溴化锂吸收式制冷机原理
溴化锂吸收式制冷机的工作原理讲解
溴化锂吸收式制冷机的工作原理是:冷水在蒸发器内被来自冷凝器减压节流后的低温冷剂水冷却,冷剂水自身吸收冷水热量后蒸发,成为冷剂蒸汽,进入吸收器内,被浓溶液吸收,浓溶液变成稀溶液。
吸收器里的稀溶液,由溶液泵送往热交换器、热回收器后温度升高,最后进入再生器,在再生器中稀溶液被加热,成为最终浓溶液。
浓溶液流经热交换器,温度被降低,进入吸收器,滴淋在冷却水管上,吸收来自蒸发器的冷剂蒸汽,成为稀溶液。
另一方面,在再生器内,外部高温水加热溴化锂溶液后产生的水蒸汽,进入冷凝器被冷却,经减压节流,变成低温冷剂水,进入蒸发器,滴淋在冷水管上,冷却进入蒸发器的冷水。
该系统由两组再生器、冷凝器、蒸发器、吸收器、热交换器、溶液泵及热回收器组成,并且依靠热源水、冷水的串联将这两组系统有机地结合在一起,通过对高温侧、低温侧溶液循环量和制冷量的最佳分配,实现温度、压力、浓度等参数在两个循环之间的优化配置,并且最大限度的利用热源水的热量,使热水温度可降到66℃.以上循环如此反复进行,最终达到制取低温冷水的目的。
溴化锂吸收式制冷机以水为制冷剂,溴化锂水溶液为吸收剂,制取0℃以上的低温水,多用于空调系统。
溴化锂的性质与食盐相似,属盐类。
它的沸点为1265℃,故在一般的高温下对溴化锂水溶液加热时,可以认为仅产生水蒸气,整个系统中没有精馏设备,因而系统更加简单。
溴化锂具有极强的吸水性,但溴化锂在水中的溶解度是随温度的降低而降低的,溶液的浓度不宜超过66%,否则运行中,当溶液温度降低时,将有溴化锂结晶析出的危险性,破坏循环的正常运行。
溴化锂水溶液的水蒸气分压,比同温度下纯水的饱和蒸汽压小得多,故在相同压力下,溴化锂水溶液具有吸收温度比它低得多的水蒸气的能力,这是溴化锂吸收式制冷机的机理之一。
工作原理与循环溶液的蒸气压力是对平衡状态而言的。
如果蒸气压力为0。
85kPa的溴化锂溶液与具有1kPa 压力(7℃)的水蒸气接触,蒸气和液体不处于平衡状态,此时溶液具有吸收水蒸气的能力,直到水蒸气的压力降低到稍高于0.85kPa(例如:0。
溴化锂制冷机组原理
溴化锂制冷机组原理
溴化锂制冷机组是一种常见的空调制冷设备,通过利用溴化锂在吸湿和脱湿的循环过程中释放热量来实现空调效果。
溴化锂制冷机组的工作原理如下:
1. 吸附过程:溴化锂吸收水分,形成溴化锂水合物。
空气中的湿度高时,溴化锂水合物会吸附更多水分。
这个过程是在吸湿器中进行的。
2. 解吸过程:当空气中湿度降低时,溴化锂水合物会释放吸收的水分。
这个过程是在脱湿器中进行的。
溴化锂会通过加热或减压的方式,将吸附的水分释放出来。
3. 冷凝过程:脱湿后的空气会进入冷凝器,通过冷却的方式使空气温度下降,将热量释放到外界。
4. 蒸发过程:经过冷凝的空气进入蒸发器,通过吹风机吹送到室内,使室内空气温度降低。
5. 再生过程:在脱湿器中释放的湿气通过再生回路送回吸湿器,回收部分吸附剂,再次进行吸湿循环。
通过不断循环上述步骤,溴化锂制冷机组可以不断吸湿和脱湿,使空气温度降低,从而达到制冷的效果。
溴化锂水吸收式制冷原理
溴化锂水吸收式制冷原理制冷技术是现代社会生活中不可或缺的一部分,而溴化锂水吸收式制冷技术是其中一种重要的制冷方式。
本文将介绍溴化锂水吸收式制冷的原理及其应用。
一、溴化锂水吸收式制冷原理概述溴化锂水吸收式制冷是一种基于溶液吸收和脱吸收过程的制冷技术。
