基本初等函数的图像与性质专题

合集下载

六大基本初等函数图像及其性质

六大基本初等函数图像及其性质

六大基本初等函数图像及其性质一、常值函数(也称常数函数) y =C (其中C 为常数);常数函数(C y =)0≠C0=C平行于x 轴的直线y 轴本身 定义域R定义域R二、幂函数 αx y = ,x 是自变量,α是常数;1.幂函数的图像:2.幂函数的性质;性质函数x y =2x y =3x y =21xy =1-=x y定义域 R R R [0,+∞) {x|x ≠0} 值域 R [0,+∞) R [0,+∞) {y|y ≠0} 奇偶性 奇 偶 奇 非奇非偶 奇 单调性 增[0,+∞) 增 增 增(0,+∞) 减 (-∞,0] 减(-∞,0) 减公共点(1,1)xy Ox y =2x y =21xy =1-=xy 3x y = O=y xCy =Oxyy1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。

且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称;2)当α为负整数时。

函数的定义域为除去x=0的所有实数; 3)当α为正有理数nm时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1);4)如果m>n 图形于x 轴相切,如果m<n,图形于y 轴相切,且m 为偶数时,还跟y 轴对称;m ,n 均为奇数时,跟原点对称;5)当α为负有理数时,n 为偶数时,函数的定义域为大于零的一切实数;n 为奇数时,定义域为去除x=0以外的一切实数。

三、指数函数xa y =(x 是自变量,a 是常数且0>a ,1≠a ),定义域是R ;[无界函数]1.指数函数的图象:2.指数函数的性质;性质函数x a y =)1(>ax a y =)10(<<a定义域 R 值域(0,+∞) 奇偶性 非奇非偶公共点过点(0,1),即0=x 时,1=y单调性在),(∞+∞-是增函数 在),(∞+∞-是减函数 1)当1>a 时函数为单调增,当10<<a 时函数为单调减; 2)不论x 为何值,y 总是正的,图形在x 轴上方; 3)当0=x 时,1=y ,所以它的图形通过(0,1)点。

基本初等函数的图像与性质

基本初等函数的图像与性质

在数学的发展过程中,形成了最简单最常用的六类函数,即 常数函数 、 幂函数、 指数函数 、 对数函数 、 三角函数 与 反三角函数 ,这六类函数称为 基本初等函数。

一、常数函数y = c 或 f ( x ) = c , x ∈ R ,其中 c 是常数。

它的图像是通过点 (0,c),且平行 x轴的直线,如下图所示:常数函数的图像常数函数的性质:1、常数函数是有界函数,周期函数(没有最小的正周期)、偶函数;2、常数函数既是单调增加函数又是单调减少函数,特别的当 c = 0 时,它还是奇函数。

二、幂函数1、形如 y = x^a 的函数是幂函数,其中 a 是实数 。

幂函数图(1)2、常见幂函数的图像:幂函数图(2)注:画幂函数图像时,先画第一象限的部分,在根据函数奇偶性完成整个图像。

3、幂函数的性质:① 幂函数的图像最多只能同时出现在两个象限,且不经过第四象限;如图与坐标轴相交,则交点一定是坐标原点 。

② 所有幂函数在 (0,+∞)上都有定义,并且图像都经过点 (1,1)。

③ 若 a > 0 , 幂函数图像都经过点 (0,0)和(1,1),在第一象限内递增;若 a三、指数函数1、一般地,函数 y = a^x (a > 0 且 a ≠ 1)叫做 指数函数 ,自变量 x 叫做 指数 ,a 叫做 底数 ,函数的定义域是 R 。

2、指数函数的图像:指数函数图象3、指数函数的性质:① 指数函数 y = a^x (a > 0 且 a ≠ 1)的函数值恒大于零 ,定义域为 R ,值域为(0,+∞);② 指数函数 y = a^x (a > 0 且 a ≠ 1)的图像经过点 (0,1);③ 指数函数 y = a^x (a > 1)在 R 上递增 ,指数函数 y = a^x (0四、对数函数1、对数及其运算:一般地,如果 a (a > 0 , a ≠ 1)的 b 次幂等于 N ,即 a^b = N,那么 b 叫做以 a 为底N 的 对数 ;记作: log aN = b , 其中 a 叫做对数的 底数 , N 叫做 真数 。

专题二 第1讲 函数、基本初等函数的图象与性质

专题二 第1讲 函数、基本初等函数的图象与性质

函数,
所以由15<(15)b<(15)a<1 得 0<a<b<1,
所以0<
a b
<1.
所以y=ax,y=bx,y=( a )x在(-∞,+∞)上都是
b
递减函数,
从而ab<aa,( a)a<1得ba>aa, b
故ab<aa<ba,
答案选B.
答案 B
(2)已知函数 f(x)=2x-21x,函数 g(x)=ffx-,xx,≥x0<,0,
变式训练1
(1)(2013·重庆)已知函数f(x)=ax3+bsin x+4(a,b∈R),
f(lg(log210))=5,则f(lg(lg 2))等于( C )
A.-5
B.-1 C.3 D.4
解析
lg(log210)=lg
1 lg 2
=-lg(lg
2),
由f(lg(log210))=5,
得a[lg(lg 2)]3+bsin(lg(lg 2))=4-5=-1,
2
则实数a的取值范围是( )
A.(-1,0)∪(0,1) B.(-∞,-1)∪(1,+∞) C.(-1,0)∪(1,+∞) D.(-∞,-1)∪(0,1)
思维启迪 可利用函数图象或分
类讨论确定a的范围;
解析 方法一 由题意作出y=f(x)的图象如图. 显然当a>1或-1<a<0时,满足f(a)>f(-a).故选C.
方法二 对a分类讨论:
当a>0时,log2a>log 1 a,即log2a>0,∴a>1. 2
当a<0时,log 1 (-a)>log2(-a),即log2(-a)<0,

