有理数乘除法教学设计
《有理数的乘除法》教案
§1.4.1 有理数的乘法(一)一、教案目标知识与技能:使学生理解有理数乘法的意义,掌握有理数乘法法则,并能准确地进行有理数的乘法运算。
过程与方法:通过教案,渗透化归、分类等数学思想方法,初步培养学生的化归意识和观察、比较、概括等思维能力。
情感与态度:激发学生学习数学的兴趣,传授知识的同时。
注意培养学生勇于探索新知的精神。
二、教案重、难点重点:有理数的乘法法则。
难点:有理数乘法中的符号法则。
三、教案过程四、板书设计五、课后反思以观察为起点,以问题为主线,以能力培养为核心的宗旨:遵照教师为主导,学生为主体,训练为主线的教案原则;遵循由已知到未知、由浅入深、由易到难的认知规律,采用诱思探究教案法,通过课件和师生的双边活动,使学生的知识和能力得到提高。
通过创设、引导、渗透、归纳等活动随时搜集和评价学生的学习情况,及时反馈调节,查漏补缺,从而更好的促进学生全面、持续、和谐的发展。
1.4.1 有理数的乘法(二)教案目标:(一)知识与技能:会运用乘法运算律简化乘法运算。
(二)方法与过程:1、利用乘法运算律进行简便运算。
2、训练学生的运算技巧。
(三)情感态度与价值观:培养学生的语言表达能力,以及与他人沟通,交流的能力,增强学习数学的自信心。
教案重点:会运用乘法运算律简化乘法运算。
教案难点:运用运算律,使运算简化学法指导:自主,合作,探究教案过程一.回顾知识,导入新课1.小学我们已经学过那些乘法运算律?这些运算律有什么用途?这些运算律在有理数运算范围内同样适用,我们这节课将学习利用乘法运算律进行简便运算。
(幻灯片展播板书课题)2.出示三维目标及学法指导(幻灯片展播三维目标)二.自主,合作学习新课(一)导:学法指导:自主合作学习教材P32~ P35例4前1.动手计算书中的算式,体会感知三大运算律在有理数范围内仍然成立。
2.用心看例4,并动笔算一算,然后回答例4后的思考。
(二)学——自主合作学习教材P32~ P35例4前检测看书效果:学生先回答书中的问题,再独立完成 P32练习题 (1)抽3位同学上黑板演算,其余同学在作业本上演算 (2)讨论更正,合作探究先学生自由更正,或写出不同解法,然后评讲。
《有理数的乘除法》教案
《有理数的乘除法》教案一、教学目标:1. 让学生掌握有理数的乘法法则,包括同号相乘、异号相乘和零乘以任何数的结果。
2. 让学生理解并掌握有理数的除法法则,包括除以正数、除以负数和除以零的特殊情况。
3. 培养学生运用有理数的乘除法解决实际问题的能力。
二、教学内容:1. 有理数的乘法法则:(1)同号相乘:两数同号,乘积为正;(2)异号相乘:两数异号,乘积为负;(3)零乘以任何数等于零。
2. 有理数的除法法则:(1)除以正数:相当于乘以这个正数的倒数;(2)除以负数:相当于乘以这个负数的倒数,并改变符号;(3)除以零:无意义,没有定义。
三、教学重点与难点:1. 教学重点:有理数的乘法法则和除法法则。
2. 教学难点:有理数乘除法法则的应用和解决实际问题。
四、教学方法:1. 采用讲授法讲解有理数的乘除法法则;2. 利用例题展示法让学生理解并掌握有理数乘除法的应用;3. 采用小组讨论法让学生探讨有理数乘除法在实际问题中的应用。
五、教学过程:1. 导入新课:通过复习加减法,引导学生过渡到乘除法的学习。
2. 讲解有理数的乘法法则,并用多媒体展示相应的例题;3. 讲解有理数的除法法则,并用多媒体展示相应的例题;4. 组织学生进行小组讨论,探讨有理数乘除法在实际问题中的应用;5. 课堂练习:布置一些有理数乘除法的练习题,让学生巩固所学知识;六、教学评估:1. 课堂练习:通过实时练习,观察学生对有理数乘除法的掌握情况。
2. 课后作业:布置有关有理数乘除法的习题,要求学生在课后完成,以巩固所学知识。
3. 小组讨论:在小组讨论环节,观察学生之间的互动和合作情况,了解学生对有理数乘除法的理解程度。
七、教学资源:1. 多媒体课件:通过多媒体课件展示有理数的乘除法法则和例题,增加课堂的趣味性和互动性。
2. 练习题库:准备一些有理数乘除法的练习题,包括不同难度的题目,以满足不同学生的学习需求。
3. 小组讨论材料:提供一些实际问题,让学生在小组讨论中应用有理数乘除法进行解决。
人教版七年级数学上册《有理数的乘除法(第3课时)》示范教学设计
有理数的乘除法(第3课时)教学目标1.初步掌握有理数除法法则,能利用有理数除法法则进行简单的运算和分数的化简.2.经历探索有理数除法法则的过程,体会转化思想,进一步提高学生观察、归纳、验证等能力.教学重点正确运用有理数除法法则进行有理数除法运算.教学难点有理数除法法则的灵活运用.教学过程 知识回顾1.计算:(1)3×(-9); (2)-5×(-11);(3)9322⎛⎫⨯- ⎪⎝⎭; (4)-6×0. 【答案】解:(1)3×(-9)=-27; (2)-5×(-11)=55;(3)=32932⎛⎫⨯- ⎪⎝⎭-;(4)-6×0=0. 2.说一说有理数的乘法法则.两数相乘,同号得正,异号得负,并把绝对值相乘.任何数与0相乘,都得0.【归纳】运算过程中应先判断积的符号(1)几个不等于0的数相乘,积的符号由负因数的个数决定:①当负因数有奇数个时,积为负;②当负因数有偶数个时,积为正.(2)几个数相乘,有一个因数为0,积就为0.【师生活动】学生自主解答所给问题,然后教师继续讲解课程.【设计意图】通过复习有理数的乘法法则,为引出本节课的内容作铺垫.新知探究一、探究新知【问题】怎样计算8÷(-4)呢?【思考】(1)小学里学过的除法的意义是什么?(2)它与乘法有什么关系?结论:根据除法是乘法的逆运算,就是要求一个数,使它与-4相乘得8.【分析】(-2)×(-4)=8,8÷(-4)=-2.①另一方面,我们有8×14⎛⎫- ⎪⎝⎭=-2.②于是有8÷(-4)=8×14⎛⎫-⎪⎝⎭.③③式表明,一个数除以-4可以转化为乘14-来进行,即一个数除以-4,等于乘-4的倒数1 4 -.【问题】换其他数的除法进行类似讨论,是否仍有除以a(a≠0)可以转化为乘1a?【思考】仿照上面的方法,我们再来看如何计算(-15)÷(-3).【分析】因为5×(-3)=-15,所以(-15)÷(-3)=5.【思考】13 15=⎛⎫-⨯- ⎪⎝⎭()?【答案】13 15⎛⎫-⨯- ⎪⎝⎭()=5.结论:(-15)÷(-3)=13 15⎛⎫-⨯- ⎪⎝⎭().该式表明,一个数除以-3可以转化为乘13-来进行,即一个数除以-3,等于乘-3的倒数13 -.【师生活动】学生回答,教师给出答案,然后提出思考问题,学生尝试总结,教师给予帮助.【设计意图】通过知识回顾“除法是乘法的逆运算”,经历探索有理数的除法法则的过程,体会转化思想,进一步发展学生观察、归纳、验证等能力.【新知】有理数除法法则:1.除以一个不等于0的数,等于乘这个数的倒数.即10a b a b b÷=⋅≠().2.两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0.注意:0不能作为除数.【归纳】对比记忆.有理数的减法法则:减去一个数,等于加这个数的相反数.有理数的除法法则:除以一个不等于0的数,等于乘这个数的倒数.【师生活动】学生回忆、独立思考、回答,教师再总结补充.【设计意图】通过对比学习,加深学生对有理数除法法则的理解和记忆. 二、典例精讲【例1】计算:(1)(-36)÷9; (2)122535⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭. 【答案】解:(1)(-36)÷9=-(36÷9)=-4;(2)12122525354535⎛⎫⎛⎫⎛⎫⎛⎫-÷-=-⨯-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 【师生活动】学生独立完成,全班交流,教师讲解.【设计意图】通过例题讲解,让学生掌握在进行有理数除法运算时,能整除、不能整除及除数为分数时,如何合理选择法则进行解答.【例2】化简下列分数:(1)123-; (2)4512--. 【答案】解:(1)1212334=--÷=-(); (2)4515=4512=4512=124--÷-÷-()().【新知】分数化简的方法:(1)把分数转化为除法,利用有理数的除法法则进行化简;(2)利用分数的基本性质“分数的分子和分母同时乘或者除以相同的数(0除外),分数的大小不变”进行化简.【师生活动】学生独立完成,全班交流,教师讲解.【设计意图】通过例题学习,让学生尝试归纳出分数化简的方法,提高学生归纳总结的能力.【例3】计算:(1)551257⎛⎫-÷ ⎪⎝⎭-(); (2)512.5.84⎛⎫-÷⨯- ⎪⎝⎭ 【答案】解:(1)512575⎛⎫-÷ ⎪⎝⎭-() =51125+75⎛⎫⨯ ⎪⎝⎭ =151125+575⨯⨯=1257+ =1257; (2)512.584⎛⎫-÷⨯-⎪⎝⎭ =581254⨯⨯ =1.【新知】乘除混合运算:(1)乘除混合运算往往先将除法化为乘法,然后确定积的符号,最后求出结果(乘除混合运算按从左到右的顺序进行计算);(2)有理数除法化为有理数乘法以后,可以利用有理数乘法的运算律简化运算.【师生活动】教师引导学生共同完成例题的分析和总结.【设计意图】学生不仅要掌握直接利用有理数除法法则解决有理数除法问题,还要学会通过“除法是乘法的逆运算”来解决乘除混合运算题目.课堂小结板书设计一、有理数除法法则二、有理数除法运算课后任务完成教材P36上面练习1~2题.。
