c51控制6路舵机51单片机超高精度6路舵机程序
关于51单片机控制舵机(减速电机类似)的详解
sfr CCAPM0=0xDA;//PCA 模块 0 的工作模式寄存器
//--------------------------------------//7 1 0 //- ECMn CAPPn CAPNn MATn T0Gn PWMn ECCFn 6 5 4 3 2
//--------------------------------------//ECOMn:使能比较器, 1 时使能比较器 功能 //CAPPn:正捕获,1 时使能上升沿捕 获 //CAPNn:负捕获,1 时使能下降沿捕 获 //MATn:匹配:1 时,PCA 计数器的值与
//---------------------------------------------//ECF:PCA 计数溢出中断使能:1 时, 使能 寄存器 CCON CF 位的中断。0 时禁止该功能。
sfr CL=0xE9;//CL 和 CH 为正在自由递增计数的 16 位 PCA 定时器的值。
sfr CH=0xF9; /***PWM0 相关特殊功能寄存器***/ sfr CCAP0L=0xEA;//PCA 模块 0 的捕捉/比较寄存器低 8 位 sfr CCAP0H=0xFA;//PCA 模块 0 的捕捉/比较寄存器高 8 位
//-------------------------------//CIDL:计数阵列空闲控制,0 时,空闲 模式下 PCA 计数器继续工作;1 时空闲模式 PCA 停止工作。
//--------------------------------------------//CPS2 CPS1 CPS0: PCA 计数脉冲选择 //000:系统时钟,FOSC/12 //001:系统时钟,FOSC/2 //010:定时器 0 的溢出,可实现可调频 率 PWM 输出
单片机舵机控制程序
单片机舵机控制程序论文题目:基于单片机的舵机控制程序设计第一章:引言(介绍背景、意义和目的)舵机是一种用来控制机械运动的装置,广泛应用于各种自动控制系统中。
作为一种常见的终端执行元件,舵机的控制方式对系统的性能和准确性有很大的影响。
因此,设计一种高效、精准的舵机控制程序成为研究的重点。
第二章:相关技术介绍(介绍舵机的原理、分类和常用控制方法)本章将详细介绍舵机的工作原理和分类。
首先介绍舵机的基本构造和工作原理,其中包括电机、减速机、角度传感器和控制电路等。
接着介绍舵机的分类,包括开环控制和闭环控制两种方式。
最后,对常用的舵机控制方法进行详细讲解,包括位置式控制和速度式控制等。
第三章:舵机控制程序设计(详细介绍舵机控制程序的设计方法和步骤)本章将详细介绍舵机控制程序的设计方法和步骤。
首先,介绍如何选择适当的舵机控制芯片和开发环境。
然后,详细讲解舵机控制程序的编写过程,包括初始化舵机、设置舵机参数以及控制舵机运动等。
最后,通过实例说明舵机控制程序设计的实际操作过程。
第四章:实验结果与分析(通过实验验证舵机控制程序的性能和准确性)本章将通过实际实验来验证所设计的舵机控制程序的性能和准确性。
首先介绍实验所需的硬件设备和软件环境。
然后,详细记录实验过程中的实测数据,并进行数据分析和结果展示。
最后,对实验结果进行评价和讨论,说明所设计的舵机控制程序的优点和不足之处,并提出改进和优化的建议。
结论本论文通过对舵机的原理、分类和控制方法的介绍,设计了一种高效、精准的舵机控制程序。
通过实验验证,结果表明所设计的舵机控制程序具有良好的性能和准确性。
然而,舵机控制程序的设计仍然有一些局限性,需要进一步研究和改进。
相信随着技术的进步和舵机控制程序的不断优化,舵机在各种自动控制领域的应用将更加广泛和成熟。
第一章:引言舵机是一种常见的终端执行元件,它广泛应用于各种自动控制系统中,如机器人、无人机、机械臂等。
舵机的控制方式对于系统的性能和准确性有着重要的影响。
单片机控制舵机程序
单片机控制舵机程序第一章:引言单片机作为一种重要的嵌入式系统开发工具,广泛应用于各个领域,舵机作为一种常用的机械驱动装置,也在各种应用中得到广泛的应用。
本论文通过设计单片机控制舵机的程序,旨在探究单片机如何通过编程实现舵机的精确控制。
第二章:舵机的基本原理舵机是一种常见的位置式伺服机构,它可以通过控制信号控制其角度位置,实现精确的运动控制。
它由直流电机、减速机构、位置检测传感器和驱动控制电路组成。
通过单片机控制舵机,可以实现根据需要精确调整舵机的位置和速度。
第三章:单片机控制舵机的设计与实现本章主要介绍如何使用单片机来控制舵机。
首先,需要选择合适的单片机和舵机。
常见的单片机有51系列、AVR、STM32等,而舵机则有舵机舵盘、舵机电机和舵机控制器等。
随后,在硬件设计上,需要连接单片机和舵机,并根据舵机的电气特性设计相应的电路保护措施。
在软件设计上,需要编写单片机的控制程序。
通过控制程序发送特定的PWM(脉宽调制)信号给舵机,从而控制舵机的角度位置和运动速度。
第四章:单片机控制舵机的应用与改进在本章中,将介绍单片机控制舵机的应用与改进。
首先,在机器人领域,单片机控制舵机可以实现机器人的运动与动作控制,从而实现更复杂的功能。
其次,在航模、智能家居等领域,单片机控制舵机也应用广泛,可以实现遥控、智能调节等功能。
最后,对现有的单片机控制舵机的程序进行改进,如优化舵机的运动曲线、增加舵机的控制精度等,可以提升系统的性能。
总结:本论文通过设计单片机控制舵机的程序,探究了单片机通过编程实现舵机的精确控制的原理和方法。
同时,介绍了舵机的基本原理和单片机控制舵机的设计与实现过程,并讨论了单片机控制舵机的应用与改进。
通过本论文的研究,可以帮助读者了解和应用单片机控制舵机的技术,为单片机在舵机控制方面的应用提供参考。
第五章:实验及结果分析在本章中,我们将介绍根据上述设计和实现的单片机控制舵机的程序的实验,并对实验结果进行分析。
单片机控制舵机教程
单片机控制舵机教程第一章:引言(约200字)引言部分介绍了单片机控制舵机的背景信息和重要性。
指出舵机是一种很重要的电子元件,广泛应用于机器人、航模、自动控制等领域。
随后,说明学习单片机控制舵机的目的和意义,以及本论文的结构和内容安排。