六大基本初等函数图像及其性质

六大基本初等函数图像及其性质

六大基本初等函数图像及其性质一、常值函数(也称常数函数) y =C (其中C 为常数);二、幂函数 αy =1.幂函数的图像:2.幂函数的性质;3y1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。

且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称;2)当α为负整数时。

函数的定义域为除去x=0的所有实数; 3)当α为正有理数nm时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1);4)如果m>n 图形于x 轴相切,如果m<n,图形于y 轴相切,且m 为偶数时,还跟y 轴对称;m ,n 均为奇数时,跟原点对称;5)当α为负有理数时,n 为偶数时,函数的定义域为大于零的一切实数;n 为奇数时,定义域为去除x=0以外的一切实数。

三、指数函数xa y =(x 是自变量,a 是常数且0>a ,1≠a ),定义域是R ;[无界函数]1.指数函数的图象:2.指数函数的性质;1(1)当1>a 时函数为单调增,当10<<a 时函数为单调减; 2)不论x 为何值,y 总是正的,图形在x 轴上方; 3)当0=x 时,1=y ,所以它的图形通过(0,1)点。

3.(选,补充)指数函数值的大小比较*N ∈a ;a.底数互为倒数的两个指数函数x a x f =)(,xa x f ⎪⎭⎫ ⎝⎛=1)(的函数图像关于y 轴对称。

.当1>a 时,a 值越大,x a y =的图像越靠近y 轴;.当10<<a 时,a 值越大,xa y =的图像越远离y 轴。

4.指数的运算法则(公式);a.整数指数幂的运算性质),,0(Q n m a ∈≥;(1) n m n m a a a +=⋅(2)n m n m a a a -=÷(3)()()mn nmnm aaa ==xf x xxx g ⎪⎫⎛=1)((4)()n n n b a ab =b.根式的性质; (1)()a a nn= ; (2)当n 为奇数时,a a nn =当n 为偶数时,⎩⎨⎧<-≥==)0(0)(a a a a a a nnc.分数指数幂;(1))1,,,0(*>∈>=n Z n m a a a n m nm(2))1,,,0(11*>∈>==-n Z n m a a aanmnm nm 四、对数函数x y a log =(a 是常数且1,0≠>a a ),定义域),0(+∞∈x [无界]1.对数的概念:如果a(a >0,a ≠1)的b 次幂等于N ,就是 N a b=,那么数b 叫做以a 为底N 的对数,记作b N a =log ,其中a 叫做对数的底数,N 叫做真数,式子N a log 叫做对数式。

六大基本初等函数图像及其性质

六大基本初等函数图像及其性质

六大基本初等函数图像及其性质一、常值函数(也称常数函数) y =C (其中C 为常数);常数函数(C y =)0≠C0=C平行于x 轴的直线y 轴本身 定义域R定义域R二、幂函数 αx y = ,x 是自变量,α是常数;1.幂函数的图像:2.幂函数的性质;性质函数x y =2xy =3x y =21xy =1-=x y定义域 R RR [0,+∞) {x|x ≠0} 值域 R [0,+∞) R [0,+∞) {y|y ≠0} 奇偶性 奇 偶 奇 非奇非偶 奇 单调性 增[0,+∞) 增 增 增(0,+∞) 减 (-∞,0] 减(-∞,0) 减公共点(1,1)1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时xyOxy =2x y =3x y =1-=x y 21xy =O=y xCy =Oxyy在原点处与x 轴相切。

且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称;2)当α为负整数时。

函数的定义域为除去x=0的所有实数; 3)当α为正有理数nm时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1);4)如果m>n 图形于x 轴相切,如果m<n,图形于y 轴相切,且m 为偶数时,还跟y 轴对称;m ,n 均为奇数时,跟原点对称;5)当α为负有理数时,n 为偶数时,函数的定义域为大于零的一切实数;n 为奇数时,定义域为去除x=0以外的一切实数。

三、指数函数xa y =(x 是自变量,a 是常数且0>a ,1≠a ),定义域是R ;[无界函数]1.指数函数的图象:2.指数函数的性质;性质函数x a y =)1(>ax a y =)10(<<a定义域 R 值域(0,+∞) 奇偶性 非奇非偶公共点过点(0,1),即0=x 时,1=y单调性在),(∞+∞-是增函数 在),(∞+∞-是减函数 1)当1>a 时函数为单调增,当10<<a 时函数为单调减; 2)不论x 为何值,y 总是正的,图形在x 轴上方; 3)当0=x 时,1=y ,所以它的图形通过(0,1)点。