新人教版七上1.4《有理数的乘除法》教案
1.4 有理数的乘除法(7课时)1.4.1有理数的乘法(4课时)课程目标:一、知识与技能目标1、在理解有理数乘法意义的基础上,掌握有有理数乘法法则,并初步了解有理数乘法法则的合理性.2、能够熟练地进行有理数的乘法运算.3、会用计算器进行有理数的乘法运算.4、掌握有理数乘法的运算律,能应用运算律使运算简便,能熟练地进行加、减、乘混合运算.二、过程与方法目标结合在一条直线上运动的实例,归纳有理数乘法法则;接下来归纳出多个有理数相乘积的符号与各因数的符号的关系;最后得出乘法交换律、结合律和乘法对加法的分配律在有理数范围内也使用.用计算器对有理数进行乘法运算的使用.三、情感态度与价值观目标1、鼓励学生积极参与课堂各个教学环节,探究有理数乘法法则,并从中获得成就感,获得学习数学的经验.2、培养学生有创意的想法,鼓励学生独立思考、实践,再与他人交流的学习方法,并从中产生对数学的兴趣和战胜困难的勇气.教学重点:乘法法则中积的符号与各因数的符号关系的推导.教学难点:几个有理数相乘,积的符号的确定和能灵活运用运算律简便运算.设计思路:通过三节课新课的教学,第1课时完成对乘法法则的推导和应用,第2课时则重点在灵活运用乘法的运算律简化运算,第3课时则是分配律的运用(去括号、合并)课时安排:4课时教学准备:投影片、三角板、小黑板、计算器教学过程:第19课时1.4.1有理数的乘法(第1课时)一、创设情境,导入新课师:前面学习了有理数的加减法,接下来就应该学习有理数的乘除法,请看下面问题:1、2×3等于多少?表示什么?答案:2×3=6,表示3个2相加,即2+2+2.2、(-2)+(-2)+(-2)写成乘法算式是什么?答案:(-2)×3师:2×3是小学学过的乘法.(-2)×3如何计算呢?这就是我们这节课要研究的有理数的乘法.板书:1.4.1有理数的乘法.二、师生互动,课堂探究(一)提出问题,引发讨论师:在数轴上,若向右运动2尺记作2尺,向左运动2尺记作什么?生:记作-2尺.师:(1)2×3,其中2看作向右运动,每步为2尺,×3看作沿原方向走3步.用数轴表示:结果怎样呢?(结果向右运动6尺)即2×3=6 (2)(-2)×3,其中-2看作向左运动,每步为2尺,×3看作沿原方向走3步.用数轴表示:结果怎样呢?(结果向在运动6尺)即(-2)×3=-6(3)2×(-3)其中2看作向右运动,每步为2尺,×(-3)看作沿反方向走3步.用数轴表示:结果怎样呢?(结果向左运动6尺)即2×(-3)=-6 (4)(-2)×(-3),其中-2看作向左运动,每步为2尺,×(-3)看作沿反方向走3步.用数轴表示:结果怎样呢?(结果向右运动6尺)即(-2)×(-3)=6师:从上面(1)—(4)通过思考、讨论、探究两个有理数相乘的结果的规律,填空:正数乘正数积为____数,负数乘正数积为___数,正数乘负数积为___数,负数乘负数积为______数,乘积的绝对值等于各乘数绝对值的_____.(二)导入知识,解释疑难1、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0. 例:(-5)×(-3)………同号两数相乘 (-7)×4………________(-5)×(-3)=+( )……得正 (-7)×4=-( )……_____ 5×3=15………把绝对值相乘 7×4=28………__________ ∴(-5)×(-3)=15. ∴(-7)×4=-28 2、例题分析:例1:计算:(1)(-3)×9 (2)(-21)×(-2)有理数中仍然有:乘积是1的两个数互为倒数.如(-21)×(-2)=1.注意:0没有倒数.例2:用正负数表示气温的变化量,上升为正,下降为负.登山队攀登一座山峰,每登高1km 气温的变化量为-6℃,攀登3km 后,气温有什么变化?解:(-6)×3=-18 答:气温下降18℃.从乘法法则看出,有理数的乘法,关键是确定积的符号,多个有理数相乘,可以把它们按顺序依次相乘.那么,几个不是0的数相乘.如何确定其符号呢?下列各式的积是正的还是负的?(1)2×3×4×(-5) (2)2×3×(-4)×(-5) (3)2×(-3)×(-4)×(-5) (3)(-2)×(-3)×(-4)×(-5) 根据上式计算,探究下列问题,并填空:几个不是0的数相乘,积的符号与负因数的个数之间有什么关系?几个不是0的有理数相乘,负因数的个数是______时,积是正数;负因数的个数是____时,积是负数.例3:计算:(1)(-3)×65×(-59)×(-41) (2)(-5)×6×(-54)×41 (3)(-5)×8×(-541)×(-1.25) (4)(-125)×158×211×(-31)你能看出下列各式的结果吗?如果能,请说明理由.(1)7.8×(-8.1)×0×(-19.6) (2)2002×(-2003)×(-2004)×0几个数相乘,如果其中有因数为0,积等于_____. (三)、归纳总结,知识回顾1、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0.2、几个不是0的有理数相乘,积的符号由负因数的个数决定,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数.3、几个数相乘,如果其中有因数为0,积等于0.4、有理数乘法运算步骤:(1)先确定积的符号;(2)求出各因数绝对值的积.(四)作业:P40 1,2 (五)板书设计1.4.1有理数的乘法(第1课时)1、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0.有理数中仍然有:乘积是1的两个数互为倒数.2、几个不是0的有理数相乘,积的符号由负因数的个数决定,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数.3、几个数相乘,如果其中有因数为0,积等于0.4、有理数乘法运算步骤:(1)先确定积的符号;(2)求出各因数绝对值的积.第20课时1.4.1 有理数的乘法(第2课时)一、创设情境,导入新课1、有理数的乘法法则是什么?根据乘法法则计算: (1)5×(-6) (-6)× 5(2)[3×(-4)]×(-5) 3×[(-4)×(-5)] 2、小学学过哪些运算律(五种)小学学过的加法交换律、结合律,前面我们在有理数的加法中已知道在有理数的范围内也适用,那么小学学过的乘法交换律、乘法结合律、分配律在有理数的范围内是否仍然适用呢?这就是我们这节课探究的问题.板书:有理数乘法的运算律和用计算器进行乘法运算. 二、师生互动,课堂探究 (一)提出问题,引发讨论 (1)5×(-6)=(-6)× 5(2)[3×(-4)]×(-5)=3×[(-4)×(-5)] 根据上式探究有理数乘法的运算律(二)导入知识,解释疑难 1、乘法交换律:ab =ba 乘法结合律:(ab )c =a (bc )2、分配律在有理数范围内是否仍然适用: 计算 5×[3+(-7)] 5×3+5×(-7) 而5×[3+(-7)] =5×3+5×(-7) 分配律:a (b+c )=ab+ac3、例题分析:例1:用两种方法计算 (41+61-121)×12解法1:(41+61-121)×12=(123+122-121)×12=-121×12=1解法2:(41+61-121)×12=41×12+61×12-121×12=3+2-6=1思考:比较上面两种解法,它们在运算顺序上有什么区别?解法2运用了什么运算律?哪种解法运算量小?例2:计算:19189×(-15)解:19189×(-15)=(10-191)×(-15)=10×(-15)-191×(-15)=-150+1915=-1941494、用计算器进行有理数乘法运算 计算:(-51)×(-14)按键顺序,显示:-51)×-14=714也可以只用计算器算乘积的绝对值,然后再加符号. 例3:写出算式:-5-6×2.5+(-9)的按键顺序. (三)、归纳总结,知识回顾1、本节课主要学习了有理数乘法的交换律、乘法结合律、分配律,在计算过程中,灵活运用运算律可使运算简便.2、用计算器进行有理数的加、减、乘运算,可以为学生掌握有理数的运算服务.(四)作业: 习题1.4 7(3)(4)(五)板书设计1.4.1 有理数的乘法(第2课时)有理数乘法的运算律: 1、乘法交换律:ab =ba乘法结合律:(ab )c =a (bc ) 2、分配律:a (b+c )=ab+ac例1:用两种方法计算 (41+61-121)×12解法1:(41+61-121)×12=(123+122-121)×12=-121×12=1解法2:(41+61-121)×12=41×12+61×12-121×12=3+2-6=1 用计算器进行乘法运算:第21课时1.4.1 有理数的乘法(练习课)教学目的:加强学生对已学乘法运算及运算律的掌握. 教学准备:小黑板、练习资料 教学过程: 练习题: 1、计算:(1)(-3)×(-5) (2)-21×(-31) (3)52×(-0.2)分析:有理数乘法的运算步骤:先确定积的符号,再确定积的绝对值. 