第二章:舵机的基本原理(约300字)第二章详细介绍了舵机的基本原理和工作原理。
首先介绍了舵机的结构组成和特点,包括电机、减速器、反馈电路等。
然后,详细解释了PWM(脉宽调制)信号的生成和作用,以及如何通过改变PWM信号的高电平时间来实现舵机的角度控制。
同时,还介绍了舵机的位置反馈原理和PID控制算法的基本概念,以及如何利用PID算法控制舵机的工作。
第三章:单片机控制舵机的实现方法(约400字)第三章分别介绍了两种常用的单片机控制舵机的实现方法。
首先是基于软件实现的方法,通过编写程序在单片机上控制舵机的转动。
这部分详细介绍了单片机的引脚连接、编写程序的方法和实现舵机角度控制的具体步骤。
然后,介绍了基于硬件的实现方法,通过使用专用的舵机驱动模块实现单片机对舵机的控制。
这部分详细介绍了舵机驱动模块的选用和接线方式,以及如何通过单片机来控制舵机驱动模块的工作。
第四章:实验与应用(约300字)第四章以实验为基础,具体介绍了单片机控制舵机的实验步骤和实验结果。
首先介绍了实验所需的硬件和软件环境,如单片机开发板、舵机驱动模块、编程软件等。
然后详细介绍了实验的具体步骤,包括将舵机与单片机连接、编写程序代码、调试和测试等。
最后展示了实验结果,包括舵机的转动角度和舵机控制的准确性。
结论:在本章节中对论文进行了总结和回顾。
指出了单片机控制舵机的重要性和应用前景,并总结了本论文涵盖的内容和实验结果。
最后,指出了单片机控制舵机研究中的一些不足之处,并对进一步研究和应用提出展望。
(注:此篇文章仅供参考,具体字数和章节内容布置可根据实际需要做适当的调整)第一章:引言(约200字)引言部分介绍了单片机控制舵机的背景信息和重要性。
基于C51的多路舵机PWM控制原理(有程序)
一、 基本原理介绍二、演示机构采用的是舵机,每个需要一路PWM 波和两路电源输入。
电源输入标准为5V 1-8A ,采用带输入和输出保护的50w 开关电源供电;PWM 波为50Hz ,正脉冲时间为0.5-2.5ms ,对应-90°至90°(实际使用中为了保护机械,为0.7-2.3ms ,舵机旋转范围为-70°至70°)。
由于系统对于输出的频率有5Hz 的限制,因此使用软件延迟来实现最多八路的的PWM 波输出。
PWM 波由MCU 通过软件延时产生,算法概述如下(流程图见附件):1. A 路输出2.5ms 脉冲(输出正脉冲,不足时间由低电平 补至2.5ms ),此时其他五路无输出,相当于输出2.5ms 低电平; 2. B 路输出2.5ms 脉冲(同A 路,不足时间由低电平补齐),此时包括A 路的其他五路无输出,相当于输出2.5ms 低电平;3. 同理,输出C,D,E,F 路4. 此时,1-3步总时间为2.5*6=15ms ,其中每路由一个小于2.5ms 的正脉冲和低电平时间组成。
由于输出周期为20ms ,故应再输出20ms-15ms=5ms 低电平时间,使得各路频率为50Hz 。
重复1-3步,得到输出波形如下图:(仅以4路为例,使用Proteus 仿真示波器,图2.2.2)可以看到,此时各路输出均为50Hz ,正脉冲时间为0.5-2.5ms图 2.2.1 舵机及其控制原理图2.2.2 Proteus仿真此算法在50Hz(20ms)频率的限制下,最多可输出8路PWM波形(8*2.5ms=20ms)三、实际程序程序如下:#include <stdio.h>#include <REG52.h>#define uchar unsigned char#define uint unsigned intsbit Out1=P2^0;sbit Out2=P2^1;sbit Out3=P2^2;sbit Out4=P2^3;sbit Out5=P2^4;void PWM(uint a, uint b,uint c, uint d,uint e) {uchar A,B,C,D,E;uint M=984;A=250-a;B=250-b;C=250-c;D=250-d;E=250-e;do { Out1 = 1; } while(a--);do { Out1 = 0; } while(A--);do { Out2 = 1; } while(b--);do { Out2 = 0; } while(B--);do { Out3 = 1; } while(c--);do { Out3 = 0; } while(C--);do { Out4 = 1; } while(d--);do { Out4 = 0; } while(D--);do { Out5 = 1; } while(e--);do { Out5 = 0; } while(E--);do{ }while(M--);}main()uchar a,b,c,d,e;uint m;a=170;b=149;c=d=e=149;SCON = 0x50; //REN=1允许串行接受状态,串口工作模式1 TMOD = 0x20; //定时器工作方式2PCON = 0x80;//TH1 = 0xFD; //baud*2 /* reload value 19200、数据位8、停止位1。
51单片机 舵机控制程序
51单片机舵机控制程序题目:基于51单片机的舵机控制程序设计与实现第一章:引言1.1 研究背景51单片机是一种广泛应用于嵌入式系统中的微控制器,具有成本低、功耗低、可靠性高等优点。
而舵机是一种能够控制角度的电机装置,广泛应用于机器人、航模和自动化设备等领域。
本章旨在探讨基于51单片机的舵机控制程序设计与实现的意义和必要性。
1.2 研究目的本研究的主要目的在于设计并实现一套稳定、高效的舵机控制程序,为使用51单片机的嵌入式系统提供角度控制功能。
通过本研究,可以提高舵机控制的精度和稳定性,拓展舵机的应用领域。
第二章:51单片机舵机控制程序的设计2.1 硬件设计根据舵机的控制特点,我们需要通过PWM信号控制舵机转动的角度。
在硬件设计上,我们需要使用51单片机的定时器功能产生PWM信号,并通过IO口输出给舵机。
具体的设计方案包括选择合适的定时器、设置定时器的工作模式和频率等。
2.2 软件设计在软件设计上,我们需要通过编写51单片机的控制程序实现舵机的控制。
具体的设计流程包括:(1)初始化:设置定时器的工作模式和频率,配置IO口的输出模式。
