2010湖北武汉市中考数学试卷及答案
2010年武汉市中考数学试卷详解(完整版)
2010年湖北省武汉市中考数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.(2010•武汉)﹣2的相反数是()A.﹣2 B.﹣C.D.2考点:相反数。
分析:一个数的相反数就是在这个数前面添上“﹣”号.解答:解:﹣2的相反数是2.故选D.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号.一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(2010•武汉)函数y=中,自变量x的取值范围是()A.x>1 B.x≥1 C.x<1 D.x≤1考点:函数自变量的取值范围;二次根式有意义的条件。
分析:本题主要考查自变量的取值范围,函数关系式是二次根式,根据二次根式的意义,被开方数是非负数就可以求解.解答:解:根据题意得:x﹣1≥0,解得x≥1.故选B.点评:函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.3.(2010•武汉)如图,数轴上表示的是某不等式组的解集,则这个不等式组可能是()A.B.C.D.考点:在数轴上表示不等式的解集。
专题:计算题。
分析:先根据数轴得到不等式的解集是﹣1<x<2,再分别把四个选项的解集求出即可判断.解答:解:根据数轴可知这个不等式的解集是﹣1<x<2.四个选项的解集分别是:A、x>2,故本选项错误;B、﹣1<x<2,故本选项正确;C、x<﹣1,故本选项错误;D、无解,故本选项错误.故选B.点评:不等式组解集在数轴上的表示方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.4.(2010•武汉)下列说法:①“掷一枚质地均匀的硬币一定是正面朝上”;②“从一副普通扑克牌中任意抽取一张,点数一定是6”()A.①②都正确B.只有①正确C.只有②正确D.①②都不正确考点:随机事件。
2010年湖北各中考数学试题12套打包湖北随州
随州市2010年初中毕业生升学考试数学试题(考试时间120分钟 满分120分) 一、填空题(共10道题,每小题3分,共30分)1. 2的平方根是 __________ .22. 分解因式:x - x = ______________ .3 .函数 y =血的自变量 x 的取值范围是 ___________________________ .x +14. _________________________________________________________________ 如图,O O 中,MAN 的度数为320°,则圆周角/ MAN = ____________________________________________________b a 8 已知,ab = T,a=b=2,则式子一十一= _________________.a b9.如图矩形纸片 ABCD , AB = 5cm , BC = 10cm , CD 上有一点 E , ED = 2cm , AD 上有一点 P , PD = 3cm , 过P作PF 丄AD 交BC 于F ,将纸片折叠,使 P 点与E 点重合,折痕与 PF 交于Q 点,则PQ 的长是___________ cm.10•将半径为4cm 的半圆围成一个圆锥,在圆锥内接一个圆柱(如图示),当圆柱的侧面的面积最大时, 圆柱的底面半径是 ______________________ cm.25. _____________________________________________________________________________ 如6•通信市场竞争日益激烈,某通信公司的手机市话费标准按原标准每分钟降低现在收费标准是每分钟 b 元,则原收费标准每分钟是 a 元后,再次下调了 20% ,_______ 元. 7•如图是由棱长为1的正方体搭成的积木三视图,则图中棱长为1的正方体的个数是左视图第7题第5题图俯视图15 .如图,过边长为 1的等边△ ABC 的边AB 上一点P ,作PE 丄AC 于E , Q 为BC 延长线上一点,当=CQ 时,连PQ 交AC 边于D ,贝U DE 的长为( )11A .B .C .D .不能确定3 2 3第15题图16 .已知四条直线 y = kx — 3, y =- 1, y = 3和x = 1所围成的四边形的面积是12,则k 的值为(A .1或—2B . 2 或—1C . 3D . 4三、解答题(共9道大题,共72分)18 . ( 6分)如图,一个含 45°的三角板HBE 的两条直角边与正方形 ABCD 的两邻边重合,过 E 点作EF二、选择题(A , B , C , 11.下列运算正确的是(A . 3 -3=1B .第10题图D 四个答案中,有且只有一个是正确的,每小题 )T a 2=a C . 3.14—兀=3.14— 兀3分,共18分)132(严12.化简:(丄 x —3 B . x -1x 亠1孚丄)*x-3)的结果是(x -1 2C .13.在△ ABC 中,/ C = 90°, D . 口x -3x -14 小 sinA = ,贝V tanB =5 D.-514.若函数yX 2 2 2x(x <2)(x>2)'则当函数值y = 8时,自变量 x 的值是(4 C .±或 4 D . 4 或- .6PA17 . ( 6分)解不等式组计03_4(x_1) 119. (6分)如图是我市某校八年级学生为玉树灾区捐款情况抽样调查的条形图和扇形统计图(1)求该样本的容量;(2)在扇形统计图中,求该样本中捐款15元的人数所占的圆心角度数;(3)若该校八年级学生有800人,据此样本求八年级捐款总数.20. (6分)如图,点P ABC的内心,延长AP交厶ABC的外接圆于D,在AC延长线上有一点E, 满足AD 2=AB • AE,求证:DE是O O的切线.21. (7分)黄冈某地“杜鹃节”期间,某公司70名职工组团前往参观欣赏,旅游景点规定:①门票每人60元,无优惠;②上山游玩可坐景点观光车,观光车有四座和十一座车,四座车每辆60元,十一座车每人10元•公司职工正好坐满每辆车且总费用不超过5000元,问公司租用的四座车和十一座车各多少辆?22. (6分)甲、乙两同学投掷一枚骰子,用字母p、q分别表示两人各投掷一次的点数(1)求满足关于x的方程x2px 0有实数解的概率•(2)求(1)中方程有两个相同实数解的概率23.( 9分)如图,某天然气公司的主输气管道从 A 市的东偏北30°方向直线延伸,测绘员在 A 处测得要安装天然气的 M 小区在A 市东偏北60°方向,测绘员沿主输气管道步行 2000米到达C 处,测得小区 M 位于C 的北偏西60。
2010年中考数学真题分类汇编(150套)专题十七·反比例函数
35.(2010湖北十堰)(本小题满分8分)如图所示,直线AB与反比例函数图像相交于A,B两点,已知A(1,4).(1)求反比例函数的解析式;(2)连结OA,OB,当△AOB的面积为15y=kx∵点A(1,4)在反比例函数的图象上∴4=1k,∴k=4,∴反比例函数的解析式为y=4x.(2)设直线AB的解析式为y=ax+b(a>0,b>0),则当x=1时,a+b=4即b=4-a.联立4yxy ax b⎧=⎪⎨⎪=+⎩,得ax2 +bx-4=0,即ax2 +(4-a)x-4=0,方法1:(x-1)(ax+4)= 0,解得x1=1或x=-4a,设直线AB交y轴于点C,则C(0,b),即C(0,4-a)由S△AOB=S△AOC+S△BOC=11415(4)1(4)222a aa-⨯+-⨯=,整理得a2+15a-16=0,∴a=1或a=-16(舍去)∴b=4-1=3∴直线AB的解析式为y=x+3方法2:由S△AOB=12|OC|·|x2-x1|=152而|x2-x14||aa+=4(0)aaa+>,|OC|=b=4-a,可得1415(4)()22aaa+-=,解得a=1或a=-16(舍去). 36.(2010 重庆江津)如图,反比例函数kyx=的图像经过点()4,A b,过点A作AB x⊥轴于点B,△AOB的面积为2.(1)求k和b的值;(2)若一次函数3y ax =-的图象经过点A , 求这个一次函数的解析式.【答案】解:(1)(4)AB BO A b ⊥,, 122AOB S AB BO ∴=⋅=△ 即1422b ⋅= 1b ∴=……………………………………………………………4分又 点A 在双曲线ky x=上144k ∴=⨯=……………………………………………………7分(2) 点A ()4,1又在直线3y ax =-上 143a ∴=- 1a ∴=3y x ∴=-……………………………………………………………10分 37.(2010广西梧州)如图,在平面直角坐标系中,点A (10,0),∠OBA =90°,BC ∥OA ,OB =8,点E 从点B 出发,以每秒1个单位长度沿BC 向点C 运动,点F 从点O 出发,以每秒2个单位长度沿OB 向点B 运动,现点E 、F 同时出发,当F 点到达B 点时,E 、F 两点同时停止运动。
湖北初三初中数学中考真卷带答案解析
湖北初三初中数学中考真卷班级:___________ 姓名:___________ 分数:___________一、选择题1.的绝对值是().A.B.2C.D.2.如图,直线AB、CD被直线EF所截,则∠3的同旁内角是().A.∠1 B.∠2 C.∠4 D.∠53.如图所示几何体的左视图是().4.下列运算正确的是().A.=B.C.D.5.如图,已知△ADE与△ABC的相似比为1:2,则△ADE与△ABC的面积比为()A.1:2B.1:4C.2:1D.4:16.若反比例函数的图象经过点(-3,2),则的值为().A.-6B.6C.-5D.5 7.下列说法正确的是().A.买一张福利彩票一定中奖,是必然事件.B.买一张福利彩票一定中奖,是不可能事件.C.抛掷一个正方体骰子,点数为奇数的概率是.D.一组数据:1,7,3,5,3的众数是3.8.一个圆锥的侧面展开图是半径为1的半圆,则该圆锥的底面半径是().A.B.C.D.9.将抛物线绕它的顶点旋转180°,所得抛物线的解析式是()A.B.C.D.10.如图,已知正方形ABCD的边长为4 ,E是BC边上的一个动点,AE⊥EF, EF交DC于F, 设BE=,FC=,则当点E从点B运动到点C时,关于的函数图象是( )A B C D11.的算术平方根是:A.4B.C.D.12.下列计算正确的是:A.B.C.D.13.用4个棱长为1的正方体搭成一个几何体模型,其主视图与左视图如图4所示,则该立方体的俯视图不可能是:14.不等式组的解集是:A.B.C.D.15.某品牌商品,按标价九折出售,仍可获得20%的利润.若该商品标价为28元,则商品的进价为:A.21元B.19.8元C. 22.4元D.25.2元16.如图,EF是△ABC的中位线,将△AEF沿中线AD方向平移到△A E F的位置,使E F与BC边重合,已知△AEF的面积为7,则图中阴影部分的面积为:A.7B.14C.21D.2817.某班随机抽取6名同学的一次地生测试成绩如下:82,95,82,76,76,82.数据中的众数和中位数分别是:A.82,76B.76,82C.82,79D.82,8218.如图6, 已知圆锥的高为8,底面圆的直径为12,则此圆锥的侧面积是A.24B.30C.48D.60二、填空题1.因式分解:=" " .2.情系玉树大爱无疆,截至5月21日12时,青海玉树共接收国内外地震救灾捐赠款物551300万元,将551300万元用科学记数法表示为__________万元.3.函数的自变量的取值范围是.4.正五边形的内角和等于______度.5.已知,则代数式的值为_________.6.如图:已知AB=10,点C、D在线段AB上且AC=DB=2; P是线段CD上的动点,分别以AP、PB为边在线段AB的同侧作等边△AEP和等边△PFB,连结EF,设EF的中点为G;当点P从点C运动到点D时,则点G移动路径的长是________.7.9的相反数是 .8.据有关部门预测,恩施州煤炭总储量为2.91亿吨,用科学记数法表示这个数是吨(保留两个有效数字).9.分解因式: .10.在一个不透明的盒子里装有5个黑球,3个红球和2个白球,它们除颜色外其余都相同,从中随机摸出一个球,摸到红球的概率是 .11.在同一直角坐标系中,正比例函数的图象与反比例函数的图象有公共点,则0(填“>”、“=”或“<”).12.如图,在ABCD中,已知AB=9㎝,AD=6㎝,BE平分∠ABC交DC边于点E,则DE等于㎝.13.如图,在矩形ABCD中,AD =4,DC =3,将△ADC按逆时针方向绕点A旋转到△AEF(点A、B、E在同一直线上),连结CF,则CF =" " .14.如图,有一个形如六边形的点阵,它的中心是一个点,作为第一层,第二层每边有两个点,第三层每边有三个点,依次类推,如果层六边形点阵的总点数为331,则等于 .