2、计算:(1)(-5)×8×(-7)×(-0.25) (2)(-125)×158×21×(-32)(3)(-1)×21×(-20012000)×0×(-1)分析:先根据负因数的个数确定积的符号,然后把绝对值相乘作为积的绝对值;(3)中有一个因数是0,所以积为0.3、简便运算:(1)(-3)×(-57)×(-31)×74(2)(-41+31-125)×(-24) (3)4×(-3)+3×(-3)-2×(-3)+7×(-3) (4)(-1.2)×0.75×(-1.25)分析:运用乘法运算律使计算简便.(1)运用乘法交换律和结合律;(2)应用乘法的分配律;(3)逆用乘法的分配律.(4)先将小数化为分数,再约分相乘,可使计算简便.第22课时1.4.1 有理数的乘法(第4课时)一、创设情境,导入新课师:上节课的练习中有这样一道题:4×(-3)+3×(-3)-2×(-3)+7×(-3),我们如何进行简便计算的呢?生:将乘法分配律反过来利用.4×(-3)+3×(-3)-2×(-3)+7×(-3) =(4+3-2+7)×(-3) =12×(-3) =-36二、师生互动,课堂探究 (一)提出问题,引发讨论 类似地,(-23)×25-6×25+18×25+25,如何进行简便运算呢? (二)导入知识,解释疑难1、我们用字母χ表示任意一个有理数,2与χ的乘积记为2χ,3与χ的乘积记为3χ,则式子2χ+3χ是2χ与3χ的和,2χ与3χ叫做这个式子的项,2与3分别是这两项的系数.含有相同字母因数的这两项可以合并,将分配律反过来利用,可得2χ+3χ=(2+3)χ=5χ得出归纳:P41a χ+b χ=(a+b )χ2、课本例6计算:(1)-2y+0.5y ; (2)-3x+x-21x 分析:式子中含有相同字母因数,合并它们的方法是合并系数,再乘字母因数.练一练:P42 练习 计算: 3、考虑去括号的问题:先考虑一个正数与一个括号相乘,如5乘(x -2y =3),利用分配律,可以将式子中的括号去掉,得5(x -2y =3)=5x+5·(-2y )+5×3=5x-10y+15 再考虑一个负数与一个括号相乘,如-5乘(x -2y =3),利用分配律,可以将式子中的括号去掉,得-5(x -2y =3)=-5x+(-5)·(-2y )+(-5)×3=-5x+10y-15可发现:P43 去括号的规律. 例7 计算:(1)-3(2x-3) (2)3x-(2x-4)+(2x-1) 解:(1)-3(2x-3)=-6x+9 (2)3x-(2x-4)+(2x-1) =3x-2x+4+2x-1 =3x-2x+2x+4-1 =3x +3练一练:P43 练习 计算: (三)、归纳总结,知识回顾本节课主要学习利用乘法分配律进行去括号,合并含相同字母因数的项. (四)作业:P48 9 (五)板书设计1.4.1 有理数的乘法(第4课时)1、合并含有相同字母因数的项:ax+bx =(a+b )x例6计算:(1)-2y+0.5y ; (2)-3x+x-21x2、利用乘法分配律去括号: 例7 计算:(1)-3(2x-3) (2)3x-(2x-4)+(2x-1) 解:(1)-3(2x-3)=-6x+9 (2)原式=3x-2x+4+2x-1 =3x-2x+2x+4-1 =3x +31.4.2 有理数的除法(3课时)课程目标:一、知识与技能目标1、在理解有理数除法意义的基础上,掌握有理数除法法则,并初步了解有理数法则的合理性及倒数的意义.2、能够熟练地进行有理数的乘、除混合运算.3、会用计算器进行有理数的除法运算.4、会解有关除法运算的应用题. 二、过程与方法目标教材通过除法意义计算一个实例,得出法则可以利用乘法来进行的结论,得出除法与乘法类似的法则,最后通过几个例题的教学说明有理数除法的另一种形式,也指出有理数除法与分数互换的关系.三、情感态度与价值观目标1、通过有理数除法法则的导出及运用,让学生体会转化思想.2、通过学习有理数除法法则,感知数学具有普遍联系性,相互转化性.3、通过用计算器进行有理数除法运算,让学生体会类比的数学思想. 教学重点:学习有理数除法法则中学生对商的符号的确定. 教学难点:乘除混合运算中的运算顺序和运算技巧的应用. 设计思路:第1课时通过实例引入导出有理数除法法则,接着实际例题综合应用;第2课时主要在于加减、乘除的混合运算.课时安排:3课时教学准备:投影片、计算器 教学过程:第23课时1.4.2 有理数的除法(第1课时)一、创设情境,导入新课师:在小学,我们学过除法,如8÷4=8×41=2.那么8÷(-4)又会等于多少呢?这就是我们要研究的问题.板书:1.4.2 有理数的除法二、师生互动,课堂探究 (一)提出问题,引发讨论怎样计算8÷(-4)呢?要求一个数,使它与-4相乘得8. ∵(-2)×(-4)=8 ∴8÷(-4)=-2 ①又∵8×(-41)=-2 ②∴8÷(-4)=8×(-41) ③③式表明,一个数除以-4可以转化为乘-41来进行,即一个数除以-4,等于乘-4的倒数-41.(二)导入知识,解释疑难在尝试:(-8)÷(-4)=? (-8)×(-41)=?1、有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数.a ÷b =a ·b1(b ≠0)提出问题:(1)两数相除,商的符号如何确定?商的绝对值呢? (2)0不能做除数,0作被除数时商是多少? 从有理数除法法则得出另一种说法:2、两数相除,同号得正,异号得负,并把绝对值相除. 0除以如何一个不等于0的数,都得0.说明:两数相除,在能整除的情况下,可用法则2,在确定符号后往往采用直接除;在不能整除的情况下,特别是当除数是分数时,可用法则1,把除法转化为乘法比较方便.3、例题分析:例1:计算:(1)(-36)÷9 (2)(-2512)÷(-53)解:(1)用法则2 (2)用法则1 例2:化简下列分数:(1)312 (2)1245--解:(1)312- =(-12)÷3=-4 (2)1245--=(-45)÷(-12)=415例3:计算:(1)(-75125)÷(-5) (2)-2.5÷85×(-41)解:(1)利用乘法分配律 原式=75125×51=125×51+75×51=25+71=7125 (2)原式=25×58×41=1例4:计算(1)(-29)÷3×31 (2)(-43)×(-211)÷(-412)(3)-6÷(-0.25)×1411 (4)(-3)÷[(-52)÷(-41)]解:(1)原式=-29×31×31=-929(2)原式=-43×23×49=-21(三)、归纳总结,知识回顾 1、除法的两种法则的恰当应用.2、乘除混合运算往往先将除法化为乘法,在确定积的符号,最后求出结果. (四)作业:P48 7 (4)(5)(6) (五)板书设计1.4.2 有理数的除法(第1课时)1、有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数.a ÷b =a ·b1(b ≠0)2、两数相除,同号得正,异号得负,并把绝对值相除. 0除以如何一个不等于0的数,都得0.例1:计算:(1)(-36)÷9 (2)(-2512)÷(-53)解:(1)用法则2 (2)用法则1 例2:化简下列分数:(1)312- (2)1245--第24课时1.4.2 有理数的除法(第2课时)一、创设情境,导入新课师:前面学习了有理数的加减、乘除运算,通常情况下,是将减法转化为加法,将除法转化为乘法,然后进行计算.那么混合运算的顺序是怎样的呢?板书:有理数的加减乘除混合运算二、师生互动,课堂探究 (一)提出问题,引发讨论先乘除后加减,如果有括号,先算括号里面的.(运算顺序) (二)导入知识,解释疑难 例1:计算(1)(-7624)÷(-6)-3.5÷87×(-43)(2)1÷(-1)+0÷(-5.6)-(-4.2)×(-1)例2:一天,小江和小利利用温差测量山峰的高度,小江在山顶测得温度是-1℃,小利在山脚测得是5℃.已知该地区高度每增加100米,气温大约降低0.8℃,这个山峰的高度大约是多少米?解:依题意得[5-(-1)]÷0.8×100=750(米) 答:(略)例3:P45 例10例4:用计算器计算(-0.056)÷(-1.4) (三)、归纳总结,知识回顾 1、有理数加减乘除混合运算. 2、有关有理数运算的应用题. 3、使用计算器的方法. (四)作业:(1)-1+5÷(-41)×(-4) (2)-8+4÷(-2)(3)(-7)×(-5)-90÷(-15) (五)板书设计1.4.2 有理数的除法(第2课时)有理数的加减乘除混合运算:先乘除后加减,如果有括号,先算括号里面的.(运算顺序) 例1:计算(1)(-7624)÷(-6)-3.5÷87×(-43)(2)1÷(-1)+0÷(-5.6)-(-4.2)×(-1)例2:一天,小江和小利利用温差测量山峰的高度,小江在山顶测得温度是-1℃,小利在山脚测得是5℃.已知该地区高度每增加100米,气温大约降低0.8℃,这个山峰的高度大约是多少米?解:依题意得[5-(-1)]÷0.8×100=750(米)答:(略)第25课时1.4.2 有理数的除法(练习课)教学目的:巩固有理数除法法则及加减乘除混合运算的方法.教学准备:小黑板,练习资料教学过程:教材内容剖析讲解点1:有理数除法的意义及法则.