(2)角度控制:根据舵机的角度范围和控制精度,将目标角度转换为占空比,并通过PWM信号控制舵机转动到目标角度。
(3)稳定性优化:通过对定时器周期和占空比的调整,优化舵机的稳定性,减小舵机的误差。
第三章:51单片机舵机控制程序的实现3.1 硬件搭建在实现阶段,我们需要根据硬件设计方案选购相应的硬件元件,并将其搭建成一个完整的舵机控制系统。
具体的搭建过程包括:(1)选购舵机和51单片机等硬件元件,并连接相关的信号线。
(2)按照硬件设计方案,搭建并调试舵机控制系统。
3.2 软件编写在软件实现阶段,我们需要使用51单片机的编程语言(如C语言或汇编语言)编写舵机控制程序,并通过编译和烧录等步骤将程序下载到51单片机中。
具体的编写过程包括:(1)按照软件设计方案,编写舵机控制程序的相关函数和逻辑。
51单片机控制多路舵机
51单片机控制多路舵机第一章:引言(200-250字)51单片机是一种常用的微型控制器,广泛应用于各种电子控制系统中。
而舵机作为一种常见的执行器,被广泛应用于机器人、航模等领域。
本论文旨在探讨如何使用51单片机实现多路舵机控制,并介绍其应用。
第二章:多路舵机控制的原理与方法(300-350字)2.1 舵机的工作原理舵机是一种能够实现角度精确控制的电机。
其核心部件是一个内置了电机、减速装置和角度反馈装置的封装,通过输入PWM信号来控制舵机的转动角度。
2.2 51单片机实现PWM信号输出51单片机通过定时器和PWM相关寄存器可以产生需要的PWM信号。
通过改变占空比来控制舵机的角度,实现舵机的转动。
2.3 多路舵机的控制通过引出多个PWM输出引脚,可以实现多路舵机的控制。
通过对每个舵机的PWM信号进行编码和解码,可以实现对多路舵机的独立控制。
第三章:实验与结果(300-350字)3.1 实验原理在实验中,我们使用了一款51单片机开发板和多路舵机,通过编写相应的程序,控制51单片机输出多路PWM信号,从而实现对多路舵机的控制。
3.2 实验步骤首先,将多路舵机连接到51单片机的相应IO口,并连接电源。
然后,编写相应的51单片机程序,配置定时器和PWM输出引脚。
接着,通过改变相应PWM引脚的占空比,控制舵机的转动角度。
3.3 实验结果我们成功地控制了多路舵机的转动。
通过改变不同舵机对应的PWM引脚的占空比,实现了舵机的不同角度转动。
实验结果表明,我们所设计的多路舵机控制系统是可行的。
第四章:结论与展望(150-200字)在本论文中,我们研究了51单片机控制多路舵机的原理和方法,并进行了相应的实验验证。
实验结果表明,我们所设计的方案可以有效地控制多路舵机的转动。
通过本论文的研究,我们可以发现,使用51单片机控制多路舵机具有一定的优势,比如成本低、可编程性强等。
然而,本研究还有一些局限性。
例如,目前我们只控制了少量的舵机,没有涉及到大规模的控制。
51单片机舵机控制
51单片机舵机控制论文题目:基于51单片机的舵机控制研究第一章:引言1.1 研究背景舵机是一种常用的电子元器件,广泛应用于自动化系统、机器人和遥控模型等领域。
通过控制舵机角度和转速,可以实现物体位置和方向的控制。
因此,舵机控制技术对于自动控制系统的实现具有重要意义。
1.2 研究目的本研究旨在通过基于51单片机的舵机控制,探索舵机控制的原理、方法和应用,为相关领域的开发和应用提供参考。
第二章:舵机控制原理2.1 舵机工作原理舵机是一种精密的转动执行器,根据输入的控制信号控制转动角度和转速。
舵机内部包含电机、减速机构和位置反馈装置。
通过控制输入信号的脉宽,可以控制舵机的转动范围。
2.2 51单片机51单片机是一种常用的微控制器,具有丰富的外设接口和强大的控制能力。
通过编写程序,可以实现对舵机的控制。
第三章:舵机控制方法3.1 舵机控制电路设计通过设计合适的电路,可以提供稳定的电源和信号输入。
电路包括电源电路和信号输入电路。
3.2 舵机控制程序设计通过编写51单片机的程序,实现舵机控制功能。
程序通过控制脉冲信号的宽度和频率,控制舵机的角度和转速。
第四章:舵机控制应用4.1 自动化系统中的舵机控制舵机可以应用于自动控制系统中,实现对物体位置和方向的控制。
例如,可以通过舵机控制机械手臂的运动,实现精确抓取和放置操作。
4.2 机器人中的舵机控制舵机是机器人关节控制的核心部件,通过控制舵机的转动角度,可以实现机器人各个关节的运动。
舵机控制技术是机器人动作的基础。
4.3 遥控模型中的舵机控制舵机广泛应用于遥控模型中,用于控制模型车辆、飞机等的转向。
舵机控制技术可以提高遥控模型的灵活性和操控性。
结论本研究基于51单片机的舵机控制研究,通过对舵机的工作原理和控制方法进行分析,实现了对舵机的精确控制。
舵机控制技术在自动化系统、机器人和遥控模型等领域具有广泛应用前景。
本研究的成果对相关领域的开发和应用具有重要意义。
4.1 自动化系统中的舵机控制在自动化系统中,舵机常用于控制机械手臂的运动。
51控制多路舵机
51控制多路舵机章节一:引言(约250字)近年来,随着机器人技术的迅速发展,多路舵机控制系统的研究成为了热点领域之一。
多路舵机控制系统可以实现机器人各个部件的精确控制,为机器人动作的灵活性与多样性带来了巨大的提升。
本文将介绍一种基于51单片机的多路舵机控制方法,其具有简单、稳定、高效的特点。
章节二:设计与实现(约250字)本文中,我们设计了一个基于51单片机的多路舵机控制系统。
系统由一个主控制板和多个舵机组成,其中主控制板负责接收外部输入信号,通过PWM信号驱动各个舵机实现精确控制。
为了提高控制的稳定性,我们使用了PID控制算法来对舵机的角度进行调整和修正。
为了提高系统的可拓展性,我们还设计了扩展接口,可以根据需要连接更多的舵机。
章节三:系统性能测试与分析(约250字)为了验证本文所设计的多路舵机控制系统的性能,我们进行了一系列的实验。
在实验中,我们测试了系统的控制精度、动作反应速度以及稳定性。
实验结果表明,本文所设计的多路舵机控制系统具有较高的控制精度和动作反应速度,在稳定性方面表现出色。
章节四:结论(约250字)本文提出了一种基于51单片机的多路舵机控制系统的设计方案。
通过采用PID控制算法和PWM信号驱动技术,系统可以实现对多个舵机的精确控制。
实验结果证明了系统的稳定性和可靠性。
然而,本文所设计的多路舵机控制系统仍然存在一些局限性,如可拓展性不够强、算法复杂度较高等。
