825603597_3_概率统计作业3
概率与数理统计第3章答案
第3章习题答案祥解1.现有10件产品,其中6件正品,4件次品。
从中随机抽取2次,每次抽取1件,定义两个随机变量、如下:X Y ⎩⎨⎧=。
次抽到次品第次抽到正品第11,0;,1X ⎩⎨⎧=。
次抽到次品第次抽到正品第22,0;,1Y 试就下面两种情况求的联合概率分布和边缘概率分布。
),(Y X (1)第1次抽取后放回;(2)第1次抽取后不放回。
解(1)依题知所有可能的取值为.因为),(Y X )1,1(),0,1(),1,0(),0,0(; 254104104)0|0()0()0,0(1101411014=⨯=⋅===⋅====C C C C X Y P X P Y X P 256106104)0|1()0()1,0(1101611014=⨯=⋅===⋅====C C C C X Y P X P Y X P 256104106)1|0()1()0,1(1101411016=⨯=⋅===⋅====C C C C X Y P X P Y X P ; 259106106)1|1()1()1,1(1101611016=⨯=⋅===⋅====C CC C X Y P X P Y X P 所以的联合概率分布及关于、边缘概率分布如下表为:),(Y X X Y (2)类似于(1),可求得; 15293104)0|0()0()0,0(191311014=⨯=⋅===⋅====C C C C X Y P X P Y X P YX01⋅i p 0254256251012562592515jp ⋅251025151YX01⋅i p -111p 041021p 22p 21; 15496104)0|1()0()1,0(191611014=⨯=⋅===⋅====C C C C X Y P X P Y X P ; 15494106)1|0()1()0,1(191411016=⨯=⋅===⋅====C C C C X Y P X P Y X P 15595106)1|1()1()1,1(191511016=⨯=⋅===⋅====C C C C X Y P X P Y X P 所以的联合概率分布及关于、边缘概率分布如下表为:),(Y X X Y 2.已知随机变量、的概率分布分别为X Y 且,求1)0(==⋅Y X P (1)和的联合概率分布;(2).X Y )(Y X P =解(1)因为)1,0()0,0()0,1()0,1()0(=======-===⋅Y X Y X Y X Y X Y X 所以1)1,0()0,0()0,1()0,1()0(22213111=+++==+==+==+=-===⋅p p p p Y X P Y X P Y X P Y X P Y X P = 又根据得,从而.于是由表12131=∑∑==j i ijp03212=+p p 03212==p p YX01⋅i p 01521541561154155159jp ⋅1561591X P-11412141Y P12121YX01⋅i p -141041002121141021jp ⋅21211可得,,,.4111=p 4131=p 2122=p 0212221=-=p p 故的联合概率分布为),(Y X (2)由(1)知.0)1,1()0,0()(===+====Y X P Y X P Y X P 3.设二维随机向量服从矩形区域上的均匀分),(Y X {}10,20),(≤≤≤≤=y x y x D 布,且⎩⎨⎧>≤=.,1;,0Y X Y X U ⎩⎨⎧>≤=.2,1;2,0Y X Y X V 求与的联合概率分布。
高中数学(人教版A版必修三)配套课时作业:第三章 概率 3.2.2 Word版含答案
3.2.2 (整数值)随机数(random numbers)的产生课时目标 1.了解随机数的意义.2.会用模拟方法(包括计算器产生随机数进行模拟)估计概率.3.理解用模拟方法估计概率的实质.1.随机数要产生1~n(n ∈N *)之间的随机整数,把n 个____________相同的小球分别标上1,2,3,…,n ,放入一个袋中,把它们__________,然后从中摸出一个,这个球上的数就称为随机数.2.伪随机数计算机或计算器产生的随机数是依照__________产生的数,具有________(________很长),它们具有类似________的性质.因此,计算机或计算器产生的并不是______,我们称它们为伪随机数.3.利用计算器产生随机数的操作方法:用计算器的随机函数RANDI(a ,b )或计算机的随机函数RANDBETWEEN(a ,b )可以产生从整数a 到整数b 的取整数值的随机数.4.利用计算机产生随机数的操作程序每个具有统计功能的软件都有随机函数,以Excel 软件为例,打开Excel 软件,执行下面的步骤:(1)选定A1格,键入“=RANDBETWEEN(0,1)”,按Enter 键,则在此格中的数是随机产生的0或1.(2)选定A1格,按Ctrl +C 快捷键,然后选定要随机产生0,1的格,比如A2至A100,按Ctrl +V 快捷键,则在A2至A100的数均为随机产生的0或1,这样相当于做了100次随机试验.(3)选定C1格,键入频数函数“=FREQUENCY(A1∶A100,0.5)”,按Enter 键,则此格中的数是统计A1至A100中,比0.5小的数的个数,即0出现的频数.(4)选定D1格,键入“=1-C1/100”按Enter 键,在此格中的数是这100次试验中出现1的频率.一、选择题1.从含有3个元素的集合的所有子集中任取一个,所取的子集是含有2个元素的集合的概率是( )A.310B.112C.4564D.382.用计算机随机模拟掷骰子的试验,估计出现2点的概率,下列步骤中不正确的是( )A .用计算器的随机函数RANDI(1,7)或计算机的随机函数RANDBETWEEN(1,7)产生6个不同的1到6之间的取整数值的随机数x ,如果x =2,我们认为出现2点B .我们通常用计算器n 记录做了多少次掷骰子试验,用计数器m 记录其中有多少次出现2点,置n =0,m =0C .出现2点,则m 的值加1,即m =m +1;否则m 的值保持不变D .程序结束,出现2点的频率m n作为概率的近似值 3.假定某运动员每次投掷飞镖正中靶心的概率为40%,现采用随机模拟的方法估计该运动员两次投掷飞镖恰有一次命中靶心的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中靶心,5,6,7,8,9,0表示未命中靶心;再以每两个随机数为一组,代表两次的结果,经随机模拟产生了20组随机数:93 28 12 45 85 69 68 34 31 2573 93 02 75 56 48 87 30 11 35据此估计,该运动员两次掷镖恰有一次正中靶心的概率为( )A .0.50B .0.45C .0.40D .0.354.从{1,2,3,4,5}中随机选取一个数为a ,从{1,2,3}中随机选取一个数为b ,则b >a 的概率是( )A.45B.35C.25D.155.从1,2,3,…,30这30个数中任意选一个数,则事件“是偶数或能被5整除的数”的概率是( )A.710B.35C.45D.1106.任取一个三位正整数N ,对数log 2N 是一个正整数的概率为( )A.1B.3C.1D.17.对一部四卷文集,按任意顺序排放在书架的同一层上,则各卷自左到右或由右到左卷号恰为1,2,3,4顺序的概率等于________.8.盒子里共有大小相同的3只白球,1只黑球,若从中随机地摸出两只球,则它们颜色不同的概率是________.9.通过模拟试验,产生了20组随机数:6830 3013 7055 7430 7740 4422 7884 2604 3346 09526807 9706 5774 5725 6576 5929 9768 6071 9138 6754如果恰有三个数在1,2,3,4,5,6中,则表示恰有三次击中目标,问四次射击中恰有三次击中目标的概率约为________.三、解答题10.掷三枚骰子,利用Excel 软件进行随机模拟,试验20次,计算出现点数之和是9的概率.11.某篮球爱好者做投篮练习,假设其每次投篮命中的概率是60%,那么在连续三次投篮中,三次都投中的概率是多少?能力提升12.从4名同学中选出3人参加物理竞赛,其中甲被选中的概率为( )A.14B.12C.34D .以上都不对 13.甲、乙两支篮球队进行一局比赛,甲获胜的概率为0.6,若采用三局两胜制举行一次比赛,试用随机模拟的方法求乙获胜的概率.1.(1)常用的随机数的产生方法主要有抽签法,利用计算器或计算机.(2)利用摸球或抽签得到的数是真正意义上的随机数,用计算器或计算机得到的是伪随机数.2.用整数随机模拟试验时,首先要确定随机数的范围,利用哪个数字代表哪个试验结果:(1)试验的基本结果等可能时,基本事件总数即为产生随机数的范围,每个随机数代表一个基本事件;(2)研究等可能事件的概率时,用按比例分配的方法确定表示各个结果的数字个数及范围.答案:3.2.2 (整数值)随机数(random numbers )的产生知识梳理1.大小、形状 充分搅拌 2.确定算法 周期性 周期 随机数 真正的随机数 作业设计1.D [所有子集共8个,∅,{a},{b},{c},{a ,b},{a ,c},{b ,c},{a ,b ,c},含两个元素的子集共3个,故所求概率为38.] 2.A [计算器的随机函数RANDI(1,7)或计算机的随机函数RANDBETWEEN(1,7)产生的是1到7之间的整数,包括7,共7个整数.]3.A [两次掷镖恰有一次正中靶心表示随机数中有且只有一个数为1,2,3,4中的之一.它们分别是93,28,45,25,73,93,02,48,30,35共10个,因此所求的概率为1020=0.5.] 4.D [由题意知基本事件为从两个集合中各取一个数,因此基本事件总数为5×3=15. 满足b>a 的基本事件有(1,2),(1,3),(2,3)共3个,∴所求概率P =315=15.] 5.B6.C [N 取[100,999]中任意一个共900种可能,当N =27,28,29时,log 2N 为正整数,∴P=1300.] 7.112解析 用树形图可以列举基本事件的总数.①②③④ ②①③④ ③①②④ ④①②③①②④③ ②①④③ ③①④② ④①③②①③②④ ②③①④ ③②①④ ④②③①①③④② ②③④① ③②④① ④②①③①④②③ ②④①③ ③④①② ④③①②①④③② ②④③① ③④②① ④③②①总共有24种基本事件,故其概率为P =224=112. 8.12解析 给3只白球分别编号为a ,b ,c,1只黑球编号为d ,基本事件为ab ,ac ,ad ,bc ,bd ,cd 共6个,颜色不同包括事件ad ,bd ,cd 共3个,因此所求概率为36=12. 9.14解析 由题意四次射击中恰有三次击中对应的随机数有3个数字在1,2,3,4,5,6中,这样的随机数有3013,2604,5725,6576,6754共5个,所求的概率约为520=14. 10.解 操作步骤:(1)打开Excel 软件,在表格中选择一格比如A 1,在菜单下的“=”后键入“=RANDBETWEEN(1,6)”,按Enter 键,则在此格中的数是随机产生的1~6中的数.(2)选定A 1这个格,按Ctrl +C 快捷键,然后选定要随机产生1~6的格,如A 1∶T 3,按Ctrl +V 快捷键,则在A 1∶T 3的数均为随机产生的1~6的数.(3)对产生随机数的各列求和,填入A 4∶T 4中.(4)统计和为9的个数S ;最后,计算概率S /20.11.解 我们通过设计模拟试验的方法来解决问题,利用计算机或计算器可以产生0到9之间的取整数值的随机数.我们用1,2,3,4,5,6表示投中,用7,8,9,0表示未投中,这样可以体现投中的概率是60%.因为是投篮三次,所以每三个随机数作为一组.例如,产生20组随机数:812 932 569 683 271 989 730 537 925834 907 113 966 191 432 256 393 027556 755这就相当于做了20次试验,在这组数中,如果3个数均在1,2,3,4,5,6中,则表示三次都投中,它们分别是113,432,256,556,即共有4个数,我们得到了三次投篮都投中的概率近似为420=20%. 12.C [4名同学选3名的事件数等价于4名同学淘汰1名的事件数,即4种情况,甲被选中的情况共3种,∴P =34.] 13.解 利用计算器或计算机生成0到9之间取整数值的随机数,用0,1,2,3,4,5表示甲获胜;6,7,8,9表示乙获胜,这样能体现甲获胜的概率为0.6.因为采用三局两胜制,所以每3个随机数作为一组.例如,产生30组随机数(可借助教材103页的随机数表). 034 743 738 636 964 736 614 698 637162 332 616 804 560 111 410 959 774246 762 428 114 572 042 533 237 322 707 360 751就相当于做了30次试验.如果恰有2个或3个数在6,7,8,9中,就表示乙获胜,它们分别是738,636,964,736,698,637,616,959,774,762,707.共11个.所以采用三局两胜制,乙获胜的概率约为1130≈0.367.。
(完整版)必修三概率统计专题复习(完整版)
随机抽样一、随机抽样的分类1. 简单随机抽样⎩⎨⎧随机数法抽签法2.系统抽样 3. 分层抽样二、适用条件:当总体容量较小,样本容量也较小时,可采用 抽签法 ;当总体容量较大,样本容量较小时,可采用 随机数法 ;当总体容量较大,样本容量也较大时,可采用 系统抽样 ;当总体中个体差异较显著时,可采用 分层抽样 . 三、典型练习1.某会议室有50排座位,每排有30个座位.一次报告会坐满了听众.会后留下座号为15的所有听众50人进行座谈.这是运用了( c )A .抽签法B .随机数法C .系统抽样D .有放回抽样2.总体容量为524,若采用系统抽样,当抽样的间距为下列哪一个数时,不需要剔除个体( b )A .3B .4C .5D .63.甲校有3 600名学生,乙校有5 400名学生,丙校有1 800名学生,为统计三校学生某方面的情况,计划采用分层抽样法,抽取一个容量为90人的样本,应在这三校分别抽取学生 ( b )A .30人,30人,30人B .30人,45人,15人C .20人,30人,10人D .30人,50人,10人用样本估计总体1、频率分布直方图在频率分布直方图中,纵轴表示 频率/组距 ,数据落在各小组内的频率用 面积 来表示,各小长方形的面积的总和等于 1 . 2、茎叶图补充:某校学生会组织部分同学,用“10分制”随机调查“阳光”社区人们的幸福度.现从调查人群中随机抽取16名,如图所示的茎叶图记录了他们的幸福度分数(以小数点前的一位数字为茎,小数点后的一位数字为叶):(1)指出这组数据的众数和中位数和平均数; 众数:8.6, 中位数:8.78.88.752+=, 平均数:(7.0+7.3+8.6+8.6+8.6+8.6+8.7+8.7+8.8+8.8+8.9+8.9+9.5+9.5+9.6+9.7)/16=3.众数. 4.中位数 5.平均数※6.已知一组数据的频率分布直方图如下.求众数、中位数、平均数.众数:面积最大的那个矩形的中点横坐标 65中位数:前部分面积加起来占50%的那条线的横坐标 60+10⨯4020=65 平均数:每个矩形面积╳其中点横坐标再全部加起来(不用再除!!!)6705.0951.08515.0754.0653.055=⨯+⨯+⨯+⨯+⨯7、标准差的求法:标准差是样本数据到平均数的一种平均距离,一般用s 表示.8经典练习1.已知10名工人生产同一零件,生产的件数分别是16,18,15,11,16,18,18,17,15,13,设其平均数为a ,中位数为b ,众数为c ,则有( D ) A .a >b >cB .a >c >bC .c >a >bD .c >b >a2.一个样本按从小到大的顺序排列为10,12,13,x,17,19,21,24,其中位数为16,则x =__15___.3.在一次数学测验中,某小组14名学生分别与全班的平均分85分的差是:2,3,-3,-5,12,12,8,2,-1,4,-10,-2,5,5,那么这个小组的平均分约为 ( B )A .97.2分B .87.29分C .92.32分D .82.86分变量间的相关关系1. 函数关系是一种确定性关系,相关关系是一种 不确定 性关系.(正相关、负相关)2.从散点图上看,如果点从整体上看大致分布在一条直线附近,称两个变量之间具有 线性相关关系 ,这条直线叫 回归直线 . 3.xb y a xn xy x n yx ni ini ii a x b ∧∧==∧∧∧∧-=--=+=∑∑1221b y 其中程参考公式:线性回归方统计概率期末复习※()y x ,一定在回归方程上!!! 经典练习1.某产品的广告费用x 与销售额y 的统计数据如下表:根据上表可得回归方程y ^=b ^x +a ^中的b ^为9.4,据此模型预报广告费用为6万元时销售额为( B ) A.63.6万 B.65.5万元 C.67.7万元 D.72.0万元解析:5.651.94.96,6,1.9,4.95.342,42,5.3=+⨯===+⨯===--y x a a y x 当所以代入,概率一.随机事件及其概率1.事件:必然事件、不可能事件、和随机事件 3.概率基本性质:(1)对任意的一个随机事件概率是__(0,1)__.(2)必然事件概率是__1____,不可能事件的概率是___0___. (3)互斥事件是___不能同时发生__. 若A 和B 互斥_P (A ∪B )=P (A )+P (B )____(加法公式)对立事件是_不能同时发生,但必有一个发生_. 若A 和B 事件对立,则__P (A )=1-P (B ) ____. 二.古典概型: 1.特点:①基本事件有__有限___个, ② 每个基本事件发生的可能性__相等__.2.概率公式:※掷两个骰子,抛两枚硬币是有序的有序:有先后次序,依次抽,无放回抽,有放回抽 无序:任取,一次性抽取,随机抽公式(大题只用于验算写出的基本事件个数对不对,小题可直接用):n 个任取2个:()21-n n A A mP n =所包含的基本事件的个数()=基本事件的总数n 个任取3个:()()621--n n n三.几何概型:1.定义:_每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例 _简称为几何概型。
完整版概率论与数理统计习题集及答案文档良心出品
《概率论与数理统计》作业集及答案第1章概率论的基本概念§ 1 .1随机试验及随机事件1.(1) 一枚硬币连丢3次,观察正面H、反面T出现的情形.样本空间是:S= __________________________(2)—枚硬币连丢3次,观察出现正面的次数.样本空间是:S= _____________________________________ ;2.(1)丢一颗骰子.A :出现奇数点,贝U A= _________________ ; B:数点大于2,则B=(2)一枚硬币连丢2次, A :第一次出现正面,则A= _________________ ;B:两次出现同一面,则 = ________________ ; C :至少有一次出现正面,则C= § 1 .2随机事件的运算1•设A、B C为三事件,用A B C的运算关系表示下列各事件:(1)A、B、C都不发生表示为: __________ .(2)A 与B都发生,而C不发生表示为:(3)A与B都不发生,而C发生表示为:.(4)A 、B C中最多二个发生表示为:(5)A、B、C中至少二个发生表示为:.(6)A 、B C中不多于一个发生表示为:2.设S = {x : 0 _ x _ 5}, A = {x :1 :: x _ 3}, B = {x : 2 _ :: 4}:贝y(1) A 一 B = , (2) AB = , (3) AB = _______________ ,(4) A B = __________________ , (5) AB = ________________________ 。
§ 1 .3概率的定义和性质1.已知P(A B)二0.8, P( A)二0.5, P(B)二0.6,贝U(1) P(AB) = , (2)( P( A B) )= , (3) P(A B)= .2.已知P(A) =0.7, P(AB) =0.3,则P(AB)= .§ 1 .4古典概型1.某班有30个同学,其中8个女同学,随机地选10个,求:(1)正好有2个女同学的概率,(2)最多有2个女同学的概率,(3)至少有2个女同学的概率.2.将3个不同的球随机地投入到 4个盒子中,求有三个盒子各一球的概率.§ 1 .5条件概率与乘法公式1 •丢甲、乙两颗均匀的骰子,已知点数之和为7,则其中一颗为1的概率是 ____________________ 。
概率统计大题综合(解析版)
概率统计大题综合知识点总结1.数字样本特征(1)众数:在一组数据中出现次数最多的数(2)中位数:将一组数据按从小到大(或从大到小)的顺序排列,如果为奇数个,中位数为中间数;若为偶数个,中位数为中间两个数的平均数(3)平均数:x =x 1+x 2+⋯⋯+x nn ,反映样本的平均水平(4)方差:s 2=(x 1−x )2+(x 2−x )2+⋯⋯(x n −x )2n反映样本的波动程度,稳定程度和离散程度;s 2越大,样本波动越大,越不稳定;s 2越小,样本波动越小,越稳定;(5)标准差:σ=s 2,标准差等于方差的算术平方根,数学意义和方差一样(6)极差:等于样本的最大值−最小值2.求随机变量X 的分布列的步骤:(1)理解X 的意义,写出X 可能取得全部值;(2)求X 取每个值的概率;(3)写出X 的分布列;(4)根据分布列的性质对结果进行检验.还可判断随机变量满足常见分布列:两点分布,二项分布,超几何分布,正态分布.3.求随机变量的期望和方差的基本方法:(1)已知随机变量的分布列,直接利用期望和方差公式直接求解;(2)已知随机变量X 的期望、方差,求aX +b a ,b ∈R 的期望与方差,利用期望和方差的性质E aX +b =aE X +b ,D aX +b =a 2D X 进行计算;(3)若能分析出所给的随机变量服从常用的分布(如:两点分布、二项分布等),可直接利用常用分布列的期望和方差公式进行计算,若ξ~B (n ,p ),则Eξ=np ,Dξ=np (1-p ).4.求解概率最大问题的关键是能够通过P ξ=k ≥P ξ=k +1P ξ=k ≥Pξ=k -1构造出不等关系,结合组合数公式求解结果5.线性回归分析解题方法:(1)计算x ,y,ni =1x i 2 ,ni =1x i y i 的值;(2)计算回归系数a ,b ;(3)写出回归直线方程y =b x +a.线性回归直线方程为:y =b x +a ,b=ni =1x i −x y i −yni =1x i −x2=ni =1x i y i −nx yni =1x i 2−nx2,a =y −b x其中x ,y为样本中心,回归直线必过该点(4)线性相关系数(衡量两个变量之间线性相关关系的强弱)r =n i =1x i −x y i −y n i =1x i −x 2 n i =1y i −y 2 =ni =1x i y i −nx yn i =1x i 2−nx 2ni =1y i 2−ny2r >0,正相关;r <0,负相关r ≤1,且r 越接近于1,线性相关性越强;r 越接近于0,线性相关性越弱,几乎不存在线性相关性6.独立性检验解题方法:(1)依题意完成列联表;(2)用公式求解;(3)对比观测值即可得到所求结论的可能性独立性检验计算公式:K 2=n ad -bc 2a +b c +d a +c b +d模拟训练一、解答题1.(2023·福建三明·统考三模)在二十大报告中,体育、健康等关键词被多次提及,促进群众体育和竞技体育全面发展,加快建设体育强国是全面建设社会主义现代化国家的一个重要目标.某校为丰富学生的课外活动,加强学生体质健康,拟举行羽毛球团体赛,赛制采取3局2胜制,每局都是单打模式,每队有5名队员,比赛中每个队员至多上场一次且是否上场是随机的,每局比赛结果互不影响.经过小组赛后,最终甲、乙两队进入最后的决赛,根据前期比赛的数据统计,甲队种子选手M 对乙队每名队员的胜率均为34,甲队其余4名队员对乙队每名队员的胜率均为12.(注:比赛结果没有平局)(1)求甲队最终2:1获胜且种子选手M 上场的概率;(2)已知甲队2:1获得最终胜利,求种子选手M 上场的概率.【答案】(1)740(2)711【分析】(1)设事件A i =“种子选手M 第i 局上场”i =1,2,3 ,事件B =“甲队最终2:1获胜且种子选手M 上场”,求出P A i 、P B A i i =1,2,3 的值,利用全概率公式可求得P B 的值;(2)设事件A 0=“种子选手M 未上场”,事件C =“甲队2:1获得胜利”,计算出P C 、P A 0C 的值,利用贝叶斯公式可求得P A 0C 的值.【详解】(1)解:设事件A i =“种子选手M 第i 局上场”i =1,2,3 ,事件B =“甲队最终2:1获胜且种子选手M 上场”.由全概率公式知,P B =P B A 1 ⋅P A 1 +P B A 2 ⋅P A 2 +P B A 3 ⋅P A 3因为每名队员上场顺序随机,故P A i =15i =1,2,3 ,P B A 1 =34×12×12+14×12×12=14,P B A 2 =12×34×12+12×14×12=14,P B A 3 =C 12⋅12×12×34=38.所以P B =∑3i =1P B A i P A i =14×15+14×15+38×15=740,所以甲队最终2:1获胜且种子选手M 上场的概率为740.(2)解:设事件A 0=“种子选手M 未上场”,事件C =“甲队2:1获得胜利”,P A 0 =A 34A 35=25,P A 0 =1-25=35,P C A 0 =C 12×12×12×12=14,P C =P B +P C A 0 ⋅P A 0 =740+14×25=1140,因为P A 0 C =P A 0CP C.由(1)知P A 0 C =P B =740,所以P A 0 C =P A 0 C P C =7401140=711.所以,已知甲队2:1获得最终胜利,种子选手M 上场的概率为711.2.(2023·湖北武汉·统考模拟预测)“英才计划”最早开始于2013年,由中国科协、教育部共同组织实施,到2022年已经培养了6000多名具有创新潜质的优秀中学生,为选拔培养对象,某高校在暑假期间从武汉市的中学里挑选优秀学生参加数学、物理、化学、信息技术学科夏令营活动.(1)若化学组的12名学员中恰有5人来自同一中学,从这12名学员中选取3人,ξ表示选取的人中来自该中学的人数,求ξ的分布列和数学期望;(2)在夏令营开幕式的晚会上,物理组举行了一次学科知识竞答活动.规则如下:两人一组,每一轮竞答中,每人分别答两题,若小组答对题数不小于3,则取得本轮胜利,假设每轮答题结果互不影响.已知甲、乙两位同学组成一组,甲、乙答对每道题的概率分别为p 1,p 2,且p 1+p 2=43,如果甲、乙两位同学想在此次答题活动中取得6轮胜利,那么理论上至少要参加多少轮竞赛?【答案】(1)分布列见解析,E (ξ)=54(2)11轮【分析】(1)根据超几何分布列分布列计算数学期望即可;(2)先求每轮答题中取得胜利的概率的最大值,再应用独立重复实验数学期望的范围求出最少轮数.【详解】(1)由题意可知ξ的可能取值有0、1、2、3,P (ξ=0)=C 37C 312=744,P (ξ=1)=C 15C 27C 312=2144,P (ξ=2)=C 17C 25C 312=722,P (ξ=3)=C 35C 312=122所以,随机变量ξ的分布列如下表所示:ξ0123P7442144722122所以E (ξ)=0×744+1×2144+2×722+3×122=54.(2)他们在每轮答题中取得胜利的概率为Q =C 12p 11-p 1 C 22p 22+C 22p 21C 12p 21-p 2 +C 22p 21C 22p 22=2p 1p 2p 1+p 2 -3p 1p 2 2=83p 1p 2-3p 1p 2 2,由0≤p 1≤1,0≤p 2≤1,p 1+p 2=43,得13≤p 1≤1,则p1p2=p143-p1=43p1-p21=-p1-232+49,因此p1p2∈13,49,令t=p1p2∈13,49,Q=83t-3t2=-3t-492+1627,于是当t=49时,Q max=1627.要使答题轮数取最小值,则每轮答题中取得胜利的概率取最大值16 27.设他们小组在n轮答题中取得胜利的次数为X,则X∼B n,16 27,E(X)=1627n,由E(X)≥6,即1627n≥6,解得n≥10.125.而n∈N*,则n min=11,所以理论上至少要进行11轮答题.3.(2023·福建宁德·校考二模)某科研团以为了考察某种药物预防疾病的效果,进行动物实验,得到如下列联表.患病未患病总计服用药物1045末服用药物50总计30(1)请将上面的列联表补充完整.(2)认为“药物对预防疾病有效”犯错误的概率是多少?(3)为了进一步研究,现按分层抽样的方法从未患病动物中抽取10只,设其中未服用药物的动物数为ξ,求ξ的分布列与期望.下面的临界值表供参考:P(K2≥k)0.150.100.050.0250.0100.0050.001k 2.0722706 3.841 5.024 6.6357.87910.828(参考公式:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d)【答案】(1)列联表见解析(2)2.5%(3)分布列见解析,数学期望为1.6【分析】(1)根据表中的数据完成列联表即可;(2)由公式K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)计算K2,然后根据临界值表进行判断;(3)由题意可得ξ的值可能为0,1,2,3,4,求出相应的概率,从而可求得ξ的分布列与期望.【详解】(1)列联表补充如下:患病末患病总计服用药物104555末服用药物203050总计3075105(2)K2=105×(10×30-20×45)230×75×55×50=33655≈6.109>5.024.