三、解答题1.(本题满分6分)计算:4cos30°+2.(本题满分6分)先化简,再求值:,其中3.(本题满分8分)求证:矩形的对角线相等.4.(本题满分8分)如图是某地6月1日至6月7日每天最高、最低气温的折线统计图.请你根据折线统计图,回答下列问题:(1)在这7天中,日温差最大的一天是6月_____日;(2)这7天的日最高气温的平均数是______℃;(3)这7天日最高气温的方差是 _______ .5.(本题满分8分)某蔬菜公司收购到某种蔬菜104吨,准备加工后上市销售. 该公司加工该种蔬菜的能力是:每天可以精加工4吨或粗加工8吨. 现计划用16天正好完成加工任务,则该公司应安排几天精加工,几天粗加工?6.(本题满分8分)某校初三年级春游,现有36座和42座两种客车供选择租用,若只租用36座客车若干辆,则正好坐满;若只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人;已知36座客车每辆租金400元,42座客车每辆租金440元.(1)该校初三年级共有多少人参加春游?(2)请你帮该校设计一种最省钱的租车方案.7.(本题满分10分)如图,⊙O是△ABC的外接圆,FH是⊙O 的切线,切点为F,FH∥BC,连结AF交BC于E,∠ABC的平分线BD交AF于D,连结BF.(1)证明:AF平分∠BAC;(2)证明:BF=FD;(3)若EF=4,DE=3,求AD的长.8.(本题满分12分)如图,过A(8,0)、B(0,)两点的直线与直线交于点C.平行于轴的直线从原点O出发,以每秒1个单位长度的速度沿轴向右平移,到C点时停止;分别交线段BC、OC于点D、E,以DE为边向左侧作等边△DEF,设△DEF与△BCO重叠部分的面积为S(平方单位),直线的运动时间为t(秒).(1)直接写出C点坐标和t的取值范围;(2)求S与t的函数关系式;(3)设直线与轴交于点P,是否存在这样的点P,使得以P、O、F为顶点的三角形为等腰三角形,若存在,请直接写出点P的坐标;若不存在,请说明理由.9.(6分) 计算:2+-10.(8分)解方程:11.(8分)如图7,已知,在ABCD中,AE=CF,M、N分别是DE、BF的中点.求证:四边形MFNE是平行四边形 .12.(8分)2010年4月14日青海玉树发生7.1级地震,地震灾情牵动全国人民的心.某社区响应恩施州政府的号召,积极组织社区居民为灾区人民献爱心活动.为了解该社区居民捐款情况,对社区部分捐款户数进行分组统计(统计表如下),数据整理成如图8所示的不完整统计图.已知A、B两组捐款户数直方图的高度比为1:5,请结合图中相关数据回答下列问题.⑴ A组的频数是多少?本次调查样本的容量是多少?⑵求出C组的频数并补全直方图.⑶若该社区有500户住户,请估计捐款不少于300元的户数是多少?13.(10分) 如图9,已知,在△ABC中,∠ABC=,BC为⊙O的直径, AC与⊙O交于点D,点E为AB的中点,PF⊥BC交BC于点G,交AC于点F.(1)求证:ED是⊙O的切线.(2)如果CF ="1,CP" =2,sinA =,求⊙O的直径BC.14.(10分) 恩施州绿色、富硒产品和特色农产品在国际市场上颇具竞争力,其中香菇远销日本和韩国等地.上市时,外商李经理按市场价格10元/千克在我州收购了2000千克香菇存放入冷库中.据预测,香菇的市场价格每天每千克将上涨0.5元,但冷库存放这批香菇时每天需要支出各种费用合计340元,而且香菇在冷库中最多保存110天,同时,平均每天有6千克的香菇损坏不能出售.(1)若存放天后,将这批香菇一次性出售,设这批香菇的销售总金额为元,试写出与之间的函数关系式.(2)李经理想获得利润22500元,需将这批香菇存放多少天后出售?(利润=销售总金额-收购成本-各种费用)(3)李经理将这批香菇存放多少天后出售可获得最大利润?最大利润是多少?15.(10分)(1)计算:如图10①,直径为的三等圆⊙O、⊙O、⊙O两两外切,切点分别为A、B、C ,求O A的长(用含的代数式表示).②③①图10(2)探索:若干个直径为的圆圈分别按如图10②所示的方案一和如图10③所示的方案二的方式排放,探索并求出这两种方案中层圆圈的高度和(用含、的代数式表示).(3)应用:现有长方体集装箱,其内空长为5米,宽为3.1米,高为3.1米.用这样的集装箱装运长为5米,底面直径(横截面的外圆直径)为0.1米的圆柱形钢管,你认为采用(2)中的哪种方案在该集装箱中装运钢管数最多?并求出一个这样的集装箱最多能装运多少根钢管?(≈1.73)16.(12分)如图,在平面直角坐标系中,二次函数的图象与x轴交于A、B两点, A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,-3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式.(2)连结PO、PC,并把△POC沿CO翻折,得到四边形POP C,那么是否存在点P,使四边形POP C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.(3)当点P运动到什么位置时,四边形 ABPC的面积最大并求出此时P点的坐标和四边形ABPC的最大面积.湖北初三初中数学中考真卷答案及解析一、选择题1.的绝对值是().A.B.2C.D.【答案】B【解析】略2.如图,直线AB、CD被直线EF所截,则∠3的同旁内角是().A.∠1 B.∠2 C.∠4 D.∠5【答案】B【解析】略3.如图所示几何体的左视图是().【答案】A【解析】略4.下列运算正确的是().A.=B.C.D.【答案】C【解析】略5.如图,已知△ADE与△ABC的相似比为1:2,则△ADE与△ABC的面积比为()A.1:2B.1:4C.2:1D.4:1【答案】B【解析】略6.若反比例函数的图象经过点(-3,2),则的值为().A.-6B.6C.-5D.5【答案】A【解析】略7.下列说法正确的是().A.买一张福利彩票一定中奖,是必然事件.B.买一张福利彩票一定中奖,是不可能事件.C.抛掷一个正方体骰子,点数为奇数的概率是.D.一组数据:1,7,3,5,3的众数是3.【答案】D【解析】略8.一个圆锥的侧面展开图是半径为1的半圆,则该圆锥的底面半径是().A.B.C.D.【答案】C【解析】略9.将抛物线绕它的顶点旋转180°,所得抛物线的解析式是()A.B.C.D.【答案】D【解析】略10.如图,已知正方形ABCD的边长为4 ,E是BC边上的一个动点,AE⊥EF, EF交DC于F, 设BE=,FC=,则当点E从点B运动到点C时,关于的函数图象是( )A B C D【答案】A【解析】略11.的算术平方根是:A.4B.C.D.【答案】A【解析】首先根据平方运算求出(-4)2的结果,然后利用算术平方根的定义求解.解:∵(-4)2=16,42=16∴==4故选A本题主要考查了算术平方根概念的运用.此类问题要先乘方运算再求算术平方根.12.下列计算正确的是:A.B.C.D.【答案】C【解析】略13.用4个棱长为1的正方体搭成一个几何体模型,其主视图与左视图如图4所示,则该立方体的俯视图不可能是:【答案】D【解析】【考点】简单组合体的三视图.分析:主视图和左视图将决定组合几何体的层数,列数及行数.解:由主视图可得此组合几何体有两列,左边第一列出现2层;由左视图可得此组合几何体有2行,从上面第一行出现2层,综上所述可得左边数第一列,上面数第一行小正方体的个数一定是2个,选项中只有D的是1个,故选D.14.不等式组的解集是:A.B.C.D.【答案】C【解析】又不等式组的第一个方程解得:>3,有第二个方程得:,所以选C。
湖北省武汉市九年级数学中考模拟试题22
D2010年数学中考模拟训练一、选择题:1、若m 、n 互为相反数,则555-+n m 的值为( )A 、 5-B 、 0C 、 5D 、 152、下列函数中,自变量x 的取值范围是3≥x 的函数是( ) A 、 3-=x y B 、 x y -=3 C 、 31-=x y D 、xy -=313、不等式组⎩⎨⎧<+≤+53201x x 的解集在数轴上表示为( )A.C.-1 0 1 -1 0 1 4、2)4(±-的值为( )A 、 4B 、4-C 、 4±D 、16-5、如果关于x 的一元二次方程012)1(22=-+++a x x a 的一个根是0,则此方程的另一根为( )A 、 0B 、 1-C 、 1D 、 1或1-6、保护水资源,人人有责。
我国是缺水国家,目前可利用淡水资源总量约为899000亿3m 。
用科学记数法表示这个数为( )A 、538.9910m ⨯亿 B 、438.9910m ⨯亿 C 、638.9910m ⨯亿 D 、338.9910m ⨯亿7、 如图是一个风筝的图案,它是轴对称图形AEB 140AC AE C 60∠⊥∠=,,=,则C F D ∠度数为( A 、140 B 、150 C 、160 D 、1708、由若干小立方体搭成的几何体的三视图如图所示,则该几何体中小立方块个数是( ) A 、 4个 B 、 5个 C 、 6个 D 、 7个主视图 左视图 俯视图9、在体育课上,九年级2名学生各练习10次立定跳远,要判断哪一名学生的成绩比较稳定,通常需要比较这两名学生立定跳远成绩的()A、方差B、平均数C、频率分布D、众数10、ABC∆内接于⊙O,半径为0.5,则sin BDC∠=()A、CDB、 BCC、 ABD、AC11、武汉市教育局统计优质高中招生6.83万人,优质高中招生比例达到42%,招生比例比去年增长8.6%,下列说法:(1)2007年全市优质高中招生总人数为6.8318.6%+万人,(2)2007年全市优质高中招生比例为42%(18.6%)-,(3)和2008年相比,优质高中招生按9%的增长率,报考学生数按8%的增长率计算,2009年全市优质高中招生比例为(19%)42%18%+⨯+,其中正确的个数是()个。
2010年中考数学真题选择题平面直角坐标系
选择题1.(2010江苏苏州)函数11y x =-的自变量x 的取值范围是 A .x ≠0 B .x ≠1 C .x ≥1 D .x ≤1 【答案】B2.(2010甘肃兰州)函数y =x -2+31-x 中自变量x 的取值范围是A .x ≤2B .x =3C .x <2且x ≠3D .x ≤2且x ≠3【答案】A 3.(2010江苏南京)如图,在平面直角坐标系中,菱形OABC 的顶点坐标是(3,4)则顶点A 、B 的坐标分别是 A. (4,0)(7,4) B. (4,0)(8,4) C. (5,0)(7,4) D. (5,0)(8,4)【答案】D 4.(2010江苏南京)如图,夜晚,小亮从点A 经过路灯C 的正下方沿直线走到点B ,他的影长y 随他与点A 之间的距离x 的变化而变化,那么表示y 与x 之间的函数关系的图像大致为【答案】A 5.(2010江苏泰州)已知点A 、B 的坐标分别为(2,0),(2,4),以A 、B 、P 为顶点的三角形与△ABO 全等,写出一个符合条件的点P 的坐标: .【答案】(4,0);(4,4);(0,4);(0,0)(只要写出一个即可)6.(2010江苏南通)在平面直角坐标系xOy 中,已知点P (2,2),点Q 在y 轴上,△PQO 是等腰三角形,则满足条件的点Q 共有A .5个B .4个C .3个D .2个 【答案】B 7.(2010广东珠海)在平面直角坐标系中,将点P (-2,3)沿x 轴方向向右平移3个单位得到点Q ,则点Q 的坐标是( )A.(-2,6)B.(-2,0)C.(-5,3)D.(1,3) 【答案】D 8.(2010 山东省德州)某游泳池的横截面如图所示,用一水管向池内持续注水,若单位时间内注入的水量保持不变,则在注水过程中,下列图象能反映深水区水深h 与注水时间t 关系的是(A) (B) (C) (D)【答案】A9.(2010山东威海)如图,点A ,B ,C 的坐标分别为(2,4),(5,2),(3,-1).若以点A ,B ,C ,D 为顶点的四边形既是轴对称图形,又是中心对称图形,则点D 的坐标为 .【答案】﹙0,1﹚;10.(2010 河北)一艘轮船在同一航线上往返于甲、乙两地.已知轮船在静水中的速度为15 km /h ,水流速度为5 km /h .轮船先从甲地顺水航行到乙地,在乙地停留一段时间后,又从乙地逆水航行返回到甲地.设轮船从甲地出发后所用时间为t (h ),航行的路程为s (km ),则s 与t 的函数图象大致是【答案】C 11.(2010辽宁丹东市)如图,在平面直角坐标系中,以O (0,0),A (1,1), B (3,0)为顶点,构造平行四边形,下列各点中 不能..作为平行四边形顶点坐标的是( ) tsOAtsOBtsOCtsODt hOt hO t hO ht O 第5题图深 水 区浅水区A .(-3,1) B .(4,1) C .(-2,1) D .(2,-1) 【答案】A12.(2010山东济宁)如图,是张老师出门散步时离家的距离y 与时间x 之间的函数关系的图象,若用黑点表示张老师家的位置,则张老师散步行走的路线可能是【答案】D13.(2010山东威海)在平面直角坐标系中,正方形ABCD 的位置如图所示,点A 的坐标为(1,0),点D 的坐标为(0,2).延长CB 交x 轴于点A 1,作正方形A 1B 1C 1C ;延长C 1B 1交x 轴于点A 2,作正方形A 2B 2C 2C 1…按这样的规律进行下去,第2010个正方形的面积为A .2009235⎪⎭⎫⎝⎛B .2010495⎪⎭⎫ ⎝⎛C .2008495⎪⎭⎫ ⎝⎛D .4018235⎪⎭⎫ ⎝⎛【答案】D 14.(2010山东青岛)如图,△ABC 的顶点坐标分别为A (4,6)、B (5,2)、C (2,1),如果将△ABC 绕点C 按逆时针方向旋转90°,得到△''A B C ,那么点A 的对应点'A 的坐标是( ). A .(-3,3) B .(3,-3) C .(-2,4) D .(1,4)O ABCDA 1B 1C 1A 2C 2B 2 xyyxO .AB.第7题图∙∙∙∙ABCDyxO(第7题)【答案】A 15.(2010山东日照)在平面直角坐标系内,把点P (-2,1)向右平移一个单位,则得到的对应点P ′的坐标是(A ) (-2,2) (B )(-1,1) (C )(-3,1) (D )(-2,0) 【答案】B16.(2010 山东莱芜)在一次自行车越野赛中,甲乙两名选手行驶的路程y (千米) 随时间x (分)变化的图象(全程)如图,根据图象判定下 列结论不正确...的是A .甲先到达终点B .前30分钟,甲在乙的前面C .第48分钟时,两人第一次相遇D .这次比赛的全程是28千米【答案】D17.(2010四川凉山)在函数121x y x +=-中,自变量x 的取值范围是 A .1x -≥ B .1x >-且12x ≠C .错误!未找到引用源。