有理数除法法则:1、有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数.a ÷b =a ·b 1(b ≠0) 2、两数相除,同号得正,异号得负,并把绝对值相除.0除以如何一个不等于0的数,都得0.练习1、计算:(1)(-40)÷8 (2)(+871)÷(-87) (3)(-0.25)÷83 (4)(-125)÷(-25)÷(-6) (5)(-49)÷(312)÷37÷(-3) 分析:一般在不能整除的情况下用第一个法则,如(2)(3)(4)(5);在能整除的情况下用第二个法则.注意小数可化为分数也可不化为分数,但带分数一定要化成假分数,在进行计算.讲解点2:有理数的乘除混合运算.注意:①符号的确定;②运算顺序自左向右依次计算.练习2、计算:(1)(-65)÷(-32)×(-23) (2)(-53)×(-213)÷(-411)÷3(3)(-11936)÷9 分析:按照运算顺序,自左向右.乘除混合运算时,注意乘法不动,将除法转化为乘法.讲解点3:有括号的先算括号内的,无括号先乘除后加减.练习3:计算:(1)3÷2×(-21) (2)1.6+5.9-25.8+12.8-7.4 (3)23×(-5)-(-3)÷1283 (4)511×(31-21)×113÷45 (5)-3-[-5+(1-0.2×53)÷(-2)] (6)(97-65+183)×18-1.45×6+3.95×6 解:(1)3÷2×(-21)=-(3×21×21)=-43 (2)1.6+5.9-25.8+12.8-7.4=(1.6+5.9-7.4)+(-25.8+12.8)=0.1-13=-12.9(3)23×(-5)-(-3)÷1283=-115+3×3128=-115+128=13 (4)511×(31-21)×113÷45=511×(-61)×113×54=-252 (5)-3-[-5+(1-0.2×53)÷(-2)] (6)(97-65+183)×18-1.45×6+3.95×6=(97×18-65×18+183×18)+6×(-1.45+3.95)=(14-15+3)+6×2.5=2+15=17。
有理数的乘除法教案
有理数的乘除法教案一、教学目标1、知识目标:(1)掌握有理数的乘法和除法运算法则;(2)了解有理数的乘法和除法运算在实际生活中的应用。
2、能力目标:(1)能够熟练地进行有理数的乘法和除法运算;(2)能够运用所学的有理数乘除法知识解决实际问题。
二、教学重难点1、整数与分数的相乘相除性质;2、有理数乘除法运算应用问题的解决方法。
三、教学方法1、讲述法;2、举例法;3、讨论法;4、演示法。
四、教学过程1、教师在黑板上给出幻灯片,简单讲解有理数乘除法的基本知识。
2、举例进行操作,以小数乘法为例进行讲解。
3. 小学生分组两人进行练习,有老师巡回指导。
4. 大肆回答有理数乘法和除法的基本问题。
5. 提高高学校生的能力并试图解决一些问题。
6. 整合前几个步骤的内容进行结论。
7. 带领学生进行一些习题与实践运用。
五、教学模式采用传统的、开放式的教学模式,采用多种教学方法,充分调动师生共同建构新知识的积极性。
六、教学工具1. 电脑;2. 电子白板;3. 教学参考书。
七、教学评价1、完成教学任务的情况,并达到目标要求的情况;2、学生掌握情况的追踪评价;3、教学过程中,让学生参与到课堂教学中去,及时发现学生存在的问题,及时进行纠正和拾遗补漏。
八、教学思考有理数是我们数学学习中不可缺少的重要基础,有理数的乘法和除法运算是数学中的基本运算,掌握有理数的乘法和除法运算是我们学习其他知识的重要前提。
在有理数乘除法的教学中,教师应该采取多种教学方法,使学生能够理解和掌握有理数乘除法的基本规则和应用,进一步提高他们的数学能力。
有理数乘除法 优秀教学设计(教案)
§1.4有理数乘除法第一课时【课题】:有理数乘除法【学情分析】:前面学生已经学习了有理数的加法,对有理数加法法则的形成和意义有了一定的了解,这对学习这节课有很大的帮助。
本班级学生思维较活跃,具有好奇、好胜的心理特点,自主探索知识的学习习惯已初步形成,但由于学生对负数的运用有一定困难,所以在确定符号的问题上要下苦功。
【教学目标】:(1)经历探索有理数乘除法法则的过程,掌握有理数的乘除法法则。
(2)会进行有理数的乘除法运算,并能通过有理数乘除法在实际生活中的应用,感受学习数学的价值。
(3)能结合具体情境发现并提出数学问题,体会在解决问题的过程中与他人合作的重要性。
【教学重点】:应用法则正确地进行有理数乘除法运算。
【教学难点】:两负数相乘积的符号为正,与两负数相加和的符号为负的理解。
【教学突破点】:通过问题情境自主探索有理数乘除法的意义,发现有理数乘除法的法则。
【教法、学法设计】:根据义务教育阶段《数学课程标准》的要求,结合本节课教材内容的特点,组织学习自主探索有理数乘法的意义和法则,让学生在参与数学学习的活动中,经历知识形成的过程,体验主动获取知识的成功喜悦。
【课前准备】:投影片【教学过程设计】:数学知识源于生活,调动学生学习发现有理数乘法与小学乘法的内在【错题的估计和采集】: (1)错例: ①3(1)3⨯-= ; (5)(1)5-⨯-=- ; 3(1)3-⨯-=-②(12)(2)24-+-= ③1110(23)23022⨯-=- (2)原因分析:①学生没有掌握有理数乘法符号法则:同号得正,异号得负; ②错看符号;③没有对带分数进行处理。
(3)策略分析:启发学生通过做题自主发现并归纳做题技巧,理解有理数乘法法则的意义。
练习与测评 基础题:1. 确定下列两数的积的符号(将所确定的符号填在横式) (1)5(3)⨯- (2)(3)3-⨯ (3)1(42)12-⨯ (4)3()(14)56-⨯- (5)(2)(7)-⨯- (6)1123⨯ 设计意图说明:考察学生对符号确定的知识掌握情况。
有理数的乘法教案人教版有理数的乘法教案优秀6篇
【有理数的乘法教案人教版】有理数的乘法教案优秀6篇初中数学《有理数的乘法》教学设计篇一掌握有理数乘法以及乘法运算律,熟练进行有理数乘除运算,发展观察,归纳等方面的能力,用相关知识解决实际问题的能力经历归纳,总结有理数乘法,除法法则及乘法运算律的过程,会观察,选择适当的、较简便的方法进行有理数乘除运算培养学生学习的自信心,上进心,通过用乘除运算解决简单的实际问题,让学生明确学习教学的目的是学以致用,从而培养学生的主动性、积极性一、重点:熟练进行有理数的乘除运算二、难点:正确进行有理数的乘除运算预习导学通过看课本§1.4的内容,归纳有理数的乘法法则以及乘法运算律一、创设情景,谈话导入我们已经学习了有理数的乘除法,同学们归纳,总结一下有理数的乘法法则以及乘法运算律二、精讲点拨质疑问难根据预习内容,同学们回答以下问题:1、有理数的乘法法则:(1)同号两数相乘___________________________________(2)异号两数相乘___________________________________(3)0与任何自然数相乘,得____2、有理数的乘法运算律:(1)乘法交换律:ab=_________(2)乘法结合律:(ab)c=_______(3)乘法分配律:(a+b)c=________3、有理数的除法法则:除以一个不等于0的数,等于乘这个数的__________比较有理数的乘法,除法法则,发现_________可能转化为__________初中数学《有理数的乘法》教学设计篇二1、知识与技能使学生经历探索有理数乘法的交换律、结合律和分配律,并能灵活运用乘法运算律进行有理数的乘法运算,使之计算简便。
2、过程与方法通过对问题的探索,培养观察、分析和概括的能力。
3、情感、态度与价值观能面对数学活动中的困难,有学好数学的自信心。
重点:熟练运用运算律进行计算。
难点:灵活运用运算律。
(一)创设情境,导入新课想一想上一节课大家一起学习了有理数的乘法运算法则,掌握得较好。
七年级上册数学教案《有理数的乘除法》
教学设计:《有理数的乘除法》一、教学目标1.知识与技能:学生能够理解有理数乘除法的概念,掌握有理数乘除法的运算法则,包括同号相乘、异号相乘、除以一个数等于乘以这个数的倒数等,并能准确进行有理数的乘除运算。
2.过程与方法:通过实例分析和小组讨论,引导学生探究有理数乘除法的规律,培养学生的观察、归纳和推理能力;通过动手操作和合作学习,提升学生的数学实践能力和团队协作能力。
3.情感态度与价值观:激发学生对数学学习的兴趣,培养学生勇于探索、敢于质疑的科学精神;在解题过程中,培养学生的耐心和细致,以及对待数学问题的严谨态度。
二、教学重点和难点●重点:有理数乘除法的运算法则及其应用。
●难点:异号数相乘时符号的确定,以及有理数除法转化为乘法运算的理解。
三、教学过程1. 导入新课(约5分钟)●情境导入:通过生活实例(如购物找零、温度升降倍数等)引入有理数乘除法的应用背景,激发学生兴趣。
●复习旧知:回顾有理数的概念、数轴表示及有理数的加减法,为有理数乘除法的学习做铺垫。
●明确目标:向学生明确本节课的学习目标,即掌握有理数乘除法的运算法则并能准确运算。
2. 讲授新知(约15分钟)●概念讲解:阐述有理数乘除法的定义,特别是乘法中的同号相乘、异号相乘规则和除法转化为乘法的原则。
●示例演示:通过具体例题展示有理数乘除法的计算过程,特别强调符号的处理和运算顺序。
