第一章 1.3算法案例的框图程序和第一章习题(1.2课时)

合集下载

高中数学人教A版必修3目录_doc

高中数学人教A版必修3目录_doc

必修3
第一章算法初步
1.1算法与程序框图
1.1.1算法的概念(1课时)
1.1.2程序框图与算法的基本逻辑结构(3课时)
(程序框图与顺序结构,条件结构,循环结构与程序框图的画法)1.2基本算法语句
1.2.1输入语句、输出语句与赋值语句(1课时)
1.2.2条件语句(1课时)
1.2.3循环语句(1课时)
1.3算法案例(2课时)
(辗转相除法与更相减损术,秦九韶算法与进位制)
第二章统计
2.1 随机抽样
2.1.1 简单随机抽样(1课时)
2.1.2 系统抽样(1课时)
2.1.3 分层抽样(2课时)
(分层抽样,三种抽样方法的联系)
2.2 用样本估计总体
2.2.1 用样本的频率分布估计总体分布(2课时)
(频率分布表与频率分布直方图,频率分布折线图与茎叶图)
2.2.2 用样本的数字特征估计总体的数字特征(2课时)
(众数、中位数、平均数,标准差)
2.3 变量间的相关关系(2课时)
(变量间的相关关系与散点图,线性回归方程)
第三章概率
3.1 随机事件的概率
3.1.1 随机事件的概率(1课时)
3.1.2 概率的意义(1课时)
3.1.3 概率的基本性质(1课时)
3.2 古典概型
3.2.1 古典概型(2课时)
(古典概型的定义,古典概型的计算)
3.2.2 (整数值)随机数(random numbers)的产生(1课时)
3.3 几何概型
3.3.1 几何概型(1课时)
3.3.2 均匀随机数的产生(1课时)。