2010中考数学模拟试卷参考答案与评分标准
2010年中考模拟试卷 数学参考答案及评分标准一.选择题 (本大题共10小题, 每小题3分, 共30分)二.填空题(本大题有6小题, 每小题4分, 共24分) 11.1412.9,9 13. 92①②③. 16.6.三.解答题(本大题有8小题, 共66分. 解答应写出文字说明, 证明过程或演算步骤) 17.(本小题满分6分)解:(1) 当a =13-,b =13+时, a 2+b 2+2ab =2)(b a +=12. ……………2分(2) 答案不唯一,式子写对给2分,因式分解正确给2分.例如, 若选a 2,b 2,则a 2-b 2=(a +b )(a -b ).若选a 2,2ab ,则a 2±2ab =a (a ±2b ).……………4分18. (本小题满分6分)解(1)圆锥……………2分(2)由图 可知,圆锥高线为8,底面直径为12,所以求得母线为10.22966036cm rl r S πππππ=+=+=∴……………4分19. (本小题满分6分)解:(1)由图象可知,函数xk y =的图象经过点)6,2(-A ,可得12-=k . ……………1分 设直线A B 的解析式为y kx b =+.∵)6,2(-A ,)2,6(-A 两点在函数y kx b =+的图象上,解得81==b k……………2分∴∴直线A B 的解析式为8+=x y . ……………1分(2)图中直线AB 与双曲线所围部分(不包括边界)所含格点的个数 0 .……………2分 20. (本小题满分8分)(1) 设家庭轿车拥有量的年平均增长率为x ,则:2662=+-=+-b k b k144)1(812=+x ,……………2分解得:37,3121-==x x (不合题意,舍去),……………2分192)311(144=+.……………1分答:该小区到2009年底家庭轿车将达到192辆. (2) 设该小区可建室内车位x 个,露天车位60002000250000x-个,则:x xx 5.431253≤-≤……………2分得:5.1229188≤≤x ,x 是正整数,x =9,10,11,12当12109,,=x 时不是整数3125x-,383x12511=-=时,当x ……………2分∴方案:建室内车位11个,露天车位38个21. (本小题满分8分)解:(1)8 ……………2分(2)8 6.7 5.714.67.342.38.4655++++==(亿元).所以2004—2008年市财政教育实际投入与预算差值的平均数是8.46亿元.……………3分(3)141.78.46150.16+=(亿元).估计2009年市财政教育实际投入可能达到150.16亿元 ……………3分22. (本小题满分10分)证明:(1) 连结AC ,如图10∵C 是弧BD 的中点∴∠BDC =∠DBC ……………1分 又∠BDC =∠BAC在三角形ABC 中,∠ACB =90°,CE ⊥AB ∴ ∠BCE=∠BAC ∠BCE =∠DBC ……………2分∴ CF =BF ……………1分 因此,CF =BF .(2)作CG ⊥AD 于点G ,∵C 是弧BD 的中点∴ ∠CAG =∠BAC , 即AC 是∠BAD 的角平分线.……………1分 ∴ CE =CG ,AE =AG ……………1分在Rt△BCE 与Rt△DCG 中,CE =CG , CB =CD ∴Rt△BCE ≌Rt△DCG∴BE =DG ……………1分 ∴AE =AB -BE =AG =AD +DG即 8-BE =3+DG∴2BE =5,即 BE =2.5 ……………1分又 △BCE ∽△BACB图10QEDCBA ∴2085.22=⨯=⨯=AB BE BC……………1分52=BC (舍去负值)……………1分23. (本小题满分10分) 解:(1)①∵1t =秒,∴414=⨯==CQ BP 厘米, ∵正方形ABCD 中,边长为10厘米 ∴PC=BE=6厘米, 又∵正方形ABCD , ∴B C ∠=∠,∴CQP BPE ∆≅∆……………4分 ②∵P Q v v ≠, ∴BP CQ ≠,又∵CQP BPE ∆≅∆,B C ∠=∠,则BP=PC ∴4t=10-4t∴点P ,点Q 运动的时间45=t 秒,∴8.6456==v q 厘米/秒. ……………3分(2)设经过x 秒后点P 与点Q 第一次相遇, 由题意,得3048.6=-x x , 解得775=x 秒.∴点P 共运动了75108.6775=⨯厘米∴点P 、点Q 在A B 边上相遇, ∴经过775秒点P 与点Q 第一次在边A B 上相遇.……………3分24. (本小题满分12分)解: (1)由题知:33903=--=-+b a b a ……………………………………1 分 解得:21==b a ……………………………………………………………1分∴ 所求抛物线解析式为: 322-+=x x y ……………………………1分(2) 存在符合条件的点P, 其坐标为P (-1, 10)或P(-1,- 10)或P (-1, -6) 或P (-1,313-)………………………………………………………4分(3)解法①:过点E 作EF ⊥x 轴于点F , 设E ( a ,2a +2a -3 )( -3< a < 0 )∴EF =2a +2a -3,BF =a +3,OF =-a ………………………………………………1分 ∴S 四边形BOCE = 21BF ²EF +21(OC +EF )²OF=21( a +3 )²(-2a -2a +3) +21(-2a -2a +6)²(-a )……………………………1 分=2929232+--a a ………………………………………………………………………1分 =-232)23(+a +863∴ 当a =-23时,S 四边形BOCE 最大, 且最大值为863.……………………………1 分此时,点E 坐标为 (-23,-415)……………………………………………………1分。
分式的化简求值经典练习题(带答案)
精心整理精心整理分式的化简乘方:()n n n nn a a aa a aa ab b bb b bb b ⋅=⋅=⋅个个n 个=(n 为正整数)整数指数幂运算性质: ⑴m n m n a a a +⋅=(m 、n 为整数) ⑵()m n mn a a =(m 、n 为整数) ⑶()n n n ab a b =(n 为整数)⑷m n m n a a a -÷=(0a ≠,m 、n 为整数)中考要求精心整理精心整理负整指数幂:一般地,当n 是正整数时,1n na a -=(0a ≠),即n a -(0a ≠)是n a 的倒数分式的加减法法则:同分母分式相加减,分母不变,把分子相加减,a b a b ccc+±=异分母分式相加减,先通分,变为同分母的分式再加减,a c ad bc ad bc bdbdbdbd±±=±=分式的混合运算的运算顺序:先算乘方,再算乘除,后算加减,如有括号,括号内先算.【例1【例2【题型】解答 【关键词】【解析】222221(1)()4111(1)a a a a a a a a a ---+÷⋅=-=--++-【答案】4-【例3】 先化简,再求值:22144(1)1a a a a a-+-÷--,其中1a =-..【考点】分式的化简求值 【难度】2星 【题型】解答【关键词】2010年,安徽省中考【解析】()()2221144211122a a a a a a a a a a a a --+-⎛⎫-÷=⋅= ⎪----⎝⎭-当1a =-时,原式112123a a -===---【答案】13【例4】 先化简,再求值:2291333x x x x x⎛⎫-⋅ ⎪--+⎝⎭其中13x =.【考点】分式的化简求值 【难度】2星 【题型】解答【关键词】2010年,湖南省长沙市中考试题 【解析】原式()()()33133x x x x x +-=⋅-+ 当13x =时,原式3=【答案】3【例5】 先化简,再求值:211(1)(2)11x x x -÷+-+-,其中x =. 【考点】分式的化简求值 【难度】2星 【题型】解答【关键词】2010年,湖北省十堰市中考试题 【解析】原式()()()111121x x x x x +-=⋅+-+-+当x时,原式224=-=.【答案】4精心整理精心整理【例6】 先化简,后求值:22121(1)24x x x x -++÷--,其中5x =-. 【考点】分式的化简求值 【难度】2星 【题型】解答【关键词】2010年,广东省肇庆市中考试题【解析】22121(1)24x x x x -++÷--=221(1)2(2)(2)x x x x x -+-÷-+-【例7。
2010年中考模拟试卷 数学参考答案及评分标准
2010年中考模拟试卷 数学参考答案及评分标准一.选择题(每题3分)二.填空题(每题4分) 11、x>3 12、41 13、π270 14、1227 15、5 16、311x 31y +-=三.解答题17.解得⎩⎨⎧-><分)(分)(1312x x ∴原不等式组的解为-3<x<2 (2分)数轴略(2分)18. (1) 10 , 0.100 ; (2分)评分说明:补全直方图1分(频数为10). (2)第三小组 1400~1600 (2分)(3)(0.060+0.240)×600=180 . (2分)19. 图略(评分说明:画出AC 的中垂线3分,全部正确6分) 20.(1)A (0,4) C (3,1) (2分)(2)图略 (3分) (3)ππ2232318090=⨯(3分)21. (1)证明:由题意可得:△ABD ≌△ABE ,△ACD ≌△ACF .∴∠DAB =∠EAB ,∠DAC =∠FAC ,又∠BAC =45°,∴∠EAF =90°.又∵AD ⊥BC∴∠E =∠ADB =90°∠F =∠ADC =90°. 又∵AE =AD ,AF =AD ∴AE =AF .∴四边形AEGF 是正方形. (4分)(2)解:设AD =x ,则AE =EG =GF =x .∵BD =2,DC =3 ∴BE =2 ,CF =3∴BG =x -2,CG =x -3. 在Rt △BGC 中,BG 2+CG 2=BC 2 ∴( x -2)2+(x -3)2=52. (2分)化简得,x 2-5x -6=0解得x 1=6,x 2=-1(舍)所以AD =x =6. (2分)22. (1)分别作A C ⊥x 轴,BD ⊥x 轴,垂足分别是C 额D ,证明△ACO ≌△ODB ,(3分)OD =2AC =4,DB =2OA =2,所以点B (4,2)(2分) (2)设二次函数解析式为bx ax y 2+=,把A (-1,2)B (4,2)代入,得⎩⎨⎧b4a 162b a 2+=-=(2分)解得⎪⎩⎪⎨⎧23b 21a =-=,(2分)所以解析式为x 23x 21y 2-=(1分)23.解:(1)横向甬道的面积为:()2120180150m2x x +=(3分)(2)依题意:2112018028015028082x x x +⨯+-=⨯⨯整理得:21557500x x -+=125150x x ==,(不符合题意,舍去)(3分)∴甬道的宽为5米. (3)设建设花坛的总费用为y 万元.()21201800.028******** 5.72y x x x x +⎡⎤=⨯⨯-+-+⎢⎥⎣⎦(2分)20.040.5240x x =-+当0.5 6.25220.04b x a=-==⨯时,y 的值最小.因为根据设计的要求,甬道的宽不能超过6米,6x ∴=当米时,总费用最少.最少费用为:20.0460.56240238.44⨯-⨯+=万元(3分) 24.(12分)(1)设2,,132,OP t OB t PA t ===-要四边形PABO 为平行四边形,则132t t -=∴133t =.(4分)(2)不变..12Q B O D O D O PD FD F =∴=.12Q E B D Q D Q B O B D E P A E FD OD FA F∴====∥∥∴AF=2QB=2t ,∴PF=OA=13(2分) ∴S △PQF78121321=⨯⨯(2分)(3)①QP=AP ,作O G ⊥x 轴于G ,则112213(11)t t t t --=+--32t ∴=(1分)②PQ=FP,1322t t ∴=+-1623t ∴=或(2分)③FQ=FP1322t t =+-1t ∴=(1分)综上,当3162123t =或或或时,△PQF 是等腰三角形.。