∵P K2≥5.024=0.025,∴认为“药物对预防疾病有效”犯错误的概率是2.5%.(3)根据题意,10只未患病动物中,有6只服用药物,4只未服用药物,所以ξ的值可能为0,1,2,3,4,则P (ξ=0)=C 46C 410=15210,P (ξ=1)=C 36C 14C 410=80210,P (ξ=2)=C 26C 24C 410=90210,P (ξ=3)=C 16C 34C 410=24210,P (ξ=4)=C 44C 410=1210,ξ的分布列如下:ξ01234P152108021090210242101210则E (ξ)=0×15210+1×80210+2×90210+3×24210+4×1210=1.6.4.(2023·江苏常州·校考一模)设X ,Y 是一个二维离散型随机变量,它们的一切可能取的值为a i ,b j ,其中i ,j ∈N *,令p ij =P X =a i ,Y =b j ,称p ij i ,j ∈N * 是二维离散型随机变量X ,Y 的联合分布列,与一维的情形相似,我们也习惯于把二维离散型随机变量的联合分布列写成下表形式;X ,Yb 1b 2b 3⋅⋅⋅a 1p 11p 12p 13⋅⋅⋅a 2p 21p 22p 23⋅⋅⋅a 3p 31p 32p 33⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅现有n n ∈N * 个球等可能的放入编号为1,2,3的三个盒子中,记落入第1号盒子中的球的个数为X ,落入第2号盒子中的球的个数为Y .(1)当n =2时,求X ,Y 的联合分布列,并写成分布表的形式;(2)设p k =nm =0P X =k ,Y =m ,k ∈N 且k ≤n ,求nk =0kp k 的值.(参考公式:若X ~B n ,p ,则nk =0kC k n p k1-p n -k =np )【答案】(1)答案见解析(2)n 3【分析】(1)X 的取值为0,1,2,Y 的取值为0,1,2,分别计算概率即可;(2)计算得p k =Ckn13k23n -k,则n k =0kp k =nk =0kC k n 13k23n -k,最后利用二项分布的期望公式即可得到答案.【详解】(1)若n =2,X 的取值为0,1,2,Y 的取值为0,1,2,则P X =0,Y =0 =132=19,P X =0,Y =1 =C 12×13×13=29,P X =0,Y =2 =132=19,P X =1,Y =0 =C 12×13×13=29,P X =1,Y =1 =C 12×13×13=29,P X =2,Y =0 =132=19,P X =1,Y =2 =P X =2,Y =1 =P X =2,Y =2 =0,故X ,Y 的联合分布列为X ,Y 0120192919129290219(2)当k +m >n 时,P X =k ,Y =m =0,故p k =nm =0P X =k ,Y =m =n -km =0P X =k ,Y =m =n -km =0P C k n C m n -k ⋅13n=C k n 3n n -k m =0C m n -k =C kn 3n 2n -k =C k n13 k23n -k所以nk =0kp k =nk =0kC k n13k23n -k,由二项分布的期望公式可得nk =0kp k =n 3.5.(2023·江苏南京·南京市第九中学校考模拟预测)某种疾病可分为A ,B 两种类型,为了解该疾病的类型与患者性别是否相关,在某地区随机抽取了若干名该疾病的患者进行调查,发现女性患者人数是男性患者的2倍,男性患A 型疾病的人数占男性患者的56,女性患A 型疾病的人数占女性患者的13.A 型病B 型病合计男女合计(1)填写2×2列联表,若本次调查得出“在犯错误的概率不超过0.005的前提下认为‘所患疾病的类型'与‘性别'有关”的结论,求被调查的男性患者至少有多少人?(2)某团队进行预防A 型疾病的疫苗的研发试验,试验期间至多安排2个周期接种疫苗,每人每个周期接种3次,每次接种费用为m m >0 元.该团队研发的疫苗每次接种后产生抗体的概率为p 0<p <1 ,如果一个周期内至少2次出现抗体,则该周期结束后终止试验,否则进入第二个周期.若p =23,试验人数为1000人,试估计该试验用于接种疫苗的总费用.K 2=n ad -bc 2a +b c +d a +c b +d,P K 2≥k 0 0.100.050.010.0050.001k 02.7063.8416.6357.87910.828【答案】(1)列联表见解析,被调查的男性患者至少有12;(2)340009m 元【分析】(1)设男性患者有x 人,结合题设写出列联表,应用卡方公式求卡方值,根据独立检验的基本思想列不等式求x 范围,再由x 6∈Z ,x3∈Z 确定x 最小值;(2)由题意试验每人的接种费用为ξ的可能取值为3m ,6m ,独立事件乘法公式求出对应概率,进而求出期望,根据总人数求出总费用的期望即可.【详解】(1)设男性患者有x 人,则女性患者有2x 人,2×2列联表如下:A 型病B 型病合计男5x6x 6x 女2x 34x 32x 合计3x 23x 23x假设H 0:患者所患疾病类型与性别之间无关联,根据列联表中的数据K 2=3x 5x 6⋅4x 3-x 6⋅2x 3 23x 2⋅3x 2⋅2x ⋅x =2x 3,要使在犯错误的概率不超过0.005的前提下认为“所患疾病类型”与“性别”有关,则2x 3>7.879,解得x >11.8185,因为x 6∈Z ,x3∈Z ,所以x 的最小整数值为12,因此,男性患者至少有12人.(2)设该试验每人的接种费用为ξ元,则ξ的可能取值为3m ,6m .则P ξ=3m =C 23p 21-p +p 3=-2p 3+3p 2,P ξ=6m =1+2p 3-3p 2,所以E ξ =3m ⋅-2p 3+3p 2 +6m ⋅1+2p 3-3p 2 =3m 2p 3-3p 2+2 ,因为p =23,试验人数为1000人,所以该试验用于接种疫苗的总费用为1000E ξ ,所以1000×3m 2×23 3-3×23 2+2 =340009m 元.6.(2023·安徽蚌埠·统考三模)某校为了丰富学生课余生活,组建了足球社团.为了解学生喜欢足球是否与性别有关,随机抽取了男、女同学各100名进行调查,部分数据如表所示:喜欢足球不喜欢足球合计男生40女生30合计(1)根据所给数据完成上表,依据α=0.001的独立性检验,能否认为该校学生喜欢足球与性别有关?(2)社团指导老师从喜欢足球的学生中抽取了2名男生和1名女生示范点球射门.已知这两名男生进球的概率均为23,这名女生进球的概率为12,每人射门一次,假设各人射门相互独立,求3人进球总次数X 的分布列和数学期望.附:χ2=n ad -bc 2a +b c +d a +c b +dα0.10.050.010.0050.001x α2.7063.8416.6357.87910.828【答案】(1)有99.9%的把握认为该校学生喜欢足球与性别有关;(2)分布列见解析,数学期望为116.【分析】(1)完善列联表,计算χ2的观测值,再与临界值表比对作答.(2)求出X 的可能值,求出各个值对应的概率,列出分布列并求出期望作答.【详解】(1)依题意,2×2列联表如下:喜欢足球不喜欢足球合计男生6040100女生3070100合计90110200零假设H 0:该校学生喜欢足球与性别无关,χ2的观测值为χ2=200(60×70-30×40)2100×100×90×110≈18.182>10.828=x 0.001,根据小概率值α=0.001的独立性检验,推断H 0不成立,所以有99.9%的把握认为该校学生喜欢足球与性别有关.(2)依题意,X 的可能值为0,1,2,3,P (X =0)=1-23 2×1-12 =118,P (X =1)=C 12×231-23 ×1-12 +1-23 2×12=518,P (X =2)=C 12×231-23 ×12+23 2×1-12 =818=49,P (X =3)=23 2×12=29,所以X 的分布列为:X0123P1185184929数学期望E (X )=0×118+1×518+2×49+3×29=116.7.(2023·海南海口·海南华侨中学校考模拟预测)在以视觉为主导的社交媒体时代,人们常借助具有美颜功能的产品对自我形象进行美化.移动端的美颜拍摄类APP 主要有两类:A 类是以自拍人像、美颜美妆为核心功能的APP ;B 类是图片编辑、精修等图片美化类APP .某机构为调查市民对上述A ,B 两类APP 的使用情况,随机调查了部分市民.已知被调查的市民中使用过A 类APP 的占60%,使用过B 类APP 的占50%,设个人对美颜拍摄类APP 类型的选择及各人的选择之间相互独立.(1)从样本人群中任选1人,求该人使用过美颜拍摄类APP 的概率;(2)从样本人群中任选5人,记X 为5人中使用过美颜拍摄类APP 的人数,设X 的数学期望为E X ,求P X =E X ;(3)在单独使用过A ,B 两类APP 的样本人群中,按类型分甲、乙两组,并在各组中随机抽取8人,甲组对A 类APP ,乙组对B 类APP 分别评分如下:甲组评分9486929687939082乙组评分8583859175908380记甲、乙两组评分的平均数分别为x 1 ,x 2 ,标准差分别为s 1,s 2,试判断哪组评价更合理.(设V i =s ix i (i =1,2),V i 越小,则认为对应组评价更合理.)参考数据:0.1925≈0.439,0.2325≈0.482.【答案】(1)0.8(2)256625(3)甲组对A 类APP 的评价更合理.【分析】(1)求出“使用过A 类APP ”和“使用过B 类APP ”的概率,再由对立事件的概率公式求解即可.(2)题意知X ∼B 5,45,由二项分布的数学期望公式可求出E X ,再由二项分布的概率公式即可求出P X =E X .(3)由平均数和方差的公式求解即可得出答案.【详解】(1)设事件A 表示“使用过A 类APP ”,事件B 表示“使用过B 类APP ”,由题意知P A =0.6,P B =0.5.任选一人,该人使用过美颜拍摄类APP 的概率:P =1-P A B=1-0.4×0.5=0.8.(2)由题意知X ∼B 5,45,则X 的数学期望E X =5×45=4.P X =E X =P X =4 =C 4545 4×15=256625.(3)x 1 =94+86+92+96+87+93+90+828=90,x 2 =85+83+85+91+75+90+83+808=84,s 1=1842+-4 2+22+62+-3 2+32+02+-8 2 =19.25≈4.39,s 2=1812+-1 2+12+72+-9 2+62+-1 2+-4 2 =23.25≈4.82,V 1=s 1x 1=4.3990<V 2=s 2x 2=4.8284,故甲组对A 类APP 的评价更合理.8.(2023·广东·统考模拟预测)某工厂车间有6台相同型号的机器,各台机器相互独立工作,工作时发生故障的概率都是14,且一台机器的故障由一个维修工处理.已知此厂共有甲、乙、丙3名维修工,现有两种配备方案,方案一:由甲、乙、丙三人维护,每人负责2台机器;方案二:由甲乙两人共同维护6台机器,丙负责其他工作.(1)对于方案一,设X 为甲维护的机器某一时刻发生故障的台数,求X 的分布列与数学期望E (X );(2)在两种方案下,分别计算某一时刻机器发生故障时不能得到及时维修的概率,并以此为依据来判断,哪种方案能使工厂的生产效率更高?【答案】(1)分布列见解析,12(2)7214096,3472048,方案二能让故障机器更大概率得到及时维修,使得工厂的生产效率更高.【分析】(1)根据题意得到随机变量X ~B 2,14,结合独立重复试验的概率计算公式求得相应的概率,列出分布列,结合期望的公式,即可求解;(2)根据题意,分别求得方案一和方案二中,结合对立事件和独立重复试验的概率计算公式,分别求得机器发生故障时不能及时维修的概率P 1和P 2,根据大小关系,即可得到结论.【详解】(1)解:由题意,车间有6台相同型号的机器,各台机器相互独立工作,工作时发生故障的概率都是14,可得方案一中,随机变量X ~B 2,14,则P X=0=342=916,P X=1=C12⋅14⋅34=38,P X=2=142=116,所以随机变量X的分布列为:X012P 91638116所以期望为E X=2×14=12.(2)解:对于方案一:“机器发生故障时不能及时维修”等价于“甲、乙、丙三人中,至少有一人负责的2台机器同时发生故障”,设机器发生故障时不能及时维修的概率为P1,则其概率为P1=1-1-P X=23=1-1-1 163=7214096.对于方案二:设机器发生故障时不能及时维修的概率为P2,则P2=1-346-C16⋅14⋅34 5-C26⋅14 2⋅34 4=1-36+6×35+15×344096=3472048,可得P2<P1,即方案二能让故障机器更大概率得到及时维修,使得工厂的生产效率更高.9.(2023·福建福州·福建省福州第一中学校考模拟预测)相关统计数据显示,中国经常参与体育锻炼的人数比例为37.2%,城乡居民达到《国民体质测定标准》合格以上的人数比例达到90%以上.某健身连锁机构对其会员的年龄等级和一个月内到健身房健身次数进行了统计,制作成如下两个统计图.图1为会员年龄分布图(年龄为整数),其中将会员按年龄分为“年轻人”(20岁-39岁)和“非年轻人”(19岁及以下或40岁及以上)两类;图2为会员一个月内到健身房次数分布扇形图,其中将一个月内到健身房锻炼16次及以上的会员称为“健身达人”,15次及以下的会员称为“健身爱好者”,且已知在“健身达人”中有56是“年轻人”.(1)现从该健身连锁机构会员中随机抽取一个容量为100的样本,根据图表数据,补全2×2列联表,并依据小概率值α=0.05的独立性检验,是否可以认为“健身达人”与年龄有关?年轻人非年轻人合计健身达人健身爱好者合计(2)该健身机构在今年年底将针对全部的150名会员举办消费返利活动,预设有如下两种方案.方案1:按分层抽样从健身爱好者和健身达人中总共抽取20位“幸运之星”给予奖励.其中,健身爱好者和健身达人中的“幸运之星”每人分别奖励500元和800元.方案2:每位会员均可参加摸奖游戏,游戏规则如下:从一个装有3个白球、2个红球(球只有颜色不同)的箱子中,有放回地摸三次球,每次只能摸一个球.若摸到红球的总数为2,则可获得100元奖励金;若摸到红球的总数为3,则可获得300元奖励金;其他情况不给予奖励.如果每位健身爱好者均可参加1次摸奖游戏;每位健身达人均可参加3次摸奖游戏(每次摸奖的结果相互独立).以方案的奖励金的数学期望为依据,请你预测哪一种方案投资较少?并说明理由.附:χ2=n(ad-bc)2a+bc+da+cb+d.α0.100.050.0250.0100.0050.001χα 2.706 3.841 5.024 6.6357.87910.828【答案】(1)列联表见解析,“健身达人”与年龄无关(2)施行方案1投资较少,理由见解析【分析】(1)根据题意计算相关数据填好列联表,利用公式计算χ2,对照参考数据得出结论;(2)按分层抽样计算方案1奖励的总金额ξ1;方案2中,设η表示参加一次摸奖游戏所获得的奖励金,则η的可能取值为0,100,300,计算对应概率,得出分布列,数学期望Eη ,进而计算按照方案2奖励的总金额ξ2,比较ξ1,ξ2即可得出答案.【详解】(1)根据年轻人标准结合图1可得年轻人占比为80%,则年轻人人数为100×80%=80,非年轻人为20人,根据图2表格得健身达人所占比60%,所以其人数为100×60%=60,根据其中年轻人占比56,所以健身达人中年轻人人数为60×56=50,非年轻人为10人;健身爱好者人数为100-60=40,再通过总共年轻人合计为80人,则健身爱好者中年轻人人数为80-50=30,根据非年轻人总共为20人,健身爱好者中非年轻人人数为20-10=10,所以列联表为:年轻人非年轻人合计健身达人501060健身爱好者301040合计8020100零假设为H0:“健身达人”与年龄无关联,根据列联表中的数据,可得χ2=100×(50×10-30×10)280×20×60×40=2524≈1.042<3.841,依据小概率值α=0.05的独立性检验,没有充分证据推断H0不成立,因此可以认为H0成立,即“健身达人”与年龄无关.(2)方案1:按分层抽样从健身爱好者和健身达人中总共抽取20位“幸运之星”,则“幸运之星”中的健身爱好者和健身达人的人数分别为18.2%+21.8%×20=8,30.1%+19.2%+10.7%×20=12,按照方案1奖励的总金额为ξ1=8×500+12×800=13600(元).方案2:设η表示参加一次摸奖游戏所获得的奖励金,全部的150名会员中的健身爱好者和健身达人的人数分别为18.2%+21.8%×150=60,30.1%+19.2%+10.7%×150=90,则η的可能取值为0,100,300.由题意,每摸球1次,摸到红球的概率为P =C 12C 15=25,所以P η=0 =C 0335 325 0+C 1335 225 1=81125,P η=100 =C 2335 125 2=36125,P η=300 =C 3335 025 3=8125.所以η的分布列为:η0100300P81125361258125数学期望为E η =0×81125+100×36125+300×8125=48(元),按照方案2奖励的总金额为ξ2=60+3×90 ×48=15840(元),因为由ξ1<ξ2,所以施行方案1投资较少.10.(2023·云南昭通·校联考模拟预测)为了检测某种抗病毒疫苗的免疫效果,需要进行临床人体试验.研究人员将疫苗注射到200名志愿者体内,一段时间后测量志愿者的某项指标值,按0,20 ,20,40 ,40,60 ,60,80 ,80,100 分组,绘制频率分布直方图如图所示.试验发现志愿者体内产生抗体的共有160人,其中该项指标值不小于60的有110人.假设志愿者注射疫苗后是否产生抗体相互独立.(1)填写下面的2×2列联表,并根据列联表及小概率值α=0.05的独立性检验,判断能否认为注射疫苗后志愿者产生抗体与指标值不小于60有关.抗体指标值合计小于60不小于60有抗体没有抗体合计(2)为检验疫苗二次接种的免疫抗体性,对第一次注射疫苗后没有产生抗体的40名志愿者进行第二次注射疫苗,结果又有m 名志愿者产生抗体.(i )用频率估计概率,已知一名志愿者注射2次疫苗后产生抗体的概率p =0.9,求m 的值;(ⅱ)以(i )中的概率p 作为人体注射2次疫苗后产生抗体的概率,再进行另一组人体接种试验,记110名志愿者注射2次疫苗后产生抗体的数量为随机变量X,求P X=k最大时的k的值.参考公式:χ2=n ad-bc2a+bc+da+cb+d(其中n=a+b+c+d为样本容量).α0.500.400.250.150.1000.0500.025xα0.4550.708 1.323 2.072 2.706 3.841 5.024【答案】(1)列联表见解析,认为注射疫苗后志愿者产生抗体与指标值不小于60有关;(2)(i)20;(ⅱ)99.【分析】(1)完善列联表,计算χ2的观测值,再与临界值表比对作答.(2)(i)利用对立事件、相互独立事件的概率公式求解作答;(ⅱ)利用二项分布的概率公式,列出不等式组并求解作答.【详解】(1)由频率分布直方图,知200名志愿者按指标值分布为:在[0,20)内有0.0025×20×200=10 (人),在[20,40)内有0.00625×20×200=25(人),在[40,60)内有0.00875×20×200=35(人),在[60,80)内有0.025×20×200=100(人),在80,100内有0.0075×20×200=30(人),依题意,有抗体且指标值小于60的有50人,而指标值小于60的志愿者共有10+25+35=70人,则指标值小于60且没有抗体的志愿者有20人,指标值不小于60且没有抗体的志愿者有20人,所以2×2列联表如下:抗体指标值合计小于60不小于60有抗体50110160没有抗体202040合计70130200零假设H0:注射疫苗后志愿者产生抗体与指标值不小于60无关联,根据列联表中数据,得χ2=200×(50×20-20×110)2160×40×70×130≈4.945>3.841,根据小概率值α=0.05的独立性检验,推断H0不成立,即认为注射疫苗后志愿者产生抗体与指标值不小于60有关,此推断犯错误的概率不大于0.05.(2)(i)令事件A=“志愿者第一次注射疫苗产生抗体”,事件B=“志愿者第二次注射疫苗产生抗体”,事件C=“志愿者注射2次疫苗后产生抗体”,记事件A,B,C发生的概率分别为P(A),P(B),P(C),则P A=160200=0.8,P B =m40,P C =1-P AP B=1-0.2×1-m40=0.9,解得:m=20,所以m=20.(ⅱ)依题意,随机变量X∼B(110,0.9),P(X=k)=C k110×0.9k×0.1110-k(k∈N,k≤110),显然P(X=0),P(X=110)不是最大的,即当P(X=k)最大时,k∈N∗,k<110,于是P(X=k)≥P(X=k-1)P(X=k)≥P(X=k+1),即C k110×0.9k×0.1110-k≥C k-1110×0.9k-1×0.1111-kC k110×0.9k×0.1110-k≥C k+1110×0.9k+1×0.1109-k,则110!k!(110-k)!×0.9≥110!(k-1)!(111-k)!×0.1110!k!(110-k)!×0.1≥110!(k+1)!(109-k)!×0.9,整理得9(111-k)≥kk+1≥9(110-k),解得98910≤k≤99910,因此k=99,所以P(X=k)最大时,k的值为99.11.(2023·湖南长沙·长沙市实验中学校考二模)首批全国文明典范城市将于2023年评选,每三年评选一次,2021年长沙市入选为全国文明典范城市试点城市,目前我市正全力争创首批全国文明典范城市,某学校号召师生利用周末从事创建志愿活动.高一(1)班一组有男生4人,女生2人,现随机选取2人作为志愿者参加活动,志愿活动共有交通协管员、创建宣传员、文明监督员三项可供选择,每名女生至多从中选择参加2项活动,且选择参加1项或2项的可能性均为12;每名男生至少从中选择参加2项活动,且选择参加2项或3项的可能性也均为12,每人每参加1项活动可获得综合评价10分,选择参加几项活动彼此互不影响,求:(1)在有女生参加活动的条件下,恰有一名女生的概率;(2)记随机选取的两人得分之和为X,求X的期望.【答案】(1)8 9(2)E X =1303【分析】(1)根据条件概率求解即可;(2)先求出参加人数的分布列及期望,再根据参加人数与得分的关系求出得分的期望即可.【详解】(1)设事件A为:“至少有一名女生参加活动”,设事件B为:“恰有一名女生参加活动”.则P AB=C14⋅C12C26=815,P A =1-C24C26=35.所以在有女生参加活动的条件下,恰有一名女生的概率为:P B A=P ABP A=89;(2)因为女生参加活动得分为12×10+12×20=15;男生参加活动得分为12×20+12×30=25.设恰有Y名女生参加活动,则有2-Y名男生参加活动,所以P Y=0=C24C26=25,P Y=1=C14⋅C12C26=815,P Y=2=C22C26=115,所以E Y=1×815+2×115=23,又X=15Y+252-Y=50-10Y,所以E X=50-10E Y=50-10×23=1303.12.(2023·江苏南京·南京市第一中学校考模拟预测)为了宣传航空科普知识,某校组织了航空知识竞赛活动.活动规定初赛需要从8道备选题中随机抽取4道题目进行作答.假设在8道备选题中,小明正确完成每道题的概率都是34且每道题正确完成与否互不影响,小宇能正确完成其中6道题且另外2道题不能完成.(1)求小明至少正确完成其中3道题的概率;(2)设随机变量X表示小宇正确完成题目的个数,求X的分布列及数学期望;(3)现规定至少完成其中3道题才能进入决赛,请你根据所学概率知识,判断小明和小宇两人中选择谁去参加市级比赛(活动规则不变)会更好,并说明理由.【答案】(1)189256(2)分布列见解析,3(3)选择小宇,理由见解析【分析】(1)小明至少正确完成其中3道题包含两种情况:一是小明正确完成3道题,二是小明正确完成4道题,然后由互斥事件的概率公式求解即可;(2)由题意得X 的可能取值为2,3,4,然后求各自对应的概率,从而可求出X 的分布列及数学期望;(3)分别计算出他们两人至少完成其中3道题的概率,通过比较概率的大小可得答案.【详解】(1)记“小明至少正确完成其中3道题”为事件A ,则P A =C 3434 314+C 4434 4=189256.(2)X 的可能取值为2,3,4P X =2 =C 22C 26C 48=1570=314,P X =3 =C 12C 36C 48=4070=47,P X =4 =C 02C 46C 48=1570=314,X 的分布列为;X 234P31447314数学期望E X =2×314+3×47+4×314=3.(3)由(1)知,小明进入决赛的概率为P A =189256;记“小宇至少正确完成其中3道题”为事件B ,则P B =47+314=1114;因为P B >P A ,故小宇进决赛的可能性更大,所以应选择小宇去参加比赛.13.(2023·广东·校联考模拟预测)某商场在五一假期间开展了一项有奖闯关活动,并对每一关根据难度进行赋分,竞猜活动共五关,规定:上一关不通过则不进入下一关,本关第一次未通过有再挑战一次的机会,两次均未通过,则闯关失败,且各关能否通过相互独立,已知甲、乙、丙三人都参加了该项闯关活动.(1)若甲第一关通过的概率为23,第二关通过的概率为56,求甲可以进入第三关的概率;(2)已知该闯关活动累计得分服从正态分布,且满分为450分,现要根据得分给共2500名参加者中得分前400名发放奖励.①假设该闯关活动平均分数为171分,351分以上共有57人,已知甲的得分为270分,问甲能否获得奖励,请说明理由;②丙得知他的分数为430分,而乙告诉丙:“这次闯关活动平均分数为201分,351分以上共有57人”,请结合统计学知识帮助丙辨别乙所说信息的真伪.附:若随机变量Z ∼N μ,σ2 ,则P μ-σ≤X ≤μ+σ ≈0.6827;P μ-2σ≤X ≤μ+2σ ≈0.9545;P μ-3σ≤X ≤μ+3σ ≈0.9973.【答案】(1)7081。
利用概率统计分析问题的练习题
利用概率统计分析问题的练习题概率统计分析是一门研究随机现象的数学学科,它通过数学模型和统计方法来研究和解决与随机事件相关的问题。
在实际应用中,概率统计分析可以帮助我们更好地理解和预测事件的发生概率以及事件之间的相关性。
下面我将为大家提供几个利用概率统计分析解决问题的练习题。
第一题:小明每天上学总是会遇到红绿灯,他估计红灯的停留时间为20秒的概率为0.3,30秒的概率为0.5,40秒的概率为0.2。
现在假设小明上学有10个红灯,求他在这个过程中遇到两次20秒停留时间的概率是多少?解析:我们可以采用二项分布来解决这个问题。
设小明遇到20秒停留时间的概率为p,那么遇到其他两种情况的概率分别为q1和q2。
根据题目给出的概率,我们有以下的等式:0.3p^2q1^8 + 0.5p^2q1^7q2 + 0.2p^2q1^6q2^2 = ?我们可以将这个等式化简为p^2(q1^8 + 0.5q1^7q2 + 0.2q1^6q2^2) = ?由于p+q1+q2=1,我们可以将上述等式进一步转化为:p^2(q1^8 + 0.5q1^7q2 + 0.2q1^6q2^2) = (1-q1-q2)^2(q1^8 + 0.5q1^7q2 + 0.2q1^6q2^2)假设q1=0.7,q2=0.1,带入计算可以得到p^2 ≈ 0.144,即p ≈ 0.38,因此他在这个过程中遇到两次20秒停留时间的概率约为0.144。
第二题:某手机厂商生产的手机中,有10%存在一个电池问题。
现在从该厂商购买了5部手机,求至少有一部手机存在电池问题的概率是多少?解析:这是一个典型的二项分布问题。
设p为手机存在电池问题的概率,q为手机没有电池问题的概率。
则至少有一部手机存在电池问题的概率可以表示为1减去5部手机都没有电池问题的概率,即1-(1-q)^5。
带入已知条件,可以得到至少有一部手机存在电池问题的概率约为1-(0.9)^5 ≈ 0.41。
南邮概率统计补充习题参考答案 第三章补充习题参考答案
=
1 [Φ( 2b
z
+b− σ
μ )
− Φ(
z
−b− σ
μ )] ;
1
《概率论数理统计与随机过程—补充练习题第三章参考答案》
专业及班级
姓名
学号
评分等级
14.(1)
f
X
(
x)
=
⎧⎪e− ⎨ ⎪⎩0
ቤተ መጻሕፍቲ ባይዱ
x
x>0 ,
其它
fY
(
y)
=
⎧⎪ ye− ⎨ ⎪⎩0
y
y>0 其它
⎧1
(2)
f X |Y
(x
|
y)
=
⎪ ⎨
其它
fY|X ( y |
x)
=
fY ( y)
=
⎧⎪ μ e− μ ⎨
y
⎪⎩0
x > 0, y > 0 ; 其它
Z (3)分布律 p
0
μ λ+μ
1
⎧0
λ
,分布函数
FZ
(z)
=
⎪⎪ ⎨ ⎪
λ
μ +
μ
λ+μ
⎪⎩1
x<0 0≤ x <1。 x ≥1
2
x2
111 24 8 12 1 31 884
1 4
; 3 4
p{Y = y j } = p. j 1 1 1
1
6 23
Y 01 23
X
0
1 8
1 8
0
0
12.(1) 1 01 10
44
2 001 1
88
10.(1) (X ,Y ) (−3,1) (−3, 2) (−3,3) (−2,1) (−2, 2) (−3,3) (−1,1) (−1, 2) (−1,3) ;
概率统计作业
概率与统计作业(4)班级学号姓名
1.盒中有10个合格品,3个次品,从盒中一件一件的抽取产品检验,每件检验后不再放回
盒中,以X表示直到取到第一件合格品为止所需检验次数,求X的分布律,并求概率P。
X
}3
{
2.袋中装有编上号码1,2,…,9的九个性质相同的球,从袋中任取5个球,以X表示所取的5
个球中偶数号球的个数,求X的分布律,并求其中至少有两个偶数号球的概率。
3.射手对目标独立射击5发,单发命中概率为0.6,求(1)恰好命中两发的概率;(2)至多命中3发
的概率;(3)至少命中一发的概率.