北师大版高中数学必修3课后习题答案

北师大版高中数学必修3课后习题答案

第一章 算法初步 1.1算法与程序框图练习(P5) 1、算法步骤:第一步,给定一个正实数r .第二步,计算以r 为半径的圆的面积2S r π=.第三步,得到圆的面积S .2、算法步骤:第一步,给定一个大于1的正整数n .第二步,令1i =.第三步,用i 除n ,等到余数r .第四步,判断“0r =”是否成立. 若是,则i 是n 的因数;否则,i 不是n 的因数.第五步,使i 的值增加1,仍用i 表示.第六步,判断“i n >”是否成立. 若是,则结束算法;否则,返回第三步.练习(P19)算法步骤:第一步,给定精确度d ,令1i =.第二步,i 位的不足近似值,赋给a ;小数点后第i 位的过剩近似值,赋给b . 第三步,计算55bam =-.第四步,若m d <,则得到5a;否则,将i 的值增加1,仍用i 表示.返回第二步. 第五步,输出5a.程序框图:习题1.1 A 组(P20)1、下面是关于城市居民生活用水收费的问题.为了加强居民的节水意识,某市制订了以下生活用水收费标准:每户每月用水未超过7 m 3时,每立方米收费1.0元,并加收0.2元的城市污水处理费;超过7m 3的部分,每立方收费1.5元,并加收0.4元的城市污水处理费. 设某户每月用水量为x m 3,应交纳水费y 元,那么y 与x 之间的函数关系为 1.2,071.9 4.9,7x x y x x ≤≤⎧=⎨->⎩我们设计一个算法来求上述分段函数的值.算法步骤:第一步:输入用户每月用水量x .第二步:判断输入的x 是否不超过7. 若是,则计算 1.2y x =;若不是,则计算 1.9 4.9y x =-.第三步:输出用户应交纳的水费y .程序框图:2、算法步骤:第一步,令i =1,S=0.第二步:若i ≤100成立,则执行第三步;否则输出S. 第三步:计算S=S+i 2.第四步:i = i +1,返回第二步.程序框图:3、算法步骤:第一步,输入人数x ,设收取的卫生费为m 元.第二步:判断x 与3的大小. 若x >3,则费用为5(3) 1.2m x =+-⨯;若x ≤3,则费用为5m =.第三步:输出m .程序框图:B 组 1、算法步骤:第一步,输入111222,,,,,a b c a b c ..第二步:计算21121221b c b c x a b a b -=-.第三步:计算12211221a c a c y ab a b -=-.第四步:输出,x y .程序框图:2、算法步骤:第一步,令n=1第二步:输入一个成绩r,判断r与6.8的大小. 若r≥6.8,则执行下一步;若r<6.8,则输出r,并执行下一步.第三步:使n的值增加1,仍用n表示.第四步:判断n与成绩个数9的大小. 若n≤9,则返回第二步;若n>9,则结束算法.程序框图:说明:本题在循环结构的循环体中包含了一个条件结构.1.2基本算法语句练习(P24) 123练习(P29) 12、本程序的运行过程为:输入整数x . 若x 是满足9<x <100的两位整数,则先取出x 的十位,记作a ,再取出x 的个位,记作b ,把a ,b 调换位置,分别作两位数的个位数与十位数,然后输出新的两位数. 如输入25,则输出52. 34、4练习(P32)12习题1.2 A组(P33)1、1(0)0(0)1(0)x xy xx x-+<⎧⎪==⎨⎪+>⎩23、程序:习题1.2 B组(P33)1、程序:23、 4、1.3算法案例 练习(P45) 1、(1)45; (2)98; (3)24; (4)17. 2、2881.75.3、2200811111011000=() ,820083730=() 习题1.3 A 组(P48) 1、(1)57; (2)55. 2、21324.3、(1)104; (2)7212() (3)1278; (4)6315().4、习题1.3 B 组(P48)1、算法步骤:第一步,令45n =,1i =,0a =,0b =,0c =.第二步,输入()a i .第三步,判断是否0()60a i ≤<. 若是,则1a a =+,并执行第六步. 第四步,判断是否60()80a i ≤<. 若是,则1b b =+,并执行第六步. 第五步,判断是否80()100a i ≤≤. 若是,则1c c =+,并执行第六步. 第六步,1i i =+. 判断是否45i ≤. 若是,则返回第二步.第七步,输出成绩分别在区间[0,60),[60,80),[80,100]的人数,,a b c .2、如“出入相补”——计算面积的方法,“垛积术”——高阶等差数列的求和方法,等等.第二章复习参考题A组(P50)1、(1)程序框图:程序:1、(2)程序框图:程序:INPUT “x=”;x IF x<0 THENy=0ELSEIF x<1 THENy=1ELSEy=xEND IFEND IFPRINT “y=”;y ENDINPUT “x=”;x IF x<0 THENy=(x+2)^2 ELSEIF x=0 THENy=4ELSEy=(x-2)^2 END IFEND IFPRINT “y=”;y END2、见习题1.2 B组第1题解答. 34、程序框图: 程序:5、 (1)向下的运动共经过约199.805 m (2)第10次着地后反弹约0.098 m (3)全程共经过约299.609 m 第二章 复习参考题B 组(P35)1、 2、 INPUT “n=”;n i=1 S=0WHILE i<=n S=S+1/i i=i+1 WENDPRINT “S=”;S ENDi=100 sum=0 k=1 WHILE k<=10 sum=sum+i i=i /2 k=k+1 WEND PRINT “(1)”;sum PRINT “(2)”;i PRINT “(3)”;2*sum -100 ENDINPUT “n=”;n IF n MOD 7=0 THENPRINT “Sunday ”3、算法步骤:第一步,输入一个正整数x 和它的位数n . 第二步,判断n 是不是偶数,如果n 是偶数,令2nm =;如果n 是奇数,令12n m -=. 第三步,令1i =第四步,判断x 的第i 位与第(1)n i +-位上的数字是否相等. 若是,则使i 的值增加1,仍用i 表示;否则,x 不是回文数,结束算法.第五步,判断“i m >”是否成立. 若是,则n 是回文数,结束算法;否则,返回第四步.第二章 统计 2.1随机抽样 练习(P57)抽样调查的好处是可以节省人力、物力和财力,可能出现的问题是推断的结果与实际情况之间有误差. 如抽取的部分个体不能很好地代表总体,那么我们分析出的结果就会有偏差.2、(1)抽签法:对高一年级全体学生450人进行编号,将学生的名字和对应的编号分别写在卡片上,并把450张卡片放入一个容器中,搅拌均匀后,每次不放回地从中抽取一张卡片,连续抽取50次,就得到参加这项活动的50名学生的编号.(2)随机数表法:第一步,先将450名学生编号,可以编为000,001, (449)第二步,在随机数表中任选一个数. 