在未来的研究中,可以进一步改进系统设计,提高其性能和可拓展性,以满足不同领域的需求。
章节二:设计与实现(续)(约250字)在设计与实现的过程中,我们首先确定了舵机的数量和位置,根据需求选择了适当的舵机型号。
接下来,我们设计了主控制板的电路图和PCB布局,并进行了制造和组装。
主控制板上集成了51单片机、PWM模块和扩展接口等功能模块,以实现对舵机的精确控制和扩展能力。
在软件方面,我们使用C语言编写了控制程序。
首先,我们编写了舵机驱动模块,实现了PWM信号的发生和舵机角度的控制。
51 舵机控制程序
51 舵机控制程序章节一:绪论舵机是一种常见的电机装置,广泛应用于机械设备、船舶、航空器等领域。
其主要功能是使机械部件可以按照一定的角度进行旋转或转动。
舵机的控制十分重要,可以通过控制舵机的角度实现对装置的角度或位置的精细调节。
随着现代技术的进步,电子舵机逐渐取代了传统的机械舵机,成为控制系统中的重要组成部分。
本论文旨在探讨51单片机在舵机控制中的应用。
章节二:舵机的工作原理和性能特点舵机是一种闭环控制系统,其工作原理是通过对电机的驱动电压进行调整,控制电机的转向和转动角度。
一个舵机主要由电机、减速器、位置反馈装置和控制电路组成。
位置反馈装置可以感知电机当前的位置,并向控制电路发送反馈信号。
电机转动一定角度后,位置反馈装置会将实际位置信息反馈给控制电路,控制电路根据反馈信号进行调整,将舵机转动到目标位置。
舵机的性能特点主要包括转动角度、分辨率、响应速度和扭矩。
转动角度指的是舵机可以实现的最大转动角度,通常在0-180度之间。
分辨率指的是舵机可以实现的最小调整角度,通常可以达到1度以下。
响应速度指的是舵机从接受到控制信号后开始转动的时间,一般可以在几毫秒内完成。
扭矩指的是舵机能够承受的最大力矩,通常以kg∙cm为单位。
章节三:51单片机在舵机控制中的应用51单片机是一种小型微控制器,具有丰富的外设资源和强大的数据处理能力,广泛应用于嵌入式系统和自动控制领域。
在舵机控制中,51单片机可以通过产生PWM(脉宽调制)信号来实现对舵机的角度控制。
通过改变PWM信号的高电平时间,可以控制舵机转动到不同的角度。
在51单片机的程序设计中,首先需要进行舵机控制电路的硬件设计。
控制电路包括将单片机输出引脚与舵机相连的电路以及电源电路。
接下来,在软件设计中,需要编写相应的代码实现舵机控制功能。
代码主要包括PWM信号的产生、舵机角度控制算法的实现和与外设的交互等部分。
章节四:舵机控制程序的优化与应用拓展在舵机控制程序的优化方面,可以通过改进PWM信号的生成方法来提高程序的效率和精确度。
51单片机 控制舵机
51单片机控制舵机章节一:引言(约200字)舵机是一种常见的控制装置,广泛应用于机器人、航模和自动化系统等领域。
51单片机作为一种集成度高、性能稳定的微控制器,具有广泛的应用前景。
本论文旨在探究51单片机如何控制舵机,并通过实验验证其控制效果。
章节二:51单片机控制舵机的原理(约300字)2.1 舵机的原理舵机是一种能够精确控制位置的电机,通过控制信号脉冲的宽度来确定其位置。
一般来说,舵机通过接收一个50HZ频率的PWM信号,控制脉冲宽度在0.5ms到2.5ms之间,其中0.5ms 对应最左转,1.5ms对应中立,2.5ms对应最右转。
2.2 51单片机控制舵机的原理通过将舵机的控制信号连接到51单片机的IO口,在程序中通过改变IO口输出的高低电平以及脉冲宽度,进而控制舵机的转动,实现对舵机位置的精确控制。
章节三:51单片机控制舵机的实验(约300字)本实验使用的硬件器材为51单片机、舵机、脉冲宽度测量模块等。
首先,搭建出相应的电路连接,将舵机的信号线连接至51单片机的IO口,并连接脉冲宽度测量模块来验证输出脉冲信号的宽度。
然后,编写相应的控制程序,在程序中通过改变IO口输出电平和脉冲宽度来调节舵机的位置。
在实验过程中通过脉冲宽度测量模块实时监测舵机输入脉冲信号的宽度,验证51单片机对舵机的控制效果。
最后,根据实验结果进行数据分析和总结,评估51单片机对舵机的控制精度和稳定性。
章节四:实验结果与分析(约200字)实验结果表明,51单片机通过控制IO口的电平和脉冲宽度能够实现对舵机的精确控制。
根据脉冲宽度测量模块的数据显示,51单片机输出的脉冲信号宽度与预期相符,舵机位置能够按照预期进行调节。
这表明51单片机对舵机的控制效果良好。
然而,在实验过程中也发现了部分问题,如输入脉冲宽度信号测量的误差等。
为了提高控制精度和稳定性,还需要进一步研究和改进。
例如,可以在硬件电路中添加滤波电路,减小干扰对控制信号的影响;或者通过对程序进行优化,提高脉冲信号的输出精度等。
51单片机控制舵机程序
#include 〈reg52。
h〉#define Stop 0 //宏定义,停止#define Left 1 //宏定义,左转#define Right 2 //宏定义,右转sbit ControlPort = P2^0;//舵机信号端口sbit KeyLeft = P1^0;//左转按键端口sbit KeyRight = P1^1;//右转按键端口sbit KeyStop = P1^2; //归位按键端口unsigned char TimeOutCounter = 0,LeftOrRight = 0;//TimeOutCounter:定时器溢出计数LeftOrRight:舵机左右旋转标志void InitialTimer (void ){TMOD=0x10;//定时/计数器1工作于方式1TH1 = (65535 - 500 ) / 256; //0。