●归纳总结:引导学生归纳有理数乘除法的运算法则,形成系统性的知识网络。
3. 合作探究(约15分钟)●分组探究:将学生分为若干小组,每组分配不同的有理数乘除法题目进行探究。
●小组讨论:鼓励学生相互交流解题思路,讨论解题过程中遇到的困难和解决方法。
●汇报分享:各组选派代表分享探究成果,全班共同讨论和纠正可能的错误。
4. 巩固练习(约10分钟)●课堂练习:设计一系列有层次的练习题,包括基础题、提高题和拓展题,要求学生独立完成。
●即时反馈:教师巡视指导,及时纠正学生的错误,并解答疑惑。
《有理数的乘除法》的教案
《有理数的乘除法》的教案《有理数的乘除法》的教案「篇一」[教学目标]1、使学生理解有理数除法的意义,掌握有理数除法法则,会进行有理数除法运算;2、运用转化思想,理解有理数除法的意义,培养学生新旧知识之间联系的思维能力,通过乘除法之间的逆运算,培养学生逆向思维的能力,提高学生的`计算能力,培养转化和全面分析问题的能力。
[教学重点、难点]1、教学重点:正确运用有理数除法法则进行有理数除法运算;2、教学难点:理解零不能做除数,零没有倒数,寻找有理数除法转化为有理数乘法的方法和条件;3、疑点:乘除法运算顺序。
[教学过程设计]一、课前复习提问1、有理数乘法法则;2、有理数乘法的运算律:乘法交换律,乘法结合律,乘法分配律;3、倒数的意义。
二、讲授新课(一)有理数除法法则的推导[问题]怎样计算8(—4)呢?[提问]小学学过的除法的意义是什么?得出①8(—4)=—2;又②8()=—2;《有理数的乘除法》的教案「篇二」有理数的除法教案教学目标进一步理解有理数乘法和除法的法则,熟练进行有理数乘除混合运算。
重点难点:重点:有理数的乘除混合运算难点:处理结果的符号。
教学过程一激情引趣,导入新课1 复习:(1)有理数乘法运算的法则是什么?两个有理数相乘,同号得___,异号得__,并把绝对值相乘。
(2)有理数的除法运算法则是什么?(两个有理数相除,同号得___,异号得__,并把绝对值相除。
除以一个数等于乘以这个数的____.)3 什么叫互为倒数?(如果两个数的积等于__,那么这两个数互为倒数。
如-5的倒数是__,-0.25的倒数是___.-(- )的倒数是___)。
2 在非负数的范围内,你是怎样进行有理数的乘除混合运算的?3 怎样计算(-10)÷(-5)×(-2)?这节课我们来探究有理数的`乘除混合运算。
二合作交流,探究新知1 只含有除法的混合运算例1 计算:(1)(-56)÷(-2)÷(-8)(2)(-3.2)÷0.8÷(-2)(3)(4)2 含有乘除法的混合运算例2 计算:(1),(2)对于多个有理数相乘,对于确定结果的符合,你有什么经验?3 含有加减乘除的混合运算例3 计算:(1)(2)(3) (4)练一练:P 40 练习题1,2三反思小结,巩固提高有理数乘法除法混合运算的顺序是什么?如果是加减乘除的混合运算呢?四作业:P 42A 4 B组 1、2《有理数的乘除法》的教案「篇三」从实际生活引入,体现数学知识源于生活及数学的现实意义。
七年级数学有理数的乘法教案及教学设计(精选6篇)
一、学情分析:在此之前,本班学生已有探索有理数加法法则的经验,多数学生能在教师指导下探索问题。
由于学生已了解利用数轴表示加法运算过程,不太熟悉水位变化,故改为用数轴表示乘法运算过程。
二、课前准备把学生按组间同质、组内异质分为10个小组,以便组内合作学习、组间竞争学习,形成良好的学习气氛。
三、教学目标1、知识与技能目标掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。
2、能力与过程目标经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。
3、情感与态度目标通过学生自己探索出法则,让学生获得成功的喜悦。
四、教学重点、难点重点:运用有理数乘法法则正确进行计算。
难点:有理数乘法法则的探索过程,符号法则及对法则的理解。
五、教学过程1、创设问题情景,激发学生的求知欲望,导入新课。
教师:由于长期干旱,水库放水抗旱。
每天放水2米,已经放了3天,现在水深20米,问放水抗旱前水库水深多少米?学生:26米。
教师:能写出算式吗?学生:……教师:这涉及有理数乘法运算法则,正是我们今天需要讨论的问题(教师板书课题)2、小组探索、归纳法则(1)教师出示以下问题,学生以组为单位探索。
以原点为起点,规定向东的方向为正方向,向西的方向为负方向。
a.2某32看作向东运动2米,某3看作向原方向运动3次。
结果:向运动米2某3=b.-2某3-2看作向西运动2米,某3看作向原方向运动3次。
结果:向运动米-2某3=c.2某(-3)2看作向东运动2米,某(-3)看作向反方向运动3次。
结果:向运动米2某(-3)=d.(-2)某(-3)-2看作向西运动2米,某(-3)看作向反方向运动3次。
结果:向运动米(-2)某(-3)=e.被乘数是零或乘数是零,结果是人仍在原处。
(2)学生归纳法则a.符号:在上述4个式子中,我们只看符号,有什么规律?(+)某(+)=同号得(-)某(+)=异号得(+)某(-)=异号得(-)某(-)=同号得b.积的绝对值等于。
1.4有理数的乘除法数学教案
1.4有理数的乘除法数学教案
标题:第1单元第4节有理数的乘除法
一、教学目标:
(1)理解并掌握有理数的乘法法则;
(2)理解并掌握有理数的除法法则;
(3)能够运用有理数的乘除法解决实际问题。
二、教学重点与难点:
重点:理解和掌握有理数的乘除法法则。
难点:正确理解和运用符号法则进行计算。
三、教学过程:
(一)复习导入
通过回顾上一节课的内容,引出本节课的主题——有理数的乘除法。
(二)新课讲解
1. 有理数的乘法法则
(1)同号两数相乘,结果为正;异号两数相乘,结果为负。
(2)任何数与零相乘,结果为零。
(3)几个不是零的数相乘,负因数的个数是偶数时,积为正;负因数的个数是奇数时,积为负。
教师可以通过具体的例子来解释这些法则,并让学生进行一些简单的练习,以加深他们对法则的理解。
2. 有理数的除法法则
(1)两个有理数相除,同号得正,异号得负,并把绝对值相除。
(2)0除以任何一个不等于0的有理数都为0。
(3)除以一个不等于0的数,等于乘以这个数的倒数。
同样,教师可以通过例子和练习来帮助学生理解这些法则。
四、课堂练习
设计一系列的习题,包括基本的乘除法运算,以及一些需要应用乘除法法则的实际问题,让学生在实践中巩固所学的知识。
五、小结与作业
总结本节课的主要内容,布置一些课后作业,让学生在课后进一步复习和巩固所学知识。
有理数的乘除法教案
有理数的乘除法教案一、教学目标:1. 知识与技能:(1)理解有理数的乘法法则,能正确进行有理数的乘法运算。
(2)理解有理数的除法法则,能正确进行有理数的除法运算。
(3)掌握有理数乘除法运算的性质和规律。
2. 过程与方法:(1)通过实例演示和练习,让学生掌握有理数乘法运算的步骤和方法。
(2)通过小组讨论和问题探究,让学生理解有理数除法运算的原理和步骤。
(3)运用多媒体教学手段,形象地展示有理数乘除法的运算过程,提高学生的理解能力。
3. 情感态度与价值观:(1)培养学生的团队合作精神,学会与他人交流和分享学习心得。
(2)激发学生对数学学习的兴趣,培养学生的自主学习能力。
二、教学重点与难点:1. 教学重点:(1)有理数的乘法法则及运算步骤。
(2)有理数的除法法则及运算步骤。
(3)有理数乘除法运算的性质和规律。
2. 教学难点:(1)有理数除法运算的理解和应用。
(2)掌握有理数乘除法运算的性质和规律。
三、教学准备:1. 教师准备:(1)教案、课件和教学素材。
(2)多媒体教学设备。
2. 学生准备:(1)预习有理数的乘除法相关知识。
(2)准备好笔记本和笔。
四、教学过程:1. 导入新课:(1)复习回顾上节课所学内容,巩固有理数加减法运算。
(2)提问:同学们,今天我们要学习有理数的乘除法,你们觉得乘除法和加减法有什么联系和区别呢?2. 知识讲解:(1)讲解有理数的乘法法则,通过实例演示和练习,让学生掌握有理数乘法运算的步骤和方法。
(2)讲解有理数的除法法则,通过小组讨论和问题探究,让学生理解有理数除法运算的原理和步骤。
3. 课堂练习:(1)布置针对性的练习题,让学生独立完成,巩固所学知识。
(2)选取部分学生的作业进行讲解和评价,及时发现和纠正错误。
4. 课堂小结:(2)提醒学生注意乘除法运算中的易错点。
五、课后作业:1. 请学生完成课后练习题,巩固有理数的乘除法运算。
2. 鼓励学生进行小组讨论,分享学习心得和经验。
人教版七年级数学上册有理数的乘除法教学设计
1.利用实际问题导入:教师展示一个关于物品价格计算的问题,例如,“小明去超市购物,购买了3件衣服和4本书,每件衣服的价格是120元,每本书的价格是25元。请计算小明购买这些物品一共需要支付多少钱?”通过这个例子,引导学生思考如何进行有理数的乘法运算。
2.引导学生回顾小学学过的乘法运算,为新课的学习做好铺垫。
4.通过具体例题,讲解负数除法的运算规则,使学生掌握有理数除法的运算方法。
(三)学生小组讨论
1.教师将学生分成小组,每组讨论以下问题:
a.有理数乘法的运算规律是什么?
b.负数乘以正数和负数的结果是什么?
c.有理数除法的运算规律是什么?
d.负数除以正数和负数的结果是什么?