例如选出第7行第5列的数1(为了便于说明,下面摘取了附表的第6~10行).16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 6484 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 7663 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 5457 60 86 32 44 09 47 27 96 54 49 17 46 09 62 90 52 84 77 27 08 02 73 43 28第三步,从选定的数1开始向右读,得到一个三位数175,由于175<450,说明号码175在总体内,将它取出;继续向右读,得到331,由于331<450,说明号码331在总体内,将它取出;继续向右读,得到572,由于572>450,将它去掉. 按照这种方法继续向右读,依次下去,直到样本的50个号码全部取出,这样我们就得到了参加这项活动的50名学生.3、用抽签法抽取样本的例子:为检查某班同学的学习情况,可用抽签法取出容量为5的样本. 用随机数表法抽取样本的例子:部分学生的心理调查等.抽签法能够保证总体中任何个体都以相同的机会被选到样本之中,因此保证了样本的代表性.4、与抽签法相比,随机数表法抽取样本的主要优点是节省人力、物力、财力和时间,缺点是所产生的样本不是真正的简单样本.练习(P59)1、系统抽样的优点是:(1)简便易行;(2)当对总体结构有一定了解时,充分利用已有信息对总体中的个体进行排队后再抽样,可提高抽样调查;(3)当总体中的个体存在一种自然编号(如生产线上产品的质量控制)时,便于施行系统抽样法.系统抽样的缺点是:在不了解样本总体的情况下,所抽出的样本可能有一定的偏差.2、(1)对这118名教师进行编号;(2)计算间隔1187.37516k==,由于k不是一个整数,我们从总体中随机剔除6个样本,再来进行系统抽样. 例如我们随机剔除了3,46,59,57,112,93这6名教师,然后再对剩余的112位教师进行编号,计算间隔7k=;(3)在1~7之间随机选取一个数字,例如选5,将5加上间隔7得到第2个个体编号12,再加7得到第3个个体编号19,依次进行下去,直到获取整个样本.3、由于身份证(18位)的倒数第二位表示性别,后三位是632的观众全部都是男性,所以这样获得的调查结果不能代表女性观众的意见,因此缺乏代表性.练习(P62)1、略2、这种说法有道理,因为一个好的抽样方法应该能够保证随着样本容量的增加,抽样调查结果会接近于普查的结果. 因此只要根据误差的要求取相应容量的样本进行调查,就可以节省人力、物力和财力.3、可以用分层抽样的方法进行抽样. 将麦田按照气候、土质、田间管理水平的不同而分成不同的层,然后按照各层麦田的面积比例及样本容量确定各层抽取的面积,再在各层中抽取个体(这里的个体是单位面积的一块地). 习题2.1 A 组(P63)1、产生随机样本的困难:(1)很难确定总体中所有个体的数目,例如调查对象是生产线上生产的产品. (2)成本高,要产生真正的简单随机样本,需要利用类似于抽签法中的抽签试验来产生非负整值随机数.(3)耗时多,产生非负整数值随机数和从总体中挑选出随机数所对的个体都需要时间.2、调查的总体是所有可能看电视的人群.学生A 的设计方案考虑的人数是:上网而且登录某网址的人群,那些不能上网的人群,或者不登录某网址的人群就被排除在外了. 因此A 方案抽取的样本的代表性差.学生B 的设计方案考虑的人群是小区内的居民,有一定的片面性. 因此B 方案抽取的样本的代表性差.学生C 的设计方案考虑的人群是那些有电话的人群,也有一定的片面性. 因此C 方案抽取的样本的代表性.所以,这三种调查方案都有一定的片面性,不能得到比较准确的收视率. 3、(1)因为各个年级学习任务和学生年龄等因素的不同,影响各年级学生对学生活动的看法,所以按年级分层进行抽样调查,可以得到更有代表性的样本.(2)在抽样的过程中可能遇到的问题如敏感性问题:有些学生担心提出意见对自己不利;又如不响应问题:由于种种原因,有些学生不能发表意见;等等. (3)前面列举的两个问题都可能导致样本的统计推断结果的误差.(4)为解决敏感性问题,可以采用阅读与思考栏目“如何得到敏感性问题的诚实反应”中的方法设计调查问卷;为解决不响应问题,可以事先向全体学生宣传调查的意义,并安排专人负责发放和催收调查问卷,最大程度地回收有效调查问卷. 4、将每一天看作一个个体,则总体由365天组成. 假设要抽取50个样本,将一年中的各天按先后次序编号为0~364天用简单随机抽样设计方案:制作365个号签,依次标上0~364. 将号签放到容器内充分搅拌均匀,从容器中任意不放回取出50个号签. 以签上的号码所对应的那些天构成样本,检测样本中所有个体的空气质量. 用系统抽样设计抽样方案:先通过简单随机抽样方法从365天中随机抽出15天,再把剩下的350天重新按先后次序编号为0~349. 制作7个分别标有0~7的号签,放在容器中充分搅拌均匀. 从容器中任意取出一个号签,设取出的号签的编号为a ,则编号为7(050)a k k +≤<所对应的那些天构成样本,检测样本中所有个体的空气质量.显然,系统抽样方案抽出的样本中个体在一年中排列的次序更规律,因此更好实施,更受方案的实施者欢迎.5、田径队运动员的总人数是564298+=(人),要得到28人的样本,占总体的比例为27.于是,应该在男运动员中随机抽取256167⨯=(人),在女运动员中随机抽取281612-=(人).这样我们就可以得到一个容量为28的样本.6、以10为分段间隔,首先在1~10的编号中,随机地选取一个编号,如6,那么这个获奖者奖品的编号是:6,16,26,36,46.7、说明:可以按年级分层抽样的方法设计方案. 习题2.1 B 组(P64)1、说明:可以按年级分层抽样的方法设计方案,调查问卷由学生所关心的问题组成.例如:(1)你最喜欢哪一门课程? (2)你每月的零花钱平均是多少? (3)你最喜欢看《新闻联播》吗? (4)你每天早上几点起床? (5)你每天晚上几点睡觉?要根据统计的结果和具体的情况解释结论,主要从引起结论的可能原因及结论本身含义来解释.2、说明:这是一个开放性的题目,没有一个标准的答案. 2.2用样本估计总体 练习(P71)1、说明:由于样本的极差为364.41362.51 1.90-=,取组距为0.19,将样本分为10组. 可以按照书上的方法制作频率分布表、频率分布直观图和频率折线图.2、说明:此题目属于应用题,没有标准的答案.3、茎叶图为:由该图可以看出30名工人的日加工零件个数稳定在120件左右. 练习(P74)这里应该采用平均数来表示每一个国家项目的平均金额,因为它能反应所有项目的信息. 但平均数会受到极端数据2000万元的影响,所以大多数项目投资金额都和平均数相差比较大. 练习(P79)1、甲乙两种水稻6年平均产量的平均数都是900,但甲的标准差约等于23.8,乙的标准差约等于41.6,所以甲的产量比较稳定.2、(1)平均重量496.86x ≈,标准差 6.55s ≈.(2)重量位于(,)x s x s -+之间有14袋白糖,所占的百分比约为66.67%. 3、(1)略. (2)平均分19.25x ≈,中位数为15.2,标准差12.50s ≈.这些数据表明这些国家男性患该病的平均死亡率约为19.25,有一半国家的死亡率不超过15.2,15.2x >说明存在大的异常数据,值得关注. 这些异常数据使标准差增大. 习题2.2 A 组(P81)。