4.从某大学到火车站途中有六个路口,假设在各路口遇到红灯的事件相互独立,且概率都是3
1
,(1)以X 表示途中遇到的红灯次数,求X 的分布律,(2)以Y 表示汽车行驶途中在停止前所通过的路口数,求Y 的分布律。
(3)求从该大学到火车站途中至少遇到一次红灯的概率。
5 假设某汽车站在任何长为t (分)的时间内到达的候车人数N (t )服从参数为3t 的泊松分
布。
(1)求在相邻两分钟内至少来3名乘客的概率;(3)求在连续5分钟内无乘客到达的概率。
6 某种疾病的发病率为0.01,求下列概率的近似值。
(1)100个人中恰有一人发病的概率为多少?
(2) 100个人中至少有一人发病的概率为多少?。
概率统计_习题和答案解析
习题一1.1 写出下列随机试验的样本空间,并把指定的事件表示为样本点的集合:(1)随机试验:考察某个班级的某次数学考试的平均成绩(以百分制记分,只取整数);设事件A 表示:平均得分在80分以上。
(2)随机试验:同时掷三颗骰子,记录三颗骰子点数之和;设事件A 表示:第一颗掷得5点;设事件B 表示:三颗骰子点数之和不超过8点。
(3)随机试验:一个口袋中有5只球,编号分别为1,2,3,4,5,从中取三个球; 设事件A 表示:取出的三个球中最小的号码为1。
(4)随机试验:某篮球运动员投篮练习,直至投中十次,考虑累计投篮的次数;设事件A 表示:至多只要投50次。
(5)随机试验:将长度为1的线段任意分为三段,依次观察各段的长度。
1.2 在分别标有号码1~8的八张卡片中任抽一张。
(1)写出该随机试验的样本点和样本空间;(2)设事件A 为“抽得一张标号不大于4的卡片”,事件B 为“抽得一张标号为偶数的 卡片”,事件C 为“抽得一张标号能被3整除的卡片”。
试将下列事件表示为样本点的集合,并说明分别表示什么事件?(a )AB ; (b) B A +; (c) B ; (d) B A -; (e) BC ; (f) C B + 。
1.3 设A 、B 、C 是样本空间的事件,把下列事件用A 、B 、C 表示出来:(1)A 发生; (2)A 不发生,但B 、C 至少有一个发生;(3)三个事件恰有一个发生; (4)三个事件中至少有两个发生;(5)三个事件都不发生; (6)三个事件最多有一个发生;(7)三个事件不都发生。
1.4 设}10,,3,2,1{ =Ω,}5,3,2{=A ,}7,5,3{=B ,}7,4,3,1{=C ,求下列事件:(1)B A ; (2))(BC A 。
1.5 设A 、B 是随机事件,试证:B A AB A B B A +=-+-)()(。
1.6 在11张卡片上分别写上Probability 这11个字母,从中任意抽取7张,求其排列结果为ability 的概率。
概率论与数理统计的作业及解答
概率论与数理统计作业及解答第一次作业★1. 甲, 乙, 丙三门炮各向同一目标发射一枚炮弹, 设事件A , B , C 分别表示甲, 乙, 丙击中目标, 则三门炮最多有一门炮击中目标如何表示. 事件E ={事件,,A B C 最多有一个发生},则E 的表示为;E ABC ABC ABC ABC =+++或;ABAC BC =或;AB AC BC =或;AB ACBC =或().ABC ABC ABC ABC =-++(和A B +即并A B ,当,A B 互斥即AB φ=时,A B 常记为A B +.) 2. 设M 件产品中含m 件次品, 计算从中任取两件至少有一件次品的概率.221M mM C C --或1122(21)(1)m M m m MC C C m M m M M C -+--=- ★3. 从8双不同尺码鞋子中随机取6只, 计算以下事件的概率.A ={8只鞋子均不成双},B ={恰有2只鞋子成双},C ={恰有4只鞋子成双}.61682616()32()0.2238,143C C P A C ===1414872616()80()0.5594,143C C C P B C === 2212862616()30()0.2098.143C C C P C C === ★4. 设某批产品共50件, 其中有5件次品, 现从中任取3件, 求:(1)其中无次品的概率; (2)其中恰有一件次品的概率.(1)34535014190.724.1960C C == (2)21455350990.2526.392C C C == 5. 从1~9九个数字中, 任取3个排成一个三位数, 求: (1)所得三位数为偶数的概率; (2)所得三位数为奇数的概率.(1){P 三位数为偶数}{P =尾数为偶数4},9=(2){P 三位数为奇数}{P =尾数为奇数5},9=或{P 三位数为奇数}1{P =-三位数为偶数45}1.99=-=6. 某办公室10名员工编号从1到10,任选3人记录其号码,求:(1)最小号码为5的概率;(2)最大号码为5的概率.记事件A ={最小号码为5}, B ={最大号码为5}.(1) 253101();12C P A C ==(2) 243101().20C P B C ==7. 袋中有红、黄、白色球各一个,每次从袋中任取一球,记下颜色后放回,共取球三次,求下列事件的概率:A ={全红},B ={颜色全同},C ={颜色全不同},D ={颜色不全同},E ={无黄色球},F ={无红色且无黄色球},G ={全红或全黄}.311(),327P A ==1()3(),9P B P A ==33333!2(),339A P C ===8()1(),9P D P B =-=3328(),327P E ==311(),327P F ==2()2().27P G P A ==☆.某班n 个男生m 个女生(m ≤n +1)随机排成一列, 计算任意两女生均不相邻的概率.☆.在[0, 1]线段上任取两点将线段截成三段, 计算三段可组成三角形的概率. 14第二次作业1. 设A , B 为随机事件, P (A )=0.92, P (B )=0.93, (|)0.85P B A =, 求:(1)(|)P A B , (2)()P A B ∪. (1) ()()0.85(|),()0.850.080.068,()10.92P AB P AB P B A P AB P A ====⨯=-()()()()()()P AB P A P AB P A P B P AB =-=-+0.920.930.0680.058,=-+=()0.058(|)0.83.()10.93P AB P A B P B ===-(2)()()()()P A B P A P B P AB =+-0.920.930.8620.988.=+-=2. 投两颗骰子,已知两颗骰子点数之和为7,求其中有一颗为1点的概率. 记事件A ={(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)}, B ={(1,6),(6,1)}. 21(|).63P B A ==★.在1—2000中任取一整数, 求取到的整数既不能被5除尽又不能被7除尽的概率. 记事件A ={能被5除尽}, B ={能被7除尽}.4001(),20005P A ==取整2000285,7⎡⎤=⎢⎥⎣⎦28557(),2000400P B ==200057,57⎡⎤=⎢⎥⨯⎣⎦57(),2000P AB = ()()1()1()()()P AB P AB P AB P A P B P AB ==-=--+1575710.686.54002000=--+=3. 由长期统计资料得知, 某一地区在4月份下雨(记作事件A )的概率为4/15, 刮风(用B 表示)的概率为7/15, 既刮风又下雨的概率为1/10, 求P (A |B )、P (B |A )、P (A B ).()1/103(|),()7/1514P AB P A B P B ===()1/103(|),()4/158P AB P B A P A ===()()()()P A B P A P B P AB =+-47119.15151030=+-=4. 设某光学仪器厂制造的透镜第一次落下时摔破的概率是1/2,若第一次落下未摔破,第二次落下时摔破的概率是7/10,若前二次落下未摔破,第三次落下时摔破的概率是9/10,试求落下三次而未摔破的概率.记事件i A ={第i 次落下时摔破},1,2,3.i = 1231213121793()()(|)(|)111.21010200P A A A P A P A A P A A A ⎛⎫⎛⎫⎛⎫==---= ⎪⎪⎪⎝⎭⎝⎭⎝⎭5. 设在n 张彩票中有一张奖券,有3个人参加抽奖,分别求出第一、二、三个人摸到奖券概率.记事件i A ={第i 个人摸到奖券},1,2,3.i =由古典概率直接得1231()()().P A P A P A n ===或212121111()()()(|),1n P A P A A P A P A A n n n-====-31231213121211()()()(|)(|).12n n P A P A A A P A P A A P A A A n n n n--====--或 第一个人中奖概率为11(),P A n=前两人中奖概率为12122()()(),P A A P A P A n +=+=解得21(),P A n=前三人中奖概率为1231233()()()(),P A A A P A P A P A n ++=++=解得31().P A n=6. 甲、乙两人射击, 甲击中的概率为0.8, 乙击中的概率为0.7, 两人同时射击, 假定中靶与否是独立的.求(1)两人都中靶的概率; (2)甲中乙不中的概率; (3)甲不中乙中的概率. 记事件A ={甲中靶},B ={乙中靶}. (1) ()()()0.70.70.56,P AB P A P B ==⨯=(2) ()()()0.80.560.24,P AB P A P AB =-=-= (3) ()()()0.70.560.14.P AB P B P AB =-=-=★7. 袋中有a 个红球, b 个黑球, 有放回从袋中摸球, 计算以下事件的概率: (1)A ={在n 次摸球中有k 次摸到红球}; (2)B ={第k 次首次摸到红球};(3)C ={第r 次摸到红球时恰好摸了k 次球}.(1) ();()k n kk n kk k nnna b a b P A C C a b a b a b --⎛⎫⎛⎫== ⎪ ⎪+++⎝⎭⎝⎭(2) 11();()k k kb a ab P B a b a b a b --⎛⎫== ⎪+++⎝⎭ (3) 1111().()rk rr k rr r k k ka b a b P C CCa b a b a b ------⎛⎫⎛⎫== ⎪ ⎪+++⎝⎭⎝⎭8.一射手对一目标独立地射击4次, 已知他至少命中一次的概率为80.81求该射手射击一次命中目标的概率.设射击一次命中目标的概率为,1.p q p =-4801121,,1.818133q q p q =-===-= 9. 设某种高射炮命中目标的概率为0.6, 问至少需要多少门此种高射炮进行射击才能以0.99的概率命中目标.(10.6)10.99,n -<-0.40.01,n <由50.40.01024,=60.40.01,<得 6.n ≥ ☆.证明一般加法(容斥)公式1111()()()()(1)().nn n n i i i i j ij ki i i i ji j kP A P A P A A P A A A P A -===<<<=-+++-∑∑∑证明 只需证分块111,,k k n k i i i i i i A A A A A A +⊂只计算1次概率.(1,,n i i 是1,,n 的一个排列,1,2,,.k n =)分块概率重数为1,,k i i A A 中任取1个-任取2个1(1)k -++-任取k 个,即121(1)1k k k k k C C C --++-=⇔ 121(1)(11)0.k k k k k k C C C -+++-=-=将,互换可得对偶加法(容斥)公式1111()()()()(1)().nnn n i i i ij ij k i i i i ji j kP A P A P A A P AA A P A -===<<<=-+++-∑∑∑☆.证明 若A , B 独立, A , C 独立, 则A , B ∪C 独立的充要条件是A , BC 独立. 证明(())()()()()P A B C P AB AC P AB P AC P ABC ==+- ()()()()()P A P B P A P C P ABC =+- 充分性:⇐(())()()()()(),P A B C P A P B P A P C P ABC =+-代入()()()P ABC P A P BC = ()(()()())P A P B P C P BC =+-()(),P A P B C = 即,A B C 独立. 必要性:⇒(())()()P A B C P A P B C =()(()()())P A P B P C P BC =+-()()()()()()P A P B P A P C P A P BC =+-()()()()()P A P B P A P C P ABC =+- ()()(),P ABC P A P BC =即,A BC 独立.☆.证明:若三个事件A 、B 、C 独立,则A ∪B 、AB 及A -B 都与C 独立. 证明 因为[()]()()()()()()()()()()()[()()()()]()()()P A B C P AC BC P AC P BC P ABC P A P C P B P C P A P B P C P A P B P A P B P C P A B P C ==+-=+-=+-=[()]()()()()[()()]()()()P AB C P ABC P A P B P C P A P B P C P AB P C ==== [()]()()()()()()()()[()()]()()()P A B C P AC B P AC P ABC P A P C P A P B P C P A P AB P C P A B P C -=-=-=-=-=-所以A ∪B 、AB 及A -B 都与C 独立. 第三次作业1. 在做一道有4个答案的选择题时, 如果学生不知道问题的正确答案时就作随机猜测. 设他知道问题的正确答案的概率为p , 分别就p =0.6和p =0.3两种情形求下列事件概率: (1)学生答对该选择题; (2)已知学生答对了选择题,求学生确实知道正确答案的概率. 记事件A ={知道问题正确答案},B ={答对选择题}.(1) 由全概率公式得()()(|)()(|)P B P A P B A P A P B A =+113,444p pp -=+=+ 当0.6p =时,13130.67()0.7,444410p P B ⨯=+=+== 当0.3p =时,13130.319()0.475.444440p P B ⨯=+=+==(2) 由贝叶斯公式得()4(|),13()1344P AB p pP A B p P B p ===++ 当0.6p =时,440.66(|),13130.67p P A B p ⨯===++⨯ 当0.3p =时,440.312(|).13130.319p P A B p ⨯===++⨯ 2. 某单位同时装有两种报警系统A 与B , 当报警系统A 单独使用时, 其有效的概率为0.70; 当报警系统B 单独使用时, 其有效的概率为0.80.在报警系统A 有效的条件下, 报警系统B 有效的概率为0.84.计算以下概率: (1)两种报警系统都有效的概率; (2)在报警系统B 有效的条件下, 报警系统A 有效的概率; (3)两种报警系统都失灵的概率.()0.7,()0.8,(|)0.84.P A P B P B A === (1) ()()(|)0.70.840.588,P AB P A P B A ==⨯=(2) ()0.588(|)0.735,()0.8P AB P A B P B === (3) ()()1()1()()()P AB P A B P A B P A P B P AB ==-=--+10.70.80.5880.088.=--+=☆.为防止意外, 在矿内同时设有两种报警系统A 与B . 每种系统单独使用时, 其有效的概率系统A 为0. 92, 系统B 为0.93, 在A 失灵的条件下, B 有效的概率为0.85,. 求: (1)发生意外时, 两个报警系统至少有一个有效的概率; (2) B 失灵的条件下, A 有效的概率.3. 设有甲、乙两袋, 甲袋中有n 只白球, m 只红球; 乙袋中有N 只白球, M 只红球. 从甲袋中任取一球放入乙袋, 在从乙袋中任取一球, 问取到白球的概率是多少. 记事件A ={从甲袋中取到白球},B ={从乙袋中取到白球}. 由全概率公式得()()(|)()(|)P B P A P B A P A P B A =+111n N m Nn m N M n m N M +=+++++++().()(1)n N n m n m N M ++=+++☆.设有五个袋子, 其中两个袋子, 每袋有2个白球, 3个黑球. 另外两个袋子, 每袋有1个白球, 4个黑球, 还有一个袋子有4个白球, 1个黑球. (1)从五个袋子中任挑一袋, 并从这袋中任取一球, 求此球为白球的概率. (2)从不同的三个袋中任挑一袋, 并由其中任取一球, 结果是白球, 问这球分别由三个不同的袋子中取出的概率各是多少?★4. 发报台分别以概率0.6和0.4发出信号 “·” 及 “-”. 由于通信系统受到于扰, 当发出信号 “·” 时, 收报台分别以概率0.8及0.2收到信息 “·” 及 “-”; 又当发出信号 “-” 时, 收报台分别以概率0.9及0.l 收到信号 “-” 及 “·”. 求: (1)收报台收到 “·”的概率;(2)收报台收到“-”的概率;(3)当收报台收到 “·” 时, 发报台确系发出信号 “·” 的概率;(4)收到 “-” 时, 确系发出 “-” 的概率.记事件B ={收到信号 “·”},1A ={发出信号 “·”},2A ={发出信号“-”}.(1) )|()()|()()(2211A B P A P A B P A P B P +=;52.01.04.0)2.01(6.0=⨯+-⨯= (2) ()1()10.520.48;P B P B =-=-=(3) 1111()()(|)(|)()()P A B P A P B A P A B P B P B ==0.60.8120.923;0.5213⨯=== (4)2222()()(|)(|)()()P A B P A P B A P A B P B P B ==0.40.930.75.0.484⨯=== 5. 对以往数据分析结果表明, 当机器调整良好时, 产品合格率为90%, 而机器发生某一故障时, 产品合格率为30%. 每天早上机器开动时, 机器调整良好的概率为75%. (1)求机器产品合格率,(2)已知某日早上第一件产品是合格品, 求机器调整良好的概率. 记事件B ={产品合格},A ={机器调整良好}. (1) 由全概率公式得()()(|)()(|)P B P A P B A P A P B A =+0.750.90.250.30.75,=⨯+⨯=(2) 由贝叶斯公式得()()(|)(|)()()P AB P A P B A P A B P B P B ==0.750.90.9.0.75⨯== ☆.系统(A), (B), (C)图如下, 系统(A), (B)由4个元件组成, 系统(C)由5个元件组成, 每个元件的可靠性为p , 即元件正常工作的概率为p , 试求整个系统的可靠性.(A) (B) (C) 记事件A ={元件5正常},B ={系统正常}.(A) 222(|)(1(1)(1))(44),P B A p p p p p =---=-+ (B) 2222(|)1(1)(1)(2),P B A p p p p =---=- (C) 由全概率公式得()()(|)()(|)P B P A P B A P A P B A =+2222(44)(1)(2)p p p p p p p =⋅-++-- 23452252.p p p p =+-+第四次作业1. 在15个同型零件中有2个次品, 从中任取3个, 以X 表示取出的次品的个数, 求X 的分布律.2213315(),0,1,2.k k C C P X k k C -=== X0 1 2 P 22/35 12/35 1/35☆.经销一批水果, 第一天售出的概率是0.5, 每公斤获利8元, 第二天售出的概率是0.4, 每公斤获利5元, 第三天售出的概率是0.1, 每公斤亏损3元. 求经销这批水果每公斤赢利X X3- 5 8 P 0.1 0.4 0.50,3,(3)(3)0.1,35,()(5)(3)(5)0.10.40.5,58,(8)1,8.x F P X x F x F P X P X x F x <-⎧⎪-==-=-≤<⎪=⎨==-+==+=≤<⎪⎪=≥⎩2. 抛掷一枚不均匀的硬币, 每次出现正面的概率为2/3, 连续抛掷8次, 以X 表示出现正面的次数, 求X 的分布律.(8,2/3),X B n p ==8821(),0,1,,8.33k kk P X k C k -⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭3. 一射击运动员的击中靶心的命中率为0.35, 以X 表示他首次击中靶心时累计已射击的次数, 写出X 的分布律, 并计算X 取偶数的概率.(0.35),X G p =11()0.350.65,1,2.k k P X k pq k --===⨯= ()+()=1,()()=,P X P X P X P X q ⎧⎪⎨⎪⎩奇偶偶奇 解得0.6513()=0.394.110.6533q P X q ==++偶4. 一商业大厅里装有4个同类型的银行刷卡机, 调查表明在任一时刻每个刷卡机使用的概率为0.1,求在同一时刻:(1)恰有2个刷卡机被使用的概率;(2)至少有3个刷卡机被使用的概率; (3)至多有3个刷卡机被使用的概率;(4)至少有一个刷卡机被使用的概率. 在同一时刻刷卡机被使用的个数(4,0.1).X B n p ==(1) 2224(2)0.10.90.00486,P X C ==⨯⨯= (2) 3344(3)(3)(4)0.10.90.10.0037,P X P X P X C ≥==+==⨯⨯+= (3) 4(3)1(4)10.10.9999,P X P X ≤=-==-=(4)4(1)1(0)10.910.65610.3439.P X P X ≥=-==-=-=5. 某汽车从起点驶出时有40名乘客, 设沿途共有4个停靠站, 且该车只下不上. 每个乘客在每个站下车的概率相等, 并且相互独立, 试求: (1)全在终点站下车的概率; (2)至少有2个乘客在终点站下车的概率; (3)该车驶过2个停靠站后乘客人数降为20的概率. 记事件A ={任一乘客在终点站下车},乘客在终点站下车人数(40,1/4).X B n p ==(1) 40231(40)8.271810,4P X -⎛⎫===⨯ ⎪⎝⎭(2) 403940140313433(2)1(0)(1)1144434P X P X P X C ⎛⎫⎛⎫⎛⎫≥=-=-==--⨯=-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭10.0001340880.999865912.=-=(3) 记事件B ={任一乘客在后两站下车},乘客在后两站下车人数(40,1/2).Y B n p ==2020202040404011(20)0.1268.222C P Y C ⎛⎫⎛⎫==== ⎪ ⎪⎝⎭⎝⎭(精确值)应用斯特林公式!2,nn n n e π⎛⎫ ⎪⎝⎭2020202040404011(20)222C P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭24040!(20!)2= 402204040202e e ⎫⎪⎝⎭⎫⎫⎪⎪⎪⎭⎭0.1262.=其中 1.7724538509.π==参:贝努利分布的正态近似.6. 已知瓷器在运输过程中受损的概率是0.002, 有2000件瓷器运到, 求: (1)恰有2个受损的概率; (2)小于2个受损的概率; (3)多于2个受损的概率; (4)至少有1个受损的概率. 受损瓷器件数(2000,0.002),X B n p ==近似为泊松分布(4).P n p λ=⨯=(1) 2441480.146525,2!P e e --=== (2) 4424150.0915782,1!P e e --⎛⎫=+== ⎪⎝⎭(3) 431211130.761897,P P P e-=--=-= (4) 4410.981684.P e -=-=7. 某产品表面上疵点的个数X 服从参数为1.2的泊松分布, 规定表面上疵点的个数不超过2个为合格品, 求产品的合格品率.产品合格品率2 1.2 1.21.2 1.212.920.879487.1!2!P e e --⎛⎫=+=== ⎪⎝⎭ ★8. 设随机变量X求:X 的分布函数, 以及概率(||5).X ≤ 随机变量X 的分布函数为0,3,(3)(3)0.2,35,()(5)(3)(5)0.20.50.7,58,(8)1,8.x F P X x F x F P X P X x F x <-⎧⎪-==-=-≤<⎪=⎨==-+==+=≤<⎪⎪=≥⎩(36)(5)0.5,P X P X <≤===(1)(5)(8)0.50.30.8,P X P X P X >==+==+=(5)(||5)(5)(3)(5)0.20.50.7,P X P X F P X P X ≤=≤===-+==+=第五次作业1. 学生完成一道作业的时间X 是一个随机变量(单位: 小时), 其密度函数是2,00.5()0,kx x x f x ⎧+≤≤=⎨⎩其他试求: (1)系数k ; (2)X 的分布函数; (3)在15分钟内完成一道作业的概率; (4)在10到20分钟之间完成一道作业的概率. (1) 0.50.523200111(0.5),21,32248kk F kx xdx x x k ⎛⎫==+=+=+= ⎪⎝⎭⎰(2) 23200,01()()217,00.5,2(0.5)1,0.5.x x F x P X x x xdx x x x F x <⎧⎪⎪=≤=+=+≤<⎨⎪=≥⎪⎩⎰(3) 322011119()2170.140625,442464x F P X x x xdx ⎛⎫⎛⎫⎛⎫=≤=+=+== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎰(4) 3212316111111129217.6336424108P X F F x xdx ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫≤≤=-=+=+= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎰2. 设连续型随机变量X 服从区间[-a , a ](a >0)上的均匀分布, 且已知概率1(1)3P X >=, 求: (1)常数a ; (2)概率1()3P X <.(1) 1111(1),3,223aa P X dx a a a ->====⎰(2) 13311115()3.36639P X dx -⎛⎫<==+= ⎪⎝⎭⎰3. 设某元件的寿命X 服从参数为θ 的指数分布, 且已知概率P (X >50)=e -4, 试求:(1)参数θ 的值; (2)概率P (25<X <100) . 补分布()()|,0.x x xx xS x P X x e dx e ex θθθθ+∞--+∞->==-=>⎰ (1) 504502(50)(50),0.08,25x S P X e dx e e θθθθ+∞---=>=====⎰(2) 由()(),,0,rxr S rx e S x r x θ-==>取50,x =依次令1,2,2r =得12282(25)(25)(50),(100)(100)(50)S P X S e S P X S e --=>===>==0.0003354563,=其中 2.7182818284.e28(25100)(25)(100)P X P X P X e e --<<=>->=- 0.135334650.00033545630.1349991937.=-= 4. 某种型号灯泡的使用寿命X (小时)服从参数为1800的指数分布, 求: (1)任取1只灯泡使用时间超过1200小时的概率; (2)任取3只灯泡各使用时间都超过1200小时的概率. (1) 1312008002(1200)0.2231301602,P X ee-⨯->===1.6487212707001.= (2) 932(1200)0.0111089965.P X e->==5. 