其主要原理是利用溴化锂和水之间的化学反应,通过吸收和释放水分子来实现制冷效果。
溴化锂是一种具有吸湿性的盐类物质,当与水接触时,可以吸收水分子形成溴化锂水合物。
二、制冷循环过程溴化锂水吸收式制冷系统主要由蒸发器、吸收器、冷凝器和膨胀阀组成。
制冷循环过程一般包括以下几个步骤:1. 蒸发器:在蒸发器中,制冷剂(水)从液态转化为气态,吸收外部热量,使得蒸发器内部温度下降。
2. 吸收器:在吸收器中,溴化锂水合物吸收水分子,形成溴化锂水溶液。
这个过程是一个放热反应,释放出热量。
3. 冷凝器:在冷凝器中,溴化锂水溶液通过冷却,水分子从溴化锂水溶液中析出,形成水蒸气。
这个过程是一个吸热反应,吸收了热量。
4. 膨胀阀:通过膨胀阀,水蒸气进入蒸发器,重新开始制冷循环。
三、溴化锂水吸收式制冷的优势相比传统的压缩式制冷技术,溴化锂水吸收式制冷具有以下几个优势:1. 环保节能:溴化锂是一种环保无毒的物质,不会对环境造成污染。
同时,溴化锂水吸收式制冷利用热能驱动,不需要电力,节能效果显著。
2. 低噪音:相比压缩式制冷系统,溴化锂水吸收式制冷系统噪音更低,使得室内环境更加宁静。
3. 稳定性好:溴化锂水吸收式制冷系统使用的是化学反应,不受外界温度和湿度的影响,制冷效果相对稳定。
四、溴化锂水吸收式制冷的应用领域溴化锂水吸收式制冷技术在很多领域有着广泛的应用,主要包括以下几个方面:1. 工业制冷:溴化锂水吸收式制冷系统可以应用于工业制冷领域,满足工业生产中对低温环境的需求。
2. 商业建筑:溴化锂水吸收式制冷系统可以应用于商业建筑中的空调系统,为办公楼、商场等提供舒适的室内环境。
3. 医疗领域:溴化锂水吸收式制冷系统可以应用于医疗设备的冷却,保证医疗设备的正常运行。
溴化锂制冷机原理
溴化锂制冷机原理
溴化锂制冷机是一种利用溴化锂溶液吸收和释放水蒸气来实现制冷的热力循环制冷机。
它主要由溴化锂溶液循环系统、蒸发器、冷凝器和膨胀阀等部件组成。
下面我们将详细介绍溴化锂制冷机的工作原理。
首先,溴化锂制冷机的工作原理是基于溴化锂溶液对水蒸气的吸收和释放。
在蒸发器中,水蒸气通过与溴化锂溶液接触,被吸收到溶液中,从而使蒸发器中的温度降低,实现制冷效果。
而在冷凝器中,通过对溴化锂溶液加热,使其释放吸收的水蒸气,从而恢复溶液的吸收能力,为下一轮制冷循环做准备。
其次,溴化锂制冷机的循环系统起着至关重要的作用。
循环系统通过泵将含有吸收了水蒸气的溴化锂溶液从蒸发器输送至冷凝器,然后再将释放了水蒸气的溴化锂溶液输送回蒸发器,完成一个完整的制冷循环。
此外,蒸发器和冷凝器也是溴化锂制冷机中不可或缺的部件。
蒸发器中的水蒸气与溴化锂溶液接触并被吸收,从而实现制冷效果;而冷凝器中的溴化锂溶液被加热并释放水蒸气,为下一轮制冷循环做准备。
最后,膨胀阀在溴化锂制冷机中起着调节压力和流量的作用。
通过膨胀阀的调节,可以控制溴化锂溶液在蒸发器和冷凝器之间的流动,从而确保制冷循环的正常运行。
总的来说,溴化锂制冷机利用溴化锂溶液对水蒸气的吸收和释放来实现制冷,通过循环系统、蒸发器、冷凝器和膨胀阀等部件的配合工作,完成制冷循环。
这种制冷机具有制冷效率高、能耗低、环保等优点,在工业和商业领域有着广泛的应用前景。
溴化锂吸收式制冷机的工作原理和设计计算