高中数学 第一章 算法初步 1.1.2 程序框图和算法的逻辑结构(第2课时)教案 新人教A版必修3

高中数学 第一章 算法初步 1.1.2 程序框图和算法的逻辑结构(第2课时)教案 新人教A版必修3

福建省莆田市高中数学第一章算法初步1.1.2 程序框图和算法的逻辑结构(第2课时)教案新人教A版必修3编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(福建省莆田市高中数学第一章算法初步1.1.2 程序框图和算法的逻辑结构(第2课时)教案新人教A版必修3)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为福建省莆田市高中数学第一章算法初步1.1.2 程序框图和算法的逻辑结构(第2课时)教案新人教A版必修3的全部内容。

1。

1。

2 程序框图一、回顾练习引例:设计一个计算1+2+…+100的值的算法.二、循环结构循环结构:在一些算法中,也经常会出现从某处开始,按照一定条件,反复执行某一处理步骤的情况,这种结构称为循环结构。

循环体:反复执行的处理步骤称为循环体。

计数变量:在循环结构中,通常都有一个起到循环计数作用的变量,这个变量的取值一般都含在执行或终止循环体的条件中。

当型循环:在每次执行循环体前对控制循环条件进行判断,当条件满足时执行循环体,不满足则停止.直到循环:在执行了一次循环体之后,对控制循环体进行判断,当条件不满足时执行循环体,满足则停止.练习1:画出引例直到型循环的程序框图。

当型循环与直到循环的区别:①当型循环可以不执行循环体,直到循环至少执行一次循环满足条件? 否 循环体 是 满足条件? 是 否循环体体.②当型循环先判断后执行,直到型循环先执行后判断。

③对同一算法来说,当型循环和直到循环的条件互为反条件。

练习2:1.1.1节例1的算法步骤的程序框图(如图)说明:①为了减少难点,省去flag标记;②解释赋值语句③简单分析。

练习3:画出程序框图。

高中数学第一章算法初步1.1算法与程序框图1.1.2程序框图1.1.3算法的三种基本逻辑结构和框图表示3课时作业新

高中数学第一章算法初步1.1算法与程序框图1.1.2程序框图1.1.3算法的三种基本逻辑结构和框图表示3课时作业新

1.1.2 程序框图 1.1.3 算法的三种基本逻辑结构和框图表示(3)A级基础巩固一、选择题1.算法共有三种逻辑结构,即顺序结构、条件结构、循环结构,下列说法正确的是导学号 95064111( D )A.一个算法只能含有一种逻辑结构B.一个算法最多可包含两种逻辑结构C.一个算法必须含有上述三种逻辑结构D.一个算法可以含有上述三种逻辑结构的任意组合[解析]一个算法可以含有一种逻辑结构,也可以含有两种逻辑结构,还可以含有三种逻辑结构,故选D.2.下列判断正确的是导学号 95064112( B )A.条件结构中必有循环结构B.循环结构中必有条件结构C.顺序结构中必有条件结构D.顺序结构中必有循环结构[解析]由循环结构的定义知B正确.3.下面关于当型循环结构和直到型循环结构的说法,不正确的是导学号 95064113( D ) A.当型循环结构是先判断后循环,条件成立时执行循环体,条件不成立时结束循环B.直到型循环结构要先执行循环体再判断条件,条件成立时结束循环,条件不成立时执行循环体C.设计程序框图时,两种循环结构可以任选其中的一个,两种结构也可以相互转化D.设计循环结构的程序框图时只能选择这两种结构中的一种,除这两种结构外,再无其他循环结构[解析]循环结构的程序框中必须包含条件结构,故选项D的说法是错误的.4.(2015·福建文,4)阅读如图所示的程序框图,运行相应的程序,若输入x的值为1,则输出y的值为导学号 95064114( C )A .2B .7C .8D .128[解析] 由题意得,该程序是求分段函数y =⎩⎪⎨⎪⎧2x ,x≥29-x ,x<2的函数值,则f (1)=9-1=8,故选C .二、填空题导学号 95064115__.4__=n ,则输出的0.8=p .执行下面的程序框图,若5[解析] 第一次循环后:S =12,n =2;第二次循环后:S =12+14=34,n =3;第三次循环后:S =12+14+18=78,n =4,此时循环结束.6.(2016·山东文)执行下面的程序框图,若输入n 的值为3,则输出的S 的值为导学号 95064116__.1__。

人教版高中数学必修三课件:1.3 算法案例(共55张PPT)

人教版高中数学必修三课件:1.3 算法案例(共55张PPT)

解:用辗转相除法求最大公约数:612=468×1+144,468=144×3+36,144=36×4,即612
和468的最大公约数是36. 用更相减损术检验:612和468均为偶数,两次用2约简得153和117,153-117=36,11736=81,81-36=45,45-36=9,36-9=27,27-9=18,18-9=9,所以612和468的最大公约数为
转化为求n个一次多项式的值.
预习探究
知识点二 进位制
1.进位制:进位制是为了计数和运算方便而约定的记数系统,约定“满k进一”就 是 k进制 ,k进制的基数(大于1的整数)就是 k . 2.将k进制数化为十进制数的方法:先把k进制数写成各位上的数字与k的幂的乘积之和 的形式,再按照十进制数的运算规则计算出结果. 3.将十进制数化为k进制数的方法是 除k取余法 .即用k连续去除十进制数所得 的 商 ,直到商为零为止,然后把各步得到的余数 倒序 写出.所得到的就是相应的k 进制数. 4.k进制数之间的转化:首先转化为十进制数,再转化为 k进制数.
第一章 算法初步
1.3 算法案例 第2课时 秦九韶算法与进位制
预习探究
知识点一 秦九韶算法
1.秦九韶算法是我国南宋数学家秦九韶在他的著作《数书九章》中提出的一 个用于计算多项式值的方法. 2.秦九韶算法的方法: 把一个n次多项式f(x)=anxn+an-1xn-1+…+a1x+a0 改写成下列的形式: f(x)=(anxn-1+an-1xn-2+…+a1)x+a0= ((anxn-2+an-1xn-3+…+a2)x+a1)x+a0 =…=

