【全国百强校】湖南省长沙市湖南师范大学附属中学2019届高三高考模拟(二)数学(文)试题

合集下载

湖南师大附中2019届高考模拟卷(二)理科数学(PDF)

湖南师大附中2019届高考模拟卷(二)理科数学(PDF)

2
直角坐标.
23. (本题满分 10 分) 选修 4 5 :不等式选讲 设 f (x) x 1 x 1 .
(1)求 f (x) x 2 的解集;
a 1 2a 1
(2)若不等式 f (x)
对任意实数 a 0 恒成立,求实数 x 的取值范围.
a
CABBA BDCDC DC
则m

三、解答题:共 70 分.解答应写出文字说明、证明过程或演算步骤,第 17~21 题为必考题,
每个试题考生都必须作答.第 22、23 题为选考题,考生根据要求作答.
(一)必考题:共 60 分.
17. (本题满分 12 分)
已知在△ ABC 中, D , E 分别为边 AB , BC 的中点, 2 AB AC AB AC .
(1)若 2 AB AC AB CD ,且△ ABC 的面积为 3 3 ,求边 AC 的长; (2) 若 BC 3 ,求线段 AE 长的最大值.
18. (本题满分 12 分)
如图1,四边形 ABCD 为直角梯形, AD // BC , AD AB , AD 1, BC 2 , E 为 CD 上一点, F 为 BE 的中点,且 DE 1, EC 2 ,现将梯形沿 BE 折叠(如图 2 ), 使平面 BCE 平面 ABED .
(1)求证: 平面 ACE 平面 BCE ; (2)能否在边 AB 上找到一点 P (端点除外)使平面 ACE 与平面 PCF 所成角的余弦值为
6 ?若存在,试确定点 P 的位置,若不存在,请说明理由. 3
19. (本题满分 12 分)
近期,某市公交公司推出扫码支付1分钱乘车活动,活动设置了一段时间的推广期,由 于推广期内优惠力度较大,吸引越来越多的人开始使用扫码支付. 629 路公交车统计了活 动刚推出一周内每一天使用扫码支付的人次,用 x 表示活动推出的天数,y 表示每天使用扫

湖南师大附属中学2019届高三高考二模数学文科试题解析卷

湖南师大附属中学2019届高三高考二模数学文科试题解析卷

编号落在区间 1, 200 的人做试卷 A ,编号落在 201,560 的人做试卷 B ,其余的人做试卷 C ,则做试卷 C 的
人数为( )
A. 10
B. 12
C. 18
D. 28
【答案】B
【解析】
800 40 20 ,由题意可得抽到的号码构成以18 为首项,以 20 为公差的等差数列,且此等差数列的
5
D. 当直线 AB 、 CD 异面时, MN 可能与 l 平行
【答案】B 【解析】 【分析】 根据直线与直线的位置关系依次判断各个选项,排除法可得结果.
【详解】A 选项:当 CD 2 AB 时,若 A, B,C, D 四点共面且 AC / / BD 时,则 M , N 两点能重合,可知 A
错误;
1
2b6 a62

tan 3 13

tan
7 3

tan
3


3
本题正确选项: D
【点睛】本题考查等差数列、等比数列性质的应用,其中还涉及到诱导公式的知识,属于基础题.
4.某校为了解本校高三学生学习的心理状态,采用系统抽样方法从 800 人中抽取 40 人参加某种测试,为此 将他们随机编号为1, 2,...,800 ,分组后在第一组采用简单随机抽样的方法抽到的号码为18 ,抽到的 40 人中,11.已知双曲线 Nhomakorabeax2 a2

y2 b2
1a 0,b 0 的一条渐近线为 l ,圆 C : x2
y b2
4 与 l 交于第一象限 A 、B
两点,若 ACB

3
,且
OB
3 OA
,其中 O 为坐标原点,则双曲线的离心率为(

湖南师范大学附属中学2019届高三下学期高考模拟(二)数学(理)试题

湖南师范大学附属中学2019届高三下学期高考模拟(二)数学(理)试题

最新试卷多少汗水曾洒下,多少期待曾播种,终是在高考交卷的一刹尘埃落地,多少记忆梦中惦记,多少青春付与流水,人生,总有一次这样的成败,才算长大。

理科数学试题(附中版)温馨提示:多少汗水曾洒下,多少期待曾播种,终是在高考交卷的一刹尘埃落地,多少记忆梦中惦记,多少青春付与流水,人生,总有一次这样的成败,才算长大。