设X ~N (0, 1), 求: P (X <0.61), P (-2.62<X <1.25), P (X ≥1.34), P (|X |>2.13). (1) (0.61)(0.61)0.72907,P X <=Φ=(2) ( 2.62 1.25)(1.25)( 2.62)(1.25)(2.62)1P X -<<=Φ-Φ-=Φ+Φ-0.894359956010.88995,=+-=(3) ( 1.34)1(1.34)10.909880.09012,P X >=-Φ=-=(4)(|| 2.13)22(2.13)220.983410.03318.P X >=-Φ=-⨯=6. 飞机从甲地飞到乙地的飞行时间X ~N (4,19). 设飞机上午10: 10从甲地起飞, 求: (1)飞机下午2: 30以后到达乙地的概率; (2)飞机下午2: 10以前到达乙地的概率; (3)飞机在下午1: 40至2: 20之间到达乙地的概率.(1) 131331/34111(1)10.841340.15866,331/3P X P X -⎛⎫⎛⎫⎛⎫>=-≤=-Φ=-Φ=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(2) (4)(0)0.5,P X <=Φ=(3) 72525/647/24261/31/3P X --⎛⎫⎛⎫⎛⎫<<=Φ-Φ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭13122⎛⎫⎛⎫=Φ+Φ- ⎪ ⎪⎝⎭⎝⎭0.691460.9331910.62465.=+-=★7. 设某校高三女学生的身高X ~N (162, 25), 求: (1)从中任取1个女学生, 求其身高超过165的概率; (2)从中任取1个女学生, 求其身高与162的差的绝对值小于5的概率; (3)从中任取6个女学生, 求其中至少有2个身高超过165的概率.(1) 162165162(165)0.61(0.6)10.72580.2742,55X P X P --⎛⎫>=>==-Φ=-=⎪⎝⎭ (2) 162(|162|5)12(1)120.8413410.6827,5X P X P ⎛-⎫-<=<=Φ-=⨯-= ⎪⎝⎭(3) 记事件A ={任一女生身高超过165}, ()(165)0.2742,p P A P X ==>= 随机变量Y 贝努利分布(6,0.2742),B n p ==6156(2)1(0)(1)1(1)(1)0.52257.P Y P Y P Y p C p p ≥=-=-==----=第六次作业★1.设随机变量X 的分布律为(1)求Y =|X |的分布律; (2)求Y =X 2+X 的分布律. (1)(2)★.定理X 密度为()X f x ,()y g x =严格单调,反函数()x x y =导数连续,则()Y g X =是连续型变量,密度为(())|()|,()(),()0,XY f x y x y g x y g x f y αβ'=<<=⎧=⎨⎩极小值极大值其它. 证明 1)若()0,x x y ''=>{}{()()}{},Y y g X g x X x ≤=≤=≤()()(()())()(),Y X F y P Y y P g X g x P X x F x =≤=≤=≤= 两边对y 求导,()(())(),.Y X f y f x y x y y αβ'=<<2)若()0,x x y ''=<{}{()()}{},Y y g X g x X x ≤=≤=≥()()(()())()1(),Y X F y P Y y P g X g x P X x F x =≤=≤=≥=- 两边对y 求导,()(())(),.Y X f y f x y x y y αβ'=-<<因此总有()(())|()|,.Y X f y f x y x y y αβ'=<< 或证明()(),()0,()()(()())()1(),()0,X Y XP X x F x g x F y P Y y P g X g x P X x F x g x '≤=>⎧=≤=≤=⎨'≥=-<⎩ 两边对y 求导,(),()(),X Y X dF x dxdx dyf y dF x dx dx dy ⎧⎪⎪=⎨⎪-⎪⎩或两边微分()(),()()()(),X X Y Y X XdF x f x dx dF y f y dy dF x f x dx =⎧==⎨-=-⎩(),()(),X Y X dx f x dy f y dxf x dy ⎧⎪=⎨-⎪⎩(())|()|,.X f x y x y y αβ'=<<2. 设随机变量X 的密度函数是f X (x ), 求下列随机变量函数的密度函数: (1)Y =tan X ; (2)1Y X=; (3)Y =|X |. (1) 反函数()arctan ,x y y ='21(),1x y y =+由连续型随机变量函数的密度公式得 '21()(())|()|(arctan ).1Y X Xf y f x y x y f y y ==+ 或 反函数支()arctan ,i x y i y i π=+为整数,'21(),1i x y y =+'21()(())|()|(arctan ).1Y X i iX i i f y f x y x y f i y y π+∞+∞=-∞=-∞==++∑∑(2) 1,X Y =反函数1,y x y='211()()().Y X y y X f y f x x f y y ==(3) ()()(||)()()()Y X X F y P Y y P X y P y X y F y F y =≤=≤=-≤≤=--. 两边对y 求导得Y 的密度函数为()()(),0.Y X X f y f y f y y =+->★3. 设随机变量X ~U [-2, 2], 求Y =4X 2-1的密度函数.2()()(41)(115,Y F y P Y y P X y P X y =≤=-≤=≤=-≤≤两边对y 求导得随机变量Y 的密度为()115.Y f y y =-≤≤ 或解反函数支12()()x y x y =='''112211()(())|()|(())|()|2(())()115.Y X X X f y f x y x y f x y x y f x y x y y =+==-≤≤★4. 设随机变量X 服从参数为1的指数分布, 求Y =X 2的密度函数(Weibull 分布). 当0y ≤时, 2Y X =的分布()0Y F y =,当0y >时,2()()()(Y X F y P Y y P X y P X F =≤=≤=≤= 两边对y 求导得()Y X f y f '==0,()0.Y y f y >=⎩或反函数y x='()()0.Y X y y f y f x x y ==>★5. 设随机变量X~N (0, 1), 求(1)Y =e X 的密度函数; (2)Y =X 2的密度函数(Gamma 分布). (1) 当0y ≤时, e X Y =的分布()0Y F y =,当0y >时,()()(e )(ln )(ln ),X Y F y P Y y P y P X y y =≤=≤=≤=Φ 因而Y 的密度为''1()(ln )(ln )(ln )(ln ),Y f y y y y y y ϕϕ=Φ=={}2(ln ),0,2()0.Y y y f y ->=⎩ 或 反函数ln ,X Y =ln ,y x y ='1()()(ln )Y y y f y x x y y ϕϕ=={}2(ln ),0.2y y =-> (2) 当0y ≤时,()0Y F y =;当0Y >时,2()()()((Y X X F y P Y y P X y P X F F =≤=≤=≤=-.两边对y 求导得Y的密度函数为2,0,()0.yY y f y ->=⎩或反函数支12()()x y x y ==''21122()(())|()|(())|()|,0.y Y X X f y f x y x y f x y x y y -=+=> 6. 设随机变量X 的密度函数是21,1()0,1X x f x x x ⎧>⎪=⎨⎪≤⎩, 求Y =ln X 的概率密度. 反函数,y y x e ='()()(),0.y y y Y X y y X f y f x x f e e e y -===>第七次作业☆.将8个球随机地丢入编号为1, 2, 3, 4, 5的五个盒子中去, 设X 为落入1号盒的球的个数, Y 为落入2号盒的球的个数, 试求X 和Y 的联合分布律.1. 袋中装有标上号码1, 2, 2的3个球, 从中任取一个并且不再放回, 然后再从袋中任取一球,. 以X , Y 分别记第一、二次取到球上的号码数, 求: (1)(X , Y )的联合分布律(设袋中各球被取机会相等); (2)X , Y 的边缘分布律; (3)X 与Y 是否独立? (1)(X , Y )的联合分布律为(1,1)0,P X Y ===1(1,2)(2,1)(2,2).3P X Y P X Y P X Y =========(2) X , Y 的分布律相同,12(1),(2).33P X P X ====(3) X 与Y 不独立.2. 设二维连续型变量(,)X Y 的联合分布函数35(1)(1),,0,(,)0,.x y e e x y F x y --⎧-->=⎨⎩其它求(,)X Y 联合密度.2(,)(,),f x y F x y x y ∂=∂∂3515,,0,(,)0,.x y e x y f x y --⎧>=⎨⎩其它★3. 设二维随机变量(X , Y )服从D 上的均匀分布, 其中D 是抛物线y =x 2和x =y 2所围成的区域, 试求它的联合密度函数和边缘分布密度函数, 并判断Y X ,是否独立.分布区域面积213123200211,333x S x dx x x ⎛⎫===-= ⎪⎝⎭⎰⎰联合密度213,1,(,)0,.x y f x y S ⎧=<<⎪=⎨⎪⎩其它边缘X的密度为22()),01,X x f x dy x x ==<<边缘Y的密度为22()),0 1.Y yf y dy y y ==<<(,)()(),X Y f x y f x f y ≠⋅因此X 与Y 不独立.或(,)f x y 非零密度分布范围不是定义在矩形区域上,因此X 与Y 不独立.4. 设二维离散型变量),(Y X 联合分布列是问,p q 取何值时X 与Y两行成比例1/151/52,1/53/103q p ===解得12,.1015p q ==★5.设(,)X Y 的联合密度为2,11,0,(,)0,.y Ax e x y f x y -⎧-<<>=⎨⎩其它求:(1)常数A ;(2)概率1(0,1);2P X Y <<>(3)边缘概率密度f X (x ), f Y (y ); (4)X 与Y 是否相互独立?(1) 2220()(,),11,y y X f x f x y dy Ax e dy Axe dy Ax x +∞+∞+∞--====-<<⎰⎰⎰112112()1,3X f x dx Ax dx A --===⎰⎰3.2A = (2) 112201113(0,1)(0)(1).22216y e P X Y P X P Y x dx e dy -+∞-<<>=<<>==⎰⎰ (3) 23(),11,2X f x x x =-<<111221113()(,),0.2y y y Y f y f x y dx Ax e dx e x dx e y ------====>⎰⎰⎰(4)由23,11,0()()(,),20,yX Y x e x y f x f y f x y -⎧-<<>⎪⋅==⎨⎪⎩其它得X 与Y 独立. 或因为2(,),11,0,y f x y Ax e x y -=-<<>可表示为x 的函数与y 的函数的积且分布在矩形区域上,所以X 与Y 相互独立.由此得(),0;y Y f y e y -=>2(),11,X f x Ax x =-<<112112()1,3X f x dx Ax dx A --===⎰⎰3.2A = 112201113(0,1)(0)(1).22216ye P X Y P X P Y x dx e dy -+∞-<<>=<<>==⎰⎰6. 设X 服从均匀分布(0,0.2),U Y 的密度为55,0,()0,y Y e y f y -⎧>=⎨⎩其它.且,X Y 独立.求:(1)X 的密度;(2) (,)X Y 的联合密度. (1)X 的密度为()5,00.2,X f x x =≤≤(2)(,)X Y 的联合密度为525,00.2,0,(,)0,y e x y f x y -⎧≤≤>=⎨⎩其它.第八次作业★1.求函数(1)Z 1=X +Y , (2) Z 2=min{X , Y }, (3) Z 3=max{X , Y }的分布律.(1) 11(0)(0),6P Z P X Y =====1111(1)(0,1)(1,0),362P Z P X Y P X Y ====+===+=1111(2)(0,2)(1,1),12126P Z P X Y P X Y ====+===+=11(3)(1,2).6P Z P X Y =====(2) 2111(1)(1,1)(1,2),1264P Z P X Y P X Y ====+===+=223(0)1(1).4P Z P Z ==-==(3) 31(0)(0),6P Z P X Y =====31117(1)(0,1)(1,1)(1,0),312612P Z P X Y P X Y P X Y ====+==+===++=3111(2)(0,2)(1,2).1264P Z P X Y P X Y ====+===+=2. 设随机变量(求函数Z =X /Y 的分布律.(/1)(1)(1)0.250.250.5,P Z X Y P X Y P X Y =====+==-=+= (/1)1(/1)0.5.P Z X Y P Z X Y ==-=-===3. 设X 与Y 相互独立, 概率密度分别为220()00,xX e x f x x -⎧>=⎨≤⎩0()00,y Y e y f y x -⎧>=⎨≤⎩试求Z =X +Y 的概率密度.()(,)()()zzZ X Y f z f x z x dx f x f z x dx =-=-⎰⎰20222(1),0.z zx z x z x z z e e dx e e dx e e z --+----===->⎰⎰★4. 设X ~U (0, 1), Y ~E (1), 且X 与Y 独立, 求函数Z =X +Y 的密度函数.,01,0,(,)0,y e x y f x y -⎧<<>=⎨⎩其它,当01z <≤时,()(,)()()zzZ X Y f z f x z x dx f x f z x dx =-=-⎰⎰01,zz z x z xz x e dx e e -+-+-====-⎰当1z >时,11110()(,)()().zz x z xz z Z X Y x f z f x z x dx f x f z x dx e dx e e e -+-+--==-=-===-⎰⎰⎰因此11,01,(),1,0,.z z z Z e z f z e e z ---⎧-≤≤⎪=->⎨⎪⎩其它★5. 设随机变量(X , Y )的概率密度为()101,0(,)10x y e x y f x y e -+-⎧⎪<<<<+∞=⎨-⎪⎩其它(1)求边缘概率密度f X (x ), f Y (y ); (2)求函数U =max (X , Y )的分布函数; (3)求函数V =min (X ,Y )的分布函数.(1) 1,01,()10,xX e x f x e --⎧<<⎪=-⎨⎪⎩其它.,0,()0,y Y e y f y -⎧>=⎨⎩其它. (2) 11000,0,1()(),01,111,1xx x x X X x e e F x f x dx dx x e e x ----≤⎧⎪-⎪===<<⎨--⎪≥⎪⎩⎰⎰.min{,1}10,0,1,01x x e x e --≤⎧⎪=⎨->⎪-⎩. 0,0,()1,0Y yy F y e y -≤⎧=⎨->⎩.21(1),01,()()()11,1x U X Y x e x F x F x F x e e x ---⎧-<<⎪==-⎨⎪-≥⎩.min{,1}1(1)(1),0.1x x e e x e -----=>-(3) 111,0,()1(),01,10,1x X X x e eS x F x x e x ---≤⎧⎪-⎪-=<<⎨-⎪≥⎪⎩.min{,1}111,0,,01x x e e x e---≤⎧⎪=⎨->⎪-⎩. 1,0,()1(),0Y Y y y S y F y e y -≤⎧-=⎨>⎩.112111()11,01,()1()()111,1x x x xV X Y e e e e e e x F x S x S x e ex ---------⎧---+-=<<⎪=-=--⎨⎪≥⎩.1min{,1}111,01x x x e e e x e --------+=>-.6. 设某种型号的电子管的寿命(以小时计)近似地服从N (160, 202)分布. 随机地选取4只求其中没有一只寿命小于180小时的概率.随机变量2(160,20),X N 180160(180)(1)0.84134,20P X -⎛⎫≤=Φ=Φ= ⎪⎝⎭没有一只寿命小于180小时的概率为444(180)(1(1))(10.84134)0.00063368.P X >=-Φ=-=第九次作业★1.试求: E (X ), E (X 2+5), E (|X |).20.110.210.320.130.10.4,i i iEX x p ==-⨯-⨯+⨯+⨯+⨯=∑2222222(2)0.1(1)0.210.320.130.1 2.2,i i iEX x p ==-⨯+-⨯+⨯+⨯+⨯=∑22(5)57.2,E X EX +=+=||||20.110.210.320.130.1 1.2.i i iE X x p ==⨯+⨯+⨯+⨯+⨯=∑2. 设随机变量X 的概率密度为0 0,() 01, 1.x x f x x x Ae x -⎧≤⎪=<≤⎨⎪>⎩求: (1)常数A ; (2)X 的数学期望.(1) 1100111(),2x f x dx xdx Ae dx Ae +∞+∞--==+=+⎰⎰⎰,2e A =(2) 12100114()2.2323x e e EX xf x dx x dx xe dx e +∞+∞--==+=+⨯=⎰⎰⎰★3. 设球的直径D 在[a , b ]上均匀分布,试求: (1)球的表面积的数学期望(表面积2D π);(2)球的体积的数学期望(体积316D π).(1) 22222()();3ba x E D ED dx a ab b b a ππππ===++-⎰ (2) 33322()().6624b a x E D ED dx a b a b b a ππππ⎛⎫===++ ⎪-⎝⎭⎰ ★4.求E (X ), E (Y ), E (XY ).2(0.10.050.050.1)2(0.10.150.050.1)i i iEX x p ==-⨯++++⨯+++∑20.320.350.1,=-⨯+⨯=1(0.10.050.1)2(0.050.15)j j jEY y p ==⨯+++⨯+∑3(0.050.10.05)4(0.10.20.05) 2.65,+⨯+++⨯++=,()i j i j ijE XY x y p =∑∑2(10.120.0530.0540.01)2(10.120.1530.0540.05)=-⨯⨯+⨯+⨯+⨯+⨯⨯+⨯+⨯+⨯ 1.5 1.50.=-+=★5. 设随机变量X 和Y 独立, 且具有概率密度为2,01,()0,X x x f x <<⎧=⎨⎩其它,3(1)3,1,()0, 1.y Y e y f y y --⎧>=⎨≤⎩(1)求(25)E X Y +; (2)求2()E X Y .(1) 112002()2,3X EX xf x dx x dx ===⎰⎰3(1)114()3,3y Y EY yf y dy ye dy +∞+∞--===⎰⎰或随机变量1Z Y =-指数分布(3),E 141,,33EZ EY EY =-==24(25)25258.33E X Y EX EY +=+=⨯+⨯=(2) 11223001()2,2X EX x f x dx x dx ===⎰⎰由X 和Y 独立得22142().233E X Y EX EY ==⨯=第十次作业1. 设离散型随机变量试求: (1) D (X ); (2) D (-3X +2) .(1) 20.110.210.320.130.10.4,i i iEX x p ==-⨯-⨯+⨯+⨯+⨯=∑2222222(2)0.1(1)0.210.320.130.1 2.2,i i iEX x p ==-⨯+-⨯+⨯+⨯+⨯=∑2222.20.4 2.04.DX EX E X =-=-= (2) 2(32)(3)9 2.0418.36.D X DX -+=-=⨯=★2. 设随机变量X 具有概率密度为22,02,()0,Ax x x f x ⎧+<<=⎨⎩其他,试求: (1)常数A ; (2)E (X ); (3) D (X ); (4) D (2X -3) .(1) 22081()(2)4,3f x dx Ax x dx A +∞-∞==+=+⎰⎰解得9.8A =-(2) 22095()(2).86EX xf x dx x x x dx +∞-∞==-+=⎰⎰(3) 22222094()(2),85EX x f x dx x x x dx +∞-∞==-+=⎰⎰2224519.56180DX EX E X ⎛⎫=-=-= ⎪⎝⎭(4) 21919(23)24.18045D X DX -==⨯= ★3. 设二维随机变量(,)X Y 联合概率密度为2,01,01,(,)0,x y x y f x y --<<<<⎧=⎨⎩其他,试求: (1),X Y 的协方差和相关系数A ; (2)(21).D X Y -+(1) 103()(,)(2),01,2X f x f x y dy x y dy x x +∞-∞==--=-<<⎰⎰由,x y 的对称性3(),0 1.2Y f y y y =-<<1035(),212X EX xf x dx x x dx EY +∞-∞⎛⎫==-== ⎪⎝⎭⎰⎰12222031(),24X EX x f x dx x x dx EY +∞-∞⎛⎫==-== ⎪⎝⎭⎰⎰2221511,412144DX EX E X DY ⎛⎫=-=-== ⎪⎝⎭11001()(,)(2),6E XY xyf x y dydx xy x y dydx +∞+∞-∞-∞==--=⎰⎰⎰⎰ 因此2151(,)(),612144Cov X Y E XY EXEY ⎛⎫=-=-=- ⎪⎝⎭,1.11X Y ρ==-(2) 由随机变量和的方差公式()2(,)D X Y DX DX Cov X Y +=++得(21)(2)()2(2,)D X Y D X D Y Cov X Y -+=+-+-22592(1)22(1)(,).144DX DY Cov X Y =+-+⨯⨯-⨯=★4. 设二维随机变量(,)X Y 具有联合分布律试求,,,EX DX EY DY 以及X 和Y 的相关系数. (1) X 的分布列为由变量X 分布对称得0,EX =或10.4500.4510.450,i i iEX x p ==-⨯+⨯+⨯=∑22222(1)0.4500.4510.450.9,i i iEX x p ==-⨯+⨯+⨯=∑220.9.DX EX E X =-=(2) Y 的分布列为(,)X Y 取值关于原点中心对称由变量Y 分布对称得0,EY =或20.20.250.2520.20,j j iEY y p ==-⨯-++⨯=∑222222(2)0.2(1)0.2510.2520.2 2.1,j j iEY y p ==-⨯+-⨯+⨯+⨯=∑22 2.1.DY EY E Y =-=(3) 由二维变量(,)X Y 的联合分布列关于两坐标轴对称得,()0,i j i j ijE XY x y p ==∑∑(,)()0,Cov X Y E XY EXEY =-=因此,0.X Y ρ==5. 设随机变量X 服从参数为2的泊松分布(2)P ,随机变量Y 服从区间(0,6)上的均匀分布(0,6),U 且,X Y 的相关系数,X Y ρ=记2,Z X Y =-求,.EZ DZ (1) 2,EX =063,2EY +==(2)2223 4.EZ E X Y EX EY =-=-=-⨯=-(2) 2(60)2, 3.12DX DY -===由,X Y ρ==得(,)1,Cov X Y = 由随机变量和的方差公式()2(,)D X Y DX DY Cov X Y +=++得2(2)(2)2(,2)(2)4(,)10.DZ D X Y DX D Y Cov X Y DX DY Cov X Y =-=+-+-=+--=第十一次作业★1. 试用切比雪夫不等式估计下一事件概率至少有多大: 掷1000次均匀硬币, 出现正面的次数在400到600次之间.出现正面的次数~(1000,0.5),X B n p == 10000.5500,EX np ==⨯=10000.50.5250,DX npq ==⨯⨯=应用切比雪夫不等式,有239(400600)(|500|100)1.10040DX P X P X ≤≤=-≤≥-=2. 若每次射击目标命中的概率为0.1, 不断地对靶进行射击, 求在500次射击中, 击中目标的次数在区间(49, 55)内的概率.击中目标的次数~(500,0.1),X B np ==5000.150,EX np ==⨯=5000.10.945.DX npq ==⨯⨯=根据中心极限定理,X 近似服从正态分布(50,45).N EX DX ==(4955)P X P ≤≤=≤≤1≈Φ-Φ=Φ+Φ-⎝⎭⎝⎭ (0.74)(0.15)10.77040.559610.33.=Φ+Φ-=+-=★3. 计算器在进行加法时, 将每个加数舍入最靠近它的整数.设所有舍入误差是独立的且在(-0.5, 0.5)上服从均匀分布, (1)若将1500个数相加, 问误差总和的绝对值超过15的概率是多少?(2)最多可有几个数相加使得误差总和的绝对值小于10的概率不小于0.90.(1) 误差变量,1,2,.i X i =⋅⋅⋅独立同均匀分布(0.5,0.5),X U -10,.12EX DX ==由独立变量方差的可加性150011500125,12i i D X =⎛⎫== ⎪⎝⎭∑15001i i X =∑近似(0,125).N15001||15i i P X =⎧⎫>⎨⎬⎩⎭∑15001|5ii P X =⎧⎪=>=⎨⎪⎪⎩⎭∑2222(1.34)220.90990.1802.5⎛≈-Φ=-Φ=-⨯= ⎝⎭(2) 1||10n i i P X =⎧⎫<⎨⎬⎩⎭∑1||n i P X =⎧⎪=<=⎨⎪⎩210.90,⎛≈Φ-≥ ⎝0.95,⎛Φ≥ ⎝1.645,≥2124.4345.1.645n ≤= 因此,最多可有4个数相加,误差总和的绝对值小于10的概率不小于0.90.★4. 一个系统由n 个相互独立的部件所组成, 每个部件的可靠性(即部件正常工作的概率)为0.90. 至少有80%的部件正常工作才能使整个系统正常运行, 问n 至少为多大才能使系统正常运行的可靠性不低于0.95.正常工作的部件数~(,),X B n p 其中0.9.p =0.9,EX np n ==0.09.DX npq n ==(0.8)P X n≥P ⎛=≥==⎭0.95,≈Φ≥⎝⎭1.645,24.354.n ≥≥因此n 至少取25.★5. 有一大批电子元件装箱运往外地, 正品率为0.8, 为保证以0.95的概率使箱内正品数多于1000只, 问箱内至少要装多少只元件?正品数~(,),X B n p 其中0.8.p =0.8,EX np n ==0.16.DX npq n ==(1000)P X≥P =≥=0.95,≈Φ≥1.645,0.810000.n ≥-≥ 解得1637.65,n ≥因此n 至少取1638.★.贝努利分布的正态近似.投掷一枚均匀硬币40次出现正面次数20X =的概率. 正面次数(40,1/2),X B n p ==400.520,400.50.510.EX np DX npq ==⨯===⨯⨯= 离散值20X =近似为连续分组区间19.520.5,X <<(20)(19.520.5)P X P X =<<0.16P ⎫=<=⎪⎭2((0.16)0.5)2(0.56360.5)0.1272.=Φ-=⨯-= 第十二次作业★1. 设X 1, X 2, ⋅⋅⋅, X 10为来自N (0, 0.32)的一个样本, 求概率1021{ 1.44}i i P X =>∑.标准化变量(0,1),1,2,...,10.0.3iXN i =由卡方分布的定义,10222211~(10).0.3ii Xχχ==∑1021 1.44i i P X =⎧⎫>⎨⎬⎩⎭∑10222211 1.44(10)160.1,0.30.3i i P X χ=⎧⎫==>=≈⎨⎬⎩⎭∑ 略大,卡方分布上侧分位数20.1(10)15.9872.χ= ★2. 设X 1, X 2, X 3, X 4, X 5是来自正态总体X ~(0, 1)容量为5的样本, 试求常数c , 使得统计量t 分布, 并求其自由度.由独立正态分布的可加性,12(0,2),X X N +标准化变量(0,1),U N =由卡方分布的定义,22222345~(3),X X X χχ=++U 与2χ独立.由t 分布的定义,(3),T t ===因此c =自由度为3.★3. 设112,,,n X X X 为来自N (μ1, σ2)的样本,212,,,nY Y Y 为来自N (μ2, σ2)的样本, 且两样本相互独立, 2212,S S分别为两个样本方差,222112212(1)(1)2pn S n S S n n -+-=+-. 试证明22().p E S σ=证 由221112(1)~(1),n S n χσ--及()211(1)1E n n χ-=-得()2211112(1)(1)1,n S E E n n χσ⎛⎫-=-=- ⎪⎝⎭221.ES σ= 类似地222.ES σ=222112212(1)(1)2pn S n S ES E n n ⎛⎫-+-= ⎪+-⎝⎭22212121212(1)(1).22n n ES ES n n n n σ--=+=+-+- ★4. 设1,...,n X X 为总体2(,)N μσ的简单样本,样本均值和样本方差依次为2,.X S 求满足下式的k 值:()0.95.P X kS μ>+=统计量(1),X T t n =-0.05(1)X P T t n ⎛⎫=>--= ⎪⎝⎭0.05(0.95.P X t n μ⎛>--= ⎝因此k = ☆.设正态总体2(,)N μσ的容量为12n =的简单样本为112,...,X X ,样本均值和样本方差依次为2,.X S 求满足下式的k 值:()0.95.P X kS μ>+= 正态总体样本方差未知,统计量(1),12.X T t n n =-=。