高中数学第一章算法初步1.1算法与程序框图1.1.2第1课时程序框图、顺序结构检测新人教A版必修3

高中数学第一章算法初步1.1算法与程序框图1.1.2第1课时程序框图、顺序结构检测新人教A版必修3

2018-2019学年高中数学第一章算法初步1.1 算法与程序框图1.1.2 第1课时程序框图、顺序结构检测新人教A版必修3编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018-2019学年高中数学第一章算法初步1.1 算法与程序框图1.1.2 第1课时程序框图、顺序结构检测新人教A版必修3)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018-2019学年高中数学第一章算法初步1.1 算法与程序框图1.1.2 第1课时程序框图、顺序结构检测新人教A版必修3的全部内容。

第1课时程序框图、顺序结构A级基础巩固一、选择题1.一个完整的程序框图至少包含( )A.终端框和输入、输出框B.终端框和处理框C.终端框和判断框D.终端框、处理框和输入、输出框解析:一个完整的程序框图至少需包括终端框和输入、输出框.对于处理框,由于输出框含有计算功能,所以可不必有.答案:A2.下列是流程图中的一部分,表示恰当的是( )解析:B选项应该用处理框而非输入、输出框,C选项应该用输入、输出框而不是处理框,D选项应该在出口处标明“是"和“否”.答案:A3.下面的程序框图的运行结果是( )A。

错误!B.错误!C.-错误!D.-1解析:因为a=2,b=4,所以S=错误!-错误!=错误!-错误!=-错误!,故选C.答案:C4.阅读如图所示的程序框图,若输出的结果为6,则①处执行框应填的是()A.x=1 B.x=2C.b=1 D.b=2解析:若b=6,则a=7,所以x3-1=7,所以x=2.答案:B5.程序框图符号“”可用于()A.输出a=10 B.赋值a=10C.判断a=10 D.输入a=1解析:图形符号“”是处理框,它的功能是赋值、计算,不是用来输出、判断和输入的,故选B.答案:B二、填空题6.下面程序框图输出的S表示____________________.答案:半径为5的圆的面积7.如图所示的一个算法的程序框图,已知a1=3,输出的结果为7,则a2的值为________.解析:由框图可知,b=a1+a2,再将错误!赋值给b,所以7×2=a2+3,所以a2=11.答案:118.根据如图所示的程序框图所表示的算法,输出的结果是________.解析:该算法的第1步分别将1,2,3赋值给X,Y,Z,第2步使X取Y的值,即X取值变成2,第3步使Y取X的值,即Y的值也是2,第4步让Z取Y的值,即Z取值也是2,从而第5步输出时,Z的值是2。

全国通用高中数学第一章算法初步1.1.2程序框图1.1.3算法的三种基本逻辑结构和框图表示(1)顺

全国通用高中数学第一章算法初步1.1.2程序框图1.1.3算法的三种基本逻辑结构和框图表示(1)顺

(全国通用版)2018-2019高中数学第一章算法初步 1.1.2 程序框图 1.1.3 算法的三种基本逻辑结构和框图表示(1)顺序结构、条件分支结构练习新人教B版必修3编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((全国通用版)2018-2019高中数学第一章算法初步 1.1.2 程序框图 1.1.3 算法的三种基本逻辑结构和框图表示(1)顺序结构、条件分支结构练习新人教B版必修3)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(全国通用版)2018-2019高中数学第一章算法初步1.1.2 程序框图1.1.3 算法的三种基本逻辑结构和框图表示(1)顺序结构、条件分支结构练习新人教B版必修3的全部内容。

1。

1.2 程序框图1。

1.3 算法的三种基本逻辑结构和框图表示(1)—-顺序结构、条件分支结构课时过关·能力提升1程序框图中表示处理框的是()A.矩形框B。

菱形框C。

圆形框D.椭圆形框答案A2阅读下面的程序框图,若输入的a,b,c分别是21,32,75,则输出的a,b,c分别是()A.75,21,32 B。

21,32,75C.32,21,75 D。

75,32,21解析本题中的程序框图是简单的顺序结构,只是使用了多次变量赋值,所以只要明确给一个变量赋值的含义,容易得出最后输出的a,b,c的值是75,21,32。

答案A3如图所示的是一个程序框图,已知a1=3,输出的结果为7,则a2的值是()A.9B.10 C。

11 D.12解析令a2=x,结合程序框图x=11。

答案C4如图所示的程序框图能判断任意输入的数x是奇数还是偶数,其中判断框内的条件是()A。

全国通用高中数学第一章算法初步1.1.3算法的三种基本逻辑结构和框图表示(2)循环结构练习新人教B

全国通用高中数学第一章算法初步1.1.3算法的三种基本逻辑结构和框图表示(2)循环结构练习新人教B

(全国通用版)2018-2019高中数学第一章算法初步1.1.3 算法的三种基本逻辑结构和框图表示(2)循环结构练习新人教B版必修3编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((全国通用版)2018-2019高中数学第一章算法初步1.1.3 算法的三种基本逻辑结构和框图表示(2)循环结构练习新人教B版必修3)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(全国通用版)2018-2019高中数学第一章算法初步1.1.3 算法的三种基本逻辑结构和框图表示(2)循环结构练习新人教B版必修3的全部内容。