2.各小组派代表分享讨论成果,教师进行点评和补充。
2.探究阶段:
a.采用小组合作学习,引导学生探讨有理数乘除法的运算规律,从具体实例中抽象出数学规律。
b.通过师生互动,总结有理数乘除法的运算步骤,明确正负数乘除法的运算规则。
c.设计具有挑战性的问题,引导学生深入思考,突破难点。
3.应用阶段:
a.设计不同类型的例题,使学生在实际操作中巩固所学知识,提高运算能力。
(三)情感态度与价值观
1.培养学生对数学学习的兴趣和热情,使其认识到数学在生活中的重要作用。
2.培养学生严谨的学习态度和良好的学习习惯,使其能够认真对待每一次运算。
3.培养学生的合作意识和团队精神,使其在小组讨论和合作探究中学会倾听、尊重他人意见。
4.引导学生树立正确的价值观,认识到数学知识的学习不仅仅是为了应付考试,更是为了解决实际问题,提高自身素质。
二、学情分析
七年级学生在学习了有理数的加法和减法的基础上,开始接触有理数的乘除法。这个阶段的学生在认知发展上正处于从具体形象思维向抽象逻辑思维过渡的关键时期,因此,对乘除法运算的理解和掌握需要借助具体实例和操作活动。学生在小学阶段已经具备了一定的乘除法运算基础,但面对有理数的乘除法,特别是负数的运算,可能会出现概念混淆、运算错误等问题。此外,学生的个体差异较大,学习兴趣和运算能力参差不齐。因此,在教学过程中,要关注学生的个体差异,采用分层教学和差异化指导,使每位学生能够在原有基础上得到提高。同时,注重激发学生的学习兴趣,引导他们通过自主探究、合作交流等方式,深入理解有理数乘除法的运算规律,提高运算技巧和解决问题的能力。
七年级数学上册人教版1.4有理数的乘除法教学设计
(二)讲授新知
1.讲解有理数乘法法则:教师以具体例子讲解有理数乘法的运算规律,强调同号得正、异号得负的原则。通过举例说明,让学生理解并掌握乘法运算的规律。
2.讲解有理数除法法则:教师引导学生理解除以一个数等于乘以这个数的倒数,讲解有理数除法的运算规律。同时,强调除数为零的情况,让学生避免在运算中犯错。
-利用直观教具和实际例题,帮助学生形象地理解有理数乘除法的运算规律。
-设计互动式教学活动,如小组合作、角色扮演等,增强学生的参与感和合作意识。
2.教学步骤:
-引入新课:通过生活实例,让学生感受乘除法在实际生活中的应用,激发学习兴趣。
-基本概念:讲解有理数乘除法的定义和性质,让学生通过例题和练习加深理解。
-解题技巧:教授有理数乘除法的运算技巧,如交叉相乘法、倒数法等,提高学生的运算速度和准确性。
-应用拓展:结合实际问题,让学生运用所学乘除法知识解决具体问题,提升学生的数学应用能力。
-归纳总结:引导学生总结有理数乘除法的学习要点,巩固所学知识。
3.教学策略:
-针对不同学生的学习需求,提供分层次的练习题,使每个学生都能在适合自己的难度上得到锻炼和提高。
七年级的学生在数学学习上已经具备了一定的基础,掌握了有理数的加法和减法运算,但对于乘除法运算还相对陌生。在此基础上,学生对于有理数乘除法的概念和运算规律可能存在理解上的困难。此外,学生在解决实际问题时,可能难以将乘除法运算与实际问题结合起来,缺乏运用乘除法解决问题的能力。因此,在教学过程中,应注重以下几点:
3.教师点评:教师针对学生的总结和分享进行点评,鼓励优秀表现,对不足之处给予指导和鼓励。
人教版七年级上数学《 有理数的乘除法》教案
《有理数的乘除法》教案【教学目标】1.掌握有理数的乘除法运算法则,会进行有理数的乘除运算。
2.能理解乘除法运算的算理,能解决一些实际问题。
【教学重点与难点】重点:掌握有理数的乘除法运算法则,会进行有理数的乘除运算。
难点:正确理解乘除法运算的算理,能解决一些实际问题。
【教具和多媒体资源】教具:黑板、粉笔、计算机、投影仪等。
多媒体资源:PPT课件、实物投影仪等。
【教学方法】1.通过实例引入有理数的乘除法运算法则,让学生理解其意义和作用。
2.通过讲解、演示、练习等多种方式,让学生掌握有理数的乘除运算方法。
3.通过小组合作和全班交流,让学生深入理解乘除法运算的算理,提高解题能力。
4.通过实例讲解和练习,让学生掌握用有理数的乘除法解决实际问题的思路和方法。
5.通过反馈与纠正,及时发现和纠正学生在学习过程中的错误和不足,提高学习效果。
【教学过程】1.导入新课:通过实例引入有理数的乘除法运算法则,让学生理解其意义和作用。
2.探究新知:通过讲解、演示、练习等多种方式,让学生掌握有理数的乘除运算方法。
3.巩固练习:通过小组合作和全班交流,让学生深入理解乘除法运算的算理,提高解题能力。
4.拓展延伸:通过实例讲解和练习,让学生掌握用有理数的乘除法解决实际问题的思路和方法。
5.课堂小结:通过回顾本节课所学知识,让学生总结有理数乘除法运算的要点和方法。
6.布置作业:通过布置作业,让学生进一步巩固所学知识。
【教学评价】1.对学生的参与程度进行评价。
2.对学生的学习成果进行评价。
3.对学生的学习态度和学习习惯进行评价。
1.4有理数的乘除法(教案)
-举例:(-12)÷(-3)=4,解释同号相除得正的规律;(-12)÷3=-4,解释异号相除得负的规律;0÷(-5)=0,强调零除以任何非零数结果为零。
-乘除混合运算:掌握乘除运算的顺序,解决包含乘除的复合运算问题。
-举例:(-3)×4境题,如“一件衣服原价200元,打8折后的价格是多少?”帮助学生将乘除法则应用于具体问题中。
-难点四:理解乘除法在实际生活中的应用,培养学生的数学应用意识。
-通过生活中的实例,如分配物品、分割比例等,帮助学生理解乘除法在现实世界的意义。
在教学过程中,教师应针对这些重点和难点内容,采用直观演示、举例说明、互动讨论等多种教学方法,确保学生能够透彻理解和掌握有理数的乘除法。同时,通过设计不同难度的习题,分层教学,使学生在巩固基础知识的同时,逐步提高解决问题的能力。
4.提升问题解决能力:在实际问题中运用乘除法运算,培养解决问题的策略,提高数学应用能力。
三、教学难点与重点
1.教学重点
-有理数乘法法则:熟练掌握同号得正、异号得负的乘法运算规律,以及任何数与零相乘得零的特点。
-举例:(-2)×(-3)=6,解释同号相乘得正的规律;(-2)×3=-6,解释异号相乘得负的规律;0×(-5)=0,强调零与任何数相乘结果为零。
另外,通过实践活动和小组讨论,我看到学生们对有理数乘除法在实际生活中的应用有了更深的理解。他们能够将所学知识运用到购物折扣、物品分配等场景中,这让我感到很高兴。但同时,我也注意到,在将理论知识转化为实际应用的过程中,部分学生还存在一定的困难。因此,我计划在下一节课中,引入更多的实际案例,帮助学生更好地将抽象的数学概念与生活实际联系起来。
有理数的乘除法教案
有理数的乘除法教案一、教学目标1.理解有理数的乘法和除法的概念及其性质;2.掌握有理数的乘法和除法的计算方法;3.能够应用有理数的乘法和除法解决实际问题。
二、教学重点1.有理数的乘法和除法的概念及其性质;2.有理数的乘法和除法的计算方法。
三、教学难点1.有理数的乘法和除法的性质;2.有理数的乘法和除法的应用。
四、教学内容1. 有理数的乘法(1)有理数的乘法定义有理数的乘法是指将两个有理数相乘,得到一个新的有理数的运算。
设有理数a和b,则它们的乘积为a×b,记作ab。
(2)有理数的乘法性质•交换律:a×b=b×a•结合律:(a×b)×c=a×(b×c)•分配律:a×(b+c)=a×b+a×c(3)有理数的乘法计算有理数的乘法计算方法与整数的乘法计算方法相同。
具体步骤如下:1.将两个有理数的绝对值相乘,得到新的有理数的绝对值;2.确定新的有理数的符号:当两个有理数的符号相同时,新的有理数的符号为正;当两个有理数的符号不同时,新的有理数的符号为负。
例如,计算(−34)×(25):(−34)×(25)=34×25=620=−3102. 有理数的除法(1)有理数的除法定义有理数的除法是指将一个有理数除以另一个有理数,得到一个新的有理数的运算。
设有理数a和b,其中b≠0,则它们的商为ab。
(2)有理数的除法性质•除法的逆运算:a÷b=a×1b•除数不能为零:a÷0无意义(3)有理数的除法计算有理数的除法计算方法与整数的除法计算方法相同。
具体步骤如下:1.将被除数的绝对值除以除数的绝对值,得到新的有理数的绝对值;2.确定新的有理数的符号:当被除数和除数的符号相同时,新的有理数的符号为正;当被除数和除数的符号不同时,新的有理数的符号为负。
例如,计算(−34)÷(25):(−34)÷(25)=(−34)×(52)=−158五、教学方法1.讲解法:通过讲解有理数的乘法和除法的定义、性质和计算方法,让学生掌握相关知识点;2.案例法:通过实际例子,让学生了解有理数的乘法和除法的应用;3.练习法:通过练习题,让学生巩固所学知识。
有理数的乘除法法则教案
有理数的乘除法教案一. 教学内容:小升初数学衔接班二. 教学目标、重点难点:1.知识目标(1) 解有理数乘法的意义,掌握有理数乘法法则中的符号法则和绝对值运算法则,并初步理解有理数乘法法则的合理性;(2) 根据有理数乘法法则熟练地进行有理数乘法运算,使学生掌握多个有理数相乘的积的符号法则;2. 重点:掌握有理数乘除法运算律3. 难点:熟练运用运算律进行计算三. 知识要点:有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数与0相乘都得0。