高考保持心平气和,不要紧张,像对待平时考试一样去做题,做完检查一下题目,不要直接交卷,检查下有没有错的地方,然后耐心等待考试结束。

湖南师大附中2018-2019高考模拟卷(二)数学(理科)本试题卷包括选择题、填空题和解答题三部分,共8页。

时量120分钟。

满分150分。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合A={20,17},B={x|x=a+b,a∈A,b∈A},则集合B中元素个数为()A. 1B. 2C. 3D. 4【答案】C【解析】A={20,17},B={x|x=a+b,a∈A,b∈A}故选C.2. 设i是虚数单位,复数z=,则|z|=()A. 1B.C.D. 2【答案】B【解析】.故选B.3. 右边的茎叶图记录了甲、乙两名同学在10次英语听力比赛中的成绩(单位:分),已知甲得分的中位数为76分,乙得分的平均数是75分,则下列结论正确的是()A. x甲=76,x乙=75B. 甲数据中x=3,乙数据中y=6C. 甲数据中x=6,乙数据中y=3D. 乙同学成绩较为稳定【答案】C【解析】因为甲得分的中位数为76分,所以x=6,因为乙得分的平均数是75分,所以,解得y=3,故选C.4. 已知双曲线-=1的一条渐近线方程为y=-x,则此双曲线的离心率为()A. B. C. D.【答案】C【解析】已知双曲线的一条渐近线方程为,所以:.离心率为.故选C.5. 一算法的程序框图如图所示,若输出的y=,则输入的x可能为()A. -1B. 1C. 1或5D. -1或1【答案】B【解析】若,符合题意;若,不满足故错误.所以选.6. 平面α外的一侧有一个三角形,三个顶点到平面α的距离分别是7、9、13,则这个三角形的重心到平面α的距离为( )A. B. 10 C. 8 D.【答案】A【解析】如图过点A作平面β∥α则β、α之间的距离为7,B到β的距离为9-7=2,C到β的距离为13-7=6,利用梯形中位线易求得BC中点D到β的距离为,而重心G在AD上,且,重心G到β的距离为d′=4×,故重心G到α的距离为d=4×+7=.故选A.7. 设数列{a n},{b n}都是正项等比数列,S n、T n分别为数列{lg a n}与{lg b n}的前n项和,且=,则log b5a5=( )A. B. C. D.【答案】D【解析】故选D.8. 若某几何体的三视图如图所示,则该几何体的体积是( )A. 15B. 20C. 25D. 30【答案】B【解析】V=×3×4×5-×5=20.故选B.点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.9. 在的展开式中,只有第5项的二项式系数最大,则展开式中常数项是( )A. -7B. 7C. -28D. 28【答案】B【解析】试题分析:由题意,,令,,故常数项为.故选B.考点:二项式定理的应用.【名师点睛】1.二项式系数最大项的确定方法(1)如果n是偶数,则中间一项的二项式系数最大;(2)如果n是奇数,则中间两项.2.求二项展开式中的指定项,一般是利用通项公式进行化简通项公式后,令字母的指数符合要求(求常数项时,指数为零;求有理项时,指数为整数等),解出项数r+1,代回通项公式即可.10. 已知椭圆E的左、右焦点分别为F1,F2,过F1且斜率为2的直线交椭圆E于P,Q两点,若△PF1F2为直角三角形且|PF1|<|F1F2|,则椭圆E的离心率为( )A. B. C. D.【答案】A【解析】由题意得PF1⊥PF2,由tan θ=2sin θ=,cos θ=,∴|PF2|=c,|PF1|=c,从而|PF1|+|PF2|=c=2a,∴e=.故选A.11. 定义在R上的奇函数f(x)满足f(2-x)=f(x),当x∈[0,1]时,f(x)=.又函数g(x)=cos,x∈[-3,3],则函数F(x)=f(x)-g(x)的所有零点之和等于( )A. -B. -C.D.【答案】D【解析】f(x)=g(x)x=,和为,选D.点睛:对于函数与方程函数零点的求法:①(代数法)求方程的实数根;②(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点;将方程转化为两个函数的交点,数形结合.12. 已知数列{a n},a n≥0,a1=0,a n+12+a n+1-1=a n2(n∈N*).对于任意的正整数n,不等式t2-a n2-3t-3a n≤0恒成立,则正数t的最大值为( )A. 1B. 2C. 3D. 6【答案】C【解析】易证得数列{a n}是递增数列,又t2-a n2-3t-3a n=(t-a n-3)(t+a n)≤0,t+a n>0,∴t≤a n+3恒成立,t≤(a n+3)min=a1+3=3,∴t max=3.故选C.点睛:恒成立问题往往是采用变量分离,得到参变量与另一代数式的大小关系,进而转成求最值即可,对于数列的最值问题常用的方法有三个:一是借助函数的单调性找最值,比如二次型的,反比例型的,对勾形式的等等;二是作差和0比利用数列的单调性求最值;三是,直接设最大值项,列不等式组大于等于前一项,大于等于后一项求解.第Ⅱ卷本卷包括必考题和选考题两部分.第(13)~(21)题为必考题,每个试题考生都必须作答.第(22)~(23)题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.把各题答案的最简形式写在题中的横线上.13. 设x,y∈R,向量a=(x,2),b=(1,y),c=(2,-6),且a⊥b,b∥c,则=____.【答案】【解析】向量a=(x,2),b=(1,y),且a⊥b,b∥c所以,,解得.则14. 设变量x、y满足约束条件:则z=x2+y2的最大值是_____.【答案】8【解析】作出约束条件所对应的可行域(如图△ABC),而z=x2+y2表示可行域内的点到原点距离的平方,数形结合可得最大距离为OC或OA=2,故答案为:8.点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一、准确无误地作出可行域;二、画标准函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三、一般情况下,目标函数的最大或最小会在可行域的端点或边界上取得.15. 圆x2+y2=1上任意一点P,过点P作两直线分别交圆于A,B两点,且∠APB=60°,则|PA|2+|PB|2的取值范围为___.【答案】(5,6]【解析】过点P做直径PQ,如图,根据题意可得:|PQ|=2.令∠APQ=θ,则∠BPQ=-θ.由题意可知:0<θ<.那么,|P A|=|PQ|cos θ=2cos θ,|PB|=|PQ|cos=2cos.|P A|2+|PB|2=(2cos θ)2+=4=4=4cos2θ+=2cos2θ+2sin θcos θ+3=sin 2θ+cos 2θ+4=2+4=2sin+4.∵0<θ<,∴0<2θ<,∴<2θ+<,∴<sin≤1.∴5<2sin+4≤6.因此,|P A|2+|PB|2的取值范围为(5,6].16. 已知函数f(x)=x|x2-12|的定义域为[0,m],值域为[0,am2],则实数a的取值范围是_____.【答案】a≥1........................令x3-12x=16,解得,x=4.作出函数的图象(如右图所示).函数f(x)的定义域为[0,m],值域为[0,am2],分为以下情况考虑:①当0<m<2时,函数的值域为[0,m(12-m2)],有m(12-m2)=am2,所以a=-m,因为0<m<2,所以a>4;②当2≤m≤4时,函数的值域为[0, 16],有am2=16,所以a=,因为2≤m≤4,所以1≤a≤4;③当m>4时,函数的值域为[0,m(m2-12)],有m(m2-12)=am2,所以a=m-,因为m>4,所以a>1.综上所述,实数a的取值范围是a≥1.三、解答题:本大题共70分.解答应写出文字说明、证明过程或演算步骤.17. 已知函数f(x)=sin ωx cos ωx-sin2ωx+1(ω>0)图象的相邻两条对称轴之间的距离为.(Ⅰ)求ω的值及函数f(x)的单调递减区间;(Ⅱ)如图,在锐角三角形ABC中有f(B)=1,若在线段BC上存在一点D使得AD=2,且AC=,CD=-1,求三角形ABC的面积.【答案】(Ⅰ) ;(Ⅱ) .【解析】试题分析:(Ⅰ)利用倍角公式降幂,结合辅助角公式化一可得正弦型函数,进而结合正弦函数性质即可求解;(Ⅱ)讲f(B)=1代入解析式得B=,在△ADC中由余弦定理可得cos C=,解出三角形即可求面积.试题解析:(Ⅰ)f(x)=sin 2ωx-+1=sin+.因为相邻两条对称轴之间的距离为,所以T=π,即=π,所以ω=1.故f(x)=sin+.令+2kπ≤2x+≤+2kπ(k∈Z),解得+kπ≤x≤+kπ(k∈Z).所以f(x)的单调递减区间为(k∈Z).(Ⅱ)由f(B)=sin+=1,即sin=.由0<B<得<2B+<,所以2B+=,解得B=.再由已知:AC=,CD=-1,AD=2.∴在△ADC中,由AD2=AC2+CD2-2AC·CD·cos C,得cos C=,又∠C∈(0°,90°),∴∠C=45°,∴∠BAC=180°-∠B-∠C=75°.在△ABC中,由=,得AB=2,∴S△ABC=·AB·AC·sin∠BAC=×2××=.18. 如图,四棱锥P-ABCD中,底面ABCD为梯形,PD⊥底面ABCD,AB∥CD,AD⊥CD,AD=AB=1,BC=.(Ⅰ)求证:平面PBD⊥平面PBC;(Ⅱ)设H为CD上一点,满足=2,若直线PC与平面PBD所成的角的正切值为,求二面角H-PB-C的余弦值.【答案】(Ⅰ)见解析;(Ⅱ) .【解析】试题分析:(Ⅰ)通过勾股定理可得BC⊥BD,利用面面垂直的判定定理即得结论;(Ⅱ)通过题意以D为原点,DA、DC、DP分别为x、y、z轴建立坐标系,所求二面角的余弦值即为平面HPB的一个法向量与平面PBC的一个法向量的夹角的余弦值,计算即可.试题解析:(Ⅰ)证明:由AD⊥CD,AB∥CD,AD=AB=1BD=,又BC=,∴CD=2,∴BC⊥BD,因为PD⊥底面ABCD,∴BC⊥PD.因为PD∩BD=D,所以BC⊥平面PBD,所以平面PBD⊥平面PBC.(Ⅱ)由(Ⅰ)可知∠BPC为PC与底面PBD所成的角.所以tan∠BPC=,所以PB=,PD=1,又=2及CD=2,可得CH=,DH=.以D点为坐标原点,DA,DC,DP分别x,y,z轴建立空间坐标系,则B(1,1,0),P(0,0,1),C(0,2,0),H.设平面HPB的法向量为n=(x1,y1,z1),则由得取n=(1,-3,-2),设平面PBC的法向量为m=(x2,y2,z2),则由得取m=(1,1,2).所以cos〈m·n〉==-,所以二面角H-PB-C余弦值为.点睛:利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.19. 某次数学测验共有10道选择题,每道题共有四个选项,且其中只有一个选项是正确的,评分标准规定:每选对1道题得5分,不选或选错得0分,某考试每道都选并能确定其中有6道题能选对,其余4道题无法确定正确选项,但这4道题中有2道能排除两个错误选项,另2题只能排除一个错误选项,于是该生做这4道题时每道题都从不能排除的选项中随机挑选一个选项做答,且各题做答互不影响.(Ⅰ)求该考生本次测验选择题得50分的概率;(Ⅱ)求该考生本次测验选择题所得分数的分布列和数学期望.【答案】(Ⅰ) ;(Ⅱ)见解析.【解析】试题分析:(Ⅰ)设选对一道“能排除2个选项的题目”为事件A,选对一道“能排除1个选项的题目”为事件B,该考生选择题得50分的概率为P(A)P(A)P(B)P (B),由此能求出结果.(Ⅱ)该考生所得分数X=30,35,40,45,50,分别求出P(X=30),P(X=35),P(X=40),P(X=45),P(X=50),由此能求出X的分布列和数学期望.试题解析:(Ⅰ)设选对一道“能排除2个选项的题目”为事件A,选对一道“能排除1个选项的题目”为事件B,则P(A)=,P(B)=,该考生选择题得50分的概率为:P(A)P(A)P(B)P(B)=·=.(Ⅱ)该考生所得分数X=30,35,40,45,50,P(X=30)==,P(X=35)=C21+·C21··=,(6分)P(X=40)=+C21C21··+=,P(X=45)=C21+C21··=,P(X=50)==,∴X的分布列为:X 30 35 40 45 50PEX=30×+35×+40×+45×+50×=.20. 已知椭圆C:+=1(a>b>0)的焦点F与抛物线E:y2=4x的焦点重合,直线x-y+=0与以原点O为圆心,以椭圆的离心率e为半径的圆相切.(Ⅰ)直线x=1与椭圆交于不同的两点M,N,椭圆C的左焦点F1,求△F1MN的内切圆的面积;(Ⅱ)直线l与抛物线E交于不同两点A,B,直线l′与抛物线E交于不同两点C,D,直线l与直线l′交于点M,过焦点F分别作l与l′的平行线交抛物线E于P,Q,G,H四点.证明:=.【答案】(Ⅰ) ;(Ⅱ)见解析.【解析】试题分析:(Ⅰ)利用条件得椭圆方程,将x=1代入椭圆得M,N坐标,求出△F1MN 的周长和面积,进而得内切圆半径;(Ⅱ)设出直线方程与椭圆联立,利用韦达定理结合弦长公式表示弦长,进而化简运算即可证明.试题解析:(Ⅰ) 依题意,得c=1,e==,即=,∴a=2,∴b=,∴所求椭圆C的方程为+=1.直线l的方程为x=1,得M,N,设△F1MN的内切圆的半径为R,则△F1MN的周长=4a=8,S△F1MN=(|MN|+|F1M|+|F1N|)R=4R.又因为S△F1MN=3=4R,∴R=,所求内切圆的面积为π.(Ⅱ)设直线l和l′的方程分别为x=k1y+m1,x=k2y+m2,设A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),由方程组得y2-4k1y-4m1=0①方程①的判别式Δ>0,得4k12+4m1>0.由①得y1+y2=4k1,y1y2=-4m1,由方程组得y2-4k2y-4m2=0②方程②的判别式Δ>0,得4k22+4m2>0.由②得y3+y4=4k2,y3y4=-4m2.联立直线l与直线l′的方程可得:M点坐标为.因为|MA|·|MB|=(1+k12),代入计算得,|MA|·|MB|=·|(m2-m1)2+4k1k2(m1+m2)-4(m1k22+m2k12)|.同理可得|MC|·|MD|=(1+k22)=·.因此=.由于PQ,HG分别与直线l和直线l′平行,故可设其方程分别为x=k1y+1,x=k2y+1.由方程组得y2-4k1y-4=0.③由③得y P+y Q=4k1,y P y Q=-4,因此|PQ|=x P+x Q+p=k1(y P+y Q)+4=4(1+k12).同理可得|HG|=x H+x G+p=k1(y H+y G)+4=4(1+k22).故=.所以=.点睛:定点、定值问题通常是通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒定的. 定点、定值问题同证明问题类似,在求定点、定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定点、定值显现.21. 已知函数φ(x)=,a为正常数.(Ⅰ)若f(x)=ln x+φ(x),且a=4,讨论函数f(x)的单调性;(Ⅱ)若g(x)=|ln x|+φ(x),且对任意x1,x2∈(0,2],x1≠x2都有<-1.(ⅰ)求实数a的取值范围;(ⅱ)求证:当x∈(0,2]时,g(x)≥ln 2+.【答案】(Ⅰ)见解析;(Ⅱ) (ⅰ) ;(ⅱ)见解析.【解析】试题分析:(1)先对函数y=f(x)进行求导,然后令导函数大于0(或小于0)求出x的范围,根据f′(x)>0求得的区间是单调增区间,f′(x)<0求得的区间是单调减区间,即可得到答案.(2)设h(x)=g(x)+x,依题意得出h(x)在(0,2]上是减函数.(ⅰ)下面对x分类讨论:①当1≤x≤2时,②当0<x<1时,利用导数研究函数的单调性从及最值,即可求得求a 的取值范围.(ⅱ) h(x)在(0,2]上是减函数,所以h(x)≥h(2),即g(x)+x≥ln 2++2,由a的范围放缩得:g(x)≥ln 2++2-x,进而构造函数T(x)=ln 2++2-x,利用单调性即可证得.试题解析:(Ⅰ)当a=4时,f(x)=ln x+,定义域为(0,+∞),又f′(x)=-=≥0,所以函数f(x)在(0,+∞)上单调递增.(Ⅱ)因为<-1,所以+1<0,<0 .设h(x)=g(x)+x,依题意,h(x)在(0,2]上是减函数,h′(x)≤0恒成立.(ⅰ)①当1≤x≤2时,h(x)=ln x++x,h′(x)=-+1≤0.从而,a≥+(x+1)2=x2+3x++3对x∈[1,2]恒成立.设m(x)=x2+3x++3,x∈[1,2],则m′(x)=2x+3->0.所以m(x)在[1,2]上是增函数,则当x=2时,m(x)有最大值为,所以a≥.②当0<x<1时,h(x)=-ln x++x,h′(x)=--+1≤0.从而,a≥-+(x+1)2=x2+x--1.设t(x)=x2+x--1,则t′(x)=2x+1+>0,所以t(x)在(0,1)上是增函数.所以t(x)<t(1)=0,所以a≥0.综合①②,又因为h(x)在(0,2]上图形是连续不断的,所以a≥.(ⅱ)因为h(x)在(0,2]上是减函数,所以h(x)≥h(2),即g(x)+x≥ln 2++2.由(ⅰ)得,a≥,∴g(x)+x≥ln 2++2≥ln 2++2,∴g(x)+x≥ln 2++2,当且仅当x=2时等号成立.从而g(x)≥ln 2++2-x.令T(x)=ln 2++2-x,则T(x)在(0,2]上单调递减.∴T(x)≥T(2)=ln 2+.∴T(x)≥ln 2+.选做题:请考生在第(22)、(23)两题中任选一题做答,如果多做,则按所做的第一题计分.22. 选修4—4:坐标系与参数方程(Ⅰ)如图,以过原点的直线的倾斜角θ为参数,求圆x2+y2-x=0的参数方程;(Ⅱ)在平面直角坐标系中,已知直线l的参数方程为 (s为参数),曲线C的参数方程为 (t为参数),若l与C相交于A,B两点,求AB的长.【答案】(Ⅰ) 为参数);(Ⅱ) .【解析】试题分析:(Ⅰ)有图像可知x P=+cos 2θ=cos2θ,y P=sin 2θ=sin θcos θ即得;(Ⅱ)联立解得交点,进而得线段长.试题解析:(Ⅰ)圆的半径为,记圆心为C,连结CP,则∠PCx=2θ,故x P=+cos 2θ=cos2θ,y P=sin 2θ=sin θcos θ(θ为参数).所以圆的参数方程为(θ为参数).(Ⅱ)直线l的普通方程为x+y=2,曲线C的普通方程为y=(x-2)2(y≥0),联立两方程得x2-3x+2=0,求得两交点坐标为(1,1),(2,0),所以AB=.23. 选修4—5:不等式选讲设函数f(x)=|x-a|+3x,其中a>0.(Ⅰ)当a=2时,求不等式f(x)≥3x+2的解集;(Ⅱ)若不等式f(x)≤0的解集为{x|x≤-1},求a的值.【答案】(Ⅰ) {x|x≥4或x≤0};(Ⅱ) a=2.【解析】(I)当a=1时,不等式转化为,此不等式易解.(II)解本小题关键是把转化为,然后再讨论去绝对值转化为或即或求解.解:(Ⅰ)当时,可化为.由此可得或.故不等式的解集为或.…………5 分(Ⅱ) 由得此不等式化为不等式组或即或因为,所以不等式组的解集为由题设可得=,故…………10分。