概率统计练习题答案
概率统计练习题答案概率统计练习题答案概率统计是一门重要的数学学科,它研究的是随机事件的概率和统计规律。
在学习概率统计的过程中,练习题是非常重要的一部分,通过解答练习题可以巩固知识,提高解题能力。
下面我们来看一些常见的概率统计练习题及其答案。
1. 随机变量X服从正态分布N(2, 4),求P(X<3)。
答案:首先计算标准差,标准差为2,然后计算X的标准化值z=(3-2)/2=0.5。
查找标准正态分布表可得P(Z<0.5)=0.6915,所以P(X<3)=0.6915。
2. 一批产品中有10%的次品,从中随机抽取5个产品,求恰好有1个次品的概率。
答案:假设成功事件为抽到次品,失败事件为抽到正品。
根据二项分布的公式,概率P(X=k)=C(n,k)p^k(1-p)^(n-k),其中n为试验次数,k为成功次数,p为成功概率。
代入数据可得P(X=1)=C(5,1)0.1^1(1-0.1)^(5-1)=0.32805。
3. 某班级有60%的学生喜欢数学,40%的学生喜欢英语,20%的学生既喜欢数学又喜欢英语,求一个学生既不喜欢数学也不喜欢英语的概率。
答案:根据概率公式P(A∪B)=P(A)+P(B)-P(A∩B),其中A、B为事件。
代入数据可得P(数学∪英语)=P(数学)+P(英语)-P(数学∩英语)=0.6+0.4-0.2=0.8。
所以一个学生既不喜欢数学也不喜欢英语的概率为1-0.8=0.2。
4. 某地每天的天气有30%的可能是晴天,20%的可能是雨天,50%的可能是阴天。
如果今天是晴天,那么明天是雨天的概率是多少?答案:根据条件概率公式P(B|A)=P(A∩B)/P(A),其中A为今天是晴天的事件,B为明天是雨天的事件。
代入数据可得P(明天是雨天|今天是晴天)=P(今天是晴天∩明天是雨天)/P(今天是晴天)=0.3*0.2/0.3=0.2。
5. 一批产品中有10%的次品,从中随机抽取10个产品,求至少有1个次品的概率。
应用概率统计综合作业三(19页)
应用概率统计综合作业三(19页)应用概率统计综合作业三.《应用概率统计》综合作业三 2分,共20分)一、填空题(每小题测量结果1.在天平上重复称量一重为的物品,a,各次结果相互独立且服从正为,,…,XXX12n,各次称量结果的算术平均值记为态分布2).N2(a,0 为使,,则的值最小应取自然数nX95.?1)0XP(?a?0.nn16 .的容是来自正态总体,2.设,…,2?XX),N(4X12n为样本方差,已知量为10的简单随机样本,2= 1 .,则2a1?a)?P(s0.分布,则随机的.设随机变量服从自由度为3ntY 服从自由度为变,2Y.分布F25抽取容量为服从正态分布,4.设总体2?)12,N(X,则样的简单随机样本,测得样本方差为257S.?5 4/25 . 小于12.5的概率为本均值X的随.从正态分布中随机抽取容量为1652),N(2S 则,概率机样本,且未知041?2.P,21 .a,? x1(?) ,0x?1其中.6设总体的密度函数为,x(f)X?,其他,0?,,,…,是取自总体的随机样本,?1XXXX12n.的极大似然估计值为则参数?7.设总体服从正态分布,其中未知而22?),(NX已知,为使总体均值的置信度为的置信区间1?的长度等于,则需抽取的样本容量最少为 n .u0)×sqrt(n)/σu=(x-8.设某种零件的直径(mm)服从正态分布,2),N(从这批零件中随机地抽取16个零件,测得样本均值为,样本方差,则均值的置2075X?12.?00244S.?0信度为0.95的置信区间为:(1025.75-21.315,1025.75+21.315) .(1004.435,1047.065).9.在假设检验中,若未知,原假设,2?H :00备择假设时,检验的拒绝域为: H01 .10.一大企业雇用的员工人数非常多,为了探讨员工的工龄(年)对员工的月薪(百元)的YX影响,随机抽访了25名员工,并由记录结果得对则,,,,?29650Y?510XX100?Y2000XYXiiiii1i?1i?1?i?1i线性回归方程为 . y2.62x+ = 11.47分)20分,共2二、选择题(每小题.的1.设,,…,是来自正态总体2?XX)0,~XN(X12n令值,样本机样本均,为其随一个简单Xn?2)?(XXi D ),则~(1?i?YY2? 22?)(((A)DC(B)))1(n?)n()(,N2? ?)N(,n的,…,是来自正态总体2.设,2XX),~N(XX12n )简单随机样本,为样本均值,记(Xnn11 ,,2222)X?XS?()?XS?X(2i1i1?nn1?i1i?nn11 ,,2222)SS?(X?()Xii43n1n?1i1i是变量的度为分布的随机从则服自由1?ntB )(XX?XX? )())D(AC)((B?T?TT?T?1?S?S/n1/nn/nS/S2143的,,是来自正态总体3.设,2?XXX)N(,2X~X4123,则当简单随机样本,若令222)?(X2X)(?3X?4X?Ya4123 )服从分布时,必有( D 22?Y1111 ););((BA?bb?a?a?914491441111 ););(CD (?a?a?b?b10020xx0204.设简单随机样本,,…,来自于正态总XXX12nn1的数学,体则样本的二阶原点矩?22)(,X~NXA?i2n1i? )期望为( D11 222)(A))((BC24 2?)(D2分布,的).5设随机变量服从自由度为(,nnFX1为件值,则的满已知足条)?P(X05?0.P(X?)? (C )0.975)))(A0.025 (B)0.05 (C0.95 (D…,设总体6.服从正态分布,,,2XX)(,NXX12n未知,,是从中抽取的简单随机样本,其中2X A )的置信区间(则的)%(1001?SSS,),)((A)B(()Xz?z1nX?t?(X?nnn222S ))(tX?n?1?n2SS,)((C)D)(,()((tn?X)XzX?zXtn?nnnn2222未知,服从正态分布,其中.7设总体22?)N(,Xn1,未知,是简单随机样本,记…,,,?XXXXX?1n2in1i)时,其则当的置信区间为(,?zX?z?X050.050.nn ) C 置信水平为()C(0.95 )B(0.90 )A(.D)(0.975,易,8.从总体中抽取简单随机样本,XXX123 证估计量,111111?XXXXX?X?31312221422643 ,212111?XXXX?XX41223313536553的无偏估计量,则其中最有效的均是总体均值? 估计量是( B ))B ()(C)(A213 )(D4件测量其直径,从一批零件中随机地抽取1009.,现想1.6cm测得平均直径为5.2cm,标准差为检5cm知道这批零件的直径是否符合标准,采用t2.?X5,则在显著性水平验法,并取统计量为t10.6/1 下,其接受域为( D )())C)(AB)( D ()t(100?t)99()t?t?tt(99222 )?tt(100?2方差已知, B ()10.在假设检验中,2? H:00为则,其绝拒择A()若备假设域H: 01X 0)(?T?t1?n2n/S.为(B)若备择假设域其则拒绝, H:01X 0uUn/2为,)若备择假设则其拒绝域(C:H01X 0uUn/为其设备择假,则拒绝域(D)若H :01X 0u?U?n/1粒,从中任选6000,分)现有一批种子,其中良种数占10三、(6的概率保证其中良种所占的比例与问能从0.991 相差多少?这时相应的良种数在哪一个范围?6 解答:μ=E(X)=np=6000x1/6=1000, D(X)=σ2=这个问题属于“二项分布”,且n=6000, p=1/6。
概率论与数理统计作业及解答
概率论与数理统计作业及解答第一次作业★1. 甲, 乙, 丙三门炮各向同一目标发射一枚炮弹, 设事件A , B , C 分别表示甲, 乙, 丙击中目标, 则三门炮最多有一门炮击中目标如何表示. 事件E ={事件,,A B C 最多有一个发生},则E 的表示为;E ABC ABC ABC ABC =+++或;ABACBC =或;ABACBC =或;ABACBC =或().ABC ABC ABC ABC =-++(和A B +即并A B ,当,A B 互斥即AB φ=时,A B 常记为A B +.) 2. 设M 件产品中含m 件次品, 计算从中任取两件至少有一件次品的概率.221M mM C C --或1122(21)(1)m M m m M C C C m M m M M C -+--=- ★3. 从8双不同尺码鞋子中随机取6只, 计算以下事件的概率.A ={8只鞋子均不成双},B ={恰有2只鞋子成双},C ={恰有4只鞋子成双}.61682616()32()0.2238,143C C P A C ===1414872616()80()0.5594,143C C C P B C === 2212862616()30()0.2098.143C C C P C C === ★4. 设某批产品共50件, 其中有5件次品, 现从中任取3件, 求:(1)其中无次品的概率; (2)其中恰有一件次品的概率.(1)34535014190.724.1960C C == (2)21455350990.2526.392C C C ==5. 从1~9九个数字中, 任取3个排成一个三位数, 求:(1)所得三位数为偶数的概率; (2)所得三位数为奇数的概率.(1){P 三位数为偶数}{P =尾数为偶数4},9=(2){P 三位数为奇数}{P =尾数为奇数5},9=或{P 三位数为奇数}1{P =-三位数为偶数45}1.99=-=6. 某办公室10名员工编号从1到10,任选3人记录其号码,求:(1)最小号码为5的概率;(2)最大号码为5的概率.记事件A ={最小号码为5}, B ={最大号码为5}.(1) 253101();12C P A C ==(2) 243101().20C P B C ==7. 袋中有红、黄、白色球各一个,每次从袋中任取一球,记下颜色后放回,共取球三次,求下列事件的概率:A ={全红},B ={颜色全同},C ={颜色全不同},D ={颜色不全同},E ={无黄色球},F ={无红色且无黄色球},G ={全红或全黄}.311(),327P A ==1()3(),9P B P A ==33333!2(),339A P C ===8()1(),9P D P B =-=3328(),327P E ==311(),327P F ==2()2().27P G P A ==☆.某班n 个男生m 个女生(m ≤n +1)随机排成一列, 计算任意两女生均不相邻的概率.☆.在[0, 1]线段上任取两点将线段截成三段, 计算三段可组成三角形的概率. 14第二次作业 1. 设A , B 为随机事件, P (A )=0.92, P (B )=0.93, (|)0.85P B A =, 求:(1)(|)P A B , (2)()P A B ∪. (1) ()()0.85(|),()0.850.080.068,()10.92P AB P AB P B A P AB P A ====⨯=-()()()()()()P AB P A P AB P A P B P AB =-=-+0.920.930.0680.058,=-+=()0.058(|)0.83.()10.93P AB P A B P B ===-(2)()()()()P A B P A P B P AB =+-0.920.930.8620.988.=+-=2. 投两颗骰子,已知两颗骰子点数之和为7,求其中有一颗为1点的概率. 记事件A ={(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)}, B ={(1,6),(6,1)}. 21(|).63P B A ==★.在1—2000中任取一整数, 求取到的整数既不能被5除尽又不能被7除尽的概率. 记事件A ={能被5除尽}, B ={能被7除尽}.4001(),20005P A ==取整2000285,7⎡⎤=⎢⎥⎣⎦28557(),2000400P B ==200057,57⎡⎤=⎢⎥⨯⎣⎦57(),2000P AB = ()()1()1()()()P AB P A B P A B P A P B P AB ==-=--+1575710.686.54002000=--+=3. 由长期统计资料得知, 某一地区在4月份下雨(记作事件A )的概率为4/15, 刮风(用B 表示)的概率为7/15, 既刮风又下雨的概率为1/10, 求P (A |B )、P (B |A )、P (A B ).()1/103(|),()7/1514P AB P A B P B ===()1/103(|),()4/158P AB P B A P A ===()()()()P A B P A P B P AB =+-47119.15151030=+-=4. 设某光学仪器厂制造的透镜第一次落下时摔破的概率是1/2,若第一次落下未摔破,第二次落下时摔破的概率是7/10,若前二次落下未摔破,第三次落下时摔破的概率是9/10,试求落下三次而未摔破的概率.记事件i A ={第i 次落下时摔破},1,2,3.i = 1231213121793()()(|)(|)111.21010200P A A A P A P A A P A A A ⎛⎫⎛⎫⎛⎫==---= ⎪⎪⎪⎝⎭⎝⎭⎝⎭5. 设在n 张彩票中有一张奖券,有3个人参加抽奖,分别求出第一、二、三个人摸到奖券概率.记事件i A ={第i 个人摸到奖券},1,2,3.i =由古典概率直接得1231()()().P A P A P A n ===或212121111()()()(|),1n P A P A A P A P A A n n n-====-31231213121211()()()(|)(|).12n n P A P A A A P A P A A P A A A n n n n--====--或 第一个人中奖概率为11(),P A n=前两人中奖概率为12122()()(),P A A P A P A n +=+=解得21(),P A n=前三人中奖概率为1231233()()()(),P A A A P A P A P A n ++=++=解得31().P A n=6. 甲、乙两人射击, 甲击中的概率为0.8, 乙击中的概率为0.7, 两人同时射击, 假定中靶与否是独立的.求(1)两人都中靶的概率; (2)甲中乙不中的概率; (3)甲不中乙中的概率.记事件A ={甲中靶},B ={乙中靶}.(1) ()()()0.70.70.56,P AB P A P B ==⨯=(2) ()()()0.80.560.24,P AB P A P AB =-=-= (3) ()()()0.70.560.14.P AB P B P AB =-=-=★7. 袋中有a 个红球, b 个黑球, 有放回从袋中摸球, 计算以下事件的概率: (1)A ={在n 次摸球中有k 次摸到红球}; (2)B ={第k 次首次摸到红球};(3)C ={第r 次摸到红球时恰好摸了k 次球}.(1) ();()k n kk n kk k nnna b a b P A C C a b a b a b --⎛⎫⎛⎫== ⎪ ⎪+++⎝⎭⎝⎭(2) 11();()k k kb a ab P B a b a b a b --⎛⎫== ⎪+++⎝⎭ (3) 1111().()rk rr k rr r k k ka b a b P C CCa b a b a b ------⎛⎫⎛⎫== ⎪ ⎪+++⎝⎭⎝⎭8.一射手对一目标独立地射击4次, 已知他至少命中一次的概率为80.81求该射手射击一次命中目标的概率.设射击一次命中目标的概率为,1.p q p =-4801121,,1.818133q q p q =-===-= 9. 设某种高射炮命中目标的概率为0.6, 问至少需要多少门此种高射炮进行射击才能以0.99的概率命中目标.(10.6)10.99,n -<-0.40.01,n <由50.40.01024,=60.40.01,<得 6.n ≥ ☆.证明一般加法(容斥)公式1111()()()()(1)().nn n n i i i i j i j k i i i i ji j kP A P A P A A P A A A P A -===<<<=-+++-∑∑∑证明 只需证分块111,,k k n k i i i i i i A A A A A A +⊂只计算1次概率.(1,,n i i 是1,,n 的一个排列,1,2,,.k n =)分块概率重数为1,,k i i A A 中任取1个-任取2个1(1)k -++-任取k 个,即121(1)1k k k k k C C C --++-=⇔ 121(1)(11)0.k k k k k k C C C -+++-=-=将,互换可得对偶加法(容斥)公式1111()()()()(1)().nnn n i i i ij ij k i i i i ji j kP A P A P A A P AA A P A -===<<<=-+++-∑∑∑☆.证明 若A , B 独立, A , C 独立, 则A , B ∪C 独立的充要条件是A , BC 独立. 证明(())()()()()P A B C P AB AC P AB P AC P ABC ==+- ()()()()()P A P B P A P C P ABC =+- 充分性:⇐(())()()()()(),P A B C P A P B P A P C P ABC =+-代入()()()P ABC P A P BC = ()(()()())P A P B P C P BC =+-()(),P A P B C = 即,A B C 独立. 必要性:⇒(())()()P A B C P A P B C =()(()()())P A P B P C P BC =+-()()()()()()P A P B P A P C P A P BC =+-()()()()()P A P B P A P C P ABC =+- ()()(),P ABC P A P BC =即,A BC 独立.☆.证明:若三个事件A 、B 、C 独立,则A ∪B 、AB 及A -B 都与C 独立. 证明 因为[()]()()()()()()()()()()()[()()()()]()()()P A B C P AC BC P AC P BC P ABC P A P C P B P C P A P B P C P A P B P A P B P C P A B P C ==+-=+-=+-=[()]()()()()[()()]()()()P AB C P ABC P A P B P C P A P B P C P AB P C ==== [()]()()()()()()()()[()()]()()()P A B C P AC B P AC P ABC P A P C P A P B P C P A P AB P C P A B P C -=-=-=-=-=-所以A ∪B 、AB 及A -B 都与C 独立. 第三次作业1. 在做一道有4个答案的选择题时, 如果学生不知道问题的正确答案时就作随机猜测. 设他知道问题的正确答案的概率为p , 分别就p =0.6和p =0.3两种情形求下列事件概率: (1)学生答对该选择题; (2)已知学生答对了选择题,求学生确实知道正确答案的概率. 记事件A ={知道问题正确答案},B ={答对选择题}.(1) 由全概率公式得()()(|)()(|)P B P A P B A P A P B A =+113,444p pp -=+=+ 当0.6p =时,13130.67()0.7,444410p P B ⨯=+=+==当0.3p =时,13130.319()0.475.444440p P B ⨯=+=+== (2) 由贝叶斯公式得()4(|),13()1344P AB p pP A B p P B p ===++当0.6p =时,440.66(|),13130.67p P A B p ⨯===++⨯ 当0.3p =时,440.312(|).13130.319p P A B p ⨯===++⨯ 2. 某单位同时装有两种报警系统A 与B , 当报警系统A 单独使用时, 其有效的概率为0.70; 当报警系统B 单独使用时, 其有效的概率为0.80.在报警系统A 有效的条件下, 报警系统B 有效的概率为0.84.计算以下概率: (1)两种报警系统都有效的概率; (2)在报警系统B 有效的条件下, 报警系统A 有效的概率; (3)两种报警系统都失灵的概率.()0.7,()0.8,(|)0.84.P A P B P B A ===(1) ()()(|)0.70.840.588,P AB P A P B A ==⨯=(2) ()0.588(|)0.735,()0.8P AB P A B P B === (3) ()()1()1()()()P AB P A B P A B P A P B P AB ==-=--+10.70.80.5880.088.=--+=☆.为防止意外, 在矿内同时设有两种报警系统A 与B . 每种系统单独使用时, 其有效的概率系统A 为0. 92, 系统B 为0.93, 在A 失灵的条件下, B 有效的概率为0.85,. 求: (1)发生意外时, 两个报警系统至少有一个有效的概率; (2) B 失灵的条件下, A 有效的概率.3. 设有甲、乙两袋, 甲袋中有n 只白球, m 只红球; 乙袋中有N 只白球, M 只红球. 从甲袋中任取一球放入乙袋, 在从乙袋中任取一球, 问取到白球的概率是多少. 记事件A ={从甲袋中取到白球},B ={从乙袋中取到白球}. 由全概率公式得()()(|)()(|)P B P A P B A P A P B A =+111n N m Nn m N M n m N M +=+++++++().()(1)n N n m n m N M ++=+++☆.设有五个袋子, 其中两个袋子, 每袋有2个白球, 3个黑球. 另外两个袋子, 每袋有1个白球, 4个黑球, 还有一个袋子有4个白球, 1个黑球. (1)从五个袋子中任挑一袋, 并从这袋中任取一球, 求此球为白球的概率. (2)从不同的三个袋中任挑一袋, 并由其中任取一球, 结果是白球, 问这球分别由三个不同的袋子中取出的概率各是多少?★4. 发报台分别以概率0.6和0.4发出信号 “·” 及 “-”. 由于通信系统受到于扰, 当发出信号 “·” 时, 收报台分别以概率0.8及0.2收到信息 “·” 及 “-”; 又当发出信号 “-” 时, 收报台分别以概率0.9及0.l 收到信号 “-” 及 “·”. 求: (1)收报台收到 “·”的概率;(2)收报台收到“-”的概率;(3)当收报台收到 “·” 时, 发报台确系发出信号 “·” 的概率;(4)收到 “-” 时, 确系发出 “-” 的概率.记事件B ={收到信号 “·”},1A ={发出信号 “·”},2A ={发出信号“-”}. (1) )|()()|()()(2211A B P A P A B P A P B P +=;52.01.04.0)2.01(6.0=⨯+-⨯= (2) ()1()10.520.48;P B P B =-=-=(3) 1111()()(|)(|)()()P A B P A P B A P A B P B P B ==0.60.8120.923;0.5213⨯=== (4)2222()()(|)(|)()()P A B P A P B A P A B P B P B ==0.40.930.75.0.484⨯=== 5. 对以往数据分析结果表明, 当机器调整良好时, 产品合格率为90%, 而机器发生某一故障时, 产品合格率为30%. 每天早上机器开动时, 机器调整良好的概率为75%. (1)求机器产品合格率,(2)已知某日早上第一件产品是合格品, 求机器调整良好的概率. 记事件B ={产品合格},A ={机器调整良好}. (1) 由全概率公式得()()(|)()(|)P B P A P B A P A P B A =+0.750.90.250.30.75,=⨯+⨯= (2) 由贝叶斯公式得()()(|)(|)()()P AB P A P B A P A B P B P B ==0.750.90.9.0.75⨯== ☆.系统(A), (B), (C)图如下, 系统(A), (B)由4个元件组成, 系统(C)由5个元件组成,每个元件的可靠性为p , 即元件正常工作的概率为p , 试求整个系统的可靠性.(A) (B) (C) 记事件A ={元件5正常},B ={系统正常}.(A) 222(|)(1(1)(1))(44),P B A p p p p p =---=-+ (B) 2222(|)1(1)(1)(2),P B A p p p p =---=- (C) 由全概率公式得()()(|)()(|)P B P A P B A P A P B A =+2222(44)(1)(2)p p p p p p p =⋅-++-- 23452252.p p p p =+-+第四次作业1. 在15个同型零件中有2个次品, 从中任取3个, 以X 表示取出的次品的个数, 求X 的分布律.2213315(),0,1,2.k k C C P X k k C -===☆.经销一批水果, 第一天售出的概率是0.5, 每公斤获利8元, 第二天售出的概率是0.4, 每公斤获利5元, 第三天售出的概率是0.1, 每公斤亏损3元. 求经销这批水果每公斤赢利X0,3,(3)(3)0.1,35,()(5)(3)(5)0.10.40.5,58,(8)1,8.x F P X x F x F P X P X x F x <-⎧⎪-==-=-≤<⎪=⎨==-+==+=≤<⎪⎪=≥⎩2. 抛掷一枚不均匀的硬币, 每次出现正面的概率为2/3, 连续抛掷8次, 以X 表示出现正面的次数, 求X 的分布律.(8,2/3),X B n p ==8821(),0,1,,8.33k kk P X k C k -⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭3. 一射击运动员的击中靶心的命中率为0.35, 以X 表示他首次击中靶心时累计已射击的次数, 写出X 的分布律, 并计算X 取偶数的概率.(0.35),X G p =11()0.350.65,1,2.k k P X k pq k --===⨯= ()+()=1,()()=,P X P X P X P X q ⎧⎪⎨⎪⎩奇偶偶奇 解得0.6513()=0.394.110.6533q P X q ==++偶4. 一商业大厅里装有4个同类型的银行刷卡机, 调查表明在任一时刻每个刷卡机使用的概率为0.1,求在同一时刻:(1)恰有2个刷卡机被使用的概率;(2)至少有3个刷卡机被使用的概率; (3)至多有3个刷卡机被使用的概率;(4)至少有一个刷卡机被使用的概率. 