溴化锂吸收式制冷机的工作原理是:冷水在蒸发器内被来自冷凝器减压节流后的低温冷剂水冷却.冷剂水自身吸收冷水热量后蒸发.成为冷剂蒸汽.进入吸收器内.被浓溶液吸收.浓溶液变成稀溶液。
吸收器里的稀溶液.由溶液泵送往热交换器、热回收器后温度升高.最后进入再生器.在再生器中稀溶液被加热.成为最终浓溶液。
浓溶液流经热交换器.温度被降低.进入吸收器.滴淋在冷却水管上.吸收来自蒸发器的冷剂蒸汽.成为稀溶液。
另一方面.在再生器内.外部高温水加热溴化锂溶液后产生的水蒸汽.进入冷凝器被冷却.经减压节流.变成低温冷剂水.进入蒸发器.滴淋在冷水管上.冷却进入蒸发器的冷水。
该系统由两组再生器、冷凝器、蒸发器、吸收器、热交换器、溶液泵及热回收器组成.并且依靠热源水、冷水的串联将这两组系统有机地结合在一起.通过对高温侧、低温侧溶液循环量和制冷量的最佳分配.实现温度、压力、浓度等参数在两个循环之间的优化配置.并且最大限度的利用热源水的热量.使热水温度可降到66℃。
以上循环如此反复进行.最终达到制取低温冷水的目的。
溴化锂吸收式制冷机以水为制冷剂.溴化锂水溶液为吸收剂.制取0℃以上的低温水.多用于空调系统。
溴化锂的性质与食盐相似.属盐类。
它的沸点为1265℃.故在一般的高温下对溴化锂水溶液加热时.可以认为仅产生水蒸气.整个系统中没有精馏设备.因而系统更加简单。
溴化锂具有极强的吸水性.但溴化锂在水中的溶解度是随温度的降低而降低的.溶液的浓度不宜超过66%.否则运行中.当溶液温度降低时.将有溴化锂结晶析出的危险性.破坏循环的正常运行。
溴化锂水溶液的水蒸气分压.比同温度下纯水的饱和蒸汽压小得多.故在相同压力下.溴化锂水溶液具有吸收温度比它低得多的水蒸气的能力.这是溴化锂吸收式制冷机的机理之一。
工作原理与循环溶液的蒸气压力是对平衡状态而言的。
如果蒸气压力为0.85kPa的溴化锂溶液与具有1kPa 压力(7℃)的水蒸气接触.蒸气和液体不处于平衡状态.此时溶液具有吸收水蒸气的能力.直到水蒸气的压力降低到稍高于0.85kPa(例如:0.87kPa)为止。
溴化锂吸收式制冷机的工作原理及设计计算
溴化锂吸收式制冷机的工作原理是:冷水在蒸发器内被来自冷凝器减压节流后的低温冷剂水冷却,冷剂水自身吸收冷水热量后蒸发,成为冷剂蒸汽,进入吸收器内,被浓溶液吸收,浓溶液变成稀溶液。
吸收器里的稀溶液,由溶液泵送往热交换器、热回收器后温度升高,最后进入再生器,在再生器中稀溶液被加热,成为最终浓溶液。
浓溶液流经热交换器,温度被降低,进入吸收器,滴淋在冷却水管上,吸收来自蒸发器的冷剂蒸汽,成为稀溶液。
另一方面,在再生器内,外部高温水加热溴化锂溶液后产生的水蒸汽,进入冷凝器被冷却,经减压节流,变成低温冷剂水,进入蒸发器,滴淋在冷水管上,冷却进入蒸发器的冷水。
该系统由两组再生器、冷凝器、蒸发器、吸收器、热交换器、溶液泵及热回收器组成,并且依靠热源水、冷水的串联将这两组系统有机地结合在一起,通过对高温侧、低温侧溶液循环量和制冷量的最佳分配,实现温度、压力、浓度等参数在两个循环之间的优化配置,并且最大限度的利用热源水的热量,使热水温度可降到66℃。
以上循环如此反复进行,最终达到制取低温冷水的目的。
溴化锂吸收式制冷机以水为制冷剂,溴化锂水溶液为吸收剂,制取0℃以上的低温水,多用于空调系统。
溴化锂的性质与食盐相似,属盐类。
它的沸点为1265℃,故在一般的高温下对溴化锂水溶液加热时,可以认为仅产生水蒸气,整个系统中没有精馏设备,因而系统更加简单。