2019届湖南师大附中高三高考模拟卷(二)理数答案

2019届湖南师大附中高三高考模拟卷(二)理数答案

" #
&底面梯形下底边长为"&上底边长为
" #
&高为""的剩余部分&
! " 所以几何体的体积为("!
" &
7
" #
7
" #
7
"0
" #
7"1
* +
&故选
.3
*!/!$解析%在不超过#$的素数中有#&&&(&*&""&"&&"*&"%共+个&随机选取两个不 同的数共有,#+1#+种&随机选取两个不同的数&其和等于#$有#种&故可得随机选取

/*1,-1#槡#&;<=.1
" &
&
#分
槡 则-81
'0'!#7#7#7
" &
1'&槡&&=56
-./*1
" &
&
槡 则,81
"0"0#7"7"7
" &
1#&槡)&
2,8#0-8#1,-#& '分 故,8+-8&且折叠后,8 与-8 位置关系不变& 又9平面 -.8+平面 ,-8/&且平面 -.8/平面 ,-8/1-8& 2,8+平面-.8&9,80平面,.8&2平面,.8+平面-.8! )分

湖南师大附中2019届高三高考模拟卷(二) 数学(理) (含解析)

湖南师大附中2019届高三高考模拟卷(二) 数学(理) (含解析)