六大基本初等函数图像及其性质

六大基本初等函数图像及其性质

六大基本初等函数图像及其性质一、常值函数(也称常数函数) y =C (其中C 为常数);常数函数(C y =)0≠C0=C平行于x 轴的直线y 轴本身 定义域R定义域R二、幂函数 αx y = ,x 是自变量,α是常数;1.幂函数的图像:2.幂函数的性质;性质函数x y =2x y =3x y =21xy =1-=x y定义域 R R R [0,+∞) {x|x ≠0} 值域 R [0,+∞) R [0,+∞) {y|y ≠0} 奇偶性 奇 偶 奇 非奇非偶 奇 单调性 增[0,+∞) 增 增 增(0,+∞) 减 (-∞,0] 减(-∞,0) 减公共点(1,1)xyOxy =2x y =3x y =1-=xy 21xy =O=y xCy =Oxyy1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。

且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称;2)当α为负整数时。

函数的定义域为除去x=0的所有实数; 3)当α为正有理数nm时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1);4)如果m>n 图形于x 轴相切,如果m<n,图形于y 轴相切,且m 为偶数时,还跟y 轴对称;m ,n 均为奇数时,跟原点对称;5)当α为负有理数时,n 为偶数时,函数的定义域为大于零的一切实数;n 为奇数时,定义域为去除x=0以外的一切实数。

三、指数函数xa y =(x 是自变量,a 是常数且0>a ,1≠a ),定义域是R ;[无界函数]1.指数函数的图象:2.指数函数的性质;性质函数x a y =)1(>ax a y =)10(<<a定义域 R 值域(0,+∞) 奇偶性 非奇非偶公共点过点(0,1),即0=x 时,1=y单调性在),(∞+∞-是增函数 在),(∞+∞-是减函数 1)当1>a 时函数为单调增,当10<<a 时函数为单调减; 2)不论x 为何值,y 总是正的,图形在x 轴上方; 3)当0=x 时,1=y ,所以它的图形通过(0,1)点。

六大基本初等函数图像及其性质

六大基本初等函数图像及其性质

六大基本初等函数图像及其性质一、常值函数(也称常数函数) y =C (其中C 为常数);常数函数(C y =)0≠C0=C平行于x 轴的直线y 轴本身 定义域R定义域R二、幂函数 αx y = ,x 是自变量,α是常数;1.幂函数的图像:2.幂函数的性质;性质函数x y =2x y =3x y =21xy =1-=x y定义域 R R R [0,+∞) {x|x ≠0} 值域 R [0,+∞) R [0,+∞) {y|y ≠0} 奇偶性 奇 偶 奇 非奇非偶 奇 单调性 增[0,+∞) 增 增 增(0,+∞) 减 (-∞,0] 减(-∞,0) 减公共点(1,1)xyOxy =2x y =3x y =1-=xy 21xy =O=y xCy =Oxyy1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。

且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称;2)当α为负整数时。

函数的定义域为除去x=0的所有实数; 3)当α为正有理数nm时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1);4)如果m>n 图形于x 轴相切,如果m<n,图形于y 轴相切,且m 为偶数时,还跟y 轴对称;m ,n 均为奇数时,跟原点对称;5)当α为负有理数时,n 为偶数时,函数的定义域为大于零的一切实数;n 为奇数时,定义域为去除x=0以外的一切实数。

三、指数函数xa y =(x 是自变量,a 是常数且0>a ,1≠a ),定义域是R ;[无界函数]1.指数函数的图象:2.指数函数的性质;性质函数x a y =)1(>ax a y =)10(<<a定义域 R 值域(0,+∞) 奇偶性 非奇非偶公共点过点(0,1),即0=x 时,1=y单调性 在),(∞+∞-是增函数在),(∞+∞-是减函数1)当1>a 时函数为单调增,当10<<a 时函数为单调减; 2)不论x 为何值,y 总是正的,图形在x 轴上方; 3)当0=x 时,1=y ,所以它的图形通过(0,1)点。

六大基本初等函数图像及性质

六大基本初等函数图像及性质

六大基本初等函数图像及其性质一、常值函数(也称常数函数) y =C (其中C 为常数);常数函数(C y =)0≠C0=C平行于x 轴的直线y 轴本身 定义域R定义域R二、幂函数 αx y = ,x 是自变量,α是常数;1.幂函数的图像:2.幂函数的性质;性质函数x y =2x y =3x y =21xy =1-=x y定义域 R R R [0,+∞) {x|x ≠0} 值域 R [0,+∞) R [0,+∞) {y|y ≠0} 奇偶性 奇 偶 奇 非奇非偶 奇 单调性 增[0,+∞) 增 增 增(0,+∞) 减 (-∞,0] 减(-∞,0) 减公共点(1,1)xyOxy =2x y =3x y =1-=xy 21xy =O=y xCy =Oxyy1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。

且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称;2)当α为负整数时。

函数的定义域为除去x=0的所有实数; 3)当α为正有理数nm时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1);4)如果m>n 图形于x 轴相切,如果m<n,图形于y 轴相切,且m 为偶数时,还跟y 轴对称;m ,n 均为奇数时,跟原点对称;5)当α为负有理数时,n 为偶数时,函数的定义域为大于零的一切实数;n 为奇数时,定义域为去除x=0以外的一切实数。