2010中考数学试题及答案
2010中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 3.14159B. 0.33333C. πD. √2答案:D2. 如果一个直角三角形的两条直角边分别为3和4,那么斜边的长度是多少?A. 5B. 6C. 7D. 8答案:A3. 一个数的平方根是它本身,这个数是:A. 0B. 1C. -1D. 2答案:A4. 一个正数的倒数是:A. 它自己B. 它的相反数C. 它的平方D. 1除以它答案:D5. 下列哪个式子是正确的?A. 2x + 3 = 5x - 1B. 3x - 4 = 4x + 3C. 2x + 3 = 2x - 3D. 5x + 2 = 5x - 2答案:A6. 一个圆的半径是5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π答案:B7. 下列哪个不是二次根式?A. √3B. √xC. √x + 1D. √x²答案:D8. 如果一个数的立方是27,那么这个数是:A. 3B. -3C. 9D. -9答案:A9. 一个数的绝对值是它本身,这个数是:A. 正数B. 负数C. 零D. 正数或零答案:D10. 下列哪个是等差数列?A. 1, 3, 5, 7B. 2, 4, 6, 8C. 1, 2, 4, 8D. 3, 6, 9, 12答案:A二、填空题(每题2分,共20分)11. 一个数的相反数是-5,这个数是________。
答案:512. 一个数的绝对值是4,这个数可能是________或________。
答案:4 或 -413. 如果一个数的平方是16,那么这个数是________或________。
答案:4 或 -414. 一个圆的直径是10,那么它的半径是________。
答案:515. 如果一个三角形的三个内角分别是40度、50度和90度,那么这是一个________三角形。
答案:直角16. 一个数的立方根是2,那么这个数是________。
2010年湖北各地中考数学试卷及答案集锦(12套)(WORD版)
ABCF EAB C GFEDO鄂州市2010年初中毕业及高中阶段招生考试数学试卷一、选择题(每小题3分,共30分)1.为了加强农村教育,2009年中央下拨了农村义务教育经费665亿元.665亿元用科学记数法表示正确的是( )A .6.65×109元B .66.5×1010元C .6.65×1011元D .6.65×1012元 2.下列数据:23,22,22,21,18,16,22的众数和中位数分别是( ) A .21,22 B .22,23 C .22,22 D .23,21 3.下面图中几何体的主视图是( )4.如图,AD 是△ABC 中∠BAC 的平分线,DE ⊥AB 交AB 于点E ,DF ⊥AC 交AC 于点F .若S △ABC =7,DE =2, AB =4,则AC =( )A .4B .3C .6D .55.正比例函数y =x 与反比例函数y = kx (k ≠0)的图象在第一象限交于点A ,且OA =2,则k 的值为( )A .22 B .1 C . 2 D .2 6.庆“五一”,市工会组织篮球比赛,赛制为单循环形式(每两队之 间都赛一场),共进行了45场比赛.这次参赛队数目为( ) A .12 B .11 C .9 D .107.如图,平面直角坐标系中,∠ABO =90º,将△AOB 绕点O 顺时 针旋转,使点B 落在点B 1处,点A 落在点A 1处.若B 点的坐标 为( 16 5, 125),则点A 1的坐标为( ) A .(3,-4) B .(4,-3) C .(5,-3) D .(3,-5) 8.如图,AB 为⊙O 的直径,C 是⊙O 上一点,连接AC ,过点 C 作直线CD ⊥AB 交AB 于点D ,E 是OB 上一点,直线CE 与⊙O 交于点F ,连接AF 交直线CD 于点G .若AC =22, 则AG ·AF =( )A .10B .12C .8D .169.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列结论: ①a 、b 异号;②当x =1和x =3时,函数值相等; ③4a +b =0;④当y =4时,x 的取值只能为0. 其中正确的结论有( )A .1个B .2个C .3个D .4个 10.如图,正方形OABC 的边长为6,点A 、C 分别在x 轴、y轴的正半轴上,点D (2,0)在OA 上,P 是OB 上一动点,则A .B .C .D .A BCDDA .210B .10C .4D .6二、填空题(每小题3分,共18分)11.5的算术平方根是 .12.圆锥的底面直径是2m ,母线长4m ,则圆锥的侧面积是 m 2.13.已知α、β是方程x 2―4x ―3=0的两个实数根,则(α―3)(β―3)= .14.在一个黑色的袋子中装有除颜色外其他均相同的3个红球和6个白球,从中任意摸出1个球,摸出的球是白球的概率是 . 15.已知⊙O 的半径为10,弦AB =103,⊙O 上的点C 到弦AB 所在直线的距离为5,则以O 、A 、B 、C为顶点的四边形的面积是 .16.如图,四边形ABCD 中,AB =AC =AD ,E 是BC 的中点,AE =CE ,∠BAC =3∠CBD ,BD =62+66,则AB = .三、解答题(共72分)17.(8分)解不等式组⎪⎩⎪⎨⎧-<--≥--,,13524)2(3x x x x 并写出该不等式组的整数解.18.(8分)先化简2211112-÷⎪⎭⎫ ⎝⎛+--x x x x ,然后从-1、1、2中选取一个数作为x 的值代入求值.19.(8分)我市第四高级中学与第六高级中学之间进行一场足球比赛,邀请某校两位体育老师及两位九年级足球迷当裁判,九年级的一位足球迷设计了开球方式.(1)两位体育老师各抛掷一枚硬币,两枚硬币落地后正面朝上,则第四高级中学开球;否则,第六高级中学开球.请用树状图或列表的方法,求第四高级中学开球的概率.(2)九年级的另一位足球迷发现前面设计的开球方式不合理,他修改规则:如果两枚硬币都朝上时,第四高级中学得8分;否则,第六高级中学得4分.根据概率计算,谁的得分高,谁开球.你认为修改后的规则公平吗?若公平,请说明理由;若不公平,请你设计对双方公平的开球方式.20.(8分)春节期间,某客运站旅客流量不断增大,旅客往往需要长时间排队等候购票.经过调查发现,每天开始售票时,约有400人排队购票,同时又有新的旅客不断进入售票厅排队等候购票.售票时售A B C D EG H M A B C D E 60º30º与售票时间x (分钟)的关系如图所示,已知售票的前a 分钟只开放了两个售票窗口(规定每人只能购票一张).(1)求a 的值.(2)求售票到第60分钟时,售票厅排队等候购票的旅客人数.(3)若要在开始售票后半小时内让所有的排队旅客都能够购到票,以便后来到站的旅客随到随购,至少需要同时开放几个售票窗口?21.(8分)如图,一艘潜艇在海面下500m A 点处测得俯角为30º前下方的海底C 处有黑匣子信号发出,继续在同一深度直线航行4000m 后再次在B 点处测得俯角为60º前下方的海底C 处有黑匣子信号发出,求海底黑匣子C 点距离海面的深度(结果保留根号).22.(10分)工程师有一块长AD =12分米,宽AB =8分米的铁板,截去长AE =2分米、AF =4分米的直角三角形,在余下的五边形中,截得矩形MGCH ,其中点M 在线段EF 上. (1)若截得矩形MGCH 的面积为70平方分米,求矩形MGCH 的长与宽. (2)当EM 为多少时,矩形MGCH 的面积最大?并求此时矩形的周长.23.(10分)如图,一面利用墙,用篱笆围成的矩形花圃ABCD 的面积为S m 2,平行于墙的BC 边长为x m .(1)若墙可利用的最大长度为10m ,篱笆长为24m ,花圃中间用一道篱笆隔成两个小矩形,求S 与x 之间的函数关系式.(2)在(1)的条件下,围成的花圃的面积为45m 2时,求AB 的长.能否围成面积比45m 2更大的花圃?如果能,应该怎样围?如果不能,请说明理由.(3)若墙可利用最大长度为40m ,篱笆长77m ,中间用n 道篱笆隔成小矩形,且当这些小矩形为正方形和x 为正整数时,请直接写出一组满足条件的x 、n 的值.24.(12分)如图,在直角坐标系中,已知点A (-1,0)、B (0,2),动点P 沿过B 点且垂直于AB 的射线BM 运动,其运动的速度为每秒1个单位长度,射线BM 与x 轴交于点C . (1)求点C 的坐标.(2)求过A 、B 、C 三点的抛物线的解析式. (3)若点P 开始运动时,点Q 也同时从C 点出发,以点P 相同的速度沿x 轴负方向向点A 运动,t 秒后,以P 、Q 、C 为顶点的三角形为等腰三角形(点P 到点C 时停止运动,点Q 也同时停止运动),求t 的值.(4)在(2)(3)的条件下,当CQ =CP 时,求直线OP 与抛物线的交点坐标.A D BCA BD C…图1图22010年恩施自治州初中毕业及高中招生考试数 学 试 题注意事项:1.本试卷分试题卷和答题卡两部分,考试时间为120分钟,满分为120分.2.考生在答题前请阅读答题卡中的“注意事项”,然后按要求答题. 3.所有答案均须做在答题卡相应区域,做在其它区域无效.一、填空题:(本大题共8个小题,每小题3分,共24分) 1.9的相反数是 .2.据有关部门预测,恩施州煤炭总储量为2.91亿吨,用科学记数法表示这个数是 吨(保留两个有效数字). 3. 分解因式:=+-b ab b a 22 .4.在一个不透明的盒子里装有5个黑球,3个红球和2个白球,它们除颜色外其余都相同,从中随机摸出一个球,摸到红球的概率是 . 5.在同一直角坐标系中,正比例函数x k y 1=的图象与反比例函数xk y 2=的图象有公共点,则21k k 0(填“>”、“=”或“<”).6.如图1,在ABCD 中,已知AB=9㎝,AD=6㎝,BE 平分∠ABC 交DC 边于点E ,则DE 等 于 ㎝.7.如图2,在矩形ABCD 中,AD =4,DC =3,将△ADC 按逆时针方向绕点A 旋转到△AEF (点A 、B 、E 在同一直线上),连结CF ,则CF = .8.如图3,有一个形如六边形的点阵,它的中心是一个点,作为第一层,第二层每边有两个点,第三层每边有三个点,依次类推,如果n 层六边形点阵的总点数为331, 则n 等于 .二、选择题:(下列各小题都给出四个选项,其中只有一项是符合题目要求的.本大题共8个小题,每小题3分,共24分) 9.()24-的算术平方根是:A. 4B. 4±C. 2D. 2± 10.下列计算正确的是:()223()3图3图2图111.用4个棱长为1的正方体搭成一个几何体模型,其主视图与左视图如图4所示,则该立方体的俯视图不可..能.是:12.不等式组⎩⎨⎧≤-<+5148x x x 的解集是:A. 5≤xB. 53≤<-xC.53≤<xD. 3-<x13.某品牌商品,按标价九折出售,仍可获得20%的利润.若该商品标价为28元,则商品的进价为:A. 21元B. 19.8元C. 22.4元D. 25.2元 14.如图5,EF 是△ABC 的中位线,将△AEF 沿中线AD 方向平移到△A 1E 1F 1的位置,使E 1F 1与BC 边重合,已知△AEF 的面积为7,则图中阴影部分的面积为: A. 7 B. 14 C. 21 D. 2815.某班随机抽取6名同学的一次地生测试成绩如下:82,95,82,76,76,82.数据中的众数和中位数分别是:A. 82,76B. 76,82C. 82,79D. 82,82 16.如图6, 已知圆锥的高为8,底面圆的直径为12,则此圆锥的侧面积是A .24πB .30πC .48πD .60π 三、解答题(本大题共8个小题,满分72分) 17.(6分) 计算:2+()()()121212010-++--313⨯-18.(8分)解方程:14143=-+--xx x19.