在同一时刻刷卡机被使用的个数(4,0.1).X B n p ==(1) 2224(2)0.10.90.00486,P X C ==⨯⨯= (2) 3344(3)(3)(4)0.10.90.10.0037,P X P X P X C ≥==+==⨯⨯+= (3) 4(3)1(4)10.10.9999,P X P X ≤=-==-=(4)4(1)1(0)10.910.65610.3439.P X P X ≥=-==-=-=5. 某汽车从起点驶出时有40名乘客, 设沿途共有4个停靠站, 且该车只下不上. 每个乘客在每个站下车的概率相等, 并且相互独立, 试求: (1)全在终点站下车的概率; (2)至少有2个乘客在终点站下车的概率; (3)该车驶过2个停靠站后乘客人数降为20的概率. 记事件A ={任一乘客在终点站下车},乘客在终点站下车人数(40,1/4).X B n p ==(1) 40231(40)8.271810,4P X -⎛⎫===⨯ ⎪⎝⎭(2) 403940140313433(2)1(0)(1)1144434P X P X P X C ⎛⎫⎛⎫⎛⎫≥=-=-==--⨯=-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭10.0001340880.999865912.=-=(3) 记事件B ={任一乘客在后两站下车},乘客在后两站下车人数(40,1/2).Y B n p ==2020202040404011(20)0.1268.222C P Y C ⎛⎫⎛⎫==== ⎪ ⎪⎝⎭⎝⎭(精确值)应用斯特林公式!2,nn n n e π⎛⎫ ⎪⎝⎭2020202040404011(20)222C P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭24040!(20!)2= 402204040202e e ⎫⎪⎝⎭⎫⎫⎪⎪⎪⎭⎭0.1262.=其中 1.7724538509.π==参:贝努利分布的正态近似.6. 已知瓷器在运输过程中受损的概率是0.002, 有2000件瓷器运到, 求: (1)恰有2个受损的概率; (2)小于2个受损的概率; (3)多于2个受损的概率; (4)至少有1个受损的概率.受损瓷器件数(2000,0.002),X B n p ==近似为泊松分布(4).P n p λ=⨯=(1) 2441480.146525,2!P e e --=== (2) 4424150.0915782,1!P e e --⎛⎫=+== ⎪⎝⎭(3) 431211130.761897,P P P e-=--=-= (4) 4410.981684.P e -=-=7. 某产品表面上疵点的个数X 服从参数为1.2的泊松分布, 规定表面上疵点的个数不超过2个为合格品, 求产品的合格品率.产品合格品率2 1.2 1.21.2 1.212.920.879487.1!2!P e e --⎛⎫=+=== ⎪⎝⎭ ★8. 设随机变量X求:X 的分布函数, 以及概率(||5).X ≤ 随机变量X 的分布函数为0,3,(3)(3)0.2,35,()(5)(3)(5)0.20.50.7,58,(8)1,8.x F P X x F x F P X P X x F x <-⎧⎪-==-=-≤<⎪=⎨==-+==+=≤<⎪⎪=≥⎩(36)(5)0.5,P X P X <≤===(1)(5)(8)0.50.30.8,P X P X P X >==+==+=(5)(||5)(5)(3)(5)0.20.50.7,P X P X F P X P X ≤=≤===-+==+=第五次作业1. 学生完成一道作业的时间X 是一个随机变量(单位: 小时), 其密度函数是2,00.5()0,kx x x f x ⎧+≤≤=⎨⎩其他试求: (1)系数k ; (2)X 的分布函数; (3)在15分钟内完成一道作业的概率; (4)在10到20分钟之间完成一道作业的概率. (1) 0.50.523200111(0.5),21,32248kk F kx xdx x x k ⎛⎫==+=+=+= ⎪⎝⎭⎰(2) 23200,01()()217,00.5,2(0.5)1,0.5.x x F x P X x x xdx x x x F x <⎧⎪⎪=≤=+=+≤<⎨⎪=≥⎪⎩⎰(3) 322011119()2170.140625,442464x F P X x x xdx ⎛⎫⎛⎫⎛⎫=≤=+=+== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎰(4) 3212316111111129217.6336424108P X F F x xdx ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫≤≤=-=+=+= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎰2. 设连续型随机变量X 服从区间[-a , a ](a >0)上的均匀分布, 且已知概率1(1)3P X >=, 求: (1)常数a ; (2)概率1()3P X <.(1) 1111(1),3,223aa P X dx a a a ->====⎰(2) 13311115()3.36639P X dx -⎛⎫<==+= ⎪⎝⎭⎰3. 设某元件的寿命X 服从参数为θ 的指数分布, 且已知概率P (X >50)=e -4, 试求:(1)参数θ 的值; (2)概率P (25<X <100) . 补分布()()|,0.x x xx x S x P X x e dx e ex θθθθ+∞--+∞->==-=>⎰ (1) 504502(50)(50),0.08,25x S P X e dx e e θθθθ+∞---=>=====⎰(2) 由()(),,0,rxr S rx e S x r x θ-==>取50,x =依次令1,2,2r =得12282(25)(25)(50),(100)(100)(50)S P X S e S P X S e --=>===>==0.0003354563,=其中 2.7182818284.e28(25100)(25)(100)P X P X P X e e --<<=>->=- 0.135334650.00033545630.1349991937.=-= 4. 某种型号灯泡的使用寿命X (小时)服从参数为1800的指数分布, 求: (1)任取1只灯泡使用时间超过1200小时的概率; (2)任取3只灯泡各使用时间都超过1200小时的概率. (1) 1312008002(1200)0.2231301602,P X ee -⨯->===1.6487212707001.= (2) 932(1200)0.0111089965.P X e->==5. 设X ~N (0, 1), 求: P (X <0.61), P (-2.62<X <1.25), P (X ≥1.34), P (|X |>2.13). (1) (0.61)(0.61)0.72907,P X <=Φ=(2) ( 2.62 1.25)(1.25)( 2.62)(1.25)(2.62)1P X -<<=Φ-Φ-=Φ+Φ-0.894359956010.88995,=+-=(3) ( 1.34)1(1.34)10.909880.09012,P X >=-Φ=-= (4)(|| 2.13)22(2.13)220.983410.03318.P X >=-Φ=-⨯=6. 飞机从甲地飞到乙地的飞行时间X ~N (4, 19). 设飞机上午10: 10从甲地起飞, 求: (1)飞机下午2: 30以后到达乙地的概率; (2)飞机下午2: 10以前到达乙地的概率; (3)飞机在下午1: 40至2: 20之间到达乙地的概率.(1) 131331/34111(1)10.841340.15866,331/3P X P X -⎛⎫⎛⎫⎛⎫>=-≤=-Φ=-Φ=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(2) (4)(0)0.5,P X <=Φ=(3) 72525/647/24261/31/3P X --⎛⎫⎛⎫⎛⎫<<=Φ-Φ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭13122⎛⎫⎛⎫=Φ+Φ- ⎪ ⎪⎝⎭⎝⎭0.691460.9331910.62465.=+-=★7. 设某校高三女学生的身高X ~N (162, 25), 求: (1)从中任取1个女学生, 求其身高超过165的概率; (2)从中任取1个女学生, 求其身高与162的差的绝对值小于5的概率; (3)从中任取6个女学生, 求其中至少有2个身高超过165的概率.(1) 162165162(165)0.61(0.6)10.72580.2742,55X P X P --⎛⎫>=>==-Φ=-=⎪⎝⎭ (2) 162(|162|5)12(1)120.8413410.6827,5X P X P ⎛-⎫-<=<=Φ-=⨯-= ⎪⎝⎭(3) 记事件A ={任一女生身高超过165}, ()(165)0.2742,p P A P X ==>= 随机变量Y 贝努利分布(6,0.2742),B n p ==6156(2)1(0)(1)1(1)(1)0.52257.P Y P Y P Y p C p p ≥=-=-==----=第六次作业★1.设随机变量X 的分布律为(1)求Y =|X |的分布律; (2)求Y =X 2+X 的分布律. (1)(2)★.定理X 密度为()X f x ,()y g x =严格单调,反函数()x x y =导数连续,则()Y g X =是连续型变量,密度为(())|()|,()(),()0,XY f x y x y g x y g x f y αβ'=<<=⎧=⎨⎩极小值极大值其它. 证明 1)若()0,x x y ''=>{}{()()}{},Y y g X g x X x ≤=≤=≤()()(()())()(),Y X F y P Y y P g X g x P X x F x =≤=≤=≤= 两边对y 求导,()(())(),.Y X f y f x y x y y αβ'=<<2)若()0,x x y ''=<{}{()()}{},Y y g X g x X x ≤=≤=≥()()(()())()1(),Y X F y P Y y P g X g x P X x F x =≤=≤=≥=- 两边对y 求导,()(())(),.Y X f y f x y x y y αβ'=-<<因此总有()(())|()|,.Y X f y f x y x y y αβ'=<< 或证明()(),()0,()()(()())()1(),()0,X Y X P X x F x g x F y P Y y P g X g x P X x F x g x '≤=>⎧=≤=≤=⎨'≥=-<⎩ 两边对y 求导,(),()(),X Y X dF x dxdx dyf y dF x dx dx dy ⎧⎪⎪=⎨⎪-⎪⎩或两边微分()(),()()()(),X X Y Y X XdF x f x dx dF y f y dy dF x f x dx =⎧==⎨-=-⎩(),()(),X Y X dx f x dy f y dxf x dy ⎧⎪=⎨-⎪⎩(())|()|,.X f x y x y y αβ'=<<2. 设随机变量X 的密度函数是f X (x ), 求下列随机变量函数的密度函数: (1)Y =tan X ; (2)1Y X=; (3)Y =|X |. (1) 反函数()arctan ,x y y ='21(),1x y y =+由连续型随机变量函数的密度公式得'21()(())|()|(arctan ).1Y X Xf y f x y x y f y y ==+ 或 反函数支()arctan ,i x y i y i π=+为整数,'21(),1i x y y =+ '21()(())|()|(arctan ).1Y X i iX i i f y f x y x y f i y y π+∞+∞=-∞=-∞==++∑∑(2) 1,X Y =反函数1,y x y ='211()()().Y X y y X f y f x x f y y==(3) ()()(||)()()()Y X X F y P Y y P X y P y X y F y F y =≤=≤=-≤≤=--. 两边对y 求导得Y 的密度函数为()()(),0.Y X X f y f y f y y =+->★3. 设随机变量X ~U [-2, 2], 求Y =4X 2-1的密度函数.2()()(41)(115,Y F y P Y y P X y P X y =≤=-≤=≤=-≤≤两边对y 求导得随机变量Y 的密度为()115.Y f y y =-≤≤ 或解反函数支12()()x y x y =='''112211()(())|()|(())|()|2(())()115.Y X X X f y f x y x y f x y x y f x y x y y =+==-≤≤★4. 设随机变量X 服从参数为1的指数分布, 求Y =X 2的密度函数(Weibull 分布). 当0y ≤时, 2Y X =的分布()0Y F y =,当0y >时,2()()()(Y X F y P Y y P X y P X F =≤=≤=≤= 两边对y 求导得()Y X f y f '==0,()0.Y y f y >=⎩或反函数y x='()()0.Y X y y f y f x x y ==>★5. 设随机变量X~N (0, 1), 求(1)Y =e X 的密度函数; (2)Y =X 2的密度函数(Gamma 分布). (1) 当0y ≤时, e X Y =的分布()0Y F y =,当0y >时,()()(e )(ln )(ln ),X Y F y P Y y P y P X y y =≤=≤=≤=Φ 因而Y 的密度为''1()(ln )(ln )(ln )(ln ),Y f y y y y y y ϕϕ=Φ=={}2(ln ),0,2()0,0.Y y y f y y ->=≤⎩ 或 反函数ln ,X Y =ln ,y x y ='1()()(ln )Y y y f y x x y y ϕϕ=={}2(ln ),0.2y y =-> (2) 当0y ≤时,()0Y F y =;当0Y >时,2()()()((Y X X F y P Y y P X y P X F F =≤=≤=≤≤=-.两边对y 求导得Y的密度函数为2,0,()0.yY y f y ->=⎩或反函数支12()()x y x y =''21122()(())|()|(())|()|,0.yY X X f y f x y x y f x y x y y -=+=>6. 设随机变量X 的密度函数是21,1()0,1X x f x x x ⎧>⎪=⎨⎪≤⎩, 求Y =ln X 的概率密度. 反函数,y y x e ='()()(),0.y y y Y X y y X f y f x x f e e e y -===>第七次作业☆.将8个球随机地丢入编号为1, 2, 3, 4, 5的五个盒子中去, 设X 为落入1号盒的球的个数, Y 为落入2号盒的球的个数, 试求X 和Y 的联合分布律.1. 袋中装有标上号码1, 2, 2的3个球, 从中任取一个并且不再放回, 然后再从袋中任取一球,. 以X , Y 分别记第一、二次取到球上的号码数, 求: (1)(X , Y )的联合分布律(设袋中各球被取机会相等); (2)X , Y 的边缘分布律; (3)X 与Y 是否独立? (1)(X , Y )的联合分布律为(1,1)0,P X Y ===1(1,2)(2,1)(2,2).3P X Y P X Y P X Y =========(2) X , Y 的分布律相同,12(1),(2).33P X P X ====(3) X 与Y 不独立.2. 设二维连续型变量(,)X Y 的联合分布函数35(1)(1),,0,(,)0,.x y e e x y F x y --⎧-->=⎨⎩其它求(,)X Y 联合密度.2(,)(,),f x y F x y x y ∂=∂∂3515,,0,(,)0,.x y e x y f x y --⎧>=⎨⎩其它★3. 设二维随机变量(X , Y )服从D 上的均匀分布, 其中D 是抛物线y =x 2和x =y 2所围成的区域, 试求它的联合密度函数和边缘分布密度函数, 并判断Y X ,是否独立.分布区域面积213123200211,333x S x dx x x ⎛⎫==-=-= ⎪⎝⎭⎰⎰联合密度213,1,(,)0,.x y f x y S ⎧=<<<⎪=⎨⎪⎩其它边缘X的密度为22()),01,X xf x dy x x ==-<<边缘Y的密度为22()),0 1.Y yf y dy y y ==<<(,)()(),X Y f x y f x f y ≠⋅因此X 与Y 不独立.或(,)f x y 非零密度分布范围不是定义在矩形区域上,因此X 与Y 不独立.4. 设二维离散型变量),(Y X 联合分布列是问,p q 取何值时X 与Y两行成比例1/151/52,1/53/103q p ===解得12,.1015p q ==★5.设(,)X Y 的联合密度为2,11,0,(,)0,.y Ax e x y f x y -⎧-<<>=⎨⎩其它求:(1)常数A ;(2)概率1(0,1);2P X Y <<>(3)边缘概率密度f X (x ), f Y (y ); (4)X 与Y 是否相互独立? (1) 2220()(,),11,y y X f x f x y dy Ax e dy Ax e dy Ax x +∞+∞+∞--====-<<⎰⎰⎰112112()1,3X f x dx Ax dx A --===⎰⎰3.2A = (2) 112201113(0,1)(0)(1).22216ye P X Y P X P Y x dx e dy -+∞-<<>=<<>==⎰⎰ (3) 23(),11,2X f x x x =-<<111221113()(,),0.2y yy Y f y f x y dx Ax e dx e x dx e y ------====>⎰⎰⎰(4)由23,11,0()()(,),20,yX Y x e x y f x f y f x y -⎧-<<>⎪⋅==⎨⎪⎩其它得X 与Y 独立. 或因为2(,),11,0,y f x y Ax e x y -=-<<>可表示为x 的函数与y 的函数的积且分布在矩形区域上,所以X 与Y 相互独立.由此得(),0;y Y f y e y -=>2(),11,X f x Ax x =-<<112112()1,3X f x dx Ax dx A --===⎰⎰3.2A = 112201113(0,1)(0)(1).22216y e P X Y P X P Y x dx e dy -+∞-<<>=<<>==⎰⎰6. 设X 服从均匀分布(0,0.2),U Y 的密度为55,0,()0,y Y e y f y -⎧>=⎨⎩其它.且,X Y 独立.求:(1)X的密度;(2) (,)X Y 的联合密度. (1)X 的密度为()5,00.2,X f x x =≤≤(2)(,)X Y 的联合密度为525,00.2,0,(,)0,y e x y f x y -⎧≤≤>=⎨⎩其它.第八次作业★1.求函数(1)Z 1=X +Y , (2) Z 2=min{X , Y }, (3) Z 3=max{X , Y }的分布律.(1) 11(0)(0),6P Z P X Y =====1111(1)(0,1)(1,0),362P Z P X Y P X Y ====+===+=1111(2)(0,2)(1,1),12126P Z P X Y P X Y ====+===+=11(3)(1,2).6P Z P X Y =====(2) 2111(1)(1,1)(1,2),1264P Z P X Y P X Y ====+===+=223(0)1(1).4P Z P Z ==-==(3) 31(0)(0),6P Z P X Y =====31117(1)(0,1)(1,1)(1,0),312612P Z P X Y P X Y P X Y ====+==+===++=3111(2)(0,2)(1,2).1264P Z P X Y P X Y ====+===+=2. 设随机变量(求函数Z =X /Y 的分布律.(/1)(1)(1)0.250.250.5,P Z X Y P X Y P X Y =====+==-=+= (/1)1(/1)0.5.P Z X Y P Z X Y ==-=-===3. 设X 与Y 相互独立, 概率密度分别为220()00,xX e x f x x -⎧>=⎨≤⎩0()00,y Y e y f y x -⎧>=⎨≤⎩试求Z =X +Y 的概率密度.()(,)()()zzZ X Y f z f x z x dx f x f z x dx =-=-⎰⎰20222(1),0.z zx z x z x z z e e dx e e dx e e z --+----===->⎰⎰★4. 设X ~U (0, 1), Y ~E (1), 且X 与Y 独立, 求函数Z =X +Y 的密度函数.,01,0,(,)0,y e x y f x y -⎧<<>=⎨⎩其它,当01z <≤时,()(,)()()zzZ X Y f z f x z x dx f x f z x dx =-=-⎰⎰01,zz z x z xz x e dx e e -+-+-====-⎰当1z >时,11110()(,)()().zz x z xz z Z X Y x f z f x z x dx f x f z x dx e dx e e e -+-+--==-=-===-⎰⎰⎰因此11,01,(),1,0,.z z z Z e z f z e e z ---⎧-≤≤⎪=->⎨⎪⎩其它★5. 设随机变量(X , Y )的概率密度为()101,0(,)10x y e x y f x y e -+-⎧⎪<<<<+∞=⎨-⎪⎩其它(1)求边缘概率密度f X (x ), f Y (y ); (2)求函数U =max (X , Y )的分布函数; (3)求函数V =min(X , Y )的分布函数.(1) 1,01,()10,xX e x f x e --⎧<<⎪=-⎨⎪⎩其它.,0,()0,y Y e y f y -⎧>=⎨⎩其它. (2) 11000,0,1()(),01,111,1xx x x X X x e e F x f x dx dx x e e x ----≤⎧⎪-⎪===<<⎨--⎪≥⎪⎩⎰⎰.min{,1}10,0,1,01x x e x e --≤⎧⎪=⎨->⎪-⎩. 0,0,()1,0Y yy F y e y -≤⎧=⎨->⎩.21(1),01,()()()11,1x U X Y x e x F x F x F x e e x ---⎧-<<⎪==-⎨⎪-≥⎩. min{,1}1(1)(1),0.1x x e e x e -----=>-(3) 111,0,()1(),01,10,1x X X x e eS x F x x e x ---≤⎧⎪-⎪-=<<⎨-⎪≥⎪⎩.min{,1}111,0,,01x x e e x e---≤⎧⎪=⎨->⎪-⎩.1,0,()1(),0Y Y yy S y F y e y -≤⎧-=⎨>⎩.112111()11,01,()1()()111,1x x x xV X Y e e e e e e x F x S x S x e e x ---------⎧---+-=<<⎪=-=--⎨⎪≥⎩. 1min{,1}111,01x x x e e e x e --------+=>-.6. 设某种型号的电子管的寿命(以小时计)近似地服从N (160, 202)分布. 随机地选取4只求其中没有一只寿命小于180小时的概率.随机变量2(160,20),X N 180160(180)(1)0.84134,20P X -⎛⎫≤=Φ=Φ= ⎪⎝⎭没有一只寿命小于180小时的概率为444(180)(1(1))(10.84134)0.00063368.P X >=-Φ=-=第九次作业★1.试求: E (X ), E (X 2+5), E (|X |).20.110.210.320.130.10.4,i i iEX x p ==-⨯-⨯+⨯+⨯+⨯=∑2222222(2)0.1(1)0.210.320.130.1 2.2,i i iEX x p ==-⨯+-⨯+⨯+⨯+⨯=∑22(5)57.2,E X EX +=+=||||20.110.210.320.130.1 1.2.i i iE X x p ==⨯+⨯+⨯+⨯+⨯=∑2. 设随机变量X 的概率密度为0 0,() 01, 1.x x f x x x Ae x -⎧≤⎪=<≤⎨⎪>⎩求: (1)常数A ; (2)X 的数学期望.(1) 1100111(),2x f x dx xdx Ae dx Ae +∞+∞--==+=+⎰⎰⎰,2e A =(2) 12100114()2.2323x e e EX xf x dx x dx xe dx e +∞+∞--==+=+⨯=⎰⎰⎰★3. 设球的直径D 在[a , b ]上均匀分布,试求: (1)球的表面积的数学期望(表面积2D π);(2)球的体积的数学期望(体积316D π).(1) 22222()();3ba x E D ED dx a ab b b a ππππ===++-⎰ (2) 33322()().6624b a x E D ED dx a b a b b a ππππ⎛⎫===++ ⎪-⎝⎭⎰ ★4. 设二维离散型随机变量(X , Y )的联合分布律为求E (X ), E (Y ), E (XY ).2(0.10.050.050.1)2(0.10.150.050.1)i i iEX x p ==-⨯++++⨯+++∑20.320.350.1,=-⨯+⨯=1(0.10.050.1)2(0.050.15)j j jEY y p ==⨯+++⨯+∑3(0.050.10.05)4(0.10.20.05) 2.65,+⨯+++⨯++=,()i j i j ijE XY x y p =∑∑2(10.120.0530.0540.01)2(10.120.1530.0540.05)=-⨯⨯+⨯+⨯+⨯+⨯⨯+⨯+⨯+⨯ 1.5 1.50.=-+=★5. 设随机变量X 和Y 独立, 且具有概率密度为2,01,()0,X x x f x <<⎧=⎨⎩其它,3(1)3,1,()0, 1.y Y ey f y y --⎧>=⎨≤⎩(1)求(25)E X Y +; (2)求2()E X Y .(1) 112002()2,3X EX xf x dx x dx ===⎰⎰3(1)114()3,3y Y EY yf y dy ye dy +∞+∞--===⎰⎰或随机变量1Z Y =-指数分布(3),E 141,,33EZ EY EY =-==24(25)25258.33E X Y EX EY +=+=⨯+⨯=(2) 11223001()2,2X EX x f x dx x dx ===⎰⎰由X 和Y 独立得22142().233E X Y EX EY ==⨯=第十次作业1. 设离散型随机变量试求: (1) D (X ); (2) D (-3X +2) .(1) 20.110.210.320.130.10.4,i i iEX x p ==-⨯-⨯+⨯+⨯+⨯=∑2222222(2)0.1(1)0.210.320.130.1 2.2,i i iEX x p ==-⨯+-⨯+⨯+⨯+⨯=∑2222.20.4 2.04.DX EX E X =-=-=(2) 2(32)(3)9 2.0418.36.D X DX -+=-=⨯=★2. 设随机变量X 具有概率密度为22,02,()0,Ax x x f x ⎧+<<=⎨⎩其他,试求: (1)常数A ; (2)E (X ); (3) D (X ); (4) D (2X -3) .(1) 22081()(2)4,3f x dx Ax x dx A +∞-∞==+=+⎰⎰解得9.8A =-(2) 22095()(2).86EX xf x dx x x x dx +∞-∞==-+=⎰⎰(3) 22222094()(2),85EX x f x dx x x x dx +∞-∞==-+=⎰⎰2224519.56180DX EX E X ⎛⎫=-=-= ⎪⎝⎭(4) 21919(23)24.18045D X DX -==⨯=★3. 