三、指数函数xa y =(x 是自变量,a 是常数且0>a ,1≠a ),定义域是R ;[无界函数]1.指数函数的图象:2.指数函数的性质;性质函数x a y =)1(>ax a y =)10(<<a定义域 R 值域(0,+∞) 奇偶性 非奇非偶公共点过点(0,1),即0=x 时,1=y单调性在),(∞+∞-是增函数 在),(∞+∞-是减函数 1)当1>a 时函数为单调增,当10<<a 时函数为单调减; 2)不论x 为何值,y 总是正的,图形在x 轴上方; 3)当0=x 时,1=y ,所以它的图形通过(0,1)点。

六大基本初等函数图像及其性质_9000

六大基本初等函数图像及其性质_9000

六大基本初等函数图像及其性质一、常值函数(也称常数函数)y =C(此中 C 为常数);常数函数( y C )C 0C0y yy Cx y 0xO O平行于x 轴的直线y 轴自己定义域R定义域R 二、幂函数 y x ,x是自变量,是常数;1y y x1.幂函数的图像:2y x2y xy x3y x1O x2.幂函数的性质;性质y x y x231y x1y x y x2函数定义域R R R[0,+ ∞ ){x|x ≠ 0}值域R[0,+ ∞ )R[0,+ ∞ ){y|y ≠ 0}奇偶性奇偶奇非奇非偶奇单一性增[0,+∞) 增增增(0,+∞ )减(-∞ ,0] 减(-∞ ,0)减公共点( 1,1)1)当α为正整数时,函数的定义域为区间为x ( , ),他们的图形都经过原点,并当α>1 时在原点处与x 轴相切。

且α为奇数时,图形对于原点对称;α为偶数时图形对于y 轴对称;2)当α为负整数时。

函数的定义域为除掉x=0 的全部实数;3)当α为正有理数m时,n为偶数时函数的定义域为(0, +∞),n为奇数时函数的定义域为(-n∞ ,+∞),函数的图形均经过原点和( 1 ,1);4)假如 m>n 图形于 x 轴相切,假如m<n,图形于 y 轴相切,且m 为偶数时,还跟y 轴对称; m, n均为奇数时,跟原点对称;5)当α为负有理数时,n 为偶数时,函数的定义域为大于零的一确实数;n 为奇数时,定义域为去除 x=0 之外的一确实数。

三、指数函数 y a x(x是自变量,a是常数且a0, a1),定义域是 R ;[ 无界函数 ]1.指数函数的图象:yy a x y a xy(a 1)(0a1)(0,1)y1(0,1)y1 O x O x2.指数函数的性质;性质y a x(a1)y a x(0 a 1)函数定义域R值域(0,+∞)奇偶性非奇非偶公共点过点 (0,1),即 x0 时,y 1单一性在(,)是增函数在(,)是减函数1 )当a 1时函数为单调增 , 当0a 1时函数为单调减;2 )不论x为何值 ,y 总是正的,图形在 x 轴上方;3 )当x 0时 , y 1, 所以它的图形通过 (0,1) 点。

(完整版)基本初等函数图像及其性质表

(完整版)基本初等函数图像及其性质表

函数名 一次函数 二次函数 反比例函数 指数函数 解析式)0()(≠+=a b ax x f)0()(≠=k xkx f图像定义域 R R {}0|≠x xR值域 R),(∞+0 必过点)(b ,0),(c 0 )1,(1,--k k )()(1,0 周期性 不是周期函数 不是周期函数 不是周期函数不是周期函数单调性在R 上单增)2-a b-∞,(为减),2+∞-ab (为增 )为减,(0-∞)为减,(∞+0为减为增,101<<>a a最大最小值在R 不存在最大最小值开口向上有最小值ab ac y 442min-=不存在最大最小值在R 上不存在最大最小值奇偶性非奇非偶函数为奇函数00≠=b b偶函数为非奇非为偶函数,00≠=b b 奇函数 非奇非偶函数对称性为常数。

对称,函数图像关于直线任何一点对称;关于图像上t t x a y +=1-对称直线函数图像关于abx 2-= 函数图像关于原点对称; 对称。

直线和关于对称,直线图像关于x y x y -==既不成中心对称也不成轴对称。

渐近线 无 无.00==y x 直线或者直线.0=y 直线)0()(2≠++=a cbx ax x f )10()(≠=a a a x f x且>0>a>a 0>k ),44[2+∞-ab ac ),(),(∞+⋃∞00-a y =)10(<<a xa y =)1(>a xyO1函数名 对数函数 幂函数的一个例子 双钩函数含绝对值函数解析式)10(log ≠>=a a y xa且)0(≥=x xyba b x a x y <-+-=设为了研究方便 图像O 1yx)10(log <<=a y xa)1(log >=a y xaOyxxy =11定义域 ()∞+,0[)∞+,00}x |{x ≠R值域R[)∞+,0(][)∞+∞,,ab ab 22--[)+∞-,a b必过点)(0,1()1,1)2,(2,ab abab ab--)(),(,a b b a b a --)(周期性 不是周期函数 不是周期函数 不是周期函数 不是周期函数单调性单调递减。