有理数中仍有:乘积是1的两个数互为倒数。
有理数乘法的交换律:两个数相乘,交换因数的位置积相等。
有理数乘法的结合律:三个数相乘,先把前两个数相等,或者先把后两个数相乘,积相等。
有理数乘法的分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
对有理数除法,一般有有理数除法则:除以一个数等于乘上这个数的倒数. 注意:0不能作除数.因为除法可化为乘法,所以有理数的除法有与乘法类似的法则:两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0.【典型例题】[例1](1)9)3(⨯- (2))2()21(-⨯-解:(1)279)3(-=⨯-(2)1)2()21(=-⨯-[例2] 用正负数表示气温的变化量,上升为正,下降为负,登山队攀登一座山峰,每升高1000米,气温变化量为C ︒-6,登高km 3后,气温有什么变化?解:183)6(-=⨯-答:气温下降18℃[例3] 计算:(1))41()59()65()3(-⨯-⨯⨯- (2)41)54(6)5(⨯-⨯⨯-解:(1))41()59(65)3(-⨯-⨯⨯-894159653-=⨯⨯⨯-= (2)41)54(6)5(⨯-⨯⨯-6415465=⨯⨯⨯= [例4] 用两种方法计算12)216141(⨯-+ 解法一:112)126122123(12)216141(-=⨯-+=⨯-+ 解法二:162312211261124112)216141(-=-+=⨯-⨯+⨯=⨯-+[例5] 计算:(1)9)36(÷- (2))53()2512(-÷- 解:(1)4)936(9)36(-=÷-=÷-(2)54)35()2512()53()2512(=-⨯-=-÷-[例6] 化简下列分数:(1)312- (2)1245--解:(1)43)12(312-=÷-=-(2)4151245)12()45(1245=÷=-÷-=--【基础习题】一、计算:二、计算 (1)、计算:)4(328-÷--(2)、计算:)3(15)2(9-÷--⨯-(3)、计算:22122⨯÷-(4)、计算:)43(875.3-⨯÷-(5)、计算:4332)6(÷÷-【巩固习题】1. 计算:(1)=-⨯-)7()8((2)=-⨯)5(12(3)=-⨯)4.0(9.2(4)=-⨯)98(41(5)=÷-13)91((6)=-÷-)14(56(7)=-÷)1(54(8)=÷-8325.0(9)=-⨯⨯-)4(32 (10)=-⨯-⨯-)7()5()6(2. 当3-=a ,6-=b ,6.3=c ,5.2-=d 时,计算下列各式:(1)bd ac +(2)d c b a ÷-÷(3)c b a )(+(4)d b a ÷-)(3. 用“>”“<”“=”填空:(1)若0<a ,0>b ,则b a ⋅ 0,b a 0(2)若0>a ,0<b ,则b a ⋅ 0,b a 0(3)若0<a ,0<b ,则b a ⋅ 0,b a 0。
最新人教版《有理数的除法》教学设计教案(第1课时)
第一章有理数1.4 有理数的乘除法1.4.2 有理数的除法第1课时一、教学目标【知识与技能】掌握有理数除法法则,会进行有理数的除法运算以及分数的化简.【过程与方法】通过学习有理数除法法则,体会转化思想,会将乘除混合运算统一为乘法运算.【情感态度与价值观】培养学生勇于探索积极思考的良好学习习惯.二、课型新授课三、课时第1课时,共2课时。
四、教学重难点【教学重点】正确应用法则进行有理数的除法运算.【教学难点】灵活运用有理数除法的两种法则.五、课前准备教师:课件、直尺、倒数图片等。
学生:三角尺、练习本、铅笔、圆珠笔或钢笔。
六、教学过程(一)导入新课根据实验测定,高度每增加1km,气温大概下降6℃. 某登山运动员攀登某高峰的途中发回信息,报告他所在高度的温度是-15℃,当时地面气温为3℃. 请问你能确定登山运动员所在的位置高度吗?(出示课件2)(二)探索新知1.师生互动,探究有理数的除法法则(出示课件4)教师问1:小明从家里到学校,每分钟走50米,共走了20分钟,问小明家离学校有多远?学生回答:50×20=100.教师问2:放学时,小明仍然以每分钟50米的速度回家,应该走多少分钟?学生回答:100 ÷50=20.教师问3:从上面这个例子你可以发现,有理数除法与有理数乘法之间满足怎样的关系?学生回答:有理数除法与有理数乘法互为逆运算.教师问4:引入负数后,如何计算有理数的除法呢?以8÷(-4)为例.(出示课件5)师生共同讨论后解答如下:根据除法意义,这就是要求一个数,使它与-4相乘得8.因为(-2)×(-4)=8所以8÷(-4)=-2 ①另外,我们知道,8×(-14)=-2 ②由①、②得8÷(-4)=8×(-14)③③式表明,一个数除以-4可以转化为乘以-14来进行,即一个数除以-4,℃等于乘以-4的倒数-14.教师问5:对于其他的数是不是也可以呢?请完成下面的题目:(出示课件6)学生回答:中间组由上到下答案依次为:-2,-6,45,-8;右边组由上到下答案依次为:-2,-6,45,-8;教师问6:上面各组数计算结果有什么关系?由此你能得到有理数的除法法则了吗?学生回答:上面各组数计算结果相等,有理数的除法可以转化为乘法进行计算.教师问7:观察下列两组式子,你能找到它们的共同点吗?(出示课件7)学生回答:除以一个数等于乘以它的倒数.教师问8:除数能为0吗?学生回答:不能为0.教师问9:换其他数的除法进行类似讨论,是否仍有除以a(a≠0)可以转化为乘以1a呢?[例如(-10)÷(-0.4)]学生做题后回答:仍然可以.总结点拨: 从而得出有理数除法法则:(出示课件8)除以一个不等于0的数,等于乘以这个数的倒数.这个法则也可以表示成:a÷b=a·1b(b≠0), 其中a 、b 表示任意有理数(b≠0)教师问10:利用上面的除法法则计算下列各题.(出示课件9)(1)(–54)÷ (–9); (2)(–27) ÷3;(3)0 ÷ (–7); (4)(–24) ÷(–6).学生回答:(1)6;(2)-9;(3)0;(4)4教师问11:从上面我们能发现商的符号有什么规律?学生回答:同号得正,异号得负.总结点拨:(出示课件10)两数相除,同号得正,异号得负,并把绝对值相除.零除以任何一个不等于零的数,都得零.教师问12:到现在为止我们有了两个除法法则,那么两个法则是不是都可以用于解决两数相除呢?(出示课件11)师生共同解答如下:1. 两个法则都可以用来求两个有理数相除.2. 如果两数相除,能够整除的就选择法则二,不能够整除的就选择用法则一.例1:计算:(出示课件12)(1)(–36) ÷ 9;(2)(-1225)÷(-35) .师生共同解答如下:解:(1)(–36) ÷ 9= –(36×19 )= –4;(2)例2:化简下列各式:(出示课件14)(1) −123 ;(2)−45−12 . 师生共同解答如下:解:(1)(2)例3:计算:(出示课件)(1) (2) 师生共同解答如下:解:(1)原式=12557 ÷5=(125+57)×15=125×15+57×15=25+17=2517点拨:如果有带分数,可以将带分数写成整数部分和分数部分的和,利用分配律进行运算,更加简便.(2)原式=52×85×14= 1点拨:将小数化为分数.总结点拨:1. 有理数除法化为有理数乘法以后,可以利用有理数乘法的运算律简化运算.2. 乘除混合运算往往先将除法化为乘法,然后确定积的符号,最后求出结果(乘除混合运算按从左到右的顺序进行计算).(三)课堂练习(出示课件19-22)1. (–21) ÷7的结果是( )A .3B .–3C .13 D. –132. 计算:(–12) ÷ 3=_______.3. 填空:(1)若a ,b 互为相反数,且a ≠ b ,则a b =________;(2)当a < 0时,|a |a =_______;(3)若 a>b ,a b <0,则a ,b 的符号分别是__________. (4)若–3x=12,则x =_____.4.若|2x +6|+|3−y |=0,则x y =_________.5. (1)计算(- 45)÷(- 2) ;(2)计算-0.5÷78×(- 54);(3)计算(-7)÷(- 32)÷(- 75)参考答案:1.B2.-43.(1)-1;(2)-1;(3)a>0,b<0;(4)-44.-1 解析:由题意得,|2x +6|+|3−y |=0,解得x=-3,y=3,所以x y =−33=-1.5.解:(1)原式=45×12=25(2)原式=12×87×54=57(3)原式=-7×23×57=-103(四)课堂小结今天我们学了哪些内容:除以一个不等于0的数,等于乘以这个数的倒数.两数相除,同号得正,异号得负,并把绝对值相除.零除以任何一个不等于零的数,都得零.(五)课前预习预习下节课(1.4.2)36页到37页的相关内容。
有理数的乘除教案