炎德·英才大联考湖南师大附中2019届高考模拟卷(二)数 学(理科)审题:高三数学备课组时量:120分钟 满分:150分一、选择题:本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M ={x|x =k 4+12,k ∈Z },N ={x|x =k 2+14,k ∈Z },则(C)A .M =NB .M NC .N MD .M ∩N =2.若复数z =(1-ai)(a +2i)在复平面内对应的点在第一象限,其中a ∈R ,i 为虚数单位,则实数a 取值范围是(A)A .(0,2)B .(2,+∞)C .(-∞,-2)D .(-2,0) 3.如果等差数列a 1,a 2,…,a 8的各项都大于零,公差d ≠0,则(B) A .a 1+a 8>a 4+a 5 B .a 1a 8<a 4a 5 C .a 1+a 8<a 4+a 5 D .a 1a 8>a 4a 5 【解析】由a 1+a 8=a 4+a 5,∴排除A 、C. 又a 1·a 8=a 1(a 1+7d)=a 21+7a 1d ,∴a 4·a 5=(a 1+3d)(a 1+4d)=a 21+7a 1d +12d 2>a 1·a 8,故选B. 4.若函数y =cos ⎝⎛⎭⎫ωx +π6(ω∈N *)图象的一个对称中心是⎝⎛⎭⎫π6,0,则ω的最小值为(B)A .1B .2C .4D .8【解析】由题知πω6+π6=k π+π2(k ∈Z )ω=6k +2(k ∈Z ),故ωmin =2.5.学校为了调查学生在课外读物方面的支出情况,抽出了一个容量为n 的样本,其频率分布直方图如图所示,其中支出在[50,60)元的同学有30人,则n 的值为(A)A .100B .1000C .90D .900【解析】支出在[50,60)元的频率为1-(0.1+0.24+0.36)=0.3.∴样本容量n =300.3=100.6.已知一个几何体的三视图如图所示(正方形的边长为1),则该几何体的体积为(B)A.34B.78C.1516D.2324【解析】由题意可知几何体的形状如图,是长方体中截出的棱锥(底面是梯形,高为12,底面梯形下底边长为1,上底边长为12,高为1)的剩余部分,所以几何体的体积为:1-13×12×12×⎝⎛⎭⎫1+12×1=78,故选B. 7.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,在不超过20的素数中,随机选取两个不同的数,其和等于20的概率是(D)A.112B.115C.118D.114【解析】在不超过20的素数中有2,3,5,7,11,13,17,19共8个,随机选取两个不同的数共有C 28=28种,随机选取两个不同的数,其和等于20有2种,故可得随机选取两个不同的数,其和等于20的概率P =114,故选D.8.下列图象可以作为函数f(x)=xx 2+a的图象有(C)A .1个B .2个C .3个D .4个【解析】当a<0时,如取a =-4,则f(x)=xx 2-4,其定义域为:{x|x ≠±2},它是奇函数,图象是(3),所以(3)是正确的;当a>0时,如取a =1,则f(x)=xx 2+1,其定义域为R ,它是奇函数,图象是(2),所以(2)是正确的;当a =0时,则f(x)=1x ,其定义域为:{x|x ≠0},它是奇函数,图象是(4),所以(4)正确.故选C.9.已知点集M ={}(x ,y )|1-x 2·1-y 2≥xy ,则平面直角坐标系中区域M 的面积是(D)A .1B .3+π4C .πD .2+π2【解析】当xy ≤0时,只需要满足x 2≤1,y 2≤1即可;当xy>0时,对不等式两边平方整理得到x 2+y 2≤1,所以区域M 如下图.易知其面积为2+π2.10.已知向量a =⎝⎛⎭⎫52,0,b =(0,5)的起点均为原点,而终点依次对应点A ,B ,线段AB 边上的点P ,若OP →⊥AB →,OP →=x a +y b ,则x ,y 的值分别为(C)A.15,45B.43,-13C.45,15 D .-13,43【解析】OP →=x a +y b =x ⎝⎛⎭⎫52,0+y(0,5)=⎝⎛⎭⎫52x ,5y , AB →=b -a =⎝⎛⎭⎫-52,5, ∵OP →⊥AB →,∴-254x +25y =0x =4y ,①又∵A ,B ,P 三点共线,∴x +y =1,②由①②得 x =45,y =15.故选C.11.如图,在长方体ABCD -A 1B 1C 1D 1中,||AB =||AD =3,||AA 1=1,而对角线A 1B上存在一点P ,使得||AP +||D 1P 取得最小值,则此最小值为(D)A .2B .3C .1+ 3D.7【解析】把对角面A 1BCD 1绕A 1B 旋转到与△AA 1B 在同一平面上的位置,连接AD 1,在△AA 1D 1中,|AA 1|=1,|A 1D 1|=3,∠AA 1D 1=∠AA 1B +90°=150°,则|AP|+|D 1P|的最小值为:AD 1=12+(3)2-2×1×3×cos 150°=7,故选D. 12.已知a>0,函数f(x)=e x -a -ln (x +a)-1(x>0)的最小值为0,则实数a 的取值范围是(C)A.⎝⎛⎦⎤0,12B.⎣⎡⎭⎫12,1 C.⎩⎨⎧⎭⎬⎫12 D . 【解析】由题意知f(a)=e a -a -ln(a +a)-1≥0,即0<a ≤12.①当0<a<12时,f(x)=e x -a -ln(x +a)-1≥[(x -a)+1]-[(x +a)-1]-1=-2a +1>0不符合题意,舍去;②当a =12时,f(x)=ex -12-ln ⎝⎛⎭⎫x +12-1≥⎣⎡⎦⎤⎝⎛⎭⎫x -12+1-⎣⎡⎦⎤⎝⎛⎭⎫x +12-1-1=0⎝⎛⎭⎫当x =12时取等号.则a =12,故选C.二、填空题:本大题共4个小题,每小题5分,满分20分.请把答案填在答题卷对应题号后的横线上.13.定积分⎠⎛-11(e x -e -x )dx =__0__.14.(x -y)(x +y)8的展开式中x 2y 7的系数为__-20__.(用数字填写答案)【解析】(x +y)8中,T r +1=C r 8x 8-r y r ,令r =7,再令r =6,得x 2y 7的系数为C 78-C 68=8-28=-20.15.已知椭圆C 1:x 2a 2+y 2b 2=1(a>b>0)与双曲线C 2:x 2-y 2=4有相同的右焦点F 2,点P是椭圆C 1和双曲线C 2的一个公共点,若||PF 2=2,则椭圆C 1的离心率为2. 【解析】设另一个焦点是F 1,由双曲线的定义可知||PF 1-||PF 2=4,||PF 1=6, 2a =8,a =4,c =22,故e =c a =224=22.16.已知数列{}a n ,{}b n 均为等差数列,且a 1b 1=m ,a 2b 2=4,a 3b 3=8,a 4b 4=16,则m =__4__.【解析】设a n =an +b ,b n =cn +d ,则a n b n =()an +b ()cn +d =acn 2+(bc +ad)n +bd , 令c n =a n b n ,则d n =c n +1-c n =2acn +(ac +ad +bc)构成一个等差数列,故由已给出的a 2b 2=4,a 3b 3=8,a 4b 4=16,可求得m =4.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分. 17.(本题满分12分)已知在△ABC 中, D ,E 分别为边AB ,BC 的中点, 2AB →·AC →=||AB →·||AC→, (1)若2AB →·AC →=AB →·CD →,且△ABC 的面积为33,求边AC 的长; (2)若BC =3,求线段AE 长的最大值.【解析】设BC =a ,AC =b ,AB =c ,由2AB →·AC →=||AB →·||AC→,得2bccos A =bc ,所以cos A =12,又A ∈(0,π),因此A =π3.2分(1)由2AB →·AC →=AB →·CD →,即2AB →·AC →=AB →·(CA →+12AB →),得3bc =c 2,即3b =c.又因为S △ABC =12bcsin A =334b 2=33,所以b =2,即边AC 的长为2.7分(2)因为E 为边BC 的中点,所以AE →=12(AB →+AC →),即AE →2=14(AB →+AC →)2=14(b 2+c 2+bc),9分又因为BC =3,所以由余弦定理得a 2=b 2+c 2-2bc·cos A ,即b 2+c 2=a 2+bc =3+bc ≥2bc ,即bc ≤3,所以AE →2=14(3+2bc)≤94,||AE→≤32,当且仅当b =c 时取等号,所以线段AE 长的最大值为32.12分18.(本题满分12分)如图1,四边形ABCD 为直角梯形,AD ∥BC ,AD ⊥AB ,AD =1,BC =2,E 为CD 上一点,F 为BE 的中点,且DE =1,EC =2,现将梯形沿BE 折叠(如图2),使平面BCE ⊥平面ABED.(1)求证:平面ACE ⊥平面BCE ;(2)能否在边AB 上找到一点P(端点除外)使平面ACE 与平面PCF 所成角的余弦值为63若存在,试确定点P 的位置,若不存在,请说明理由.【解析】(1)在直角梯形ABCD 中,作于DM ⊥BC 于M ,连接AE , 则CM =2-1=1,CD =DE +CE =1+2=3, 则DM =AB =22,cos C =13,2分则BE =4+4-2×2×2×13=433,sin ∠CDM =13,则AE =1+1+2×1×1×13=263,∴AE 2+BE 2=AB 2,4分故AE ⊥BE ,且折叠后AE 与BE 位置关系不变,又∵平面BCE ⊥平面ABED ,且平面BCE ∩平面ABED =BE , ∴AE ⊥平面BCE ,∵AE 平面ACE ,∴平面ACE ⊥平面BCE.6分 (2)∵在△BCE 中,BC =CE =2,F 为BE 的中点,∴CF ⊥BE. 又∵平面BCE ⊥平面ABED ,且平面BCE ∩平面ABED =BE , ∴CF ⊥平面ABED ,7分故可以F 为坐标原点建立如图所示的空间直角坐标系, 则A ⎝⎛⎭⎫263,-233,0,C ⎝⎛⎭⎫0,0,263,E ⎝⎛⎭⎫0,-233,0,易求得平面ACE 的法向量为m =(0,-2,1).假设在AB 上存在一点P 使平面ACE 与平面PCF 所成角的余弦值为63,且AP →=λAB →,(λ∈R ),∵B ⎝⎛⎭⎫0,233,0,∴AB →=⎝⎛⎭⎫-263,433,0,故AP →=⎝⎛⎭⎫-263λ,433λ,0,又CA →=⎝⎛⎭⎫263,-233,-263, ∴CP →=⎝⎛⎭⎫263(1-λ),233(2λ-1),-263, 又FC →=⎝⎛⎭⎫0,0,263,设平面PCF 的法向量为n =(x ,y ,z),∴⎩⎨⎧-263z =0,263(1-λ)x +233(2λ-1)y -263z =0,令x =2λ-1得n =(2λ-1,2(λ-1),0),∴|cos m ,n |=|2(λ-1)|3·(2λ-1)2+2(λ-1)2=63,11分解得λ=12,因此存在点P 且P 为线段AB 中点时使得平面ACE 与平面PCF 所成角的余弦值为63.12分 19.