六大基本初等函数图像及其性质

六大基本初等函数图像及其性质

六大基本初等函数图像及其性质一、常值函数(也称常数函数)y =C(此中 C 为常数);常数函数( y C )C 0C0y yy Cx y 0xO O平行于x 轴的直线y 轴自己定义域R定义域R 二、幂函数 y x ,x是自变量,是常数;1y y x1.幂函数的图像:2y x2y xy x3y x1O x2.幂函数的性质;性质y x y x231y x1y x y x2函数定义域R R R[0,+ ∞ ){x|x ≠ 0}值域R[0,+ ∞ )R[0,+ ∞ ){y|y ≠ 0}奇偶性奇偶奇非奇非偶奇单一性增[0,+∞) 增增增(0,+∞ )减(-∞ ,0] 减(-∞ ,0)减公共点( 1,1)1)当α为正整数时,函数的定义域为区间为x ( , ),他们的图形都经过原点,并当α>1 时在原点处与x 轴相切。

且α为奇数时,图形对于原点对称;α为偶数时图形对于y 轴对称;2)当α为负整数时。

函数的定义域为除掉x=0 的全部实数;3)当α为正有理数m时,n为偶数时函数的定义域为(0, +∞),n为奇数时函数的定义域为(-n∞ ,+∞),函数的图形均经过原点和( 1 ,1);4)假如 m>n 图形于 x 轴相切,假如m<n,图形于 y 轴相切,且m 为偶数时,还跟y 轴对称; m, n均为奇数时,跟原点对称;5)当α为负有理数时,n 为偶数时,函数的定义域为大于零的一确实数;n 为奇数时,定义域为去除 x=0 之外的一确实数。

三、指数函数 y a x(x是自变量,a是常数且a0, a1),定义域是 R ;[ 无界函数 ]1.指数函数的图象:yy a x y a xy(a 1)(0a1)(0,1)y1(0,1)y1 O x O x2.指数函数的性质;性质y a x(a1)y a x(0 a 1)函数定义域R值域(0,+∞)奇偶性非奇非偶公共点过点 (0,1),即 x0 时,y 1单一性在(,)是增函数在(,)是减函数1 )当a 1时函数为单调增 , 当0a 1时函数为单调减;2 )不论x为何值 ,y 总是正的,图形在 x 轴上方;3 )当x 0时 , y 1, 所以它的图形通过 (0,1) 点。

(完整)六大基本初等函数图像及其性质

(完整)六大基本初等函数图像及其性质

标准实用文案大全六大基本初等函数图像及其性质一、常值函数(也称常数函数) y =C (其中C 为常数);常数函数(C y =)≠C 0=C 平行于x 轴的直线y 轴本身定义域R 定义域R二、幂函数αx y=,x 是自变量,α是常数;1.幂函数的图像:2.幂函数的性质;性质函数xy =2xy =3xy =21x y =1-=xy 定义域R R R [0,+[0,+∞∞) {x|x {x|x≠≠0} 值域R [0,+[0,+∞∞) R [0,+[0,+∞∞) {y|y {y|y≠≠0} 奇偶性奇偶奇非奇非偶奇单调性增[0,+[0,+∞∞) ) 增增增增(0,+(0,+∞∞) ) 减减(-(-∞∞,0] ,0] 减减(-(-∞∞,0) ,0) 减减公共点(1,11,1))xyOxy =2x y =3x y =1-=x y 21x y =O=y xCy =Oxyy1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α,他们的图形都经过原点,并当α>1>1时在原点处与x 轴相切。

且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称;2)当α为负整数时。

函数的定义域为除去x=0的所有实数; 3)当α为正有理数nm 时,时,n n 为偶数时函数的定义域为(为偶数时函数的定义域为(0, +0, +0, +∞),∞),∞),n n 为奇数时函数的定义域为(为奇数时函数的定义域为(--∞,+,+∞),函数的图形均经过原点和(∞),函数的图形均经过原点和(∞),函数的图形均经过原点和(1 ,11 ,11 ,1););4)如果m>n 图形于x 轴相切,如果m<n,m<n,图形于图形于y 轴相切,且m 为偶数时,还跟y 轴对称;轴对称;m m ,n 均为奇数时,跟原点对称;5)当α为负有理数时,)当α为负有理数时,n n 为偶数时,函数的定义域为大于零的一切实数;为偶数时,函数的定义域为大于零的一切实数;n n 为奇数时,定义域为去除x=0以外的一切实数。