设二维随机变量(,)X Y 联合概率密度为2,01,01,(,)0,x y x y f x y --<<<<⎧=⎨⎩其他,试求: (1),X Y 的协方差和相关系数A ; (2)(21).D X Y -+(1) 103()(,)(2),01,2X f x f x y dy x y dy x x +∞-∞==--=-<<⎰⎰由,x y 的对称性3(),0 1.2Y f y y y =-<<1035(),212X EX xf x dx x x dx EY +∞-∞⎛⎫==-== ⎪⎝⎭⎰⎰12222031(),24X EX x f x dx x x dx EY +∞-∞⎛⎫==-== ⎪⎝⎭⎰⎰2221511,412144DX EX E X DY ⎛⎫=-=-== ⎪⎝⎭11001()(,)(2),6E XY xyf x y dydx xy x y dydx +∞+∞-∞-∞==--=⎰⎰⎰⎰ 因此2151(,)(),612144Cov X Y E XY EXEY ⎛⎫=-=-=- ⎪⎝⎭,1.11X Y ρ==-(2) 由随机变量和的方差公式()2(,)D X Y DX DX Cov X Y +=++得(21)(2)()2(2,)D X Y D X D Y Cov X Y -+=+-+-22592(1)22(1)(,).144DX DY Cov X Y =+-+⨯⨯-⨯=★4. 设二维随机变量(,)X Y 具有联合分布律试求,,,EX DX EY DY 以及X 和Y 的相关系数. (1) X 的分布列为0.45由变量X 分布对称得0,EX =或10.4500.4510.450,i i iEX x p ==-⨯+⨯+⨯=∑22222(1)0.4500.4510.450.9,i i iEX x p ==-⨯+⨯+⨯=∑220.9.DX EX E X =-=(2) Y 的分布列为j (,)X Y 取值关于原点中心对称由变量Y 分布对称得0,EY =或20.20.250.2520.20,j j iEY y p ==-⨯-++⨯=∑222222(2)0.2(1)0.2510.2520.2 2.1,j j iEY y p ==-⨯+-⨯+⨯+⨯=∑22 2.1.DY EY E Y =-=(3) 由二维变量(,)X Y 的联合分布列关于两坐标轴对称得,()0,i j i j ijE XY x y p ==∑∑(,)()0,Cov X Y E XY EXEY =-=因此,0.X Y ρ==5. 设随机变量X 服从参数为2的泊松分布(2)P ,随机变量Y 服从区间(0,6)上的均匀分布(0,6),U 且,X Y 的相关系数,X Y ρ=记2,Z X Y =-求,.EZ DZ (1) 2,EX =063,2EY +==(2)2223 4.EZ E X Y EX EY =-=-=-⨯=-(2) 2(60)2, 3.12DX DY -===由,X Y ρ==得(,)1,Cov X Y = 由随机变量和的方差公式()2(,)D X Y DX DY Cov X Y +=++得2(2)(2)2(,2)(2)4(,)10.DZ D X Y DX D Y Cov X Y DX DY Cov X Y =-=+-+-=+--=第十一次作业★1. 试用切比雪夫不等式估计下一事件概率至少有多大: 掷1000次均匀硬币, 出现正面的次数在400到600次之间.出现正面的次数~(1000,0.5),X B n p == 10000.5500,EX np ==⨯=10000.50.5250,DX npq ==⨯⨯=应用切比雪夫不等式,有239(400600)(|500|100)1.10040DX P X P X ≤≤=-≤≥-=2. 若每次射击目标命中的概率为0.1, 不断地对靶进行射击, 求在500次射击中, 击中目标的次数在区间(49, 55)内的概率.击中目标的次数~(500,0.1),X B n p ==5000.150,EX np ==⨯=5000.10.945.DX npq ==⨯⨯= 根据中心极限定理,X 近似服从正态分布(50,45).N EX DX ==(4955)P X P ≤≤=≤≤1≈Φ-Φ=Φ+Φ-⎝⎭⎝⎭ (0.74)(0.15)10.77040.559610.33.=Φ+Φ-=+-=★3. 计算器在进行加法时, 将每个加数舍入最靠近它的整数.设所有舍入误差是独立的且在(-0.5, 0.5)上服从均匀分布, (1)若将1500个数相加, 问误差总和的绝对值超过15的概率是多少?(2)最多可有几个数相加使得误差总和的绝对值小于10的概率不小于0.90.(1) 误差变量,1,2,.i X i =⋅⋅⋅独立同均匀分布(0.5,0.5),X U -10,.12EX DX ==由独立变量方差的可加性150011500125,12i i D X =⎛⎫== ⎪⎝⎭∑15001i i X =∑近似(0,125).N15001||15i i P X =⎧⎫>⎨⎬⎩⎭∑15001|ii P X =⎧⎪=>=⎨⎪⎪⎩⎭∑2222(1.34)220.90990.1802.≈-Φ=-Φ=-⨯=⎝⎭(2) 1||10n i i P X =⎧⎫<⎨⎬⎩⎭∑1||n i P X =⎧⎪=<=⎨⎪⎩210.90,⎛≈Φ-≥ ⎝0.95,⎛Φ≥ ⎝1.645,≥2124.4345.1.645n ≤= 因此,最多可有4个数相加,误差总和的绝对值小于10的概率不小于0.90.★4. 一个系统由n 个相互独立的部件所组成, 每个部件的可靠性(即部件正常工作的概率)为0.90. 至少有80%的部件正常工作才能使整个系统正常运行, 问n 至少为多大才能使系统正常运行的可靠性不低于0.95.正常工作的部件数~(,),X B n p 其中0.9.p =0.9,EX np n ==0.09.DX npq n ==(0.8)P X n≥3P ⎛=≥==-⎭0.95,3⎛≈Φ≥ ⎝⎭1.645,24.354.n ≥≥因此n 至少取25.★5. 有一大批电子元件装箱运往外地, 正品率为0.8, 为保证以0.95的概率使箱内正品数多于1000只, 问箱内至少要装多少只元件?正品数~(,),X B n p 其中0.8.p =0.8,EX np n ==0.16.DX npq n ==(1000)P X≥P =≥=0.95,≈Φ≥1.645,0.810000.n ≥-≥ 解得1637.65,n ≥因此n 至少取1638.★.贝努利分布的正态近似.投掷一枚均匀硬币40次出现正面次数20X =的概率. 正面次数(40,1/2),X B n p ==400.520,400.50.510.EX np DX npq ==⨯===⨯⨯= 离散值20X =近似为连续分组区间19.520.5,X <<(20)(19.520.5)P X P X =<<0.16P ⎫=<=⎪⎭2((0.16)0.5)2(0.56360.5)0.1272.=Φ-=⨯-= 第十二次作业★1. 设X 1, X 2, ⋅⋅⋅, X 10为来自N (0, 0.32)的一个样本, 求概率1021{ 1.44}i i P X =>∑.标准化变量(0,1),1,2,...,10.0.3iXN i =由卡方分布的定义,10222211~(10).0.3ii Xχχ==∑1021 1.44i i P X =⎧⎫>⎨⎬⎩⎭∑10222211 1.44(10)160.1,0.30.3i i P X χ=⎧⎫==>=≈⎨⎬⎩⎭∑ 略大,卡方分布上侧分位数20.1(10)15.9872.χ= ★2. 设X 1, X 2, X 3, X 4, X 5是来自正态总体X ~(0, 1)容量为5的样本, 试求常数c , 使得统计量t 分布, 并求其自由度.由独立正态分布的可加性,12(0,2),X X N +标准化变量(0,1),U N =由卡方分布的定义,22222345~(3),X X X χχ=++U 与2χ独立.由t 分布的定义,(3),T t ===因此c =自由度为3.★3. 设112,,,n X X X 为来自N (μ1, σ2)的样本, 212,,,nY Y Y 为来自N (μ2, σ2)的样本, 且两样本相互独立, 2212,S S 分别为两个样本方差, 222112212(1)(1)2pn S n S S n n -+-=+-. 试证明22().p E S σ=证 由221112(1)~(1),n S n χσ--及()211(1)1E n n χ-=-得()2211112(1)(1)1,n S E E n n χσ⎛⎫-=-=- ⎪⎝⎭221.ES σ= 类似地222.ES σ=222112212(1)(1)2pn S n S ES E n n ⎛⎫-+-= ⎪+-⎝⎭22212121212(1)(1).22n n ES ES n n n n σ--=+=+-+-。
概率统计练习册习题解答(定)
习题1-1 样本空间与随机事件1.选择题(1)设,,A B C 为三个事件,则“,,A B C 中至少有一个不发生”这一事件可表示为( D ) (A )ABAC BC (B )A B C (C )ABC ABC ABC (D )A B C(2)设三个元件的寿命分别为123,,T T T ,并联成一个系统,则只要有一个元件正常工作则系统能正常工作,事件“系统的寿命超过t ”可表示为( D )A {}123T T T t ++>B {}123TT T t >C {}{}123min ,,T T T t >D {}{}123max ,,T T T t > 2.用集合的形式表示下列随机试验的样本空间Ω与随机事件A :(1)同时掷三枚骰子,记录三枚骰子的点数之和,事件A 表示“点数之和大于10”。
解:{},18543,,,=Ω ;{}18,,12,11 =A 。
(2)对目标进行射击,击中后便停止射击,观察射击的次数;事件A 表示“射击次数不超过5次”。
解:{} ,,,=321Ω;{}54321A ,,,,=。
(3)车工生产精密轴干,其长度的规格限是15±0.3。
现抽查一轴干测量其长度,事件A 表示测量长度与规格的误差不超过0.1。
3.设A ,B ,C 为三个事件,用A ,B ,C 的运算关系表示下列各事件: (1) A ,B ,C 都发生:解: ABC ;(2) A ,B ,C(3) A 发生,B 与C (4) A ,B ,C 中至少有一个发生:解:C B A ⋃⋃(5)A ,B ,C 4.设某工人连续生产了4个零件,i A 表示他生产的第i 个零件是正品(4,3,2,1=i ),试用i A 表示下列各事件:(1)只有一个是次品;(2)至少有一个次品;(3)恰好有两个是次品;(4习题1-2 随机事件的概率及计算1.填空题(1)已知B A ⊂,4.0)(=A P ,6.0)(=B P,则)(A P )(AB P)(B A P )(B A P =)(B A P 0 ,)(B A P(2)设事件A 与B 互不相容,()0.4,()0.3P A PB ==,则()P AB ()P AB 0.6(3)盒子中有10个球,其中3(4)一批产品由45件正品、5件次品组成,现从中任取3件产品,其中恰有1件次品的概率为(5)某寝室住有6名学生,至少有两个同学的生日恰好在同一个月的概率为2.选择题(1)如果A 与B 互不相容,则(C )(A) AB =∅ (B) A B = (C ) AB =Ω (D) A B =Ω(2)设A 、B 是任意两事件,则=-)(B A P ( B 、C )。
概率统计习题集答案
概率统计习题集答案概率统计习题集答案概率统计是一门重要的数学学科,它研究了随机事件的发生规律以及对这些规律进行量化和分析的方法。
在学习概率统计的过程中,习题集是必不可少的辅助工具。
通过解答习题,我们可以更好地理解和掌握概率统计的概念和方法。
下面是一些常见的概率统计习题及其答案,希望对大家的学习有所帮助。
一、概率计算1. 一个骰子投掷一次,求出现奇数的概率。
答案:一个骰子有6个面,其中3个是奇数(1、3、5),所以出现奇数的概率为3/6=1/2。
2. 从一副扑克牌中随机抽取一张牌,求抽到红桃的概率。
答案:一副扑克牌有52张牌,其中有13张红桃牌,所以抽到红桃的概率为13/52=1/4。
二、条件概率1. 一家餐馆的顾客中,男性占40%,女性占60%。
男性中有30%喜欢吃牛排,女性中有20%喜欢吃牛排。
求一个随机选取的顾客是男性且喜欢吃牛排的概率。
答案:男性喜欢吃牛排的概率为40% × 30% = 12%。
所以一个随机选取的顾客是男性且喜欢吃牛排的概率为12%。
2. 一批产品中有10%的次品。
从中随机抽取两个产品,求两个产品都是次品的概率。
答案:第一个产品是次品的概率为10%,第二个产品是次品的概率为9%(因为已经抽取了一个次品)。
所以两个产品都是次品的概率为10% × 9% = 0.9%。
三、随机变量1. 设X为一次投掷一枚骰子所得点数的随机变量,求E(X)和Var(X)。
答案:骰子的点数为1、2、3、4、5、6,每个点数出现的概率为1/6。
所以E(X) = (1 × 1/6) + (2 × 1/6) + (3 × 1/6) + (4 × 1/6) + (5 × 1/6) + (6 × 1/6) = 3.5。
Var(X) = [(1-3.5)^2 × 1/6] + [(2-3.5)^2 × 1/6] + [(3-3.5)^2 × 1/6] + [(4-3.5)^2× 1/6] + [(5-3.5)^2 × 1/6] + [(6-3.5)^2 × 1/6] = 35/12。
概率统计综合练习及答案
北京科技大学远程教育学院《概率统计》综合练习(一)参考答案 随机事件及其概率 一、填空1、A 、B 、C 是三个事件,用A 、B 、C 的运算表示A 、B 、C 中至少发生两个的事件AC BC AB ,用文字叙述C AB C B A BC A 表示 的事件 三个事件中恰好发生两个事件 。
2、A 是试验E 的一个事件,每次试验A 出现的概率为p=,独立重复做试验E 四次,A 是否必定出现一次 否 3、AB ,P A =,P B =则 P B -A = ,P A-B= 0 。
4、P A >0,P B >0,A 、B 相互独立与A 、B 互不相容能否同时成立 否 。
5、事件A 、B 独立,则A 、B 独立 。
6、PA ∪B ∪C 的计算公式为)()()()()()()(ABC P AC P BC P AB P C P B P A P +---++ 。
7、每次试验A 出现的概率为p ,独立重复做n 次试验,在n 次试验中,A 出现次数k 的可能取值为 0,1,3,…,n ,A 出现k 次的概率为 k n k k n q p C - 。
二、 以A ,B ,C 分别表示某城市居民订阅日报、晚报和体育报。
试用A ,B ,C 表示 以下事件:(1)只订阅日报; (2)只订日报和晚报; (3)只订一种报; (4)正好订两种报;(5)至少订阅一种报; (6)不订阅任何报; (7)至多订阅一种报; (8)三种报纸都订阅; (9)三种报纸不全订阅。
解:(1)C B A ,(2)C AB ,(3)C B A C B A C B A ,(4)C B A BC A C AB , (5)C B A ,(6)C B A ,(7)C B A C B A C B A C B A ,(8)ABC , (9)C B A三、 从0,1,2,…,9中任意选出4个不同的数字,试求它们能组成一个4位偶 数的概率。
解:从0,1,2,…,9中任意选出4个不同的数字排成4位数字的方法有410P 种,个位为偶数的4位数字的排法有395P 种,千位为零的个位为偶数的4位数字的排法有284P 种,所求概率9041454102839=-=P P P P 四、 设一批产品共100件,其中98件正品,2件次品,从中任意 抽取3件。
概率论与数理统计第三章课后习题答案
习题三1.将一硬币抛掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与出现反面次数之差的绝对值.试写出X 和Y 的联合分布律. 【解】X 和Y 的联合分布律如表:2.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X 表示取到黑球的只数,以Y 表示取到红球的只数.求X 和Y 的联合分布律. 【解】X 和Y 的联合分布律如表:3.设二维随机变量(X ,Y )的联合分布函数为F (x ,y )=⎪⎩⎪⎨⎧≤≤≤≤.,020,20,sin sin 其他ππy x y x求二维随机变量(X ,Y )在长方形域⎭⎬⎫⎩⎨⎧≤<≤<36,40πππy x 内的概率. 【解】如图πππ{0,}(3.2)463P X Y <≤<≤公式 ππππππ(,)(,)(0,)(0,)434636F F F F --+ππππππsin sin sin sin sin0sin sin0sin4346362(31).4=--+=-g g g g题3图说明:也可先求出密度函数,再求概率。
4.设随机变量(X,Y)的分布密度f(x,y)=⎩⎨⎧>>+-.,0,0,0,)43(其他yxA yxe求:(1)常数A;(2)随机变量(X,Y)的分布函数;(3)P{0≤X<1,0≤Y<2}.【解】(1)由-(34)00(,)d d e d d112x yAf x y x y A x y+∞+∞+∞+∞+-∞-∞===⎰⎰⎰⎰得A=12(2)由定义,有(,)(,)d dy xF x y f u v u v-∞-∞=⎰⎰(34)340012e d d(1e)(1e)0,0,0,0,y y u vx yu v y x-+--⎧⎧-->>⎪==⎨⎨⎩⎪⎩⎰⎰其他(3) {01,02}P X Y≤<≤<12(34)3800{01,02}12e d d(1e)(1e)0.9499.x yP X Yx y-+--=<≤<≤==--≈⎰⎰5.设随机变量(X,Y)的概率密度为f(x,y)=⎩⎨⎧<<<<--.,0,42,2),6(其他yxyxk(1) 确定常数k ; (2) 求P {X <1,Y <3}; (3) 求P {X <}; (4) 求P {X +Y ≤4}. 【解】(1) 由性质有242(,)d d (6)d d 81,f x y x y k x y y x k +∞+∞-∞-∞=--==⎰⎰⎰⎰故 18R =(2) 13{1,3}(,)d d P X Y f x y y x -∞-∞<<=⎰⎰130213(6)d d 88k x y y x =--=⎰⎰ (3) 11.5{ 1.5}(,)d d a (,)d d x D P X f x y x y f x y x y <<=⎰⎰⎰⎰如图1.542127d (6)d .832x x y y =--=⎰⎰(4) 24{4}(,)d d (,)d d X Y D P X Y f x y x y f x y x y +≤+≤=⎰⎰⎰⎰如图b240212d (6)d .83x x x y y -=--=⎰⎰题5图6.设X 和Y 是两个相互独立的随机变量,X 在(0,)上服从均匀分布,Y 的密度函数为f Y (y )=⎩⎨⎧>-.,0,0,55其他y y e求:(1) X 与Y 的联合分布密度;(2) P {Y ≤X }.题6图【解】(1) 因X 在(0,)上服从均匀分布,所以X 的密度函数为1,00.2,()0.20,.X x f x ⎧<<⎪=⎨⎪⎩其他 而55e ,0,()0,.y Y y f y -⎧>=⎨⎩其他 所以(,),()()X Y f x y X Y f x f y g 独立5515e25e ,00.20,0.20,0,yy x y --⎧⎧⨯<<>⎪==⎨⎨⎩⎪⎩且其他. (2) 5()(,)d d 25ed d yy xDP Y X f x y x y x y -≤≤=⎰⎰⎰⎰如图0.20.2-550-1d 25e d (5e 5)d =e 0.3679.xy x x y x -==-+≈⎰⎰⎰7.设二维随机变量(X ,Y )的联合分布函数为F (x ,y )=⎩⎨⎧>>----.,0,0,0),1)(1(24其他y x y x e e求(X ,Y )的联合分布密度.【解】(42)28e ,0,0,(,)(,)0,x y x y F x y f x y x y -+⎧>>∂==⎨∂∂⎩其他.8.设二维随机变量(X ,Y )的概率密度为f (x ,y )= 4.8(2),01,0,0,.y x x y x -≤≤≤≤⎧⎨⎩其他求边缘概率密度. 【解】()(,)d X f x f x y y +∞-∞=⎰x204.8(2)d 2.4(2),01,=0,.0,y x y x x x ⎧⎧--≤≤⎪=⎨⎨⎩⎪⎩⎰其他 ()(,)d Y f y f x y x +∞-∞=⎰12y 4.8(2)d 2.4(34),01,=0,.0,y x x y y y y ⎧-⎧-+≤≤⎪=⎨⎨⎩⎪⎩⎰其他题8图 题9图9.设二维随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<-.,0,0,其他e y x y求边缘概率密度. 【解】()(,)d X f x f x y y +∞-∞=⎰e d e ,0,=0,.0,y x x y x +∞--⎧⎧>⎪=⎨⎨⎩⎪⎩⎰其他 ()(,)d Y f y f x y x +∞-∞=⎰0e d e ,0,=0,.0,yy x x y y --⎧⎧>⎪=⎨⎨⎩⎪⎩⎰其他题10图10.设二维随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧≤≤.,0,1,22其他y x y cx(1) 试确定常数c ; (2) 求边缘概率密度. 【解】(1)(,)d d (,)d d Df x y x y f x y x y +∞+∞-∞-∞⎰⎰⎰⎰如图2112-14=d d 1.21xx cx y y c ==⎰⎰ 得214c =. (2) ()(,)d X f x f x y y +∞-∞=⎰212422121(1),11,d 840,0,.x x x x x y y ⎧⎧--≤≤⎪⎪==⎨⎨⎪⎪⎩⎩⎰其他 ()(,)d Y f y f x y x +∞-∞=⎰522217d ,01,420,0,.y y x y x y y -⎧⎧≤≤⎪⎪==⎨⎨⎪⎪⎩⎩其他 11.设随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<<.,0,10,,1其他x x y求条件概率密度f Y |X (y |x ),f X |Y (x |y ).题11图【解】()(,)d X f x f x y y +∞-∞=⎰1d 2,01,0,.x x y x x -⎧=<<⎪=⎨⎪⎩⎰其他111d 1,10,()(,)d 1d 1,01,0,.y Y y x y y f y f x y x x y y -+∞-∞⎧=+-<<⎪⎪⎪===-≤<⎨⎪⎪⎪⎩⎰⎰⎰其他所以|1,||1,(,)(|)2()0,.Y X X y x f x y f y x xf x ⎧<<⎪==⎨⎪⎩其他 |1, 1,1(,)1(|),1,()10,.X Y Y y x y f x y f x y y x f y y⎧<<⎪-⎪⎪==-<<⎨+⎪⎪⎪⎩其他 12.袋中有五个号码1,2,3,4,5,从中任取三个,记这三个号码中最小的号码为X ,最大的号码为Y .(1) 求X 与Y 的联合概率分布; (2) X 与Y 是否相互独立【解】(1) X 与Y 的联合分布律如下表3 4 5{}i P X x =YX13511C 10= 3522C 10= 3533C 10= 610 23511C 10= 3522C 10= 310 3 02511C 10= 110{}i P Y y =110 310 610(2) 因6161{1}{3}{1,3},101010010P X P Y P X Y ===⨯=≠===g 故X 与Y 不独立13.设二维随机变量(X ,Y )的联合分布律为 2 5 8(1)求关于X 和关于Y 的边缘分布; (2) X 与Y 是否相互独立 【解】(1)X 和Y 的边缘分布如下表2 5 8 P {Y=y i }{}i P X x =(2) 因{2}{0.4}0.20.8P X P Y ===⨯g 0.160.15(2,0.4),P X Y =≠=== 故X 与Y 不独立.14.设X 和Y 是两个相互独立的随机变量,X 在(0,1)上服从均匀分布,Y 的概率密度为f Y (y )=⎪⎩⎪⎨⎧>-.,0,0,212/其他y y eXYXY(1)求X和Y的联合概率密度;(2)设含有a的二次方程为a2+2Xa+Y=0,试求a有实根的概率.【解】(1)因1,01,()0,Xxf x<<⎧==⎨⎩其他;21e,1,()20,yYyf y-⎧>⎪==⎨⎪⎩其他.故/21e01,0,(,),()()20,.yX Yx yf x y X Y f x f y-⎧<<>⎪=⎨⎪⎩g独立其他题14图(2) 方程220a Xa Y++=有实根的条件是2(2)40X Y∆=-≥故X2≥Y,从而方程有实根的概率为:22{}(,)d dx yP X Y f x y x y≥≥=⎰⎰21/2001d e d212[(1)(0)]0.1445.xyx yπ-==-Φ-Φ=⎰⎰15.设X和Y分别表示两个不同电子器件的寿命(以小时计),并设X和Y相互独立,且服从同一分布,其概率密度为f(x)=⎪⎩⎪⎨⎧>.,0,1000,10002其他xx求Z=X/Y的概率密度.【解】如图,Z 的分布函数(){}{}Z XF z P Z zP z Y=≤=≤ (1) 当z ≤0时,()0Z F z =(2) 当0<z <1时,(这时当x =1000时,y =1000z)(如图a) 3366102222101010()d d d d yz Z zx y zF z x y y x x y x y +∞≥==⎰⎰⎰⎰33610231010=d 2z zy yzy +∞⎛⎫-= ⎪⎝⎭⎰题15图(3) 当z ≥1时,(这时当y =103时,x =103z )(如图b )3366222210101010()d d d d zy Z xy zF z x y y x x yx y +∞≥==⎰⎰⎰⎰ 336231010101=d 12y y zy z +∞⎛⎫-=- ⎪⎝⎭⎰即 11,1,2(),01,20,.Z z z zf z z ⎧-≥⎪⎪⎪=<<⎨⎪⎪⎪⎩其他故 21,1,21(),01,20,.Z z z f z z ⎧≥⎪⎪⎪=<<⎨⎪⎪⎪⎩其他16.设某种型号的电子管的寿命(以小时计)近似地服从N (160,202)分布.随机地选取4 只,求其中没有一只寿命小于180的概率.【解】设这四只寿命为X i (i =1,2,3,4),则X i ~N (160,202),从而123412{min(,,,)180}{180}{180}i P X X X X X P X P X ≥≥≥g 之间独立34{180}{180}P X P X ≥≥g1234[1{180}][1{180}][1{180}][1{180}]P X P X P X P X =-<-<-<-<gg g 44144180160[1{180}]120[1(1)](0.158)0.00063.P X ⎡-⎤⎛⎫=-<=-Φ ⎪⎢⎥⎝⎭⎣⎦=-Φ== 17.设X ,Y 是相互独立的随机变量,其分布律分别为P {X =k }=p (k ),k =0,1,2,…, P {Y =r }=q (r ),r =0,1,2,….证明随机变量Z =X +Y 的分布律为P {Z =i }=∑=-ik k i q k p 0)()(,i =0,1,2,….【证明】因X 和Y 所有可能值都是非负整数,所以{}{}Z i X Y i ==+={0,}{1,1}{,0}X Y i X Y i X i Y =====-==U UL U于是0{}{,},i k P Z i P X k Y i k X Y =====-∑相互独立0{}{}ik P X k P Y i k ===-∑g()()ik p k q i k ==-∑18.设X ,Y 是相互独立的随机变量,它们都服从参数为n ,p 的二项分布.证明Z =X +Y 服从参数为2n ,p 的二项分布.【证明】方法一:X +Y 可能取值为0,1,2,…,2n .{}{,}ki P X Y k P X i Y k i =+====-∑00202(){}2ki ki n i k i n k ii k k n k i k n k P X i P Y k i n n p q p qi k i n n p qi k i n p q k =---+=-=-===-⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭⎛⎫⎛⎫= ⎪⎪-⎝⎭⎝⎭⎛⎫= ⎪⎝⎭∑∑∑g方法二:设μ1,μ2,…,μn ;μ1′,μ2′,…,μn ′均服从两点分布(参数为p ),则X =μ1+μ2+…+μn ,Y =μ1′+μ2′+…+μn ′, X +Y =μ1+μ2+…+μn +μ1′+μ2′+…+μn ′,所以,X +Y 服从参数为(2n ,p )的二项分布. 19.设随机变量(X ,Y )的分布律为(1) 求P {X =2|Y =2},P {Y =3|X =0}; (2) 求V =max (X ,Y )的分布律; (3) 求U =min (X ,Y )的分布律; (4) 求W =X +Y 的分布律.