(本题满分12分)近期,某市公交公司推出扫码支付1分钱乘车活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用扫码支付.629路公交车统计了活动刚推出一周内每一天使用扫码支付的人次,用x 表示活动推出的天数,y 表示每天使用扫码支付的人次(单位:十人次),统计数据如表1所示:表1:x 1 2 3 4 5 6 7 y611213466101196根据以上数据,绘制了散点图.(1)根据散点图判断,在推广期内,y =a +bx 与y =c·d x (c ,d 均为大于零的常数)哪一个适宜作为扫码支付的人次y 关于活动推出天数x 的回归方程类型(给出判断即可,不必说明理由);(2)根据(1)的判断结果及表1中的数据,建立y 关于x 的回归方程,并预测活动推出第8天使用扫码支付的人次;(3)推广期结束后,支付方式现金乘车卡扫码比例 10% 60% 30%车队为缓解周边居民出行压力,以80万元的单价购进了一批新车,根据以往的经验可知,每辆车每个月的运营成本约为0.66万元.已知该线路公交车票价为2元,使用现金支付的乘客无优惠,使用乘车卡支付的乘客享受8折优惠,扫码支付的乘客随机优惠,根据统计结果得知,使用扫码支付的乘客中有16的概率享受7折优惠,有13的概率享受8折优惠,有12的概率享受9折优惠.预计该车队每辆车每个月有1万人次乘车,根据所给数据以事件发生的频率作为相应事件发生的概率,在不考虑其它因素的条件下,按照上述收费标准,假设这批车需要n(n ∈N *)年才能开始盈利,求n 的值.参考数据:y - v - ∑7i =1x i y i ∑7i =1x i v i 100.54 62.141.54253550.123.47其中v i =lg y i ,v -=17 i =17v i .参考公式:对于一组数据(u 1,v 1),(u 2,v 2),…,(u n ,v n ),其回归直线v ^=a ^+β^u 的斜率和截距的最小二乘估计公式分别为:β^= =0.25,5分把样本中心点(4,1.54)代入v =lg c +lg d ·x ,得lg c =0.54, ∴v ^=0.54+0.25x ,∴lg y ^=0.54+0.25x ,6分∴y 关于x 的回归方程式:y ^=100.54+0.25x =100.54(100.25)x =3.47(100.25)x , 把x =8代入上式:∴y ^=100.54+0.25×8=102.54=102×100.54=347,所以活动推出第8天使用扫码支付的人次为3470 .7分(3)记一名乘客乘车支付的费用为Z ,则Z 的取值可能为:2,1.8,1.6,1.4, P(Z =2)=0.1,P(Z =1.8)=0.3×12=0.15,P(Z =1.6)=0.6+0.3×13=0.7,P(Z =1.4)=0.3×16=0.05,所以一名乘客一次乘车的平均费用为:2×0.1+1.8×0.5+1.6×0.7+1.4×0.05=1.66(元),10分 由题意可知:1.66×1×12·n -0.66×12·n -80>0,n>203,所以n 取7,估计这批车大概需要7年才能开始盈利.12分 20.(本题满分12分)已知椭圆C :x 2a 2+y 2b 2=1(a>b>0)的离心率e =22,以上顶点和右焦点为直径端点的圆与直线x +y -2=0相切.(1)求椭圆C 的标准方程;(2)是否存在斜率为2的直线,使得当直线与椭圆C 有两个不同的交点M ,N 时,能在直线y =53上找到一点P ,在椭圆C 上找到一点Q ,满足PM →=NQ →?若存在,求出直线的方程;若不存在,说明理由.【解析】(1)由椭圆的离心率e =22,得c 2a 2=c 2b 2+c 2=12,得b =c.上顶点为(0,b),右焦点为(b ,0),以上顶点和右焦点为直径端点的圆的方程为⎝⎛⎭⎫x -b 22+⎝⎛⎭⎫y -b 22=⎝⎛⎭⎫a 22=b22, ∴|b -2|2=22b ,即|b -2|=b ,得b =c =1,a =2,∴椭圆的标准方程为x 22+y 2=1.5分(2)椭圆C 上不存在这样的点Q ,理由如下:设直线的方程为y =2x +t , 设M(x 1,y 1),N(x 2,y 2),P ⎝⎛⎭⎫x 3,53,Q(x 4,y 4),MN 的中点为D(x 0,y 0), 由⎩⎪⎨⎪⎧y =2x +t ,x 22+y 2=1,消去x ,得9y 2-2ty +t 2-8=0, 所以y 1+y 2=2t9,且Δ=4t 2-36(t 2-8)>0,7分故y 0=y 1+y 22=t9,且-3<t <3. 由PM →=NQ →,得⎝⎛⎭⎫x 1-x 3,y 1-53=(x 4-x 2,y 4-y 2), 所以有y 1-53=y 4-y 2,y 4=y 1+y 2-53=29t -53.9分(也可由PM →=NQ →知四边形PMQN 为平行四边形,而D 为线段MN 的中点,因此,D 也为线段PQ 的中点,所以y 0=53+y 42=t 9,可得y 4=2t -159.)又-3<t <3,所以-73<y 4<-1,11分与椭圆上点的纵坐标的取值范围是[-1,1]矛盾.故椭圆C 上不存在这样的点Q.12分 21.(本题满分12分)已知函数f(x)=ln x ,g(x)=e x .(1)设函数h(x)=f(x)+12x 2+ax(a ∈R ),讨论h(x)的极值点个数;(2)设直线l 为函数f(x)的图象上一点A(x 0,f(x 0))处的切线,试探究:在区间(1,+∞)上是否存在唯一的x 0,使得直线l 与曲线y =g(x)相切.【解析】由题意得h′(x)=1x +x +a =x 2+ax +1x (x>0),令Δ=a 2-4,1分①当Δ=a 2-4≤0即-2≤a ≤2时,h ′(x)=x 2+ax +1x≥0在x ∈(0,+∞)上恒成立,此时h(x)在x ∈(0,+∞)上单调递增,极值点个数为0;2分 ②当a>2时,h ′(x)=x 2+ax +1x≥0在x ∈(0,+∞)上恒成立,此时h(x)在x ∈(0,+∞)上单调递增,极值点个数为0;3分③当a<-2时,Δ>0,设x 1,x 2是x 2+ax +1=0的两根,则x 1+x 2=-a>0,x 1x 2=1>0,故x 1>0,x 2>0,此时h(x)在(0,+∞)上有两个极值点.5分综上所述,当a<-2时,h(x)有两个极值点,a ≥-2时,h(x)没有极值点.6分(2)∵f′(x)=1x ,∴f ′(x 0)=1x 0, ∴切线l 的方程为y -ln x 0=1x 0(x -x 0),即y =1x 0x +ln x 0-1.7分 设直线l 与曲线y =g(x)相切于(x 1,ex 1),∵g ′(x)=e x ,∴ex 1=1x 0即x 1=-ln x 0, ∴g(x 1)=ex 1=e -ln x 0=1x 0, ∴直线l 的方程也为y -1x 0=1x 0(x +ln x 0),即y =1x 0x +ln x 0x 0+1x 0,8分 ∴ln x 0-1=ln x 0x 0+1x 0,即ln x 0=x 0+1x 0-1.9分 下证:在区间(1,+∞)上x 0存在且唯一.设φ(x)=ln x -x +1x -1(x>1), φ′(x)=1x -(x -1)-(x +1)(x -1)2=1x +2(x -1)2>0,则φ(x)在(1,+∞)上单调递增.10分又φ(e)=ln e -e +1e -1=-2e -1<0,φ(e 2)=ln e 2-e 2+1e 2-1=e 2-3e 2-1>0, 由零点存在性定理知:存在x 0∈(e ,e 2),使得φ(x 0)=0,即ln x 0=x 0+1x 0-1. 故在区间(1,+∞)上存在唯一的x 0,使得直线l 与曲线y =g(x)相切.12分(二)选考题:共10分.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题计分.22.(本题满分10分)选修4-4:极坐标与参数方程在平面直角坐标系中,将曲线C 1向左平移2个单位,再将得到的曲线上的每一个点的横坐标保持不变,纵坐标缩短为原来的12,得到曲线C 2,以坐标原点O 为极点,x 轴的正半轴为极轴,建立极坐标系,C 1的极坐标方程为ρ=4cos α.(1)求曲线C 2的参数方程;(2)直线l 的参数方程为⎩⎨⎧x =32t ,y =12t +2(t 为参数),求曲线C 2上到直线l 的距离最短的点的直角坐标.【解析】(1)由ρ=4cos α得ρ2=4ρcos α将ρ2=x 2+y 2,ρ·cos α=x 代入整理得 曲线C 1的普通方程为(x -2)2+y 2=4, 2分设曲线C 1上的点为(x′,y ′),变换后的点为(x ,y),由题可知坐标变换为⎩⎪⎨⎪⎧x =x′-2,y =12y′,即⎩⎨⎧x′=x +2,y ′=2y ,代入曲线C 1的普通方程,整理得曲线C 2的普通方程为 x 24+y 2=1,4分 ∴曲线C 2的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =sin θ(θ为参数).5分 (2)直线l 的参数方程为⎩⎨⎧x =32t ,y =12t +2(t 为参数),直线l 的直角坐标方程为x -3y +23=0, 设曲线C 2上的点为P(2cos θ,sin θ),0≤θ≤2π,则点P 到直线l 的距离为d =||2cos θ-3sin θ+232=||7cos (θ+φ)+232,其中cos φ=27,sin φ=37, 当θ+φ=π时,d min =||-7+232=23-72,8分 此时2cos θ=2cos(π-φ)=-47=-477,sin θ=sin(π-φ)=37=217,即此时点P 的直角坐标为⎝⎛⎭⎫-477,217,所以曲线C 2上到直线l 的距离最短的点的直角坐标为⎝⎛⎭⎫-477,217.10分 23.(本题满分10分)选修4-5:不等式选讲设f(x)=|x -1|+|x +1|.(1)求f(x)≤x +2的解集;(2)若不等式f(x)≥|a +1|-|2a -1||a|对任意实数a ≠0恒成立,求实数x 的取值范围. 【解析】(1)由f(x)≤x +2得:⎩⎪⎨⎪⎧x +2≥0,x ≤-1,1-x -x -1≤x +2或⎩⎪⎨⎪⎧x +2≥0,-1<x<1,1-x +x +1≤x +2或⎩⎨⎧x +2≥0,x ≥1,x -1+x +1≤x +2,3分 解得0≤x ≤2,∴f(x)≤x +2的解集为{x|0≤x ≤2}.5分(2)⎪⎪⎪⎪|a +1|-|2a -1||a|=⎪⎪⎪⎪⎪⎪⎪⎪1+1a -⎪⎪⎪⎪2-1a ≤⎪⎪⎪⎪1+1a +2-1a =3,当且仅当⎝⎛⎭⎫1+1a ⎝⎛⎭⎫2-1a ≤0时,取等号.7分 由不等式f(x)≥|a +1|-|2a -1||a|对任意实数a ≠0恒成立,可得|x -1|+|x +1|≥3, 解得x ≤-32或x ≥32. 故实数x 的取值范围是⎝⎛⎦⎤-∞,-32∪⎣⎡⎭⎫32,+∞.10分。