25msTL1 = ( 65535 — 500 )%256;EA=1;//开总中断ET1=1; //允许定时/计数器1 中断TR1=1; //启动定时/计数器1 中断}void ControlLeftOrRight ( void )//控制舵机函数{if(KeyStop == 0 ){//while ( !KeyStop );//使标志等于Stop(0),在中断函数中将用到LeftOrRight = Stop;}if(KeyLeft == 0 ){//while (!KeyLeft ); //使标志等于Left(1),在中断函数中将用到LeftOrRight = Left;}if(KeyRight == 0 ){//while ( !KeyRight );//使标志等于Right(2),在中断函数中将用到LeftOrRight = Right;}}void main (void )//主函数{InitialTimer();for(;;){ControlLeftOrRight();}}void Timer1 (void )interrupt 3 //定时器中断函数{TH1 = ( 65535 - 500 )/ 256;TL1 = ( 65535 — 500 )% 256;TimeOutCounter ++;switch (LeftOrRight ){case 0 ://为0时,舵机归位,脉宽1。
舵机的控制程序51单片机写的
舵机的控制程序51单片机写的//请根据自己马达的控制来改变程序#include<reg52.h>#include<math.h>#include<intrins.h>#define uchar unsigned char#define uint unsigned intuchar Buffer =0; //从串口接收的数据uint URTAReceivedCount=0,n=1;uchar data Tempdatatable[5],CommandDatatable[5];//数据包uchar serVal[2];//uint pwm[]={1120,1190,1382,1382,1382,1382,1382,1382}; //初始90度,(实际是1382.4,取整得1382)//uchar pwm_flag=0;uint code ms0_5Con=461; //0.5ms计数(实际是460.8,取整得461)uint code ms2_5Con=2304; //2.5ms计数bit key_stime_ok;void Delay_1ms(uint i)//1ms延时{uchar x,j;for(j=0;jfor(x=0;x<=148;x++);}void Send_Data(uchar type,uchar cmd,uchar dat){uchar data Buffer[5];//构建数据包uchar *p;uint Send_Count=0;p = Buffer;Buffer[0]=0XFF;Buffer[1]=type;Buffer[2]=cmd;Buffer[3]=dat;Buffer[4]=0XFF;while(1){if(*p==0XFF){Send_Count++; //0XFF标志统计位}SBUF = *p; //发送while(!TI) //如果发送完毕,硬件会置位TI,等待发送完毕{_nop_();}p++;TI = 0;if(Send_Count == 2) //当统计到两次出现0XFF,则认为一个数据包发送完毕,跳出循环{TI = 0;break;}}}void Com_Int(void) interrupt 4{uchar temp;ES=0; //关串口中断RI=0; //软件清除接收中断temp=SBUF;if(temp==0XFF && URTAReceivedCount<3) {Tempdatatable[0]==0XFF; //包头URTAReceivedCount++;}else{Tempdatatable[n]=temp;n++;if(URTAReceivedCount==0&&n==2)n=1;}if(URTAReceivedCount==2)//包尾{Tempdatatable[0]=0XFF;Tempdatatable[4]=0XFF;n=1;URTAReceivedCount=0; //组包完毕temp=" ";//Send_Data(Tempdatatable[1],Tempdatatable[2],Tempdatatable[3 ]); //发送组成的数据包回去}CommandDatatable[0]=Tempdatatable[0];CommandDatatable[1]=Tempdatatable[1];CommandDatatable[2]=Tempdatatable[2];CommandDatatable[3]=Tempdatatable[3];CommandDatatable[4]=Tempdatatable[4];ES=1;//开串口中断}void Com_Init(void){TMOD = 0x21;PCON = 0x00;SCON = 0x50;TH1 = 0xFd; //设置波特率 9600TL1 = 0xFd;TR1 = 1; //启动定时器1ES = 1; //开串口中断EA = 1; //开总中断IT0=0;EX0=1;}void main(){Delay_1ms(200);Com_Init();//串口初始化Timer0Init();//舵机PWM中断初始化while(1){if(CommandDatatable[0]==0XFF && CommandDatatable[4]==0XFF){switch (CommandDatatable[1]) //根据键值不同,执行不同的内容{case 0X00: //类型位0X00,表明是控制数据包,进入控制数据caseswitch(CommandDatatable[2]) //根据数据位的值来进行选择执行不同的动作{case 0X00:Moto_Stop();break;case 0X01:Moto_Forward();break;case 0X02:Moto_Backward();break;case 0X03:Moto_TurnLeft();break;case 0X04:Moto_TurnRight();break;case 0X05:Moto_ForLeft();break;case 0X06:Moto_ForRight();break;case 0X07:Moto_BackLeft();break;case 0X08:Moto_BackRight();break;default : break;}break;default : break;}}}}。
51控制舵机程序
51控制舵机程序章节一:引言(约200字)舵机是一种广泛应用于机器人、航空模型、无人机等控制系统中的关键部件。