(8分)如图7,已知,在ABCD 中,AE=CF ,M 、N 分别是DE 、BF 的中点.求证:四边形MFNE 是平行四边形 .20.(8分)2010年4月14日青海玉树发生7.1级地震,地震灾情牵动全国人民的心.某社区响应恩施州政府的号召,积极组织社区居民为灾区人民献爱心活动.为了解该社区居民捐款情况,对社区部分捐款户数进行分组统计(统计表如下),数据整理成如图8所示的不完整统计图.已知A、B两组捐款户数直图7 图4图6图5⑴ A 组的频数是多少?本次调查样本的容量是多少? ⑵ 求出C 组的频数并补全直方图.⑶ 若该社区有500户住户,请估计捐款不少于300元的户数是多少?21.(10分) 如图9,已知,在△ABC 中,∠ABC=090,BC 为⊙O 的直径, AC 与⊙O 交于点D,点E 为AB 的中点,PF ⊥BC 交BC 于点G,交AC 于点F. (1)求证:ED 是⊙O 的切线. (2)如果CF =1,CP =2,sinA =54,求⊙O 的直径BC.22.(10分) 恩施州绿色、富硒产品和特色农产品在国际市场上颇具竞争力,其中香菇远销日本和韩国等地.上市时,外商李经理按市场价格10元/千克在我州收购了2000千克香菇存放入冷库中.据预测,香菇的市场价格每天每千克将上涨0.5元,但冷库存放这批香菇时每天需要支出各种费用合计340元,而且香菇在冷库中最多保存110天,同时,平均每天有6千克的香菇损坏不能出售.(1)若存放x 天后,将这批香菇一次性出售,设这批香菇的销售总金额为y 元,试写出y 与x 之间的函数关系式.(2)李经理想获得利润22500元,需将这批香菇存放多少天后出售?(利润=销售总金额-收购成本-各种费用)(3)李经理将这批香菇存放多少天后出售可获得最大利润?最大利润是多少? 图8 图923.(10分)(1)计算:如图10①,直径为a 的三等圆⊙O 1、⊙O 2、⊙O 3两两外切,切点分别为A 、B 、C ,求O 1A 的长(用含a 的代数式表示).(2)探索:若干个直径为a 的圆圈分别按如图10②所示的方案一和如图10③所示的方案二的方式排放,探索并求出这两种方案中n 层圆圈的高度n h和(用含n 、a 的代数式表示). (3)应用:现有长方体集装箱,其内空长为5米,宽为3.1米,高为3.1米.用这样的集装箱装运长为5米,底面直径(横截面的外圆直径)为0.1米的圆柱形钢管,你认为采用(2)中的哪种方案在该集装箱中装运钢管数最多?并求出一个这样的集装箱最多能装运多少根钢管?(3≈1.73)24.(12分) 如图11,在平面直角坐标系中,二次函数c bx x y ++=2的图象与x 轴交于A 、B 两点, A 点在原点的左侧,B 点的坐标为(3,0),与y 轴交于C (0,-3)点,点P 是直线BC 下方的抛物线上一动点.(1)求这个二次函数的表达式.(2)连结PO 、PC ,并把△POC 沿CO 翻折,得到四边形POP /C , 那么是否存在点P ,使四边形POP /C 为菱形?若存在,请求出此时点P 的坐标;若不存在,请说明理由.(3)当点P 运动到什么位置时,四边形 ABPC 的面积最大并求出此时P 点的坐标和四边形ABPC 的最大面积.②③①图11图10数学试题卷注意事项:1. 本试卷分为试题卷和答题卷两部分。
2010届数学中考复习专题解析及测试-专题4《统计与概率》[1]范文
概率(2)一、考点分析内容要求1、数据的收集、整理、描述与分析等统计的意义Ⅰ2、总体、个体、样本,全面调查及抽样抽查,频数、频率等概念Ⅰ3、利用扇形图、条形图、直方图及折线图进行数据整理Ⅱ4、理解概率的意义,会用列举法及频率求概率Ⅱ5、能利用统计与概率知识解决实际生活中的有关问题Ⅱ二、命题预测概率是新课程标准下新增的一部分内容,从中考试题来看,概率在试题中占有一定的比例,一般在10—15分左右,因此概率已成为近两年及今后中考命题的亮点和热点.在中考命题时,关于概率的考题,多设置为现实生活中的情境问题,要求学生能分清现实生活中的随机事件,并能利用画树状图及列表的方法计算一些简单事件发生的概率.因此学生在复习时要多接触现实生活,多作实验,留心身边的每一件事,把实际问题与理论知识结合到一块来考虑问题.预测2011年将进一步考查在具体情况中求简单事件发生的概率以及运用概率的知识对一些现象作出合理的解释.一选择1、以下说法合理的是()A、小明在10次抛图钉的试验中发现3次钉尖朝上,由此他说钉尖朝上的概率是30%B、抛掷一枚普通的正六面体骰子,出现6的概率是1/6的意思是每6次就有1次掷得6C、某彩票的中奖机会是2%,那么如果买100张彩票一定会有2张中奖.D、在一次课堂进行的试验中,甲、乙两组同学估计硬币落地后,正面朝上的概率分别为0.48和0.51.2、如果甲邀请乙玩一个同时抛掷两枚硬币的游戏,游戏的规则如下:同时抛出两个正面,乙得1分;抛出其他结果,甲得1分. 谁先累积到10分,谁就获胜.你认为(填“甲”或“乙”)获胜的可能性更大.例8用6个球(除颜色外没有区别)设计满足以下条件的游戏:摸到白球的概率为12,摸到红球的概率为13,摸到黄球的概率为16,则应设个白球,个红球,个黄球.【考点要求】本题考查概率实验中小球数目的确定.【思路点拔】因为一共有6个球,需满足条件:摸到白球的概率为12,摸到红球的概率为13,摸到黄球的概率为16,则白球有6×12=3个,红球有6×13=2个,黄球有6×16=1个.【答案】填3,2,1.【错解剖析】部分学生容易忽视总共是6个球,而只考虑三种颜色球之比为3:2:1. 例9在中考体育达标跳绳项目测试中,1分钟跳160次为达标,小华记录了她预测时1分钟跳的次数分别为145,156,143,163,166,则他在该次预测中达标的概率是【考点要求】本题主要考查计算简单事件发生的概率.【思路点拔】这个事件的所有可能出现的结果有5种,其中达标的结果有2种,所以他达标的概率是25. 【答案】25【方法点拔】由预测的达标概率来估计中考达标原概率. 例10我市部分学生参加了2005年全国初中数学竞赛决赛,并取得优异成绩. 已知竞赛成绩分数都是整数,试题满分为140分,参赛学生的成绩分数分布情况如下: 分数段 0-19 20-39 40-59 60-79 80-99 100-119 120-140人 数0 37 68 95 56 32 12 请根据以上信息解答下列问题:(1) 全市共有多少人参加本次数学竞赛决赛?最低分和最高分在什么分数范围? (2) 经竞赛组委会评定,竞赛成绩在60分以上 (含60分)的考生均可获得不同等级的奖励,求我市参加本次竞赛决赛考生的获奖比例;(3) 决赛成绩分数的中位数落在哪个分数段内? (4) 上表还提供了其他信息,例如:“没获奖的人数为105人”等等. 请你再写出两条此表提供的信息.【考点要求】本题考查利用统计知识对所给数据进行分析,并解决相关问题. 【思路点拔】(1)全市共有300名学生参加本次竞赛决赛,最低分在20-39之间,最高分在120-140之间(2) 本次决赛共有195人获奖,获奖率为65% . (3) 决赛成绩的中位数落在60—79分数段内.(4) 如“120分以上有12人;60至79分数段的人数最多;……”等. 【答案】(1)最低分在20-39之间,最高分在120-140之间; (2)获奖率为65%; (3)60至79分;(4)120分以上有12人;60至79分数段的人数最多.【方法点拔】从问题出发,对表格中的数据进行分析,找出对解题有用的信息.例11市体校准备挑选一名跳高运动员参加全市中学生运动会,对跳高运动队的甲、乙两名运动员进行了8次选拔比赛.他们的成绩(单位:m )如下:甲:1.70 1.65 1.68 1.69 1.72 1.73 1.68 1.67 乙:1.60 1.73 1.72 1.61 1.62 1.71 1.70 1.75 (1)甲、乙两名运动员的跳高平均成绩分别是多少? (2)哪位运动员的成绩更为稳定?(3)若预测,跳过1.65m 就很可能获得冠军,该校为了获得冠军,可能选哪位运动员参赛?若预测跳过1.70m 才能得冠军呢?【考点要求】本题考查平均数、方差等知识,并能利用方差判断成绩的稳定性,从而帮助作出决策的实际应用问题.【思路点拔】(1) 1.69 1.68x x ==乙甲(2)20.0006s =甲 20.0035s =乙 22s s <乙甲故甲稳定(3)可能选甲参加,因为甲8次成绩都跳过1.65m 而乙有3次低于1.65m ; 也可能选乙参加,因为甲仅3次超过1.70m .(答案不唯一,言之有据即可) 【答案】(1) 1.69 1.68x x ==乙甲;(2)甲稳定;(3)答案不唯一,言之有据即可【方法点拔】回答第(3)问时,并无固定答案,从不同角度可做出不同回答.例12如图所示,A 、B 两个旅游点从2002年至2006年“五、一”的旅游人数变化情况分别用实线和虚线表示.根据图中所示解答以下问题:(1)B 旅游点的旅游人数相对上一年,增长最快的是哪一年?(2)求A 、B 两个旅游点从2002到2006年旅游人数的平均数和方差,并从平均数和方差的角度,用一句话对这两个旅游点的情况进行评价;(3)A 旅游点现在的门票价格为每人80元,为保护旅游点环境和游客的安全,A 旅游点的最佳接待人数为4万人,为控制游客数量,A 旅游点决定提高门票价格.已知门票价格x (元)与游客人数y (万人)满足函数关系5100xy =-.若要使A 旅游点的游客人数不超过4万人,则门票价格至少应提高多少?【考点要求】本题考查从折线图中获取信息,并结合信息加以评价,解决相关问题. (1)B 旅游点的旅游人数相对上一年增长最快的是2005年. (2)A X =554321++++=3(万元),B X =534233++++=3(万元)2AS =51[(-2)2+(-1)2+02+12+22]=2,2B S =51[02+02+(-1)2+12+02]=52从2002至2006年,A 、B 两个旅游点平均每年的旅游人数均为3万人,但A 旅游点较B 旅游点的旅游人数波动大.(3)由题意,得 5-100x≤4 解得x ≥100 100-80=20 【答案】(1)2005年;(2)从2002至2006年,A 、B 两个旅游点平均每年的旅游人数均为3万人,但A 旅游2002 2003 2004 2005 2006 年6 54 3 2 1万人A B图4-4点较B 旅游点的旅游人数波动大;(3)至少要提高20元.【方法点拔】完成第(3)问时要先确定票价与游客人数的函数关系,然后根据题目要求列出不等式,求出相应的票价,再计算出票价提高多少.例13小红和小明在操场做游戏,他们先在地上画了半径分别2m和3m的同心圆(如图4-5),蒙上眼在一定距离外向圈内掷小石子,掷中阴影小红胜,否则小明胜,未掷入圈内不算,你来当裁判.(1)你认为游戏公平吗?为什么? (2)游戏结束后,小明边走边想,“反过来,能否用频率估计概率的方法,来估算非规则图形的面积呢?”.请你设计方案,解决这一问题.(要求画出图形,说明设计步骤、原理,写出公式)【考点要求】本题考查设计用频率估计概率的方法,来估算非规则图形的面积的方案,即用概率知识进行方案设计.【思路点拔】(1)不公平∵P(阴)=95949=ππ-π,即小红胜率为95,小明胜率为94∴游戏对双方不公平(2)能利用频率估计概率的实验方法估算非规则图形的面积.设计方案:① 设计一个可测量面积的规则图形将非规则图形围起来(如正方形,其面积为S ).如图4-6所示;② 往图形中掷点(如蒙上眼往图形中随意掷石子,掷在图外不作记录). ③ 当掷点数充分大(如1万次),记录并统计结果,设掷入正方形内m 次,其中n 次掷图形内.④ 设非规则图形的面积为S ',用频率估计概率,即频率P '(掷入非规则图形内)=≈m n概率P(掷入非规则图形内)=SS 1, 故≈m n mSn S S S ≈⇒11 【答案】(1)不公平;(2)能利用频率估计概率的实验方法估算非规则图形的面积.【方法点拔】本题第(2)问的解决是在第(1)问的逆向思维基础上进行,只有正确解决了第(1)问并能正逆理解才能有第(2)问的方案设计思路. ● 难点突破方法总结统计与概率问题中,中考考查以基础题主为,难题一般为实际运用,解题时应注意以下几点.1.提高运算技能,平均数、中位数、极差、方差、频率等数值都要定的数学运算得到,而运算的结果将会影响到统计的预测.2.提高阅读理解和识别图表的能力,统计问题的试题中,许多问题都是以社会热点为背景,形式灵活多样,综合性较强,强调课内知识和课外活动相结合,调查分析和收集整理相结合;3.注重在具体情境中体会概率的意义,理解概率对生活指导的现实作用;4.加强统计与概率之间的关系,同时要避免将概率内容的学习变成数字运算的练习;图4-5 图4-65.加强训练,能用规范的语言表述自己的观点.●拓展演练一、填空题1.口袋中放有3只红球和11只黄球,这两种球除颜色外没有任何区别,随机从口袋中任取一只球,取到黄球的概率是__ __.2. 一个口袋中有4个白球,1个红球,7个黄球.搅匀后随机从袋中摸出1个是白球的概率是_________.3.2006年5月份,某市市区一周空气质量报告中某项污染指数的数据是:31、35、31、34、30、32、31,这组数据的中位数是__________.4.