2019届湖南师范大学附属中学高三第二次高考模拟数学(理)试题(解析版)

2019届湖南师范大学附属中学高三第二次高考模拟数学(理)试题(解析版)

2019届湖南师范大学附属中学高三第二次高考模拟数学(理)试题一、单选题1.已知集合1|,42k M x x k Z ⎧⎫==+∈⎨⎬⎩⎭,1|,24k N x x k Z ⎧⎫==+∈⎨⎬⎩⎭,则( ) A .M N = B .M NC .N MD .M N ⋂=∅【答案】C【解析】化简集合2|,4k M x x k Z +⎧⎫==∈⎨⎬⎩⎭,21|,4k N x x k Z +⎧⎫==∈⎨⎬⎩⎭,结合2()k k Z +∈为和22()k k Z +∈的关系,即可求解.【详解】由题意,集合12|,|,424k k M x x k Z x x k Z +⎧⎫⎧⎫==+∈==∈⎨⎬⎨⎬⎩⎭⎩⎭, 121|,|,244k k N x x k Z x x k Z +⎧⎫⎧⎫==+∈==∈⎨⎬⎨⎬⎩⎭⎩⎭,因为2()k k Z +∈为所有的整数,而22()k k Z +∈为奇数, 所以集合,M N 的关系为N M . 故选:C . 【点睛】本题主要考查了集合与集合的关系的判定,其中解答准确合理化简集合的形式是解答的关键,着重考查了推理与运算能力.2.复数(1)(2)z ai a i =-+在复平面内对应的点在第一象限,其中a R ∈,i 为虚数单位,则实数a 的取值范围是( )A .B .)+∞C .(,-∞D .(【答案】A【解析】利用复数代数形式的乘除运算、化简,再由实部与虚部均大于0,列出不等式组,即可求解. 【详解】由题意,复数2(1)(2)3(2)z ai a i a a i =-+=+-在复平面内对应的点在第一象限,所以23020a a >⎧⎨->⎩,解得0a <<,即实数a 的取值范围是. 故选:A . 【点睛】本题主要考查了复数的乘法运算,以及复数的代数表示法及其几何意义的应用,着重考查了推理与运算能力.3.如果等差数列128,,,a a a L 的各项都大于零,公差0d ≠,则正确的关系为( ) A .1845a a a a > B .1845a a a a < C .1845a a a a +>+ D .1845a a a a =【答案】B【解析】先根据等差中项的性质,可排除C ,再利用作差比较,即可得到答案. 【详解】根据等差数列的性质,可得1845a a a a +=+,所以C 不正确;又由218451111(7)(3)(4)120a a a a a a d a d a d d -=+-++=-<,所以1845a a a a <.故选B . 【点睛】本题主要考查了等差数列的性质,等差数列的通项公式,以及作差比较法的应用,着重考查了推理与运算能力.4.已知等差数列{}n a 的前13项和为52,则68(2)a a +-=( )A .256B .256-C .32D .32-【答案】B【解析】根据题设条件,求得113a a +的值,进而得出68a a +的值,再利用指数幂的运算,即可求解. 【详解】由题意,等差数列{}n a 的前13项和为52, 可得1131313()522a a S +==,解得1138a a +=,又由等差数列的性质,可得681138a a a a +=+=,所以688(2)(2)256a a +-=-=.故选:A .【点睛】本题主要考查了等差数列的性质,以及等差数列的前n 项和公式的应用,其中解答中熟记等差数列的性质和等差数列的求和公式,准确运算是解答的关键,着重考查了计算能力.5.学校为了调查学生在课外读物方面的支出情况,抽取了一个容量为n 的样本,其频率分布直方图如图所示,其中支出在[)50,60的同学有30人,则n 的值为( )A .100B .1000C .90D .900【答案】A【解析】根据频率分布直方图得到支出在[)50,60的同学的频率,利用频数除以频率得到n . 【详解】由频率分布直方图可知,支出在[)50,60的同学的频率为:0.03100.3⨯=301000.3n ∴== 本题正确选项:A 【点睛】本题考查利用频率分布直方图计算频率、频数和总数的问题,属于基础题.6.已知一个几何体的三视图如图所示(正方形边长为1),则该几何体的体积为( )A.34B.78C.1516D.2324【答案】B【解析】【详解】由三视图可知:该几何体为正方体挖去了一个四棱锥A BCDE-,该几何体的体积为11117 11132228⎛⎫-⨯⨯+⨯⨯=⎪⎝⎭故选B点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.7.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,在不超过20的素数中,随机选取两个不同的数,其和等于20的概率是()A.112B.115C.118D.114【答案】D【解析】先得到随机抽取两个不同的数共有28种,再得出选取两个不同的数,其和等于20的共有2中,结合古典概型的概率计算公式,即可求解. 【详解】由题意,在不超过20的素数有:2,3,5,7,11,13,17,19,共有8个数,随机选取两个不同的数,共有2828C =种,其中随机选取的两个不同的数,其和为20的有31720,71320+=+=,共有2种, 所以概率为212814P ==. 故选:D . 【点睛】本题主要考查了古典概型及其概率的计算,其中解答中利用组合数的公式求得基本事件的总数是解答的关键,着重考查了推理与运算能力. 8.下列图象可以作为函数()2xf x x a=+的图象的有 ( )A .1个B .2个C .3个D .4个【答案】C【解析】当a <0时,如取a =−4,则()24xf x x =- 其定义域为:{x |x ≠±2},它是奇函数,图象是③,所以③选项是正确的;当a >0时,如取a =1,其定义域为R ,它是奇函数,图象是②。

2019届湖南师范大学附属中学高三第二次高考模拟数学(理)试题(附答案解析)

2019届湖南师范大学附属中学高三第二次高考模拟数学(理)试题(附答案解析)