4、基本初等函数图像及其性质

4、基本初等函数图像及其性质

基本初等函数图像以及性质一、指数函数的图象及性质函数y =a x (a >0,且a ≠1)图象0<a <1a >1图象特征在x 轴上方,过定点(0,1)当x 逐渐增大时,图象逐渐下降当x 逐渐增大时,图象逐渐上升性质定义域 R 值域(0,+∞)单调性 减增 函数值 变化 规律当x =0时,y =1当x <0时,y >1; 当x >0时,0<y <1当x <0时,0<y <1; 当x >0时,y >1在同一平面直角坐标系中,分别作出指数函数y =a x ,y =b x ,y =c x ,y =d x (a >1,b >1,0<c <1,0<d <1)的图象,如图所示.作出直线x =1,分别与四个图象自上而下交于点A (1,a ),B (1,b ),C (1,c ),D (1,d ),得到底数的大小关系是:a >b >1>c >d >0.根据y 轴右侧的图象,也可以利用口诀:“底大图高”来记忆.考点一 指数函数的图像例1、如果函数在R 上是减函数,那么实数a 的取值范围是( ) A .|a |> B .<|a |< C .|a |> D .|a |<3x a x f )2()(2-=22331、已知指数函数(0,1)x y a a a =>≠在[]1,2上的最大值比最小值大2a,则a =例2、函数y =a x -a -1(a >0且a ≠1)的图象可能是( )A BC D1、函数f (x )=21-x 的大致图象为( )2、函数y=xa x|x|(a>1)的图象大致是()例3、若函数f(x)=|2x-2|-b有两个零点,则实数b的取值范围是________.1、若方程|3x-1|=k有一解,则k的取值范围为________.2、若函数y=21-x+m的图象不经过第一象限,则m的取值范围为________.考点二指数函数单调性的应用例4、设a=0.60.6,b=0.61.5,c=1.50.6,则a,b,c的大小关系是() A.a<b<c B.a<c<bC.b<a<c D.b<c<a1、已知函数f(x)=a x+b(a>0,a≠1)的定义域和值域都是[-1,0],则a+b=________.2、如果函数y=a2x+2a x-1(a>0,a≠1)在区间[-1,1]上的最大值是14,则a 的值为()A.13B.1C.3 D.13或33、(2017·合肥模拟)若2x+5y≤2-y+5-x,则有() A.x+y≥0 B.x+y≤0C.x-y≤0 D.x-y≥0 对数函数的图象与性质定义域:(0,+∞)在同一平面直角坐标系中,分别作出对数函数y=log a x,y=log b x,y=log c x,y=log d x(a>1,b>1,0<c<1,0<d<1)的图象,如图所示.作出直线y=1,分别与四个图象自左向右交于点A(c,1),B(d,1),C(a,1),D(b,1),得到底数的大小关系是:b>a>1>d>c>0.根据直线x=1右侧的图象,单调性相同时也可以利用口诀:“底大图低”来记忆.考点三对数的图像例5、函数y=2log4(1-x)的图象大致是()1、【2019年高考浙江】在同一直角坐标系中,函数1xya=,1(2log)ay x=+(a>0,且a≠1)的图象可能是2、已知函数y=log a(x+c)(a,c为常数,其中a>0,a≠1)的图象如图所示,则下列结论成立的是()A.a>1,c>1B.a>1,0<c<1C.0<a<1,c>1D.0<a<1,0<c<13、(2018·张家界三模)在同一直角坐标系中,函数f(x)=2-ax,g(x)=log a(x+2)(a>0,且a≠1)的图象大致为()A BC D例6、函数y =log a (x +4)-1(a >0,a ≠1)的图象恒过定点A ,若点A 在直线x m +yn =-1上,且m >0,n >0,则3m +n 的最小值为( )A .13B .16C .11+6 2D .281、(2017·河北五校质监)函数y =log a (x +3)-1(a >0,且a ≠1)的图象恒过定点A ,若点A 在直线mx +n y +2=0上,其中m >0,n>0,则2m +1n 的最小值为 ( )A .2 2B .4 C.52 D.92 考点六 解不等式以及定义域 例7、求不等式的解集 (1)()113log 3<+x (2) 0log )12(21≥-x1、已知集合=⋂>-=<=N M x x N x M x x 则},0)1(log |{},33|{21322A .)23,0(B .)2,23(C .)23,1(D .(0,1)2、设函数f (x )=⎩⎨⎧21-x ,x ≤1,1-log 2x ,x >1,则满足f (x )≤2的x 的取值范围是( )A .[-1,2]B .[0,2]C .[1,+∞)D .[0,+∞)例8、求下列函数的定义域 (1))1(log 121-=x y (2)y =1、【2018年江苏卷】函数f (x )=log 13(4x -5)的定义域为( )A.⎝ ⎛⎭⎪⎫54,+∞ B.⎝ ⎛⎭⎪⎫-∞,54 C.⎝ ⎛⎦⎥⎤54,32 D.⎝ ⎛⎭⎪⎫54,32 2、(2016年全国II 卷高考)下列函数中,其定义域和值域分别与函数y=10lg x 的定义域和值域相同的是( )(A )y =x (B )y =lg x (C )y =2x (D)y =考点七 复合函数的定义域 例9、求下列函数的单调区间(1) xx y 2221-⎪⎭⎫⎝⎛= (2)20.2()log (45)f x x x =-++1、【2017课标II ,文8】函数2()ln(28)f x x x =-- 的单调递增区间是 A.(,2)-∞- B. (,1)-∞- C. (1,)+∞ D. (4,)+∞2、【2014江苏高考】若f (x )=lg(x 2-2ax +1+a )在区间(-∞,1]上递减,则a 的取值范围为( )A .[1,2)B .[1,2]C .[1,+∞)D .[2,+∞)3、(2016·青海平安一中月考)已知函数f (x )=log 12(x 2-ax +a )在区间(2,+∞)上是减函数,则实数a 的取值范围是________.考点八 比较大小例10、(2017·天津一模)已知a =log 25,b =log 5(log 25),c =⎝ ⎛⎭⎪⎫12-0.52,则a ,b ,c的大小关系为( )A .a <b <cB .b <c <aC .c <b <aD .b <a <c1、【2019年高考全国Ⅰ卷理数】已知0.20.32log 0.220.2a b c ===,,,则 A .a b c << B .a c b << C .c a b <<D .b c a <<2、【2019年高考天津理数】已知5log 2a =,0.5og 2.l 0b =,0.20.5c =,则,,a b c 的大小关系为 A .a c b << B .a b c << C .b c a <<D .c a b <<3、已知奇函数f (x )在R 上是增函数.若a =-f (log 215),b =f (log 24.1),c =f (20.8),则a ,b ,c 的大小关系为( )A .a <b <cB .b <a <cC .c <b <aD .c <a <b考点九 数形结合例11、已知函数f (x )=log a (2x -a )(a >0且a ≠1)在区间[12,23]上恒有f (x )>0,则实数a 的取值范围是( )A .(13,1) B .[13,1) C .(23,1) D .[23,1)1、(2017·合肥月考)当0<x ≤12时,4x <log a x ,则a 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,22 B.⎝ ⎛⎭⎪⎫22,1C .(1,2)D .(2,2)2、(2016·南京师大附中等四校联考)若函数 f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12x -3,x ≤2,log a x ,x >2(a >0且a ≠1)的值域是[2, +∞),则实数a 的取值范围是________.。