为了缓解旱情,我市发射增雨火箭,实施增雨作业. 在一场降雨中,某县测得10个面积相等区域的降雨量如下表:区域 1 2 3 4 5 6 7 8 9 10 降雨量(mm)10121313201514151414则该县这10个区域降雨量的众数为_______(mm);平均降雨量为___________(mm ).5.一个骰子,六个面上的数字分别为1、2、3、3、4、5,投掷一次,向上的面出现数字3的概率是_____.6.某校学生会在“暑假社会实践”活动中组织学生进行社会调查,并组织评委会对学生写出的调查报告进行了评比.学生会随机抽取了部分评比后的调查报告进行统计,绘制了统计图如下,请根据该图回答下列问题:(1)学生会共抽取了______份调查报告;(2)若等第A 为优秀,则优秀率为_____________ ;(3)学生会共收到调查报告1000 份,请估计该校有多少份调查报告的等第为E ?7.有100张已编号的卡片(从1号到100号)从中任取1张,计算卡片是奇数的概率是_______,卡片号是7的倍数的概率是________.8.掷一枚正六面体的骰子,掷出的点数不大于3的概率是_________.二、选择题9.在样本方差的计算式S 2=101(x 1-20)2+(x 2-20)2+…+(x 10-20)2]中,数字10与20分别表示样本的( )A .容量、方差B .平均数、容量C .容量、平均数D .标准差、平均数 10.宾馆客房的标价影响住宿百分率.下表是某一宾馆在近几年旅游周统计的平均数据:客房价(元) 160140120100 住宿百分率 63.8% 74.3% 84.1%95%在旅游周,要使宾馆客房收入最大,客房标价应选( ).A .160元B .140元C .120元D .100元 11.数学老师对小明在参加高考前的5次数学模拟考试进行统计分析,判断小明的数学成绩是否稳定,于是老师需要知道小明这5次数学成绩的( )A .平均数或中位数B .方差或极差C .众数或频率D .频数或众数 12.国家实行一系列“三农”优惠政策后,农民收入大幅度增加.某乡所辖村庄去年年人均收入(单位:元)情年人均收入 3500 3700 3800 3900 4500 村庄个数 0 1 3 3 1 第6题图况如右表,该乡去年年人均收入的中位数是( )A .3700元B .3800元C .3850元D .3900元13.在一所有1000名学生的学校中随机调查了100人,其中有85人上学之前吃早餐,在这所学校里随便问1人,上学之前吃过早餐的概率是( )A .0.85B .0.085C .0.1D .85014.一布袋中有红球8个,白球5个和黑球12个,它们除颜色外没有其他区别,随机地从袋中取出1球不是黑球的概率为( )A .825B .15C .1225D .132515.某商店举办有奖销售活动,购物满100元者发兑奖券一张,在10000张奖券中,设特等奖1个,一等奖10个,二等奖100个,若某人购物满100元,那么他中一等奖的概率是( )A .1100B .11000C .110000D .1111000016.如图所示的两个转盘分别被均匀地分成5个和4个扇形,每个扇形上都标有数字,同时自由转动两个转盘,转盘停止后,指针都落在奇数上的概率是( )A .25B .310C .320D .1517.军军的文具盒中有两支蜡笔,一支红色的、一支绿色的;三支水彩笔,分别是黄色、黑色、红色,任意拿出一支蜡笔和一支水彩笔,正好都是红色的概率为( )A .56B .13C .15D .1618.甲、乙两位学生一起在玩抛掷两枚硬币的游戏,游戏规定:甲学生抛出两个正面得1分;乙学生抛出一正一反得1分.那么各抛掷100次后他们的得分情况大约应为( )A .甲→25分,乙→25分B .甲→25分,乙→50分C .甲→50分,乙→25分D .甲→50分,乙→50分 三、解答题19.某市举行一次少年滑冰比赛,各年龄组的参赛人数如下表所示:年龄组 13岁 14岁 15岁 16岁 参赛人数5191214(1)求全体参赛选手年龄的众数、中位数;(2)小明说,他所在年龄组的参赛人数占全体参赛人数的28%. 你认为小明是哪个年龄组的选手?请说明理由.20.小谢家买了一辆小轿车,小谢连续记录了七天每天行驶的路程.第一天 第二天 第三天 第四天第五天 第六天 第七天 路程(千米)46393650549134请你用统计初步的知识,解答下列问题:(1)小谢家小轿车每月(每月按30天计算)要行A B驶多少千米?(2)若每行驶100千米需汽油8升,汽油每升3.45元.请你求出小谢家一年(一年按12个月计算)的汽油费是多少元?21.(连云港市2005)今年“五一黄金周”期间,花果山风景区共接待游客约22.5万人.为了了解该景区的服务水平,有关部门从这些游客中随机抽取450人进行调查,请他们对景区的服务质量进行评分,评分结果的统计数据如下表:档次第一档第二档第三档第四档第五档分值a(分)a≥9080≤a<9070≤a<8060≤a<70a<60人数73 147 122 86 22 根据表中提供的信息,回答下列问题:(1)所有评分数据的中位数应在第几档内?(2)若评分不低于70分为“满意”,试估计今年“五一黄金周”期间对花果山景区服务“满意”的游客人数.22.在青岛市政府举办的“迎奥运登山活动”中,参加崂山景区登山活动的市民约有12000人,为统计参加活动人员的年龄情况,我们从中随机抽取了100人的年龄作为样本,进行数据处理,制成扇形统计图和条形统计图(部分)如下:(1)根据图①提供的信息补全图②;(2)参加崂山景区登山活动的 12000 余名市民中,哪个年龄段的人数最多?(3)根据统计图提供的信息,谈谈自己的感想.(不超过30字)23.袋中装有编号为1、2、3的三个形状大小相同的小球,从袋中随意摸出1球.并且随意抛掷一个面上标有1,2,3,4,5,6各一数字的正方体均匀骰子.(1)如果摸出1号球和骰子朝上的数字为1则甲胜;如果摸出2号球和骰子朝上的数字为2,则乙胜.这个游戏对双方公平吗?(2)如果摸出的球编号为奇数和骰子朝上的数字为奇数则甲胜;如果摸出的球编号为偶数和木块朝上的数字为偶数,则乙胜.这个游戏对双方公平吗?说明理由.24.小明拿着一个罐子来找小华做游戏,罐子里有四个一样大小的玻璃球,两个黑色,两个白色.小明说:“使劲摇晃罐子,使罐子中的小球位置打乱,等小球落定后,如果是黑白相间地排列(如图所示),就算甲方赢,否则就算乙方赢.”他问小华要当甲方还是乙方,请你帮小华出主意,并说明理由.专题四《统计与概率》●习题答案一、填空题1.1114 (提示:实验中,我们关注的结果的次数是11,所有等可能出现的结果的次数是14,故取到黄球的概率1114)2.13 (提示:P (白球)=441417123==++) 3.31(提示:将这组数据按从小到大排列为30、31、31、31、32、34、35,则位于中间位置的一个数为31,即这组数据的中位数是31)4.14,14(提示:14出现次数最多,平均降雨量是把各区域降雨量相加再除以10)5.13(提示:P (向上数字为3)=2163=) 6.50,0.16,40(提示:共抽查8+20+15+5+2=50;优秀率为8÷50=0.16;等第为E 的报告有210004050⨯=) 7.12,750(提示:1到100中奇数有50个,P (卡片是奇数)=5011002=;7的倍数有100÷7≈14,所以P (卡片号是7的倍数)=14710050=) 8.12(提示:点数不大于3的数字有1、2、3,所以P (点数不大于3)=3162=)二、选择题9.C (提示:要熟悉样本方差计算公式的意义)10.B (提示:应综合考虑客房价与住宿百分率两方面因素,要使两者乘积最大) 11.B (提示:反映数据稳定性的量是数据的方差或极差)12.C (提示:表中共有8个数据,位于中间位置的两个的数分别为3800、3900,故本组数据的中位数为(3800+3900)÷2=3850)13.A (提示:100人中吃早餐的概率85÷100=0.85,可以代表1000名学生吃早餐的概率)14.D (提示:P (摸出的是黑球)=1212851225=++,所以P (摸出的不是黑球)=1-1225=1325) 15.C (提示:共有10000张奖券,其中一等奖10个,购物100元,可得一张奖券,故P (中一等奖)=11000016.B (提示:P (A 指奇数)=35,P (B 指奇数)=2142=,所以P (A 、B 同时指奇数)=35×12=310) 17.D (提示:P (两支红色水笔)111236=⨯=) 18.B (提示:抛掷两枚硬币的所有可能是正正、正反、反正、反反.所以P (甲抛出两个正面)=14,P (乙抛出一正一反)=12,各抛100次后,甲得分100×14=25(分),乙得分100×12=50(分))三、解答题 19.解:(1)众数是14岁,中位数是15岁; (2)(5+19+12+14)×28%=14(人) 所以小明是16岁年龄组的选手.20.解:(1)由图知这七天中平均每天行驶的路程为50(千米). ∴每月行驶的路程为30×50=l 500(千米). 答:小谢家小轿车每月要行驶1500千米. (2)小谢一家一年的汽油费用是4 968元.21.解:(1)所有评分数据的中位数应在第三档内.(2)根据题意,样本中不小于70的数据个数为73+147+122=342, 所以,22.5万游客中对花果山景区服务“满意”的游客人数约为1.175.22450342=⨯(万). 22.解:(1)略 (2)60-69岁(3)根据统计图提供的信息,谈谈自己的感想合理即可. 23.解:①公平 因为获胜概率相同都等于118; ②不公平;因为甲获胜概率为31,乙获胜概率为61. 24.解:小华当乙方.理由:设A 1表示第一个黑球,A 2表示第二个黑球,B 1表示第一个白球,B 2表示第二个白球.有24种可能结果(可以利用树状图或表格解释),黑白相间排列的有8种.因此,甲方赢的概率为824=13 ,乙方赢的概率为23,故小华当乙方.。
湖北省武汉市2010年中考数学试题
2010年武汉市中考数学试题第Ⅰ卷(选择题,共36分)一、选择题(共12小题。
每小题3分。
共36分)下列各题中均有四个备选答案,其中有且只有一个正确,1.有理数-2的相反数是()(A)2 (B)-2 (C)12(D)-122.函数y=x的取值范围是()(A)x≥1.(B)x≥-1.(C)x≤1.(D)x≤-1.3.如图,数轴上表示的是某不等式组的解集,则这个不等式组可能是()(A)x>-1,x>2 (B)x>-1,x<2(C)x<-1,x<2 (D)x<-1,x>24.下列说法:①“掷一枚质地均匀的硬币一定是正面朝上”;②“从一副普通扑克牌中任意抽取一张,点数一定是6”.(A) ①②都正确.(B)只有①正确.(C)只有②正确.(D)①②都正确.5.2010年上海世博会开园第一个月共售出门票664万张,664万用科学计数法表示为( )(A)664×104(B)66.4×l05(C)6.64×106(D)0.664×l076.如图,△ABC内有一点D,且DA=DB=DC,若∠DAB=20°,∠DAC=30°,则∠BDC的大小是()(A)100°(B)80°(C)70°(D)50°7.若x1,x2是方程x2=4的两根,则x1+x2的值是( )(A)8.(B)4.(C)2.(D)0.8.如图所示,李老师办公桌上放着一个圆柱形茶叶盒和一个正方体的墨水盒,小芳从上面看,看到的图形是(A) (B) (C) (D)9.如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1,A2,A3,A4,…表示,则顶点A55的坐标是()(A)(13,13)(B)(―13,―13)(C)(14,14)(D)(-14,-14)10.如图,⊙O的直径AB的长为10,弦AC长为6,∠AC'B的平分线交⊙O于D,则CD长为()(A) 7 (B)(C) (D) 911.随着经济的发展,人们的生活水平不断提高.下图分别是某景点2007—2009年游客总人数和旅游收入年增长率统计图.已知该景点2008年旅游收入4500万元.下列说法:①三年中该景点2009年旅游收入最高;②与2007年相比,该景点2009年的旅游收入增加[4500×(1+29%)-4500×(1-33%)]万元;③若按2009年游客人数的年增长率计算,2010年该景点游客总人数将达到280255280(1)255-⨯+万人次。
2010年武汉市中考数学试卷及答案
2010湖北武汉市中考数学试卷第Ⅰ卷 (选择题,共36分)一、选择题 (共12小题,每小题3分,共36分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答卷上将正确答案的代号涂黑。