其通过控制电流使舵盘旋转,从而实现控制机械臂、舵面等部件的运动。
51单片机作为一种常用的微控制器,具备处理速度快、成本低、易编程等优点,被广泛应用于舵机控制。
本文旨在介绍利用51单片机控制舵机的主要方法和步骤,并通过实验验证舵机控制效果。
章节二:51单片机舵机控制原理(约300字)51单片机通过PWM(脉冲宽度调制)技术来控制舵机。
PWM波形的占空比决定了舵机的位置。
当占空比为0%时,舵机处于最左转位置;当占空比为100%时,舵机处于最右转位置;当占空比为50%时,舵机处于中间位置。
通过改变占空比大小可以控制舵机的角度。
章节三:51单片机舵机控制程序设计(约300字)首先,需要通过51单片机的GPIO口与舵机连接,将舵机的控制线连接到51单片机的PWM输出口。
接下来,在主程序中初始化PWM相关参数,例如PWM的频率、占空比等。
然后,在主循环中,通过改变PWM占空比的值,实现对舵机位置的控制。
可以通过控制PWM值的增减来控制舵机的角度。
章节四:实验验证与结果分析(约200字)实验中,我们使用51单片机和舵机进行舵机控制实验。
通过改变PWM占空比大小,我们可以观察到舵机位置的变化。
实验结果显示,随着PWM占空比的增加,舵机的角度逐渐增加,反之亦然。
通过实验验证,说明了51单片机可以有效地控制舵机的运动。
综上所述,本文介绍了51单片机控制舵机的原理、程序设计步骤,并通过实验证明了其控制效果。
通过本文的研究,可以为舵机控制的相关研究提供参考和借鉴。
章节一:引言(约200字)舵机是一种广泛应用于机器人、航空模型、无人机等控制系统中的关键部件。
其通过控制电流使舵盘旋转,从而实现控制机械臂、舵面等部件的运动。
51单片机作为一种常用的微控制器,具备处理速度快、成本低、易编程等优点,被广泛应用于舵机控制。
如何用单片机控制舵机及程序详细
如何用单片机控制舵机及程序详细舵机概述舵机最早出现在航模运动中。
在航空模型中,飞行机的飞行姿态是通过调节发动机和各个控制舵面来实现的。
举个简单的四通飞机来说,飞机上有以下几个地方需要控制:1.发动机进气量,来控制发动机的拉力(或推力);2.副翼舵面(安装在飞机机翼后缘),用来控制飞机的横滚运动;3.水平尾舵面,用来控制飞机的俯仰角;4.垂直尾舵面,用来控制飞机的偏航角;遥控器有四个通道,分别对应四个舵机,而舵机又通过连杆等传动元件带动舵面的转动,从而改变飞机的运动状态。
舵机因此得名:控制舵面的伺服电机。
不仅在航模飞机中,在其他的模型运动中都可以看到它的应用:船模上用来控制尾舵,车模中用来转向等等。
由此可见,凡是需要操作性动作时都可以用舵机来实现。
舵机工作原理一般来讲,舵机主要由以下几个部分组成,舵盘、减速齿轮组、位置反馈电位计5k、直流电机、控制电路板等。
工作原理:控制电路板接受来自信号线的控制信号(具体信号待会再讲),控制电机转动,电机带动一系列齿轮组,减速后传动至输出舵盘。
舵机的输出轴和位置反馈电位计是相连的,舵盘转动的同时,带动位置反馈电位计,电位计将输出一个电压信号到控制电路板,进行反馈,然后控制电路板根据所在位置决定电机的转动方向和速度,从而达到目标停止。
舵机的基本结构是这样,但实现起来有很多种。
例如电机就有有刷和无刷之分,齿轮有塑料和金属之分,输出轴有滑动和滚动之分,壳体有塑料和铝合金之分,速度有快速和慢速之分,体积有大中小三种之分等等,组合不同,价格也千差万别。
例如,其中小舵机一般称作微舵,同种材料的条件下是中型的一倍多,金属齿轮是塑料齿轮的一倍多。
需要根据需要选用不同类型。
舵机的PWM信号1.PWM信号的定义PWM信号为脉宽调制信号,其特点在于他的上升沿与下降沿之间的时间宽度。
具体的时间宽窄协议参考下列讲述。
我们目前使用的舵机主要依赖于模型行业的标准协议,随着机器人行业的渐渐独立,有些厂商已经推出全新的舵机协议,这些舵机只能应用于机器人行业,已经不能够应用于传统的模型上面了。
基于51单片机控制多路舵机的方法
基于51单片机控制多路舵机的方法作者:昝鹭鸶张晗冀向阳来源:《科学与财富》2017年第25期摘要:在现在的时代下,机电一体化是发展的必然趋势。
现在很多的项目已经不再是纯机械结构了,要求要有电控。
加上电控的设备可以节省人力,让机器自己运行起来。
就连现在简单的加工机床都要求要有一定的自动化。
随着这科技的发展,电控的方式越来越多。
在做机电一体化设备的时候,谈起电控部分,首先进入眼帘的就是使用单片机配上传感器做成一个开环或是闭环控制系统。
单片机在传感器的感知下,驱动着动力源元件运转,进而带动整个机器运动,完成预期的动作。
这里面的动力源元件一般有步进电机,伺服电机,舵机,直流减速电机等,舵机是最常用的元件之一。
对于一个复杂的工程项目,例如仿生机械臂,仿生机器人等项目一般需要多个舵机。
那么对于主控板是51板的电控系统,为了节省资源,常常用一片51单片机控制多个舵机运动。
关键词:51单片机;多路舵机;正文:对于用一片51单片机来控制多路舵机运动,往往是一个让程序员头疼的问提。
因为舵机可以转动一个相对精准的角度,要是想让舵机转动的非常灵敏,那么就会带来一系列的问题、用51单片机控制舵机转动的原理是利用定时器中断产生一个周期为20ms的PWM波。
我们通过控制这个PWM波中高电平所占的时间长短使舵机转动相应的角度。
理论上讲,允许高电平时间变化的越精细就会使舵机转动的越精准。
一般想到的方法就是让定时器产生中断的时间越短,通过在定时器中断中产生PWM波来驱动舵机转动。
这样的想法在一些简单的工程中应用时可以的。
这里面提到的简单的工程是指舵机的数目少,一般为一路或两路舵机。
但是这样也不能使舵机转动的角度非常灵敏。
倘若使用这个想法使舵机转动的非常精准,就要使定时器的定时非常短,也就是说51单片机会频繁的响应定时器中断,这样会带来很多的问题。
问题一就是倘若这个工程要求要有串口通讯,那么平凡的响应定时器中断会影响在串口通信中所设定的波特率,(这个与pwm波与波特率所用的定时器中断的优先级有关,如果pwm波采用定时器0中断,波特率采用定时器1中断,因为在51单片机的中断源中,定时器0中断比定时器1中断的优先级高,当51单片机频繁响应定时器0中断时,会影响波特率的值,这样串口通讯就会产生一些错误,如在串口通讯中接收到的数据和发送的数据不一致,那么就会导致串口通讯失去作用。