1.1。

3 算法的三种基本逻辑结构和框图表示(2)-—循环结构课时过关·能力提升1在如图所示的程序框图中,循环体执行的次数是()A。

1 B。

3 C.4 D。

10解析当i=1,4,7,10时执行循环体,共执行4次。

答案C2阅读下图所示的程序框图,运行相应的程序,输出的结果是()A。

3 B.11C。

38 D。

123解析第一次循环,a=3;第二次循环,a=11,故该程序框图运行后输出的结果为11。

答案B3执行如图所示的程序框图,则输出S的值为()A。

-1 B。

0 C。

1 D.3解析算法执行过程如下:S=1,i=1⇒S=3,i=2⇒S=4,i=3⇒S=1,i=4⇒S=0,i=5,这时跳出循环,输出S=0.答案B4按照如图所示的程序框图执行,第3个输出的数是()A。

7 B.6C.5D.4解析A=1,S=1,输出A=1,2,A=3,输出A=3,S=3,A=5,输出A=5,故第3个输出的数是5.答案C5执行如图所示的程序框图,如果输出s=3,那么判断框内应填入的条件是()A.k≤6B。

最新高一数学题库 必修3算法初步练习题及答案

最新高一数学题库 必修3算法初步练习题及答案

第一章算法初步1.1算法与程序框图1.1.1算法的概念1.下面的结论正确的是【】A.一个程序的算法步骤是可逆的B.一个算法可以无止境地运算下去的C.完成一件事情的算法有且只有一种D.设计算法要本着简单方便的原则2.下面对算法描述正确的一项是【】A.算法只能用自然语言来描述B.算法只能用图形方式来表示C.同一问题可以有不同的算法D.同一问题的算法不同,结果必然不同3.下面哪个不是算法的特征【】A.抽象性B.精确性C.有穷性D.唯一性4.算法的有穷性是指【】A.算法必须包含输出B.算法中每个操作步骤都是可执行的C.算法的步骤必须有限D.以上说法均不正确5.早上从起床到出门需要洗脸刷牙(5min)、刷水壶(2min)、烧水(8min)、泡面(3min)、吃饭(10min)、听广播(8min)几个步骤,从下列选项中选最好的一种算法【】A.S1洗脸刷牙、S2刷水壶、S3烧水、S4泡面、S5吃饭、S6听广播B.S1刷水壶、S2烧水同时洗脸刷牙、S3泡面、S4吃饭、S5听广播C. S1刷水壶、S2烧水同时洗脸刷牙、S3泡面、S4吃饭同时听广播D.S1吃饭同时听广播、S2泡面;S3烧水同时洗脸刷牙;S4刷水壶6.看下面的四段话,其中不是解决问题的算法是【】A.从济南到北京旅游,先坐火车,再坐飞机抵达B.解一元一次方程的步骤是去分母、去括号、移项、合并同类项、系数化为1C.方程210x-=有两个实根D.求1+2+3+4+5的值,先计算1+2=3,再计算3+3=6,6+4=10,10+5=15,最终结果为157.写出求1+2+3+4+5+6+…+100的一个算法.可运用公式1+2+3+…+n=(1)2n n+直接计算.第一步______①_______;第二步_______②________;第三步输出计算的结果.8.写出1×2×3×4×5×6的一个算法.1.1.2 程序框图1.算法的三种基本结构是【】A. 顺序结构、模块结构、条件结构 B. 顺序结构、循环结构、模块结构C. 顺序结构、条件结构、循环结构D. 模块结构、条件结构、循环结构2.给出以下四个问题,①输入x, 输出它的相反数;②求面积为6的正方形的周长;③在三个不等实数,,a b c中,求一个数的最大数;④求函数1,0()2,0x xf xx x-≥⎧=⎨+<⎩的函数值。

高中数学第一章算法初步1.1算法与程序框图1.1.2第3课时循环结构程序框图的画法课件新人教A版必修3

高中数学第一章算法初步1.1算法与程序框图1.1.2第3课时循环结构程序框图的画法课件新人教A版必修3
④ 紧跟老师的推导过程抓住老师的思路。老师在课堂上讲解某一结论时,一般有一个推导过程,如数学问题的来龙去脉、物理概念的抽象归纳、语 文课的分析等。感悟和理解推导过程是一个投入思维、感悟方法的过程,这有助于理解记忆结论,也有助于提高分析问题和运用知识的能力。
⑤ 搁置问题抓住老师的思路。碰到自己还没有完全理解老师所讲内容的时候,最好是做个记号,姑且先把这个问题放在一边,继续听老师讲后面的 内容,以免顾此失彼。来自:学习方法网
解析:因为题目要求的是“满足 3n-2n>1 000 的最 小偶数 n”,所以 n 的叠加值为 2,所以 内填入“n =n+2”.由程序框图知,当 内的条件不满足时,输 出 n,所以 内填入“A ≤1 000”.故选 D.
答案:D
1.算法的基本逻辑结构有三种,即顺序结构、条件 结构和循环结构.其中顺序结构是最简单的结构,也是 最基本的结构,循环结构必然包括条件结构,所以这三 种基本逻辑结构是相互支撑的,它们共同构成了算法的 基本结构,无论怎样复杂的逻辑结构,都可以通过这三 种结构来表达.
解:直到型循环如图(1) 、当型循环如图(2).
归纳升华 1.如果算法问题中涉及的运算进行了多次重复的操 作,且先后参与运算的数之间有相同的变化规律,就可以 利用循环结构设计算法解决. 2.本题的易错点是初始值与计数变量的取值.在循环 结构中,要注意根据条件设计合理的计数变量、累加变量 和累乘变量等,条件的表述一定要恰当、精确,累加变量 的初始值一般取 0,而累乘变量的初始值一般取 1.
2.循环结构的分类及特征
名称
直到型循环
当型循环பைடு நூலகம்
结构
先执行循环体,后判断条 先判断条件,若
件,若条件不满足,就继 条件满足,则执 特征