2019届湖南师范大学附属中学高三第二次高考模拟数学(理)试题学校:___________姓名:___________班级:___________考号:___________1.已知集合1|,42k M x x k Z ⎧⎫==+∈⎨⎬⎩⎭,1|,24k N x x k Z ⎧⎫==+∈⎨⎬⎩⎭,则( ) A .M N =B .M NC .N MD .M N ⋂=∅2.复数(1)(2)z ai a i =-+在复平面内对应的点在第一象限,其中a R ∈,i 为虚数单位,则实数a 的取值范围是( ) A .2)B .2,)+∞C .(,2)-∞D .(2,0)-3.如果等差数列128,,,a a a L 的各项都大于零,公差0d ≠,则正确的关系为( ) A .1845a a a a > B .1845a a a a < C .1845a a a a +>+D .1845a a a a =4.已知等差数列{}n a 的前13项和为52,则68(2)a a +-=( ) A .256B .256-C .32D .32-5.学校为了调查学生在课外读物方面的支出情况,抽取了一个容量为n 的样本,其频率分布直方图如图所示,其中支出在[)50,60的同学有30人,则n 的值为( )A .100B .1000C .90D .9006.已知一个几何体的三视图如图所示(正方形边长为1),则该几何体的体积为( )A .34B .78C .1516D .23247.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,在不超过20的素数中,随机选取两个不同的数,其和等于20的概率是( ) A .112B .115C .118D .1148.下列图象可以作为函数()2xf x x a=+的图象的有 ( )A .1个B .2个C .3个D .4个9.已知点集{}(,)M x y xy =,则平面直角坐标系中区域M 的面积是( ) A .1B .34π+C .πD .22π+10.已知向量5(,0)2a =r ,(0,5)b =r 的起点均为原点,而终点依次对应点A ,B ,线段AB 边上的点P ,若OP AB ⊥u u u r u u u r ,OP xa yb =+u u ur r r ,则x ,y 的值分别为( )A .15,45B .43,13- C .45,15D .13-,4311.如图,在长方体1111ABCD A B C D -中,11AB AD AA ===,而对角线1A B 上存在一点P ,使得1AP D P +取得最小值,则此最小值为( )A B .3C .D .212.已知0a >,函数()()ln 1x af x e x a -=-+- (x >0)的最小值为0,则实数a 的取值范围是( ) A .10,2⎛⎤ ⎥⎝⎦B .1,12⎡⎫⎪⎢⎣⎭C .12⎧⎫⎨⎬⎩⎭D .φ13.定积分()11xx ee dx ---=⎰________.14.()()8x y x y -+的展开式中27x y 的系数为________.(用数字填写答案)15.已知椭圆22122:1(0)x y C a b a b+=>>与双曲线222:4C x y -=有相同的右焦点2F ,点P 是椭圆1C 与双曲线2C 在第一象限的公共点,若22PF =,则椭圆1C 的离心率等于_______.16.已知数列{}n a ,{}n b 均为等差数列,且11a b m =,224a b =,338a b =,4416a b =,则m =________.17.已知在ABC V 中,D ,E 分别为边AB ,BC 的中点,2AB AC AB AC ⋅=⋅u u u r u u u r u u u r u u u r.(1)若2AB AC AB CD ⋅=⋅u u u r u u u r u u u r u u u r,且ABC V 的面积为AC 的长;(2)若BC =,求线段AE 长的最大值.18.如图1,四边形ABCD 为直角梯形,//AD BC ,AD AB ⊥,1AD =,2BC =,E 为CD 上一点,F 为BE 的中点,且1DE =,2EC =,现将梯形沿BE 折叠(如图2),使平面BCE ⊥平面ABED .(1)求证:平面ACE ⊥平面BCE .(2)能否在边AB 上找到一点P (端点除外)使平面ACE 与平面PCF 所成角的余弦值?若存在,试确定点P 的位置,若不存在,请说明理由. 19.近期,西安公交公司分别推出支付宝和微信扫码支付乘车活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用扫码支付.某线路公交车队统计了活动刚推出一周内每一天使用扫码支付的人次,x 表示活动推出的天数,y 表示每天使用扫码支付的人次(单位:十人次),统计数据如表下所示:根据以上数据,绘制了散点图.(1)根据散点图判断,在推广期内,y a bx =+与x y c d =⋅(,c d 均为大于零的常数),哪一个适宜作为扫码支付的人次y 关于活动推出天数x 的回归方程类型?(给出判断即可,不必说明理由);(2)根据(1)的判断结果及表1中的数据,建立y 与x 的回归方程,并预测活动推出第8天使用扫码支付的人次;(3)推广期结束后,车队对乘客的支付方式进行统计,结果如下表:西安公交六公司车队为缓解周边居民出行压力,以80万元的单价购进了一批新车,根据以往的经验可知,每辆车每个月的运营成本约为0.66万元.已知该线路公交车票价为2元,使用现金支付的乘客无优惠,使用乘车卡支付的乘客享受8折优惠,扫码支付的乘客随机优惠,根据统计结果得知,使用扫码支付的乘客中有16的概率享受7折优惠,有13的概率享受8折优惠,有12的概率享受9折优惠.预计该车队每辆车每个月有1万人次乘车,根据所给数据以事件发生的频率作为相应事件发生的概率,在不考虑其它因素的条件下,按照上述收费标准,假设这批车需要n (n ∈+N )年才能开始盈利,求n 的值. 参考数据:其中其中lg i i v y =,7117i i v v ==∑,参考公式:对于一组数据11(,)u v ,22(,)u v ,L ,(,)n n u v ,其回归直线ˆˆv u αβ=+的斜率和截距的最小二乘估计公式分别为:1221ˆni i i nii u v nu vunu β==-⋅=-∑∑,ˆˆv u αβ=-. 20.已知椭圆C :22221x y a b +=(0a b >>)的离心率e =,以上顶点和右焦点为直径端点的圆与直线20x y +-=相切. (1)求椭圆C 的标准方程.(2)是否存在斜率为2的直线,使得当直线与椭圆C 有两个不同的交点M ,N 时,能在直线53y =上找到一点P ,在椭圆C 上找到一点Q ,满足PM NQ =u u u u r u u u r ?若存在,求出直线的方程;若不存在,请说明理由. 21.已知函数()ln f x x =,()x g x e =. (1)设函数21()()2h x f x x ax =++(a R ∈),讨论a R ∈的极值点个数; (2)设直线l 为函数()f x 的图像上一点00(,())A x f x 处的切线,试探究:在区间(1,)+∞上是否存在唯一的0x ,使得直线l 与曲线()y g x =相切.22.在平面直角坐标系中,将曲线1C 向左平移2个单位,再将得到的曲线上的每一个点的横坐标保持不变,纵坐标缩短为原来的12,得到曲线2C ,以坐标原点O 为极点,x 轴的正半轴为极轴,建立极坐标系,1C 的极坐标方程为4cos ρα=.(1)求曲线2C 的参数方程;(2)直线l的参数方程为122x y t ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数),求曲线2C 上到直线l 的距离最短的点的直角坐标.23.设()f x x 1x 1=-++ . (1)求()f x x 2≤+ 的解集; (2)若不等式()a 12a 1f x a+--≥,对任意实数a 0≠恒成立,求实数x 的取值范围.参考答案1.C 【解析】 【分析】化简集合2|,4k M x x k Z +⎧⎫==∈⎨⎬⎩⎭,21|,4k N x x k Z +⎧⎫==∈⎨⎬⎩⎭,结合2()k k Z +∈为和22()k k Z +∈的关系,即可求解. 【详解】由题意,集合12|,|,424k k M x x k Z x x k Z +⎧⎫⎧⎫==+∈==∈⎨⎬⎨⎬⎩⎭⎩⎭, 121|,|,244k k N x x k Z x x k Z +⎧⎫⎧⎫==+∈==∈⎨⎬⎨⎬⎩⎭⎩⎭,因为2()k k Z +∈为所有的整数,而22()k k Z +∈为奇数, 所以集合,M N 的关系为N M .故选:C . 【点睛】本题主要考查了集合与集合的关系的判定,其中解答准确合理化简集合的形式是解答的关键,着重考查了推理与运算能力. 2.A 【解析】 【分析】利用复数代数形式的乘除运算、化简,再由实部与虚部均大于0,列出不等式组,即可求解. 【详解】由题意,复数2(1)(2)3(2)z ai a i a a i =-+=+-在复平面内对应的点在第一象限,所以23020a a >⎧⎨->⎩,解得02a <<,即实数a 的取值范围是2). 故选:A . 【点睛】本题主要考查了复数的乘法运算,以及复数的代数表示法及其几何意义的应用,着重考查了推理与运算能力. 3.B 【解析】 【分析】先根据等差中项的性质,可排除C ,再利用作差比较,即可得到答案. 【详解】根据等差数列的性质,可得1845a a a a +=+,所以C 不正确;又由218451111(7)(3)(4)120a a a a a a d a d a d d -=+-++=-<,所以1845a a a a <.故选B . 【点睛】本题主要考查了等差数列的性质,等差数列的通项公式,以及作差比较法的应用,着重考查了推理与运算能力. 4.B 【解析】 【分析】根据题设条件,求得113a a +的值,进而得出68a a +的值,再利用指数幂的运算,即可求解. 【详解】由题意,等差数列{}n a 的前13项和为52, 可得1131313()522a a S +==,解得1138a a +=,又由等差数列的性质,可得681138a a a a +=+=, 所以688(2)(2)256a a +-=-=.故选:A . 【点睛】本题主要考查了等差数列的性质,以及等差数列的前n 项和公式的应用,其中解答中熟记等差数列的性质和等差数列的求和公式,准确运算是解答的关键,着重考查了计算能力. 5.A 【解析】根据频率分布直方图得到支出在[)50,60的同学的频率,利用频数除以频率得到n . 【详解】由频率分布直方图可知,支出在[)50,60的同学的频率为:0.03100.3⨯=301000.3n ∴== 本题正确选项:A 【点睛】本题考查利用频率分布直方图计算频率、频数和总数的问题,属于基础题. 6.B 【解析】 【分析】 【详解】由三视图可知:该几何体为正方体挖去了一个四棱锥A BCDE -,该几何体的体积为1111711132228⎛⎫-⨯⨯+⨯⨯= ⎪⎝⎭ 故选B点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽. 7.D 【解析】先得到随机抽取两个不同的数共有28种,再得出选取两个不同的数,其和等于20的共有2中,结合古典概型的概率计算公式,即可求解. 【详解】由题意,在不超过20的素数有:2,3,5,7,11,13,17,19,共有8个数,随机选取两个不同的数,共有2828C =种,其中随机选取的两个不同的数,其和为20的有31720,71320+=+=,共有2种, 所以概率为212814P ==. 故选:D . 【点睛】本题主要考查了古典概型及其概率的计算,其中解答中利用组合数的公式求得基本事件的总数是解答的关键,着重考查了推理与运算能力. 8.C 【解析】当a <0时,如取a =−4,则()24xf x x =- 其定义域为:{x |x ≠±2},它是奇函数,图象是③,所以③选项是正确的;当a >0时,如取a =1,其定义域为R ,它是奇函数,图象是②。