有理数的乘除教案篇一:有理数的乘法教案1.4.1 有理数的乘法教学任务分析教学流程安排教学过程设计一、创设情景,引入本节课要研究的问题――有理数的乘法前面学习了有理数的加减法,接下来就应该学习有理数的乘除法.同学们先看下面的问题:1.等于多少?表示什么?答案是:,表示3个2相加,即:.2.请将写成乘法算式?它怎么计算呢?这就是我们今天要研究的有理数的乘法.二、探索新知,归纳法则以下各个问题由学生自主进行探索研究,发现有理数乘法的合理性,进而归纳出有理数的乘法法则,注意其中的关键――对含有负因数的两个有理数相乘的含义的理解要让学生进行解释.在数轴上,向东运动2米,记作2米,向西运动2米应记作什么?(-2米)看下面的例子:(1)其中2看作向东运动2米,看作沿此方向运动3次.用数轴表示如下:结果怎样呢?(向东运动了6米),所以有:.(2)其中-2看作向西运动2米,看作沿此方向运动3次.用数轴表示如下:结果怎样?(向西运动了6米),所以有:.(3)其中2看作向东运动2米,向西运动了6米.所以有:看作沿与此相反的方向运动3次,即向西运动了3次,共.(4)请同学们说出对此式的理解,并说出结论.其中-2看作向西运动2米,×(-3)看作沿与此方向相反的方向运动了3次,即向东运动了3次,共向东运动了6米.(5),,,请同学们说说对这四个式子的理解,并得出结论.(都等于0)从上面一组题中,同学们觉得两个有理数得相乘的结果有没有规律可循?建议大家从两个方面进行思考:①积的符号与两个因数的符号有什么关系?②积的绝对值与两个因数的绝对值又有什么样的关系?(学生活动时间2分钟)学生回答,老师完善,得出有理数乘法的法则:有理数乘法法则同号两数相乘得正,异号两数相乘得负,并把绝对值相乘;0与任何有理数相乘仍得0.三、应用法则、巩固法则我们已经探索出了有理数的乘法法则,下面我们来应用其解决一些问题1.尝试训练,巩固练习(出示投影)(1)确定下列两个有理数积的符号:① ② ③ ④(学生口答,解释原因)(2)计算:① ② ③ ④ ⑤ ⑥ ⑦ ⑧(学生自主完成,查漏补缺)2.例题1 计算:① ②(由学生口述,教师板书,共同归纳出有理数乘法得解题步骤:(1)确定积的符号;(2)计算积的绝对值)巩固练习(出示投影)① ② ③ ④3.例题2 计算:① ② ③教师活动设计:通过这几个题是想让同学们体会在绝对值的计算过程中怎样处理假分数.4.从有理数的乘法法则可以看出,有理数的乘法关键是符号的确定,那么三个以上的有理数相乘积的符号怎么确定呢?下面我们就来研究这个问题.确定下列积的符号,你能从中发现什么?① ② ③ ④学生归纳结论:结论1:有一个因数为0,则积为0;结论2:几个不等于0的数相乘,积的符号由负因数的个数决定:当负因数的个数为奇数时,积为负;当负因数的个数为偶数时,积为正.巩固练习:判断下列积的符号(口答)① ② ③ ④四、主体活动,探索乘法运算律探索1:任意选择两个有理数(至少有一个是负数)填入下式的□和○中,并比较结果:□×○ ○×□.归纳(乘法交换律):两个有理数相乘,交换因数的位置,积不变,即:ab=ba.篇二:有理数乘除法教案学习目标1.掌握有理数乘法的运算法则和乘法法则,灵活地运用运算律简化运算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(4)如果蜗牛一直以每分2cm的速度向左爬行,3分钟前它在什么位置?
(-2)×(-3)=+6
思考:一个数同0相乘,如何解释?
问题3:
正数乘正数积为数。
负数乘正数积为数。
正数乘负数积为数。
负数乘负数积为数。
乘积的绝对值等于各乘数绝对值的
归纳:
有理数的乘法法则
两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数同0相乘,都得0.
在本环节中,我给与学生充分的合作交流、自主探索的时间和空间。通过设置问题2并用课件向学生演示蜗牛在直线上的运动过程,激发学生的学习兴趣。而且设置了四个问题:第一个问题,可以看成是与以前学过的乘法一样,学生容易理解。第二个问题中,结合有理数加法时的讲法,向右为正,向左为负,很容易得出负数与正数相乘结果。第三个问题是关键,在这个问题中,对于时间规定了现在前为负,有了这个规定,就可以得出正数与负数相乘的结果。
在本环节我留给学生充分探索交流的时间和空间,对学生可能出现的疑问给予帮助,让学生经过自主探索、合作交流从深层次理解法则,真正掌握本节课的重点知识,从而在头脑中再现知识的形成过程,避免单纯的记忆,使学习过程成为一种再创造的过程。我对学生及时进行鼓励,充分肯定学生的探究成果,且关注学生的情感体验。
解决问题综合运用
附件:教学设计
聚焦教学重难点的信息化教学设计
课题名称:有理数的乘除法
姓名:
王劭
工作单位:
大坝中学
学科年级:
七年级
教材版本:
人教版
一、教学内容分析
有理数的乘法是在学生学完有理数的加法后学习的,它与有理数的加法运算一样,也是建立在小学算术的基础上。因此,有理数的乘法运算,在确定“积”的符号后,实质上是小学算术数的乘法运算,思维过程就是如何把中学有理数的乘法运算化归为小学算术数的乘法运算。由于有理数的乘法是有理数最基本的运算之一,因而它是进一步学习有理数运算的基础,也是今后学习实数运算、代数式的运算、解方程以及函数知识的基础。学好这部分内容,对增强学习代数的信心具有十分重要的意义。
(2)如果a>0b<0,那么a·b____0.
(3)如果a<0,b<0,那么a·b____0 .
(4)如果a=0,b≠0,那么a·b____0
为培养学生发散思维和规范解题的习惯,我引导学生运用有理数的乘法法则解决两个例题,且明确倒数的定义在有理数范围内仍有意义。最后我用问题;“实际生活中,还存在其他类似的例子吗,说出来和大家一起分享吧!”再次激起学生的求知欲望和主人翁的学习姿态。
师生互动 探究新知
问题2:
如图,一只蜗牛沿直线L爬行:
它现在位置恰在L上的点0.
0 2 4 x
(1)如果蜗牛一直以每分2cm的速度向右爬行,3分钟后它在什么位置?
(+2)×(+3)=+6
(2)如果蜗牛一直以每分2cm的速度向左爬行,3分钟后它在什么位置?
(-2)×(+3)=-6
(3)如果蜗牛一直以每分2cm的速度向右爬行,3分钟前它在什么位置?
五、教学重点及难点
重点:有理数的乘法法则。
难点:有理数乘法中的符号法则。
2、教学程序(设计为七个环节)
教学环节
教学内容
活动和意图
ห้องสมุดไป่ตู้创设情境
复习导新
问题1:
1.计算
①、—5)+(—5)
②、(—5)+(—5)+(—5)
③、(—5)+(—5)+(—5)+(—5)
④、(—5)+(—5)+(—5)+(—5)+(—5)
本环节通过让学生独立思考、分组讨论,进一步培养学生的合作意识,使学生有效的理解本节课的难点。
体验成功
享受快乐
1.抢答题
(1)、翻牌游戏
老师任意摸两张扑克牌,学生说出它的积,规定:红色为正,黑色为负。
2.猜想下列各式的值
(—5)×2;(—5)×3;
(—5)×4;(—5)×5,
3.两个有理数相乘有几种情况?
通过创设情境,回顾复习以前的相关知识,以便形成知识迁移,,出示负数与正数相乘的乘法引出新课。以给学生造成“心求通而未能得,口预言而未能说”的情势,从而唤起学生强烈的求知欲,使他们以跃跃欲试的姿态投入到新的探索活动中就过来。
通过设置问题3,引导学生用数学语言准确地描述以上实例的运算结果,培养学生从特殊归纳一般的意识,提高学生整合知识的能力。我以填空形式引导学生对照实例自主完成。
进一步引导学生观察积的符号的特点,师生共同归纳出有理数的乘法法则。
分析法则
掌握实质
问题4 :填空
1.(—5)×(—3)同号相乘
(—5)×(—3)=+()———得正
在学习本节课之前,学生已经学习了有理数的加减法运算法则,已经对符号问题也有了一定的认识,同时,也具有一定的观察、归纳、猜想、验证能力。由此为学生对本节课内容的学习打好了基础。
四、教学策略选择与设计
对于认知的主体——学生来说,他们已经具备了初步探究问题的能力,但是对知识的主动迁移能力较弱,为使学生更好地构建新的认知结构,促进学生的发展,我将在教学中采用诱思探究式教学法并采用多媒体等现代教学手段。以学生为中心,使其在“生动活泼、民主开放、自主探索、合作交流、动手实践”的氛围中愉快地学习,让学生从“学会”到“会学”,使学生真正成为学习的主人.
5×3=15把绝对值相乘
2.(—7)×4------___
(—7)×4=—( )-----___
7×4=28-----___
(—7)×4=___
归纳:有理数相乘,先确定积的_____ ,再确定积的 _____________.
通过设置问题4让学生去探索,从新的角度去认识乘法,我并用课件向学生展示问题,引导学生理解法则的实质。
例1计算
(1)(-3)×9 (2) (-1/2)×2
说明:乘积是1的两个数互为倒数。
例2 用正负数表示气温的变化量,上升为正,下降为负。登山队攀登一座山峰,每登高1km气温的变化量为-60C,攀登3km后,气温有什么变化?
思考:用“>”“<”“=”号填空。
(1)如果a>0,b>0, 那么a·b____0.
二、教学目标
知识与技能:使学生理解有理数乘法的意义,掌握有理数乘法法则,并能准确地进行有理数的乘法运算。
过程与方法:通过教学,渗透化归、分类等数学思想方法,初步培养学生的化归意识和观察、比较、概括等思维能力。
情感与态度:激发学生学习数学的兴趣,传授知识的同时。注意培养学生勇于探索新知的精神。
三、学习者特征分析