舵机简介和C51例程
1、概述舵机最早出现在航模运动中。
在航空模型中,飞行机的飞行姿态是通过调节发动机和各个控制舵面来实现的。
举个简单的四通飞机来说,飞机上有以下几个地方需要控制:1.发动机进气量,来控制发动机的拉力(或推力);2.副翼舵面(安装在飞机机翼后缘),用来控制飞机的横滚运动;3.水平尾舵面,用来控制飞机的俯仰角;4.垂直尾舵面,用来控制飞机的偏航角;遥控器有四个通道,分别对应四个舵机,而舵机又通过连杆等传动元件带动舵面的转动,从而改变飞机的运动状态。
舵机因此得名:控制舵面的伺服电机。
不仅在航模飞机中,在其他的模型运动中都可以看到它的应用:船模上用来控制尾舵,车模中用来转向等等。
由此可见,凡是需要操作性动作时都可以用舵机来实现。
2、结构和控制一般来讲,舵机主要由以下几个部分组成,舵盘、减速齿轮组、位置反馈电位计5k、直流电机、控制电路板等。
工作原理:控制电路板接受来自信号线的控制信号(具体信号待会再讲),控制电机转动,电机带动一系列齿轮组,减速后传动至输出舵盘。
舵机的输出轴和位置反馈电位计是相连的,舵盘转动的同时,带动位置反馈电位计,电位计将输出一个电压信号到控制电路板,进行反馈,然后控制电路板根据所在位置决定电机的转动方向和速度,从而达到目标停止。
舵机的基本结构是这样,但实现起来有很多种。
例如电机就有有刷和无刷之分,齿轮有塑料和金属之分,输出轴有滑动和滚动之分,壳体有塑料和铝合金之分,速度有快速和慢速之分,体积有大中小三种之分等等,组合不同,价格也千差万别。
例如,其中小舵机一般称作微舵,同种材料的条件下是中型的一倍多,金属齿轮是塑料齿轮的一倍多。
需要根据需要选用不同类型。
舵机的输入线共有三条,红色中间,是电源线,一边黑色的是地线,这辆根线给舵机提供最基本的能源保证,主要是电机的转动消耗。
单片机控制舵机的C51程序
单片机控制舵机的C51程序用stc89c51 单片机来控制舵机的程序,测试成功,仅供大家参考.#include “reg52.h”unsigned char count; //0.5ms 次数标识sbit pwm =P3 ; //PWM 信号输出sbit jia =P3;//角度增加按键检测IO 口sbit jan=P3;//角度减少按键检测IO 口unsigned char jd; //角度标识void delay(unsigned char i)//延时{unsigned char j,k;for(j=i;j0;j--) for(k=125;k0;k--);}void Time0_Init() //定时器初始化{TMOD = 0x01;//定时器0 工作在方式1 IE = 0x82;TH0 = 0xfe;TL0 = 0x33;//11.0592MZ 晶振,0.5msTR0=1; //定时器开始}void Time0_Int() interrupt 1 //中断程序{TH0 = 0xfe; //重新赋值TL0= 0x33;if(count jd) //判断0.5ms 次数是否小于角度标识pwm=1;//确实小于,PWM 输出高电平elsepwm=0; //大于则输出低电平count=(count+1); //0.5ms 次数加1count=count%40; //次数始终保持为40 即保持周期为20ms}void keyscan() //按键扫描{if(jia==0) //角度增加按键是否按下{delay(10); //按下延时,消抖if(jia==0) //确实按下{jd++;//角度标识加1count=0; //按键按下则20ms 周期从新开始if(jd==6)jd=5; //已经是180 度,则保持while(jia==0);//等待按键放开}}if(jan==0) //角度减小按键是否按下{delay(10);if(jan==0){jd--; //角度标识减1count=0;if(jd==0)jd=1;//已经是0 度,则保持while(jan==0);}}}void main(){jd=1;count=0; Time0_Init(); while(1){keyscan(); //按键扫描}}tips:感谢大家的阅读,本文由我司收集整编。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
#include “reg52.h”
#define uchar unsigned char
#define uint unsigned int
P0M1=0X00;
P0M0=0XFF;设置P0 为强推挽输出
sbit servo0=P0^0;
sbit servo1=P0^1;
sbit servo2=P0^2;
sbit servo3=P0^3;
sbit servo4=P0^4;
sbit servo5=P0^5;
sbit servo6=P0^6;
sbit servo7=P0^7;
uchar serVal[2];
uint pwm[]={1382,1382,1382,1382,1382,1382,1382,1382}; 初始90度,(实际是1382.4,取整得1382)
uchar pwm_flag=0;
uint code ms0_5Con=461; 0.5ms计数(实际是460.8,取整得461)
uint code ms2_5Con=2304; 2.5ms计数
功能串口初始化,晶振11.0592,波特率9600,使能了串口中断
void Com_Init()
{
TMOD = 0x20; 用定时器设置串口波特率
TH1=0xFD; (32129600)=253 (FD)
TL1=0xFD;同上
TR1=1;定时器1开关打开
REN=1; 开启允许串行接收位
SM0=0;串口方式,8位数据
SM1=1;同上
EA=1; 开启总中断
ES=1; 串行口中断允许位
}
功能舵机PWM中断初始化
void Timer0Init()
{
0度=0.5ms, 45度=1ms, 90度=1.5ms, 135度=2ms, 180度=2.5ms
2.5 ms初始值F700, (12n11059200=2.51000, n=2304, X=65536-2304=63232 F700)