六大基本初等函数图像及其性质

六大基本初等函数图像及其性质

六大基本初等函数图像及其性质一、常值函数(也称常数函数)y =C (其中 C 为常数);常数函数( y C )C 0yy Cy 0xO平行于 x 轴的直线定义域 R二、幂函数 y x, x 是自变量,是常数;1. 幂函数的图像:y y x3y x2y x1O2.幂函数的性质;性质y x y x2y x3函数定义域R R R值域R[0,+ ∞ )R奇偶性奇偶奇单调性增[0,+ ∞) 增增(-∞ ,0]减公共点( 1,1)C 0yOy轴本身定义域 Ry x1y x 2x1y x 2[0,+ ∞ )[0,+ ∞ )非奇非偶增xy x 1{x|x ≠ 0}{y|y ≠ 0}奇(0,+∞) 减(-∞ ,0) 减第 1 页1)当 α 为正整数时,函数的定义域为区间为x ( ,),他们的图形都经过原点,并当α >1 时在原点处与 x 轴相切。

且 α为奇数时,图形关于原点对称;α 为偶数时图形关于 y 轴对称;2)当 α 为负整数时。

函数的定义域为除去 x=0 的所有实数;3)当 α 为正有理数m时, n 为偶数时函数的定义域为(0, +∞), n 为奇数时函数的定义域为( -n∞ ,+∞),函数的图形均经过原点和( 1 ,1);4)如果 m>n 图形于 x 轴相切,如果m<n,图形于 y 轴相切,且 m 为偶数时,还跟y 轴对称; m , n均为奇数时,跟原点对称;5)当 α 为负有理数时,n 为偶数时,函数的定义域为大于零的一切实数;n 为奇数时,定义域为去除x=0以外的一切实数。

三、指数函数ya x(x 是自变量,a 是常数且a0 , a1 ),定义域是R ;[ 无界函数 ]1. 指数函数的图象 :yaxyyy ax(a 1)(0 a1)(0,1)y 1(0,1)y 1OxOx2. 指数函数的性质 ;性质y a x(a 1)y a x(0 a 1)函数定义域 R值域(0,+∞)奇偶性非奇非偶公共点过点 (0,1),即 x 0 时, y1单调性 在(, )是增函数 (, )在是减函数1 ) 当 a1时 函 数 为 单 调 增 , 当 0 a 1时函数为单调减;2 ) 不 论 x 为 何 值 , y 总 是 正 的 , 图 形 在 x 轴 上 方 ;3 ) 当 x 0 时 , y1,所以它的图形通过(0,1)点 。

基本初等函数图像及性质大全(初中-高中)

基本初等函数图像及性质大全(初中-高中)
③若已知抛物线与 轴有两个交点,且横线坐标已知时,选用两根式求 更方便.
(3)二次函数图象的性质
图像
定义域
对称轴
顶点坐标
值域
单调区间
递减
递增
递增
递减
①.二次函数 的图象是一条抛物线,对称轴方程为 顶点坐标是
②当 时,抛物线开口向上,函数在 上递减,在 上递增,当 时, ;当 时,抛物线开口向下,函数在 上递增,在 上递减,当 时, .
二、幂函数
(1)幂函数的定义
一般地,函数 叫做幂函数,其中 为自变量, 是常数.
(2)幂函数的图象
过定点:所有的幂函数在 都有定义,并且图象都通过点 .
1、一次函数与二次函数(一)一次Fra bibliotek数一次
函数