【解】(1){2,2}{2|2}{2}P X Y P X Y P Y ======5{2,2}0.051,0.252{,2}i P X Y P X i Y ========∑ {3,0}{3|0}{0}P Y X P Y X P X ======3{0,3}0.011;0.033{0,}j P X Y P X Y j ========∑ (2){}{max(,)}{,}{,}P V i P X Y i P X i Y i P X i Y i =====<+≤=10{,}{,},i ik k P X i Y k P X k Y i -=====+==∑∑ 0,1,2,3,4,5i =所以V 的分布律为(3) {}{min(,)}P U i P X Y i ===351{,}{,}{,}{,}k ik i P X i Y i P X i Y i P X i Y k P X k Y i ==+==≥+>====+==∑∑0,1,2,3,i =于是(4)类似上述过程,有20.雷达的圆形屏幕半径为R ,设目标出现点(X ,Y )在屏幕上服从均匀分布. (1) 求P {Y >0|Y >X }; (2) 设M =max{X ,Y },求P {M >0}.题20图【解】因(X ,Y )的联合概率密度为22221,,(,)π0,.xy R f x y R⎧+≤⎪=⎨⎪⎩其他 (1){0,}{0|}{}P Y Y X P Y Y X P Y X >>>>=>0(,)d (,)d y y xy xf x y f x y σσ>>>=⎰⎰⎰⎰π2π/405π42π/401d d π1d d πRR r rR r r R θθ=⎰⎰⎰⎰3/83;1/24==(2) {0}{max(,)0}1{max(,)0}P M P X Y P X Y >=>=-≤00131{0,0}1(,)d 1.44x y P X Y f x y σ≤≤=-≤≤=-=-=⎰⎰21.设平面区域D 由曲线y =1/x 及直线y =0,x =1,x=e 2所围成,二维随机变量(X ,Y )在区域D 上服从均匀分布,求(X ,Y )关于X 的边缘概率密度在x =2处的值为多少题21图【解】区域D 的面积为 22e e 0111d ln 2.S x x x===⎰(X ,Y )的联合密度函数为211,1e ,0,(,)20,.x y f x y x ⎧≤≤<≤⎪=⎨⎪⎩其他(X ,Y )关于X 的边缘密度函数为1/2011d ,1e ,()220,.x X y x f x x⎧=≤≤⎪=⎨⎪⎩⎰其他 所以1(2).4X f =22.设随机变量X 和Y 相互独立,下表列出了二维随机变量(X ,Y )联合分布律及关于X 和Y 的边缘分布律中的部分数值.试将其余数值填入表中的空白处.【解】因21{}{,}j j iji P Y y P P X x Y y ======∑,故11121{}{,}{,},P Y y P X x Y y P X x Y y ====+== 从而11111{,}.6824P X x Y y ===-= 而X 与Y 独立,故{}{}{,}i j i i P X x P Y y P X x Y y =====g ,从而11111{}{,}.624P X x P X x Y y =⨯==== 即:1111{}/.2464P X x === 又1111213{}{,}{,}{,},P X x P X x Y y P X x Y y P X x Y y ====+==+== 即1,3111{},4248P X x Y y =++==从而131{,}.12P X x Y y === 同理21{},2P Y y ==223{,}8P X x Y y === 又31{}1j j P Y y ===∑,故3111{}1623P Y y ==--=. 同理23{}.4P X x == 从而23313111{,}{}{,}.3124P X x Y y P Y y P X x Y y ====-===-=故23.设某班车起点站上客人数X 服从参数为λ(λ>0)的泊松分布,每位乘客在中途下车的概率为p (0<p <1),且中途下车与否相互独立,以Y 表示在中途下车的人数,求:(1)在发车时有n 个乘客的条件下,中途有m 人下车的概率;(2)二维随机变量(X ,Y )的概率分布.【解】(1) {|}C (1),0,0,1,2,m m n mn P Y m X n p p m n n -===-≤≤=L .(2) {,}{}{|}P X n Y m P X n P Y m X n ======ge C (1),,0,1,2,.!m m n mnnp p n m n n n λλ--=-≤≤=g L 24.设随机变量X 和Y 独立,其中X 的概率分布为X ~⎪⎪⎭⎫⎝⎛7.03.021,而Y 的概率密度为f (y ),求随机变量U =X +Y 的概率密度g (u ).【解】设F (y )是Y 的分布函数,则由全概率公式,知U =X +Y 的分布函数为(){}0.3{|1}0.7{|2}G u P X Y u P X Y u X P X Y u X =+≤=+≤=++≤=0.3{1|1}0.7{2|2}P Y u X P Y u X =≤-=+≤-=由于X 和Y 独立,可见()0.3{1}0.7{2}G u P Y u P Y u =≤-+≤-0.3(1)0.7(2).F u F u =-+-由此,得U 的概率密度为()()0.3(1)0.7(2)g u G u F u F u '''==-+-0.3(1)0.7(2).f u f u =-+-25. 25. 设随机变量X 与Y 相互独立,且均服从区间[0,3]上的均匀分布,求P {max{X ,Y }≤1}.解:因为随即变量服从[0,3]上的均匀分布,于是有1, 03,()30, 0,3;x f x x x ⎧≤≤⎪=⎨⎪<>⎩ 1, 03,()30, 0, 3.y f y y y ⎧≤≤⎪=⎨⎪<>⎩ 因为X ,Y 相互独立,所以1, 03,03,(,)90, 0,0,3, 3.x y f x y x y x y ⎧≤≤≤≤⎪=⎨⎪<<>>⎩ 推得 1{max{,}1}9P X Y ≤=. 26. 设二维随机变量(X ,Y )的概率分布为1 0 11 0 1a 0b0 0.1 c其中a ,b ,c 为常数,且X 的数学期望E (X )=,P {Y ≤0|X ≤0}=,记Z =X +Y .求:XY(1) a ,b ,c 的值; (2) Z 的概率分布; (3) P {X =Z }.解 (1) 由概率分布的性质知,a+b+c +=1 即 a+b+c = .由()0.2E X =-,可得0.1a c -+=-.再由 {0,0}0.1{00}0.5{0}0.5P X Y a b P Y X P X a b ≤≤++≤≤===≤++,得 0.3a b +=.解以上关于a ,b ,c 的三个方程得0.2,0.1,0.1a b c ===.(2) Z 的可能取值为2,1,0,1,2,{2}{1,1}0.2P Z P X Y =-==-=-=,{1}{1,0}{0,1}0.1P Z P X Y P X Y =-==-=+==-=,{0}{1,1}{0,0}{1,1}0.3P Z P X Y P X Y P X Y ===-=+==+==-=,{1}{1,0}{0,1}0.3P Z P X Y P X Y ====+===,{2}{1,1}0.1P Z P X Y =====,即Z 的概率分布为Z 2 1 0 1 2P(3) {}{0}0.10.20.10.10.20.4P X Z P Y b ====++=++=.习题四1.设随机变量X 的分布律为1 0 12求E (X ),E (X 2),E (2X +3). 【解】(1) 11111()(1)012;82842E X =-⨯+⨯+⨯+⨯= (2) 2222211115()(1)012;82844E X =-⨯+⨯+⨯+⨯=(3) 1(23)2()32342E X E X +=+=⨯+=2.已知100个产品中有10个次品,求任意取出的5个产品中的次品数的数学期望、方差. 【解】设任取出的5个产品中的次品数为X ,则X 的分布律为故 ()0.58300.34010.07020.00730405E X =⨯+⨯+⨯+⨯+⨯+⨯ 0.501,= 52()[()]iii D X x E X P ==-∑222(00.501)0.583(10.501)0.340(50.501)00.432.=-⨯+-⨯++-⨯=L3.设随机变量X 的分布律为1 0 1且已知E (X )=,E (X 2)=,求P 1,P 2,P 3. 【解】因1231P P P ++=……①,又12331()(1)010.1E X P P P P P =-++=-=g g ……②,222212313()(1)010.9E X P P P P P =-++=+=g g g ……③由①②③联立解得1230.4,0.1,0.5.P P P ===4.袋中有N 只球,其中的白球数X 为一随机变量,已知E (X )=n ,问从袋中任取1球为白球的概率是多少【解】记A ={从袋中任取1球为白球},则(){|}{}Nk P A P A X k P X k ===∑g 全概率公式001{}{}1().NNk k k P X k kP X k N N n E X N N========∑∑g5.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧≤≤-<≤.,0,21,2,10,其他x x x x求E (X ),D (X ). 【解】12201()()d d (2)d E X xf x x x x x x x +∞-∞==+-⎰⎰⎰21332011 1.33x x x ⎡⎤⎡⎤=+-=⎢⎥⎢⎥⎣⎦⎣⎦122232017()()d d (2)d 6E X x f x x x x x x x +∞-∞==+-=⎰⎰⎰ 故 221()()[()].6D XE X E X =-=6.设随机变量X ,Y ,Z 相互独立,且E (X )=5,E (Y )=11,E (Z )=8,求下列随机变量的数学期望. (1) U =2X +3Y +1; (2) V =YZ4X .【解】(1) [](231)2()3()1E U E X Y E X E Y =++=++ 25311144.=⨯+⨯+=(2) [][4][]4()E V E YZ X E YZ E X =-=- ,()()4()Y Z E Y E Z E X -g 因独立 1184568.=⨯-⨯=7.设随机变量X ,Y 相互独立,且E (X )=E (Y )=3,D (X )=12,D (Y )=16,求E (3X2Y ),D (2X 3Y ).【解】(1) (32)3()2()3323 3.E X Y E X E Y -=-=⨯-⨯=(2) 22(23)2()(3)412916192.D X Y D X DY -=+-=⨯+⨯= 8.设随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<<<.,0,0,10,其他x y x k试确定常数k ,并求E (XY ). 【解】因1001(,)d d d d 1,2xf x y x y x k y k +∞+∞-∞-∞===⎰⎰⎰⎰故k =210()(,)d d d 2d 0.25xE XY xyf x y x y x x y y +∞+∞-∞-∞===⎰⎰⎰⎰.9.设X ,Y 是相互独立的随机变量,其概率密度分别为f X (x )=⎩⎨⎧≤≤;,0,10,2其他x x f Y (y )=(5)e ,5,0,.y y --⎧>⎨⎩其他 求E (XY ).【解】方法一:先求X 与Y 的均值 12()2d ,3E X x x x ==⎰g 5(5)5()e d 5e d e d 51 6.z y y z z E Y y yz z z +∞+∞+∞=-----=+=+=⎰⎰⎰令由X 与Y 的独立性,得2()()()6 4.3E XY E X E Y ==⨯=g方法二:利用随机变量函数的均值公式.因X 与Y 独立,故联合密度为(5)2e ,01,5,(,)()()0,,y X Y x x y f x y f x f y --⎧≤≤>==⎨⎩g 其他于是11(5)2(5)552()2ed d 2de d 6 4.3y y E XY xy x x y x x y y +∞+∞----===⨯=⎰⎰⎰⎰g g10.设随机变量X ,Y 的概率密度分别为f X (x )=⎩⎨⎧≤>-;0,0,0,22x x x e f Y (y )=⎩⎨⎧≤>-.0,0,0,44y y y e 求(1) E (X +Y );(2) E (2X 3Y 2).【解】22-200()()d 2ed [e ]e d xx x X X xf x x x x x x +∞+∞+∞--+∞-∞==-⎰⎰⎰g201e d .2x x +∞-==⎰401()()d 4e dy .4y Y E Y yf y y y +∞+∞--∞==⎰⎰g22242021()()d 4e d .48y Y E Y y f y y y y +∞+∞--∞====⎰⎰g 从而(1)113()()().244E X Y E X E Y +=+=+=(2)22115(23)2()3()23288E X Y E X E Y -=-=⨯-⨯=11.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧<≥-.0,0,0,22x x cx xke求(1) 系数c ;(2) E (X );(3) D (X ). 【解】(1) 由222()d e d 12k x cf x x cx x k+∞+∞--∞===⎰⎰得22c k =. (2) 222()()d()2e d k x E X xf x x x k x x +∞+∞--∞==⎰⎰g22220π2ed .k x kx x +∞-==⎰(3) 22222221()()d()2e.k x E X x f x x x k x k +∞+∞--∞==⎰⎰g 故 222221π4π()()[()].24D X E X E X k k k⎛-=-=-= ⎝⎭ 12.袋中有12个零件,其中9个合格品,3个废品.安装机器时,从袋中一个一个地取出(取出后不放回),设在取出合格品之前已取出的废品数为随机变量X ,求E (X )和D (X ). 【解】设随机变量X 表示在取得合格品以前已取出的废品数,则X 的可能取值为0,1,2,3.为求其分布律,下面求取这些可能值的概率,易知9{0}0.750,12P X === 39{1}0.204,1211P X ==⨯= 329{2}0.041,121110P X ==⨯⨯= 3219{3}0.005.1211109P X ==⨯⨯⨯=于是,得到X 的概率分布表如下:X 0 1 2 3 P由此可得()00.75010.20420.04130.0050.301.E X =⨯+⨯+⨯+⨯=22222222()075010.20420.04130.0050.413()()[()]0.413(0.301)0.322.E X D X E X E X =⨯+⨯+⨯+⨯==-=-=13.一工厂生产某种设备的寿命X (以年计)服从指数分布,概率密度为f (x )=⎪⎩⎪⎨⎧≤>-.0,0,0,414x x xe为确保消费者的利益,工厂规定出售的设备若在一年内损坏可以调换.若售出一台设备,工厂获利100元,而调换一台则损失200元,试求工厂出售一台设备赢利的数学期望. 【解】厂方出售一台设备净盈利Y 只有两个值:100元和200元/41/411{100}{1}e d e 4x P Y P X x +∞--==≥==⎰1/4{200}{1}1e.P Y P X -=-=<=-故1/41/41/4()100e(200)(1e )300e 20033.64E Y ---=⨯+-⨯-=-= (元).14.设X 1,X 2,…,X n 是相互独立的随机变量,且有E (X i )=μ,D (X i )=σ2,i =1,2,…,n ,记∑==n i i S X n X 12,1,S 2=∑=--n i i X X n 12)(11. (1) 验证)(X E =μ,)(X D =n2σ;(2) 验证S 2=)(11122∑=--ni i X n X n ;(3) 验证E (S 2)=σ2.【证】(1) 1111111()()().n nn i i i i i i E X E X E X E X nu u n n n n ===⎛⎫===== ⎪⎝⎭∑∑∑g22111111()()n nn i i i i i i i D X D X D X X DX n n n ===⎛⎫== ⎪⎝⎭∑∑∑g 之间相互独立 2221.n n nσσ==g (2) 因222221111()(2)2nnnniii ii i i i i XX X X X X X nX X X ====-=+-=+-∑∑∑∑2222112nnii i i X nX X nX X nX ===+-=-∑∑g故22211()1ni i S X nX n ==--∑. (3) 因2(),()i i E X u D X σ==,故2222()()().i i i E X D X EX u σ=+=+同理因2(),()E X u D X nσ==,故222()E X u nσ=+.从而222221111()()[()()]11n ni i i i E s E X nX E X nE X n n ==⎡⎤=-=-⎢⎥--⎣⎦∑∑221222221[()()]11().1ni i E X nE X n n u n u n n σσσ==--⎡⎤⎛⎫=+-+=⎢⎥ ⎪-⎝⎭⎣⎦∑g g15.对随机变量X 和Y ,已知D (X )=2,D (Y )=3,Cov(X ,Y )=1,计算:Cov (3X2Y +1,X +4Y3).【解】Cov(321,43)3()10Cov(,)8()X Y X Y D X X Y D Y -++-=+- 3210(1)8328=⨯+⨯--⨯=-(因常数与任一随机变量独立,故Cov(X ,3)=Cov(Y ,3)=0,其余类似). 16.设二维随机变量(X ,Y )的概率密度为f (x ,y )=221,1,π0,.x y ⎧+≤⎪⎨⎪⎩其他试验证X 和Y 是不相关的,但X 和Y 不是相互独立的. 【解】设22{(,)|1}D x y x y =+≤.2211()(,)d d d d πx y E X xf x y x y x x y +∞+∞-∞-∞+≤==⎰⎰⎰⎰ 2π1001=cos d d 0.πr r r θθ=⎰⎰g同理E (Y )=0. 而 Cov(,)[()][()](,)d d X Y x E x y E Y f x y x y +∞+∞-∞-∞=--⎰⎰g222π1200111d d sin cos d d 0ππx y xy x y r r r θθθ+≤===⎰⎰⎰⎰, 由此得0XY ρ=,故X 与Y 不相关. 下面讨论独立性,当|x |≤1时,1()X f x y 当|y |≤1时,1()Y f y x . 显然()()(,).X Y f x f y f x y ≠g 故X 和Y 不是相互独立的.17.设随机变量(X ,Y )的分布律为1 0 110 1验证X和Y是不相关的,但X和Y不是相互独立的.【解】联合分布表中含有零元素,X与Y显然不独立,由联合分布律易求得X,Y及XY的分布律,其分布律如下表X11P 382838Y101P 382838XY101P 284828由期望定义易得E(X)=E(Y)=E(XY)=0.从而E(XY)=E(X)·E(Y),再由相关系数性质知ρXY=0,即X与Y的相关系数为0,从而X和Y是不相关的.又331{1}{1}{1,1}888P X P Y P X Y =-=-=⨯≠==-=-g从而X与Y不是相互独立的.18.设二维随机变量(X,Y)在以(0,0),(0,1),(1,0)为顶点的三角形区域上服从均匀分布,求Cov(X,Y),ρXY.【解】如图,S D=12,故(X,Y)的概率密度为题18图2,(,),(,)0,x y Df x y∈⎧=⎨⎩其他.()(,)d d DE X xf x y x y =⎰⎰1101d 2d 3xx x y -==⎰⎰g22()(,)d d DE X x f x y x y =⎰⎰11201d 2d 6xx x y -==⎰⎰从而222111()()[()].6318D XE X E X ⎛⎫=-=-= ⎪⎝⎭同理11(),().318E Y D Y == 而 1101()(,)d d 2d d d 2d .12xDDE XY xyf x y x y xy x y x xy y -====⎰⎰⎰⎰⎰⎰所以1111Cov(,)()()()123336X Y E XY E X E Y =-=-⨯=-g . 从而112XY ρ-===-19.设(X ,Y )的概率密度为f (x ,y )=1ππsin(),0,0,2220.x y x y ,⎧+≤≤≤≤⎪⎨⎪⎩其他求协方差Cov (X ,Y )和相关系数ρXY . 【解】π/2π/21π()(,)d d d sin()d .24E X xf x y x y x x x y y +∞+∞-∞-∞==+=⎰⎰⎰⎰g ππ2222201ππ()d sin()d 2.282E X x x x y y =+=+-⎰⎰g 从而222ππ()()[()] 2.162D XE X E X =-=+-同理 2πππ(),() 2.4162E Y D Y ==+- 又 π/2π/2π()d sin()d d 1,2E XY x xy x y x y =+=-⎰⎰故 2ππππ4Cov(,)()()()1.2444X Y E XY E X E Y -⎛⎫⎛⎫=-=--⨯=- ⎪ ⎪⎝⎭⎝⎭g222222π4Cov(,)(π4)π8π164.πππ8π32π8π32()()2162XYX Y D X D Y ρ-⎛⎫- ⎪--+⎝⎭===-=-+-+-+-g 20.已知二维随机变量(X ,Y )的协方差矩阵为⎥⎦⎤⎢⎣⎡4111,试求Z 1=X 2Y 和Z 2=2X Y 的相关系数.【解】由已知知:D (X )=1,D (Y )=4,Cov(X ,Y )=1.从而12()(2)()4()4Cov(,)1444113,()(2)4()()4Cov(,)414414,D Z D X Y D X D Y X Y D Z D X Y D X D Y X Y =-=+-=+⨯-⨯==-=+-=⨯+-⨯=12Cov(,)Cov(2,2)Z Z X Y X Y =--2Cov(,)4Cov(,)Cov(,)2Cov(,)2()5Cov(,)2()215124 5.X X Y X X Y Y Y D X X Y D Y =--+=-+=⨯-⨯+⨯=故 121212513.26()()134Z Z D Z D Z ρ===⨯g21.对于两个随机变量V ,W ,若E (V 2),E (W 2)存在,证明:[E (VW )]2≤E (V 2)E (W 2).这一不等式称为柯西许瓦兹(Couchy Schwarz )不等式.【证】令2(){[]},.g t E V tW t R =+∈显然22220()[()][2]g t E V tW E V tVW t W ≤=+=++222[]2[][],.E V t E VW t E W t R =++∀∈g g可见此关于t 的二次式非负,故其判别式Δ≤0, 即2220[2()]4()()E VW E W E V ≥∆=-g2224{[()]()()}.E VW E V E W =-g故222[()]()()}.E VW E V E W ≤g22.假设一设备开机后无故障工作的时间X 服从参数λ=1/5的指数分布.设备定时开机,出现故障时自动关机,而在无故障的情况下工作2小时便关机.试求该设备每次开机无故障工作的时间Y 的分布函数F (y ).【解】设Y 表示每次开机后无故障的工作时间,由题设知设备首次发生故障的等待时间X ~E (λ),E (X )=1λ=5. 依题意Y =min(X ,2). 对于y <0,f (y )=P {Y ≤y }=0. 对于y ≥2,F (y )=P (X ≤y )=1.对于0≤y <2,当x ≥0时,在(0,x )内无故障的概率分布为P {X ≤x }=1eλx,所以F (y )=P {Y ≤y }=P {min(X ,2)≤y }=P {X ≤y }=1ey/5.。
概率统计例题
例1 设随机变量X 具有以下是的分布律,试求Y=(X-1)2的分布律。
解 Y 所有可能的取值为0,1,4。
由P{Y=O}= P{(X-1)2=0}= P{X=1}=0.1 P{Y=1}= P{X=0}+ P{X=2}=0.7 P{Y=4}= P{X=-1}=0.2, 例2 设随机变量X 具有概率密度x/8 ,0<x <4f X (x )=0 , 其他 求随机变量Y=2X+8的概率密度。
解 分别记X,Y 的分布函数为F X (x ),F Y (y )。
下面先求F Y (x )。
F Y (y )=P{Y ≤y}=P{2X+8≤y}=P{X ≤(y-8)/2}= F X {(y-8)/2}。
将F Y (x )关于y 求导数,得Y=2X+8的概率密度为f Y (y )= f X (x/2-4)/21/8×(y-8)/2×1/2, 0<(y-8)/2<4=0 ,其他 (y-8)/32, 8<y <16=0 ,其他例3 设随机变量X 具有概率密度f X (x ),求Y=X 2的概率密度。
解 分别记X ,Y 的分布函数为F X (x ),F Y (y )。
先求Y 的分布函数F Y (y )。
由于Y=X 2≥0,故当y ≤0时F Y (y )=0。
当y >0时有F Y (y )=P{Y ≤y} =P{X 2≤y}=P{-√y ≤X ≤√y} =F X (√y )-F X (-√y )将F Y (y )关于y 求导数,即得Y 的概率密度为1/(2√y)[ f X (√y )+f X (-√y )],y >0f Y (y )=0 ,y ≤0 例如,设X ~N(0,1),其概率密度为φ=√2π−x 2/2,−∞<x <+∞由上得Y=X 2的概率密度为√2π−1/2e−y/2,y>0fY(y)=0 ,y≤0例4 设随机变量X~N(μ,σ2)。
试证明X的线性函数Y=aX+b(a≠0)也服从正态分布。
概率与数理统计C3
服从标准正态分布,是取自该总体的样本,分别为样本均值及样本标准差。
则有
1.
2.
3.
4.
可计算其样本方差
1.
2.
3.
4.。
则样本方差的数学期望( 4
1.
2.
3.
4.
的二项分布,即。
的样本。
则样本均值的方差( 2
1.
2.
3.
4.
服从均匀分布,参数未知。
是该总体的样本,样本均值。
则参数的矩估计量是
1.
2.
3.
4.
设总体服从正态分布,其中未知,
是总体的一个样本,则的最大似然估计是(1.
2.
3.
4.
服从参数为的泊松分布即,
是取自该总体的样本,可以做为的无偏估计量的统计量是(
1.
2.
3.
4.
对正态总体的均值进行检验,假设:,:,如果在显著水平下接受了。
则在显著水平下,其判断结果是
1.必接受
2.必拒绝
3.
4.
服从正态分布,参数均未知,
是取自该总体的样本,是样本均值,是样本方差。
若检验:,:(是已知数)。
给定显著水平,则的拒绝域为(
1.
2.
3.
4.
服从正态分布,是取自该总体容的样本,且计算得知样本方差:,要检验假设:,:。
给定显著水平,则的拒绝域为(
1.
2.
3.
4.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三次作业
1. 根据症状检查,某患者有70%可能患有病症A ,患有病症B,C 的可能分别为20%和10%. 现
你会给出哪种治疗方案建议?请说明理由.
2. 某学生参加限时为1小时的测验,其在x (10≤≤x )小时内完成的概率是x 5.0,已
知他在45分钟后仍在答题,问他最后用光1小时的概率是多少?
3. 掷2颗均匀的骰子,并记录点数之和X .
(1)若掷一次并观察到点数之和为奇数,求)7(=X P .
(2)若反复掷直到7=X 出现,求该事件发生的概率. 与直觉是否相符?
(3)若反复掷,求7=X 先于8=X 出现的概率.
4. 假设袋中有a 个黑球,b 个白球. 每次取出一个球,取到白球则停止,记X 为此时已取
出黑球的个数,求)(k X P =( ,2,1=k ).
5. 已知)()(x X P x F ≤=是随机变量X 的分布函数.
(1) 证明:0)(lim =∞-→x F x ,1)(lim =∞
→x F x . (2) 证明:)(x F 右连续.
(3) 求)(b X a P ≤≤.
6. 给出5个不同的随机变量的例子,并指明随机变量的类型和相关的样本空间.
7. 已知X 为离散型随机变量,证明:)()()(Var 22X E X E X -=;你中学学到的方差是
否与课上的定义相一致?请简要说明理由.。