TMOD = 0x01; 使用模式1,16位定时器,使用符号可以在使用多个定时器时不受影响TH0=-ms2_5Con8; 给定初值,17ms中断
TL0=-ms2_5Con;
EA=1; 总中断打开
ET0=1; 定时器0中断打开
TR0=1; 定时器0开关打开
}
功能舵机PWM中断, 舵机控制函数周期为20ms 一个循环20MS = 82.5ms
void SteeringGear() interrupt 1
{
switch(pwm_flag)
{
case 1 servo0=1; TH0=-pwm[0]8; TL0=-pwm[0]; break;
case 2 servo0=0; TH0=-(ms2_5Con-pwm[0])8; TL0=-(ms2_5Con-pwm[0]); break; case 3 servo1=1; TH0=-pwm[1]8; TL0=-pwm[1]; break;
case 4 servo1=0; TH0=-(ms2_5Con-pwm[1])8; TL0=-(ms2_5Con-pwm[1]); break; case 5 servo2=1; TH0=-pwm[2]8; TL0=-pwm[2]; break;
case 6 servo2=0; TH0=-(ms2_5Con-pwm[2])8; TL0=-(ms2_5Con-pwm[2]); break; case 7 servo3=1; TH0=-pwm[3]8; TL0=-pwm[3]; break;
case 8 servo3=0; TH0=-(ms2_5Con-pwm[3])8; TL0=-(ms2_5Con-pwm[3]); break; case 9 servo4=1; TH0=-pwm[4]8; TL0=-pwm[4]; break;
case 10 servo4=0; TH0=-(ms2_5Con-pwm[4])8; TL0=-(ms2_5Con-pwm[4]); break;
case 11 servo5=1; TH0=-pwm[5]8; TL0=-pwm[5]; break;
case 12 servo5=0; TH0=-(ms2_5Con-pwm[5])8; TL0=-(ms2_5Con-pwm[5]); break; case 13 servo6=1;TH0=-pwm[6]8; TL0=-pwm[6]; break;
case 14 servo6=0;TH0=-(ms2_5Con-pwm[6])8; TL0=-(ms2_5Con-pwm[6]); break;
case 15 servo7=1;TH0=-pwm[7]8; TL0=-pwm[7]; break;
case 16 servo7=0;TH0=-(ms2_5Con-pwm[7])8; TL0=-(ms2_5Con-pwm[7]); break; default TH0=0xff; TL0=0x80; pwm_flag=0;
}
pwm_flag++;
}
void SetSteeringGear(uchar i, uchar val)
{
uint a = (val+46)10;
if(ams0_5Con)
a=ms0_5Con;
if(ams2_5Con)
a=ms2_5Con;
pwm[i]=a;
serVal[0]=255; 清除缓存
}
void SteeringGearUp(uchar i)
{
if(pwm[i]ms0_5Con)
pwm[i]=pwm[i]-10;
}
void SteeringGearDown(uchar i)
{
if(pwm[i]ms2_5Con)
pwm[i]=pwm[i]+10;
}
功能串口中断接收数据
void ser() interrupt 4
{
serVal[0]=serVal[1];
serVal[1]=SBUF;
RI=0;串口中断清0
}
函数功能:主函数
void main()
{
bit started=0; 路由是否已经启动完毕
Com_Init();串口初始化
Timer0Init();舵机初始化
while(1)
{
if(serVal[0]=='w' && serVal[1]=='d'){
started=1; 路由启动最后会出现:ar71xx-wdt,由此判断路由已经启动}
if(started)
{
if(serVal[0]==0){
switch(serVal[1])
{
case 'A' SteeringGearUp(0); break; case 'B' SteeringGearDown(0); break; case 'C' SteeringGearUp(1); break; case 'D' SteeringGearDown(1); break; case 'E' SteeringGearUp(2); break; case 'F' SteeringGearDown(2); break; case 'G' SteeringGearUp(3); break; case 'H' SteeringGearDown(3); break; case 'I' SteeringGearUp(4); break; case 'J' SteeringGearDown(4); break; case 'K' SteeringGearUp(5); break; case 'L' SteeringGearDown(5); break; defaultbreak;
}
serVal[0]=255; 清除缓存
}else if(serVal[0]==1){ SetSteeringGear(0,serVal[1]);
}else if(serVal[0]==2){ SetSteeringGear(1,serVal[1]);
}else if(serVal[0]==3){ SetSteeringGear(2,serVal[1]);
}else if(serVal[0]==4){ SetSteeringGear(3,serVal[1]);
}else if(serVal[0]==5){ SetSteeringGear(4,serVal[1]);
}else if(serVal[0]==6){ SetSteeringGear(5,serVal[1]);
}
}
}
}。