1. 有理数-2的相反数是(A) 2 (B) -2 (C) 21 (D) -212. 函数y=1-x 中自变量x 的取值范围是(A) x ≥1 (B) x ≥ -1 (C) x ≤1 (D) x ≤ -1 3. 如图,数轴上表示的是某不等式组的解集,则这个不等式组可能是(A) x> -1,x>2 (B) x> -1,x<2 (C) x< -1,x<2 (D) x<-1,x>24. 下列说法: “掷一枚质地均匀的硬币一定是正面朝上”; “从一副普通扑克牌中任意抽取 一张,点数一定是6”;(A) 都正确 (B) 只有 正确 (C) 只有 正确 (D) 都错误 。
5. 2010年上海世博会开园第一个月共售出门票664万张,664万用科学计数法表示为 (A) 664⨯104 (B) 66.4⨯105 (C) 6.64⨯106 (D) 0.664⨯1076. 如图,△ABC 内有一点D ,且DA=DB=DC ,若∠DAB=20︒,∠DAC=30︒,则∠BDC 的大小是(A) 100︒ (B) 80︒ (C) 70︒ (D) 50︒ 7. 若x 1,x 2是方程x 2=4的两根,则x 1+x 2的值是 (A) 8 (B) 4 (C) 2 (D) 0 。
8. 如图所示,李老师办公桌上放着一个圆柱形茶叶盒和一个正方体的墨水盒,小芳从上面看,看到的图形是9. 如图,所有正方形的中心均在坐标原点,且各边与x 轴或y 轴平行。
从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A 1,A 2,A 3,A 4,…表示,则顶点A 55的坐标是 (A) (13,13) (B) (-13,-13) (C) (14,14) (D) (-14,-14) 。
2010数学中考试卷答案
2010年湖北鄂州市初中毕业及高中阶段招生考试数学解析一、选择题(每小题3分,共30分)1.(2010湖北鄂州,1,3分)为了加强农村教育,2009年中央下拨了农村义务教育经费666亿元.666亿元用科学记数法表示正确的是()A.6.66×109元B.66.6×1010元C.6.66×1011元D.6.66×1010元【分析】666亿元=66600000000元=6.66×1010元.故选D.【答案】D【涉及知识点】科学记数法【点评】科学记数法是每年中考试卷中的必考问题,把一个数写成a×10的形式(其中1≤<10,n为整数,这种计数法称为科学记数法),其方法是(1)确定a,a是只有一位整数的数;(2)确定n;当原数的绝对值≥10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).【推荐指数】★★★★★2.(2010湖北鄂州,2,3分)下列数据:23,22,22,21,18,16,22的众数和中位数分别是()A.21,22 B.22,23 C.22,22 D.23,21【分析】出现最多的数据是22,即众数是22;把数据从大到小排列为23,22,22,22,21,18,16,处在中间的是22,即中位数是22.【答案】C【涉及知识点】数据的代表【点评】本题考查数据的代表的两个量——众数和中位数.属中考试题中基础题,但是属于统计中常考的知识点.【推荐指数】★★★★3.(2010湖北鄂州,3,3分)下面图中几何体的主视图是()【分析】主视图和我们忽略厚度看见的几何体的相同.选B.【答案】B【涉及知识点】三视图【点评】本题考查几何体的三视图,在中考中经常出现,属低档题.【推荐指数】★★★4.(2010湖北鄂州,4,3分)如图,AD是△ABC中∠BAC的平分线,DE ⊥AB交AB于点E,DF⊥AC交AC于点F.若S△ABC=7,DE=2,AB=4,则AC=()A.4 B.3 C.6 D.5【分析】∵AD是△ABC中∠BAC的平分线,DE⊥AB,DF⊥AC,∴DE=DF =2.∵AB=4,∴S△ABD=×4×2=4.∵S△ABC=7,∴S△ACD=3,∴AC ==3.故选B.【答案】B【涉及知识点】角平分线的性质、三角形的面积【点评】本题考查角平分线的性质和三角形面积的计算.属于中考中的低档题.【推荐指数】★★★5.(2010湖北鄂州,5,3分)正比例函数y=x与反比例函数y=(k≠0)的图象在第一象限交于点A,且OA=,则k的值为()A.B.1 C.D.2【分析】作AB⊥x轴,垂足为B,∵点A在y=x上,∴AB=OB.∵AO=,∴AB=OB=1.∴y=经过点(1,1),∴k=1.故选B.【答案】B【涉及知识点】正比例函数、反比例函数、勾股定理【点评】本题属于一次函数与反比例函数、勾股定理的综合题目,解决的方案是:从图象上的点向x轴作垂线,构造直角三角形,由勾股定理和已知条件求出点的坐标,代入解析式求出未知系数的值.【推荐指数】★★★★6.(2010湖北鄂州,6,3分)庆“五一”,市工会组织篮球比赛,赛制为单循环形式(每两队之间都赛一场),共进行了45场比赛.这次有________队参加比赛.A.12 B.11 C.9 D.10【分析】设有x支队伍参加比赛,根据题意,得=45,解得x1=10,x2=-9(不合题意,舍去).故选D.【答案】D【涉及知识点】一元二次方程【点评】本题考查列一元二次方程解决实际问题.解决问题的关键是明确单循环比赛的计算公式,列出一元二次方程,属中档题.【推荐指数】★★★7.(2010湖北鄂州,7,3分)如图,平面直角坐标系中,∠ABO=90º,将△AOB绕点O顺时针旋转,使点B落在x轴上的点B1处,点A落在点A1处.若B点的坐标为(,),则点A1的坐标为()A.(3,-4)B.(4,-3)C.(5,-3)D.(3,-5)【分析】作BC⊥x轴,垂足为C,根据题意知,OC=,BC=.∴OB==4.∵△ABO∽△BCO,∴=,解得AB=3.∵△ABO旋转得到△A1B1O,∴OB1=4,A1B1=3,∴点A1的坐标为(4,-3).故选B.【答案】B【涉及知识点】旋转、勾股定理、平面直角坐标系【点评】本题通过平面直角坐标系主要考查旋转和勾股定理的知识,是一个综合性较强的题目,同时勾股定理的题目也是中考试题中涉及较多的知识点,属中档题.【推荐指数】★★★★★8.(2010湖北鄂州,8,3分)如图,AB为⊙O的直径,C是⊙O上一点,连接AC,过点C作直线CD⊥AB交AB于点D,E是OB上一点,直线CE与⊙O交于点F,连接AF交直线CD于点G.若AC=2,则AG·AF=()A.10 B.12 C.8 D.16【分析】连接BC,∵AB是直径,∴∠ACB=90°.∵CD⊥AB,∴∠ACG=∠B.∵∠B和∠F是同弧所对的圆周角,∴∠B=∠F.∴∠ACG=∠F.∴△ACG ∽△AFC.∴=,∴AG·AF=AC2.∵AC=2,∴AG·AF=8.故选C.【答案】C【涉及知识点】圆的基本性质、相似【点评】本题有机的把圆的基本性质和相似结合起来进行考查,综合性较强.在圆中,直径所对的圆周角等于90°和同弧所对的圆周角相等是中考中常涉及的内容,相似也是必考内容之一.本题属中档题.【推荐指数】★★★★★9.(2010湖北鄂州,9,3分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①a、b异号;②当x=1和x=3时,函数值相等;③4a+b=0;④当y=4时,x的取值只能为0.其中正确的结论有____个.A.1 B.2 C.3 D.4【分析】由对称轴在y轴的右侧知,a、b异号,①正确;由图象与x轴的交点的横坐标是-2和6,得出对称轴是x=2,∴当x=1和x=3时,函数值相等,②正确;由对称轴是x=2,即-=2,∴4a+b=0,③正确;由图象和函数对称性知,当y=4时,x=0或x=4,④错误.故选C.【答案】C【涉及知识点】二次函数的图象和性质【点评】本题考查二次函数的图象与a、b、c的关系,解题的关键是熟知开口方向、对称轴、顶点坐标、图象与x轴交点、与y轴交点、当x=1时函数的图象等与a、b、c的关系.属于综合性很强的题目.【推荐指数】★★★★★10.(2010湖北鄂州,10,3分)如图所示,四边形OABC是正方形,边长为6,点A、C分别在x轴、y轴的正半轴上,点D在OA上,且D点的坐标为(2,0),P是OB上一动点,则PA+PD的最小值为()A.2 B.C.4 D.6【分析】连接CD,由于点A和点C是关于OB的对称点,∴PA+PB的最小值就是CD的长.由已知,得OC=6,OD=2,∴CD==2.故选A.【答案】A【涉及知识点】轴对称、勾股定理【点评】正方形是轴对称图形,对角线是其中一条对称轴.求对称轴同侧的两个点到对称轴的最短距离,即求某个点的对称点到另一个点的距离.【推荐指数】★★★★★二、填空题(每小题3分,共18分)11.(2010湖北鄂州,11,3分)5的算术平方根是.【分析】因为()2=5,且>0,∴5的算术平方根是.【答案】【涉及知识点】算术平方根【点评】算术平方根是一个正数的正的平方根,0的算术平方根是0.本题是中考试题中基础的题目,增加试题的可信度.【推荐指数】★★★12.(2010湖北鄂州,12,3分)圆锥的底面直径是2m,母线长4m,则圆锥的侧面积是m2.【分析】圆锥的侧面积公式为πrl,其中r是底面圆半径,l是母线长.根据题意知,r=1m,l=4m,∴πrl=π×1×4=4π(m2).【答案】4π【涉及知识点】圆锥的侧面积【点评】本题考查圆锥的侧面积公式,是圆的基本计算中常考的内容之一.只要熟记公式,认真计算,即可得出正确结果.属于中档题.【推荐指数】★★★13.(2010湖北鄂州,13,3分)已知α、β是方程x2―4x―3=0的两实数根,则(α―3)( β―3)=.【分析】根据题意,得α+β=4,αβ=-3.∴(α―3)( β―3)=αβ-3(α+β)+9=-3-3×4+9=-6.【答案】-6【涉及知识点】一元二次方程根与系数的关系【点评】本题考查一元二次方程根与系数的关系.先根据根与系数的关系得出两根之和与两根之积,然后将所求的算式变形代入求值.【推荐指数】★★★★14.(2010湖北鄂州,14,3分)在一个黑色的袋子中装有除颜色外其他均相同的3个红球和6个白球,从中任意摸出1个球,摸出的球是白球的概率是.【分析】共有9种结果,摸出的球是白球的结果是6种,∴P(摸出的球是白球)==.【答案】【涉及知识点】概率【点评】本题考查用列举法求古典概率.概率是中考中必考内容之一,难度不是很大,属中低档题.【推荐指数】★★★★★15.(2010湖北鄂州,15,3分)已知⊙O的半径为10,弦AB的长为10,点C在⊙O上,且点C到弦AB所在直线的距离为5,则以O、A、B、C为顶点的四边形的面积是.【分析】如图,可以画出图1、图2、图3三个图形.无论在哪个图形中,作OD⊥AB于D,∵OA=OB=10,AB=10,∴AD=BD=5,OD=5.∴附和条件的点C有下图中三个点.∴图1或图2中的四边形面积为:(10+10)×5×=25+25;图3中的面积为:10×5××2=50.【答案】25+25或50【涉及知识点】垂径定理、勾股定理、分情况讨论、图形的面积【点评】本题考查综合考查垂径定理、勾股定理、分情况讨论思想等知识点,是综合性很强的题目.【推荐指数】★★★★★16.(2010湖北鄂州,16,3分)如图,四边形ABCD中,AB=AC=AD,E 是BC的中点,AE=CE,∠BAC=3∠CBD,BD=6+6,则AB=.【分析】作DF⊥BA于F,∵AB=AC,E是BC的中点,∴AE⊥BC,BE=CE.∵AE=CE,∴△ABC,△ABE,△ACE都是等腰直角三角形,∠ABE=45°,∠BAC=∠AEB=∠AEC=90°.∵∠BAC=3∠CBD,∴∠DBC=30°.∴∠ABD =15°.∵AB=AC=AD,∴∠FAD=30°.设DF=x,则AF=x,AB=AD=2x.∵BD=6+6,∴在Rt△BFD中,x2+(x+2x)2=(6+6)2,解得x=6,∴AB=12.【答案】12【涉及知识点】等腰三角形、勾股定理、一元二次方程【点评】本题考查综合考查等腰三角形的三线合一、勾股定理、用方程解几何问题等知识点,是综合性很强的题目.解题中能发现△ABC,△ABE,△ACE都是等腰直角三角形是解题的关键.【推荐指数】★★★★三、解答题(17~21题,每题8分,22、23题每题10分,24题12分,共72分)17.(2010湖北鄂州17,8分)解不等式组并写出该不等式组的整数解.【分析】求出不等式①与不等式②的解集,再确定不等式组的解集,从而可确定该不等式组的整数解.【答案】解不等式-3(x-2)≥4-x得x≤1;解不等式得:x>-2;所以该不等式组的解集为:-2<x≤1,所以该不等式组的整数解是-1,0,1.【涉及知识点】解不等式、不等式组、整数解.【点评】对一元一次不等式组的考查主要突出基础性,题目一般不难,系数比较简单,主要考查方法的掌握.【推荐指数】★★★18.(2010湖北鄂州18,8分)先化简,然后从-1,1,2中选取一个数作为x的值代入求值.【分析】先分解因式寻找最简公分母,再进行混合运算,化成最简分式. 由于分式的分母不能为0,取值时注意字母的取值范围.【答案】原式=,原式=2.【涉及知识点】分式化简、求分式的值.【点评】本题运用分式化简与求值来解决问题,考查学生综合运用分式多个知识点解决问题的能力,属于中等难度的试题,具有一定的区分度.【推荐指数】★★★★19.