2014年人教A版必修三课件 1.3 算法案例

2014年人教A版必修三课件 1.3 算法案例
开始
输入正数m,n
m>n? 是 m=m-n 否 m=n? 是 输出m 结束
否 n=n-m
案例2 秦九韶算法 问题2. 下面是求多项式 f(x)=x5+x4+x3+x2+x+1 的 值的两种算法, 你认为哪种算法要快一些? 为什么? 算法 1: 直接将 x 的值代入多项式计算; 算法 2: 将多项式变形成 f(x)=((((x+1)x+1)x+1)x+1)x+1. 算法 1 要做 10 次乘法和 5 次加法. 算法 2 只做 4 次乘法和 5 次加法. 计算机做一次乘法用的时间比做一次加法所用 的时间长得多. 对于 n 次多项式的求值运算, 我国南宋时期的 秦九韶有如下的算法:
5. 什么是秦九韶算法? 它的特点是什么? 6. 你能写出秦九韶算法的程序吗?
Hale Waihona Puke 案例1 辗转相除法与更相减损术 问题1. 你能求两个数的最大公约数吗? 看下面 一列等式, 请问: 37 是 2146 与 1813 的公约数吗? 2146 1813 余 333, 2146 = 1813 1 +333, 有37的约数, 1813 333 余 148, 1813 = 333 5 +148, 有37的约数, 333 148 余 37, 333 = 148 2 +37, 有37的约数, 148 37 余 0. 有37的约数, 148 = 37 4. 求两个数的最大公约数的算法步骤: (1) 大数除以小数取余数; (2) 较小的数与余数又进行大数除以小数取余数; 如此重复进行, 直到余数为 0. 余数为 0 时的除数就是最大公约数. 这叫辗转相除法, 又叫欧几里得算法.
否则, 返回第二步进入循环.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

开始 h=100 s=100 i=1
(3)全程共经过多少米? h=100 s=100 i=1 WHILE i<=9 h=h/2 s=s+h s=s+2*h i=i+1 WEND PRINT s END
i=i+1 s=s+2h s=s+h h=h/2 i≤9? 否 输出s 结束 是
例3 高一某班有50名学生,编写程序,统计 该班数学单元测试优秀人数(不低于80分)、 及格人数和班级平均分.
开始
学生成绩为x, 优秀人数为m, 及格人数为a, 班级总分为s, 平均成绩为p.
s=0 m=0 a=0 i=1
i=i+1 s=s+x a=a+1 是 x≥60? m=m+1 是 x≥80? 输入成绩x


i≤50? 否 p=s/50 输出m,a,p 结束

开始 s=0 m=0 a=0 i=1 i=i+1 s=s+x a=a+1 是 x≥60? m=m+1 是 x≥80? 输入成绩x i≤50? 否 p=s/50 输出m,a,p 结束 是
1.3算法案例的框图程序和 第一章习题课
算法案例的应用习题分析
例1 求325,130,270三个数的最大 公约数. 因为325=130×2+65,130=65×2, 所以325与130的最大公约数是65. 因为270=65×4+10,65=10×6+5, 10=5×2,所以65与270最大公约数是5. 故325,130,270三个数的最大公约 数是5.
思考2:该程序框图、程序如何表述?
开始 输入m,n 求m除以n的余数r
m=n
直到型
n=r r=0? 是 输出m 结束 否
INPUT m,n DO r=m MOD n m=n n=r LOOP UNTIL r=0 PRINT m END
开始
输入m,n
当型
n=r
m=n 求m除以n的余数r n>0? 否 输出m 结束


是 k=m-n
第四步,若m=n,则 m,n的最大公约数 等于?;否则,返回 第二步.
n>k? 是 m=n
n=k
输出 m ?
结束
思考4:该程序框图对应的程序如何表述? 开始 INPUT m,n WHILE m<>n 输入m,n k=m-n IF n > k THEN 否 m≠n? m=n 是 n=k k=m-n m=k ELSE m=k 否 输出m n>k? END IF 是 WEND 结束 m=n PRINT m n=k END
思考2:该算法的程序框图如何表示?
开始 输入n,an,x的值 v=an i=n-1 i=i-1
v=vx+ai
输入ai i≥0? 否 输出v 结束

思考3:该程序框图对应的程序如何表述? 开始 INPUT “n=”;n 输入n,a ,x的值 INPUT “an=”;a INPUT “x=”;x v=a v=a i=n-1 i=n-1 i=i-1 WHILE i>=0 v=vx+a INPUT “ai=”;b v=v*x+b 输入a i=i-1 i≥0? 是 否 WEND 输出v PRINT y 结束 END
结束
例2 一个球从100m高处自由落下,每次 着地后又跳回到原高度的一半再落下.编写 程序,求当它第10次着地时, (1)第10次着地后反弹多高? (2)向下的运动共经过多少米? (3)全程共经过多少米?
100
高度
50 25 0 1
2
3 4
10
着地次数
(1)第10次着地后反弹多高?
开始 h=50 i=1
思考2:上述把 k进制数
开始
输入a,k,n
a = anan - 1 L a2a1(k ) 化为十进制数 b的算法的程 序框图如何表 示?
b=0
i=1
把a的右数第i位数字赋给t
b=b+t· k i- 1 i=i+1
i>n?
是 输出b 结束