湖南师大附中2019届高三高考模拟卷(二)教师版英语附答案解析

湖南师大附中2019届高三高考模拟卷(二)教师版英语附答案解析

湖南师大附中2019届高考模拟卷(二)英语本试题卷分为听力、阅读理解、语言知识运用和写作四个部分,共14页。

时量120分钟。

满分150分。

第一部分听力(共两节,满分30分)做题时,先将答案标在试卷上。

录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。

第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。

每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项。

听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。

每段对话仅读一遍。

例:How much is the shirt?A.£19.15. B.£9.18. C.£9.15.答案是C。

(A)1. How does the woman feel?A. Discouraged.B. Satisfied.C. Guilty.(C)2. What is the probable relationship between the speakers?A. Husband and wife.B. Mother and son.C. Doctor and patient.(B)3. How much is the blue dress?A. $170.B. $85.C. $70.(A)4. What is the man doing?A. Playing with his daughter.B. Playing a joke on the woman.C. Playing a game on his smart phone.(B)5. What does the man mean?A. Bob said nothing at the lecture.B. Bob doesn't listen to him.C. Something is wrong with Bob's ears.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。

2019届湖南师大附中高三高考模拟卷(二)文综答案

2019届湖南师大附中高三高考模拟卷(二)文综答案
*0,解析由材料可知负温期长达)0'个月那么当每年的&月底(月初日平均气温高于$5此时通风管 挡板关闭一年中通风管挡板关闭时长开始呈上升趋势后的一个月多为('月份此时太阳直射点北移北 半球昼长变长正午太阳高度角变大地球公转速度越来越慢
+0/解析曲线温度较低为室外和温室墙外表面又因墙体为土墙升温滞后于气温升温午后一直高于 室外气温答案选
""0.解析谢贝利河位于非洲东部赤道附近中下游以热带沙漠气候为主没有明显的干湿季谢贝利河发 源于高原山地其上中下 游 分 别 流 经 山 地高 原平 原下 游 泥 沙 沉 积 严 重多 地 上 河使 得 河 流 下 游 无 支流
"#0-解析牛肉和羊肉为替代品牛肉价格下降对牛肉的需求增加对羊肉需求减少导致羊肉均衡价格 下跌选居民收入提升高级护肤品的需求增加导致均衡价格上涨选
%0.解析因墙体受热比室内气温快曲线为室内气温为墙内表面温度封闭温室不会降低室内温度 顶部盖上草毡和午后降雨会导致室内和温室墙内表面气温会同时降低曲线因室内气温午间温度过高超 过&$5影响作物生长需要在午后小段时间内开窗通风透气使气温不宜过高
"$0/解析从图中经纬度可以看出谢贝利河位于非洲东部赤道附近谢贝利河上游以热带草原气候为主 降水较多河流的流量较大中下游以热带沙漠气候为主降水少河流的流量小因此该河流的流量特点是 自上游向下游减小
)0.解析由材料可知通风挡板在气温低于$5时打开正温期是指日平均气温大于$5的时期负温期是 指日平均气温小于$5的时期但在正温期时夜晚气温也可能在$5以下负温期时白天气温也可能在$5 以上故 -/错误由该地一年中日平均气温的变化范围为!"(+5可知该地夜晚气温多在$5以下此 时通风管挡板多为打开状态夏季白天气温多在$5以上此时通风管挡板多为关闭状态故 ,错误
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【全国百强校】湖南省长沙市湖南师范大学附属中学2019届高三高考模拟(二)数学(文)试题
学校_________ 班级__________ 姓名__________ 学号__________
一、单选题
1. 设、是两个非空集合,定义集合且,若
,,则()A.B.C.D.
2. 已知、是实数,则“”是“”的()
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件
3. 已知数列是等比数列,数列是等差数列,若,
,则的值是()
A.1
D.
B.C.
4. 某校为了解本校高三学生学习的心理状态,采用系统抽样方法从人中抽取人参加某种测试,为此将他们随机编号为,分组后在第一组采
用简单随机抽样的方法抽到的号码为,抽到的人中,编号落在区间
的人做试卷,编号落在的人做试卷,其余的人做试卷,则做试卷的人数为( )
A.B.C.D.
5. 执行如图的程序框图,则输出的值为()
D.0
A.1
B.C.
6. (2017-2018学年广东省珠海市珠海二中、斗门一中高三上学期期中联考)多面体的底面为矩形,其正(主)视图和侧(左)视图如图,其中正(主)视图为等腰梯形,侧(左)视图为等腰三角形,则的长为
A.B.
C.D.
7. 为了得到这个函数的图象,只要将的图象上所有的点
A.向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变
B.向左平移个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变
C.向右平移个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变
D.向右平移个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变
8. 设,则()
A.B.C.D.
9. 已知平面平面直线,点、,点、,且、、、,点、分别是线段、的中点,则下列说法正确的是()
A.当时,、不可能重合
B.、可能重合,但此时直线与不可能相交
C.当直线、相交,且时,可与相交
D.当直线、异面时,可能与平行
10. 若存在实数使不等式组与不等式都成立,则实数的取值范围是()
A.B.C.D.
11. 已知双曲线的一条渐近线为,圆
与交于第一象限、两点,若,且,其中为坐标原点,则双曲线的离心率为()
A.B.
C.D.
12. 已知函数y=f(x)的定义域为R,当x<0时f(x)>1,且对任意的实数x,y∈R,等式f(x)f(y)=f(x+y)成立,若数列{a
}满足
n
,且a1=f(0),则下列结论成立的是()A.f(a2017)>f(a2020)B.f(a2016)>f(a2018)
C.f(a2018)>f(a2019)D.f(a2016)>f(a2019)
二、填空题
13. 已知,,且,共线,则向量在方向上的投影为__________.
14. 的内角的对边分别为,已知
,则的大小为__________.
15. 已知点、,若点是圆上的动点,
面积的最小值为,则的值为__________.
16. 已知函数(,为自然对数的底数)与的图象上存在关于轴对称的点,则实数的取值范围是______.
三、解答题
17. 已知数列前项和为,,且满足,
().
(1)求数列的通项公式;
(2)设,求数列的前项和.
18. 如图所示,四棱锥,底面为四边形,,
,,平面平面,,,
(Ⅰ)求证:平面;
(Ⅱ)若四边形中,,,为上一点,且,求三棱锥体积.
19. 某公司计划购买1台机器,且该种机器使用三年后即被淘汰.在购进机器时,可以一次性额外购买几次维修服务,每次维修服务费用200元,另外实际维修一次还需向维修人员支付小费,小费每次50元.在机器使用期间,如果维修次数超过购机时购买的维修服务次数,则每维修一次需支付维修服务费用500元,无需支付小费.现需决策在购买机器时应同时一次性购买几次维修服务,为此搜集并整理了100台这种机器在三年使用期间的维修次数,得如下统
维修次
8 9 10 11 12

频数10 20 30 30 10
记表示1台机器在三年使用期内的维修次数,表示1台机器在维修上所需的费用(单位:元),表示购机的同时购买的维修服务次数.
(1)若,求关于的函数解析式;
(2)若要求“维修次数不大于”的频率不小于0.8,求的最小值;
(3)假设这100台机器在购机的同时每台都购买10次维修服务或每台都购买11次维修服务,分别计算这100台机器在维修上所需费用的平均数,以此作为决策依据,判断购买1台机器的同时应购买10次还是11次维修服务?.
20. 已知椭圆的中心在原点,焦点在轴,焦距为2,且长轴长是短轴长的倍.
(1)求椭圆的标准方程;
(2)设,过椭圆左焦点的直线交于、两点,若对满足条件的任意直线,不等式()恒成立,求的最小值.
21. 已知函数(a为常数).
(Ⅰ)求函数的单调区间;
(Ⅱ)若,求不等式的解集;
(Ⅲ)若存在两个不相等的整数,满足,求证:.
22. 已知直线的参数方程(为参数),曲线
,以坐标原点为极点,轴正半轴为极轴的极坐标系.
(1)求直线和曲线的极坐标方程;
(2)直线与曲线交于两点,求值.
23. 已知.
(1)求函数的最大值为;
(2)在第(1)问的条件下,设,且满足,求证:
.。

相关文档
最新文档