符号
图象
性质
随 的增大而增大
随 的增大而减小
(二)二次函数
(1)二次函数解析式的三种形式
①一般式: ②顶点式:
③两根式:
(2)求二次函数解析式的方法
①已知三个点坐标时,宜用一般式.
②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考 点 核 心 突 破
1 1 2a ③f(x+a)= 或 f(x+a)=- ,则周期 T=______ fx fx (a>0)
训 练 高 效 提 能
基 础 要 点 整 合
(2)函数图象的对称性 若函数 f(x)满足: ①f(a+x)=f(a-x),即 f(x)=f(2a-x),则 f(x)图象的 对称轴为_______. x=a ②f(a+x)=-f(a-x),即 f(x)=-f(2a-x),则 f(x)图
nlogaM ;(6)alogaN=____ N ; (5)logaMn=_______ n logbN logaN n m (7)logaN= ;(8)logamN =___________. logba
训 练 高 效 提 能
基 础 要 点 整 合
考 点 核 心 突 破
2.融会贯通函数的三个基本性质 (1)函数的单调性 函数的单调性是函数在其定义域上的局部性质,除增 函数与减函数的定义外,要注意其等价形式:设 x1,x2∈ [a,b],且 x1≠x2,则 fx1-fx2 增函数 , ① >0⇔f(x)在[a,b]上是_______ x1-x2 fx1-fx2 减函数 . <0⇔f(x)在[a,b]上是_________ x1-x2 ②(x1-x2)[f(x1)-f(x2)]>0⇔f(x)在[a,b]上是增函数 ______, 减函数 . (x1-x2)[f(x1)-f(x2)]<0⇔f(x)在[a,b]上是________
解 题 规 范 流 程
训 练 高 效 提 能
基 础 要 点 整 合
(2)函数的奇偶性
奇偶性是函数在其定义域上的整体性质,需注意: ①定义域在数轴上关于原点对称是函数f(x)为奇函数 或偶函数的必要不充分条件. f(-x)=f(x) 是定义域上的 f(-x)=-f(x) ② _______________ 或 _____________ 恒等式. (3)函数的周期性 周期性是函数在其定义域上的整体性质,一般地, 对于函数f(x),如果对于定义域内的任意一个x的值: f(x) (T≠0),则f(x)是周期函数,____ 若f(x+T)= ______ T 是它的一个周期.
m n (1)am· an=______ amn ; am+n ;(2)(a ) =_____
解 题 规 范 流 程
logaM+logaN ; (3)loga(MN)=_____________
M logaM-logaN ; (4)loga N =_______________
考 点 核 心 突 破
x≥0 即 xx-1>0
解 题 规 范 流 程


训 练 高 效 提 能
考 点 核 心 突 破
所以解得 x>1,即定义域为(1,+∞),选 B.
[答案] (1)D (2)B
基 础 要 点 整 合
考 点 核 心 突 破
【拓展归纳】(1)求函数值的方法 形如 f(g(x)) 的函数求值时,应遵循先内后外的原则; 而对于分段函数的求值(解不等式)问题,必须依据条件准 确地找出利用哪一段求解;特别地,对具有周期性的函 数求值要用好其周期性. (2)求函数定义域的类型及相应方法 ①若已知函数的解析式,则这时函数的定义域是使 解析式有意义的自变量的取值范围,只需构建并解不等 式(组)即可. ②实际问题或几何问题除要考虑解析式有意义外, 还应使实际问题有意义. 【易错提示】 函数的定义域必须写成集合或区间 的形式.
解 题 规 范 流 程
考 点 核 心 突 破
训 练 高 效 提 能
基 础 要 点 整 合
3.通盘把握抽象函数的周期性和对称性 (1)函数的周期性 若函数 f(x)满足
解 题 规 范 流 程
|a-b| ①f(x+a)=f(x+b),则周期 T=________ 2a (a>0) ②f(x+a)=-f(x),则周期 T=____
基 础 要 点 整 合
解 题 规 范 流 程
第2讲 函数、基本初等函数的图象性质
考 点 核 心 突 破
训 练 高 效 提 能
基 础 要 点 整 合
基础要点整合
一、构建知识网络
解 题 规 范 流 程
考 点 核 心 突 破
训 练 高 效 提 能
基 础 要 点 整 合
二、梳理基础知识
1.熟练运用指数与对数运算的八个公式 设 a>0,且 a≠1,b>0 且 b≠1,M>0,N>0,则
解 题 规 范 流 程
(a,0) . 象的对称中心为______
考 点 核 心 突 破
a+b x= 2 ③f(a+x)=f(b-x), 则 f(x)图象的对称轴为_________.
训 练 高 效 提 能
基 础 要 点 整 合
考点核心突破
考点一:函数及其表示
[考情一点通] 题型 选择或填空 难度 中档偏下
解 题 规 范 流 程
训 练 高 效 提 能
【考点集训】
基 础 要 点 整 合
1.(2013· 新华中学模拟)若 f(x)= 的定义域为________.
1 x (2)(2013· 临沂一模)函数 f(x)=ln + x 2 的定义域为 x-1
解 题 规 范 流 程
考 点 核 心 突 破
A.(0,+∞) C.(0,1)
B.(1,+∞) D.(0,1)∪(1,+∞)
பைடு நூலகம்
训 练 高 效 提 能
基 础 要 点 整 合
(1)f(2 013)=22 013-2 008=25=32,所以 32π 2π f[f(2 013)]=f(32)=2cos =2cos =-1,选 D. 3 3 [自主解答] x≥0, (2)要使函数有意义,则有 x >0 x-1
解 题 规 范 流 程
考 点 核 心 突 破
(1)以分段函数为载体,求函数值. 考查 (2)与不等式(组)的解法交汇命题,考 内容 查函数的定义域.
训 练 高 效 提 能
基 础 要 点 整 合
【 例 1 】 (1)(2013· 烟 台 一 模 ) 已 知 函 数 f(x) = πx 2cos , x≤2 000, 3 则 f[f(2 013)]等于 x-2 008 2 , x>2 000, A. 3 B.- 3 C.1 D.-1
相关文档
最新文档