思考3:该程序框图对应的程序如何表述?
开始
输入a,k,n
b=0
求多项式 在x=a时的值.
f (x ) = 1 + 2x + 3x 2 + 4x 3 + 5x 4
复习参考题 B组:3.
第一步,输入正整数x和它的位数n 第二步,判断n是否为偶数.若是,则m=n/2,否则, m=(n-1)/2。 第三步,令i=1 第四步,判断x的第i位与第(n+1-i)位上的数字 是否相等。若是,则使i的值增加1,仍用i表示; 否则,x不是回文数,结束算法。 第五步,判断i>m是否成立.若是,则n是回文数, 结束算法。否则,返回第四步。


S=0 m=0 a=0 i=1 WHILE i<=50 INPUT x IF x>=80 THEN m=m+1 END IF IF x>=60 THEN a=a+1 END IF s=s+x i=i+1 WEND p=s/50 PRINT m,a,p END
习题1.3 B组:1.
第一步,令n=45,i=1,a=0,b=0,c=0. 第二步,输入ai 第三步,判断是否0≤ai<60.若是,则a=a+1,并 执行第六步。 第四步,判断是否60≤ai<80.若是,则b=b+1, 并执行第六步。 第五步,判断是否80≤ai <100.若是,则c=c+1, 并执行第六步。 第六步, i=i+1, 第七步,判断是否i≤45.若是,则返回第二步. 第八步,输出成绩分别在区间[0,60),[60,80), [80,100]的人数a,b,c
例4 《张邱建算经》云:今有鸡翁一, 值钱五;鸡母一,值钱三;鸡雏三,值 钱一.凡百钱买百鸡,问鸡翁、母、雏各 几何?编写程序解决上述问题.
设鸡翁、母、雏分别为x、y、z只,则
? x y + z = 100 ï ï ï í z ï 5x + 3y + = 100 ï ï 3 î
? 7x 4y = 100 ï 即 ï í ï z = 100 - x - y ï î
开始
x=1
x=x+1 否
x≤14? 是 y=1 y≤25? 是
7x+4y=100? 是 z=100-x-y

y=y+1 否
输出x,y,z
结束
开始
x=1
x=x+1

x≤14? 是 y=1
y≤25? 是 7x+4y=100? 是 z=100-x-y

y=y+1 否
输出x,y,z
结束
x=1 WHILE x<=14 y=1 WHILE y<=25 IF 7*x+4*y=100 THEN z=100-x-y PRINT x,y,z ELSE y=y+1 END IF WEND x=x+1 WEND END

INPUT m,n WHILE n>0 r=m MODn m=n n=r WEND PRINT m END
思考3:更相减损术的程序框图的表示?
第一步,给定两个 正整数m,n(m>n).
第二步,计算m-n所 得的差k. 第三步,比较n与k 的大小,其中大者 用m表示,小者用n 表示.
开始 输入m,n m≠n? m=k
设计算法,可先考虑具体问题的 解法,再归纳出算法。
练习1 把求n!的程序补充完整 INPUT _________“n=” ,n i =1 s=1 _________i< =n WHILE s=s*i i=i+1 _________ WEND PRINT s END
知识探究(二):十进制化k进制的算法
思考1:利用除k取余法,将十进制数a化 为k进制数的算法步骤如何设计?
第一步,输入十进制数a和基数k的值.
第二步,求出a除以k所得的商q,余数r. 第三步,把所得的余数依次从右到左排 列. 第四步,若q≠0,则a=q,返回第二步; 否则,输出全部余数r排列得到 的k进制数.
n n i
i
(三): 进位制转化的程序设计
思考1:按照上述思路,把k进制数 a = anan - 1 L a2a1(k ) 化为十进制数b的算法 步骤如何设计?
第一步,输入a,k和n的值. 第二步,令b=0,i=1. 第三步, b = b + ai
累加
k
i- 1
,i=i+1.
第四步,判断i>n 是否成立.若是,则 输出b的值;否则,返回第三步.
思考2:将除k取余法的算法步骤用程序框 图如何表示? 开始
输入a,k
求a除以k的商q 求a除以k的余数r 把所得的余数依次从右到左排列
a=q q=0? 是 输出全部余数r排 列得到的k进制数

结束
思考3:该程序框图对应的程序如何表述?
开始 输入a,k 求a除以k的商q
求a除以k的余数r
把所得的余数依次从右到左排列 a=q
否 q=0? 是 输出全部余数r排 列得到的k进制数
结束
INPUT a,k b=0 i=0 DO q=a/k r=a MOD k b=b+r*10∧i ? i=i+1 a=q LOOP UNTIL q=0 PRINT b END
第一章 单元复习 编写算法程序习题分析
例1 设计一个从输 入的10个数中选出最 大值和最小值的程序 框图,并写出程序.
{
例2 用秦九韶算法求多项式 f(x)=anxn+an-1xn-1+„+a1x+a0的值,令 v0=an, vk=vk-1x+an-k (k=1,2,„,n). 若f(x)=3x5+4x4+5x3+2x2+2x+1,当x=3 时,求v4的值.
相关文档
最新文档