(2010湖北鄂州19,8分)我市第四高级中学与第六高级中学之间进行一场足球比赛,邀请某校两位体育老师及两位九年级足球迷当裁判.九年级的一位足球迷设计了开球方式.(1)两位体育老师各掷一枚一元硬币,两枚硬币落地后正面都朝上第四高级中学开球,否则第六高级中学开球.请用画树状图或列表的方法,求第四高级中学开球的概率.(2)九年级的另一位足球迷发现前面设计的开球方式不合理,他修改规则:如果两枚硬币朝上时,第四高级中学得8分,否则第六高级中学得4分,根据概率计算,谁的得分高,谁开球.你认为修改后的规则公平吗?请说明理由;若不公平,请你设计对双双公平的开球方式.【分析】(1)用树状图或列表法,列出两位体育老师各掷一枚一元硬币的各种等可能情况,再求出正面都朝上有几种情况,从而可求第四高级中学开球的概率.(2)先求出各自的概率,再计算得分,可判断设计对双双是否公平.【答案】(1)列表得:上下上上上上下下上下下下由表可知:第四高级中学开球的概率.(2)不公平.因为第四高级中学开球的概率,得分:;第六高级中学开球的概率,得分:,所以不公平.修改规则:如果两枚硬币朝上时,第四高级中学得12分,否则第六高级中学得4分,根据概率计算,谁的得分高,谁开球.【涉及知识点】概率, 画树状图或列表.【点评】本题考查学生对概率应用、以及设计规则公平性的能力,属于中挡性题,具有一定的区分度.【推荐指数】★★★★20.(2010湖北鄂州20,8分)春节期间,某客运站旅客流量不断增大,旅客往往需要长时间排队等候购票.经调查发现,每天开始售票时,约有400人排队购票,同时又有新的旅客不断进入售票厅排队等候购票.售票时售票厅每分钟新增购票人数4人,每分钟每个售票窗口出售的票数3张.某一天售票厅排队等候购票的人数y(人)与售票时间x(分钟)的关系如图所示,已知售票的前a分钟只开放了两个售票窗口(规定每人只购一张票).(1)求a的值.(2)求售票到第60分钟时,售票厅排队等候购票的旅客人数.(3)若要在开始售票后半小时内让所有的排队的旅客都能购到票,以便后来到站的旅客随到随购,至少需要同时开放几个售票窗口?【分析】(1) 由图象知,售票a分钟时还有320排队,可得到等式:400+新增排队人数-售票人数=320.(2)求出BC段函数解析式,把当时,代入解析式求出函数值.(3)半小时内售出票数大于或等于原有400人和半小时新增加人的所需票数. 【答案】(1)由图象知,,所以;(2)设BC的解析式为,则把(40,320)和(104,0)代入,得,解得,因此,当时,,即售票到第60分钟时,售票厅排队等候购票的旅客有220人;(3)设同时开放个窗口,则由题知,解得,因为为整数,所以,即至少需要同时开放6个售票窗口。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∴OCPA。又∵点O在APB的平分线上, ∴OC=OD。∴PB与圆O相切。 (2) 解:过点C作CFOP于点F。在Rt△PCO中,PC=4,OC=3, OP=5,=5,∵OCPC=OPCF=2S△PCO, ∴CF=。在Rt△COF中,OF==。∴EF=EOOF=, ∴CE==。 23. 解:(1) y=50x (0x160,且x是10的整数倍)。 (2) W=(50x)(180x20)= x234x8000; (3) W= x234x8000= (x170)210890,当x<170时,W随x增大而增大,但 0x160, ∴当x=160时,W最大=10880,当x=160时,y=50x=34。答:一天订住
O E F G H x y
mn=2(0m2,且m1)。∵点E、G是抛物线y1= x2x 分别与直线x=m,x=n的交点,∴点E、G坐标为 E(m,m2m),G(n,n2n)。同理,点F、H坐标 为F(m,m2m),H(n,n2n)。 ∴EF=m2m(m2m)=m22m1,GH=n2n(n2n)=n22n1。 ∵四边形EFHG是平行四边形,EF=GH。∴m22m1=n22n1,∴(mn2)
21. (本题满分7分) (1) 在平面直角坐标系中,将点A(3,4)向右平移5个单 位到点A1,再将点
A1绕坐标原点顺时针旋转90到点A2。直接写出点A1,A2的坐标; (2) 在平面直角坐标系中,将第二象限内的点B(a,b)向右平移m个单位
到第一象限点B1, 再将点B1绕坐标原点顺时针旋转90到点B2,直接写出点B1,B2的坐
提高。下图分别是某景点2007~2009年 游客总人数和旅游收入年增长率统计图。 已知该景点2008年旅游收入4500万元。 下列说法: 三年中该景点2009年旅 游收入最高; 与2007年相比,该景 点2009年的旅游收入增加了 [4500(129%)4500(133%)]万元; 若按2009年游客人数的年增长率计 算,2010年该 景点游客总人数将达到280(1)万人次。其中正确的个数是 (A) 0 (B) 1 (C) 2 (D) 3 。 12. 如图,在直角梯形ABCD中,AD//BC,ABC=90,BD
P M Q A B
O y x N
N(1,0),A(1,0),B(3,0),∴AB=4,MN=BN=2,MB=2, MBN=45。根据勾股定理有BM 2BN 2=PM 2PN 2。 ∴(2)222=PM2= (1x)2…,又MPQ=45=MBP, ∴△MPQ~△MBP,∴PM2=MQMB=y22…。 由、得y2=x2x。∵0x<3,∴y2与x的函数关系式为y2=x2x(0x<3)。 (3) 四边形EFHG可以为平行四边形,m、n之间的数量关系是
(2) 延长AC至点H,使CH=CA,连结BH,∵C为OB中点,
D C O P H A B
∴△BCH△OCA,∴CBH=O=90,BH=OA。由=, 设AD=t,OD=3t,则BH=OA=OB=4t。在Rt△BOD中, BD==5t,∵OA//BH,∴△HBP~△ADP, ∴===4。∴BP=4PD=BD=4t,∴BH=BP。 ∴tanBPC=tanH===。 (3) tanBPC=。 25. 解:(1) ∵拋物线y1=ax22axb经过A(1,0),C(0,)两点,∴,∴a= , b=,∴拋物线的解析式为y1= x2x。 (2) 作MNAB,垂足为N。由y1= x2x易得M(1,2),
y x A P O y1=kxb y2=mx
40。这组数据的中位数是 。 15. 如图,直线y1=kxb过点A(0,2),且与直线y2=mx交于点P(1,m),
则不等式组mx>kxb>mx2的解集是 。 16. 如图,直线y= xb与y轴交于点A,与双曲线y=在第一象
y A B C x O
限交于B、C两点,且AB·AC=4,则k= 。
34个房间时, 宾馆每天利润最大,最大利润是10880元。
24. 解:(1) 延长AC至点E,使CE=CA,连接BE,∵C为OB中点,
A B C D P O E
∴△BCE△OCA,∴BE=OA,E=OAC,∴BE//OA, ∴△APD~△EPB,∴=。又∵D为OA中点, OA=OB,∴==。∴==,∴=2。
(A) 8 (B) 4 (C) 2 (D) 0 。
正面
8. 如图所示,李老师办公桌上放着一个圆柱形茶叶盒和一个正方体
的墨水盒,小芳从上面看,看到的图形是 (A) (B) (C) (D)
A1 x y A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12
9. 如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平 行。从内到外,它们的边长依次为2,4,6,8,…,顶点依次用 A1,A2,A3,A4,…表示,则顶点A55的坐标是 (A) (13,13) (B) (13,13) (C) (14,14) (D) (14,14) 。
求弦CE的长。
23. (本题满分10分) 某宾馆有50个房间供游客住宿,当每个房间的房价为 每天180元时,房间
会全部住满。当每个房间每天的房价每增加10元时,就会有一个房间 空闲。宾馆需对游客
居住的每个房间每天支出20元的各种费用。根据规定,每个房间每天 的房价不得高于340
元。设每个房间的房价每天增加x元(x为10的正整数倍)。 (1) 设一天订住的房间数为y,直接写出y与x的函数关系式及自变量x的
A B C D P O D C O P A B D C O P A B 圖1 圖2
圖3
25. (本题满分12分) 如图,拋物线y1=ax22axb经过A(1,0),
P M Q A B O y x
C(2,)两点,与x轴交于另一点B; (1) 求此拋物线的解析式; (2) 若拋物线的顶点为M,点P为线段OB上一动点(不与点 B重合),点Q在线段MB上移动,且MPQ=45,设线 段OP=x,MQ=y2,求y2与x的函数关系式,并直接写出自变量x的取值
N E B C D A
H
DC,BD=DC,CE平分BCD,交AB于点E,交BD于 点H,EN//DC交BD于点N。下列结论:
BH=DH; CH=(1)EH; =; 其中正确的是 (A) (B) 只有 (C) 只有 (D) 只有 。
第Ⅱ卷(非选择题,共84分) 二、填空题 (共4小题,每小题3分,共12分) 13. 计算:sin30= ,(3a2)2= ,= 。 14. 某校八年级(2)班四名女生的体重(单位:kg)分别是:35,36,38,
1 0 2
(A) x> 1,x>2 (B) x> 1,x<2 (C) x< 1,x<2 (D) x<1,x>2 。 4. 下列说法: “掷一枚质地均匀的硬币一定是正面朝上”; “从一副普通
扑克牌中任意抽取 一张,点数一定是6”; (A) 都正确 (B) 只有正确 (C) 只有正确 (D) 都错误 。 5. 2010年上海世博会开园第一个月共售出门票664万张,664万用科学计
数法表示为
A B C D
(A) 664104 (B) 66.4105 (C) 6.64106 (D) 0.664107 。 6. 如图,△ABC内有一点D,且DA=DB=DC,若DAB=20,DAC=30, 则BDC的大小是 (A) 100 (B) 80 (C) 70 (D) 50 。 7. 若x1,x2是方程x2=4的两根,则x1x2的值是
A B C D
O
10. 如图,圆O的直径AB的长为10,弦AC长为6,AC'B的平 分线交圆O于D,则CD长为 (A) 7 (B) 7 (C) 8 (D) 9 。
11. 随着经济的发展,人们的生活水平不断
2007 人数/万人次
年份 2008 2009 250 255 280 年增长率/% 年份 2007 2008 2009 33 29 16
三、解答题 (共9小题,共72分) 17. (本题满分6分) 解方程:x2x1=0。 18. (本题满分6分) 先化简,再求值:(x2),其中x=3。 19. (本题满分6分) 如图。点B,F,C,E在同一条直线上,点A,D
D E F A B C
在直线BE的两侧,AB//DE,AC//DF,BF=CE。求证:AC=DF。
12. B,
二、填空题
13. ,9a4,5, 14. 37, 15. 1<x<2, 16. ,
三、解答题
17. 解:∵a=1,b=1,c= 1,∴=b24ac=141(1)=5,∴x=。
18. 解:原式===2(x3),当x=3时,原式=2。
19.
证明:∵AB//DE,∴ABC=DEF,∵AC//DF,∴ACB=DFE,
标; (3) 在平面直角坐标系中。将点P(c,d)沿水平方向平移n个单位到点P1,
再将点P1绕坐标 原点顺时针旋转90到点P2,直接写出点P2的坐标。
22. (本题满分8分) 如图,点O在APB的平分在线,圆O与PA相切于
A B C O E P
点C; (1) 求证:直线PB与圆O相切; (2) PO的延长线与圆O交于点E。若圆O的半径为3,PC=4。
2010湖北武汉市中考数学试卷
亲爱的同学,在你答题前,请认真阅读下面以及“答卷”上的注意事 项: 1. 本试卷由第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分组成。全卷共6 页,三大题,满分120
分。考试用时120分钟。 2. 答题前,请将你的姓名、准考证号填写在“答卷”相应位置,并在“答 卷”背面左上角填写姓 名和准考证号后两位。 3. 答第Ⅰ卷(选择题)时,选出每小题答案后,用2B铅笔把“答卷”上对 应题目的答案标号涂 黑。如需改动,用橡皮擦干净后。再选涂其它答案,不得答在“试 卷”上。 4. 第Ⅱ卷(非选择题)用0.5毫米黑色笔迹签字笔书写在“答卷”上。答 在“试卷”上无效。 预祝你取得优异成绩! 第Ⅰ卷 (选择题,共36分) 一、选择题 (共12小题,每小题3分,共36分) 下列各题中均有四个备选答案,其中有且只有一个正确,请在答卷上 将正确答案的代号涂黑。 1. 有理数2的相反数是 (A) 2 (B) 2 (C) (D) 。 2. 函数y=中自变量x的取值范围是 (A) x1 (B) x 1 (C) x1 (D) x 1 。 3. 如图,数轴上表示的是某不等式组的解集,则这个不等式组可能是