4.5 疲劳分析 4.6 压力容器设计技术进展
2
压力容器 发 展趋 势
极端化 轻量化 长周期运行
过程设备设计
本章着重 介绍
压力容器的设计思想 常规设计方法——弹性失效 分析设计方法——不同失效形式
压力容器铭牌的位置;包装、运输、现场组焊和安装要求;
以及其它特殊要求。
15
16
4.1.3 设计条件
压力容器应根据设计委托方以正式书面形式提供的设计条件进行
设计。设计委托方可以是压力容器的使用单位(用户)、制造单位、
工程公司或者设计单位自身的工艺室等。设计条件至少包含以下内
容:
(1)操作参数(包括工作压力、工作温度范围、液位高度、接管
载荷等);
(2)压力容器使用地及其自然条件(包括环境温度、抗震设防烈
度、风和雪载荷等)
(3)介质组分和特性(介质学名或分子式、密度和危害性等);
(4)预期使用年限(设计委托方提出预期使用期限,设计者应当
与委托方进行协商,根据压力容器使用工况、选材、安全性和经济
性合理确定压力容器的设计寿命);
(5)几何参数和管口方位(常用容器结构简图表示,示意性地画
1. 设备结构设计: 2. 设备材料的选择: 3. 设备强度计算: 4. 设备附件的选择: 5. 安全附件的配用: 6. 制造、验收与装配的技术条件编制 7. 设备施工图设计:
过程设备设计
21
第四章 压力容器设计 CHAPTER Ⅳ Design of Pressure Vessels
4.2 设计准则
9
过程设备设计
结构设计——确定合理、经济的结构形式,满足制造、 检验、装配、运输和维修等要求。
强(刚)度设计——确定结构尺寸,满足强度或刚度及 稳定性要求,以确保容器安全可靠 地运行。
密封设计——选择合适的密封结构和材料,保证密封性 能良好。
10
设计要求 设计文件 设计条件
过程设备设计
11
4.1.1 设计要求
出容器本体与几何尺寸、主要内件形状、接管方位、支座形式等);
(6)设计需要的其他必要条件(包括选材要求、防腐蚀要求、表
面、特殊试验、安装运输要求等) ”
17
工艺设计条件
原始 工艺 数据 要求
4.1.3 设计条件
设计
过程设备设计
设计条件——常用设计条件图表示。
设计条件图
设计的已知条件
简图
用户 要求
接管 表等
14
总图
设计图样
总图 零部件图
过程设备设计
包括压力容器名称、类别;设计条件;
设计、制造所依据的主要法规、标准;
工作条件;
设计条件;
主要受压元件材料牌号及标准;
主要特性参数(如容积、换热器换热面积与程数等);
压力容器设计寿命
特殊制造要求;热处理要求;防腐蚀要求;无损检测要求;
耐压试验和气密性试验要求;安全附件的规格;
教学难点: 无。
6
4.1 概 述
过程设备设计
设计要求 设计文件 设计条件
是设计的基本知识
7
提出问题
过程设备设计
什么是压力容器设计? 应综合考虑哪些因素?
8
压力容器设计:
过程设备设计
根据给定的 工艺设计条件 , 遵循 现行的规范标准 规定, 在确保 安全 的前提下, 经济、正确地 选择材料 ,
并进行结构、强(刚)度 和密封设计。
安全性与经济性的统一
过程设备设计
安全性指结构完整性和密封 性。安全是前提,经济是目 标,在充分保证安全的前提 下尽可能做到经济。
经济性包括材料的节约, 高的效率, 经济的制造过 程, 低的操作和维修费用 等。
12
4.1.2 设计文件
过程设备设计
设计文件: 设计图样、 技术条件、 强度计算书, 必要时还应包括设计或安装、使用说明书。 若按分析设计标准设计,还应提供应力分析报告。
3
※ 压力容器常规设计方法 1. 失效设计准则 2. 设计公式的导出
※ 分析设计方法 1. 设计思想 2. 失效设计准则 3. 失效判别条件
4
第四章 压力容器设计 CHAPTER Ⅳ Design of Pressure Vessel
第一节 概 述
5
4.1 概 述
4.1 概 述
过程设备设计
教学重点: 压力容器设计的基本概念、设计要求。
相关文档
最新文档