溴化锂具有极强的吸水性,但溴化锂在水中的溶解度是随温度的降低而降低的,溶液的浓度不宜超过66%,否则运行中,当溶液温度降低时,将有溴化锂结晶析出的危险性,破坏循环的正常运行。
溴化锂水溶液的水蒸气分压,比同温度下纯水的饱和蒸汽压小得多,故在相同压力下,溴化锂水溶液具有吸收温度比它低得多的水蒸气的能力,这是溴化锂吸收式制冷机的机理之一。
工作原理与循环溶液的蒸气压力是对平衡状态而言的。
如果蒸气压力为0.85kPa的溴化锂溶液与具有1kPa压力(7℃)的水蒸气接触,蒸气和液体不处于平衡状态,此时溶液具有吸收水蒸气的能力,直到水蒸气的压力降低到稍高于0.85kPa(例如:0.87kPa)为止。
溴化锂吸收式制冷机工作原理
溴化锂吸收式制冷机工作条件: 1、机组内部为近乎真空的状态。 2、溴化锂水溶液具有很强的吸水性。
基本知识
溴化锂溶液具备强烈的吸湿性 溴化锂溶液的吸湿性很强,具有吸收比其温度低得多的水蒸汽的能力。且溴化锂溶液温度越低、浓度越高吸水性越强。
溴化锂是由碱金属元素锂(Li)和卤族元素(Br)两种元素组成,其一般性质和食盐大体类似,是一种稳定的物质,在大气中不变质、不挥发、不分解、极易溶解于水,20℃时在水中的溶解度约为食盐的溶解度的3倍左右。常温下是无色粒状晶体,无毒、无臭、有咸苦味。
吸收式制冷机工作原理
吸收式制冷机工作原理
冷水出水
用冷需求
冷水回水
燃料
冷却水
荏原吸收式制冷机原理图
冷凝器 冷却水
冷水
双效用吸收式冷冻机 (2个发生器组成,效率大幅提高)
谢谢大家
吸收式制冷机结构组成
基本知识
3.低温发生器 G2 低温发生器也是管壳式换热器,低温发生器内部为喷淋式结构。稀溶液被喷淋至换热管外表面,由高温发生器产生的冷剂蒸汽在换热管内流动,加热稀溶液,同时并与产生的冷剂蒸汽一道流向冷凝器。主要组成部分包括管板、传热管、支撑板、喷淋集管和喷嘴。 4.冷凝器 C 冷凝器也是管壳式换热器,由发生器过来的冷剂蒸汽在换热管表面凝结成冷剂水,释放的热量被换热管内流动的冷却水带走。主要组成部分包括管板、传热管、支撑板。 5.高温发生器 G1 高温发生器是吸收式制冷机中非常关键的组成部分,通常作成为一个单体。主要由筒体、管板、换热管等组成。
为何热量可生成冷水
水在7mmHg状态下,3-4度蒸发,单效机组主要是由吸收器、蒸发器、发生器、冷凝器组成
关闭
水&水蒸气
溴化锂制冷机的工作原理
溴化锂制冷机的工作原理
首先,当外界热源通过蒸发器的翅片管传递热量,蒸发器中的溴化锂-水溶液开始吸热并蒸发,使得蒸发器内的温度明显下降。
在蒸发过程中,吸附剂对来自蒸发器的水蒸气有很高的吸附选择性,将水分分离并吸附在吸附剂表面,使得剩余的溴化锂与水的比例偏向溴化锂。
吸附过程中,温度上升,吸热。
接下来,吸附剂带着吸附的水分流入冷凝器,经过水冷循环或风冷方式,使其在冷凝器内冷却并凝结成液体。
冷凝器内排放的能量主要通过冷却介质(如冷却水或风)带走。
随后,加热解吸器的作用是使吸附剂中的吸附介质水分再次释放。
通过加热,吸附剂上的水分会脱附,并转移到解吸器中。
解吸器中的蒸汽压力相对较高,使吸附剂中脱附的水分形成蒸气状态。
这种蒸气经过冷凝装置和膨胀阀,使压力下降,形成低温的低压蒸发器进一步蒸发。
最后,经过蒸发器蒸发的低温低压蒸汽会重新进入吸附器,与吸附剂进行吸附过程。
该过程会排出吸附剂中的其他气体成分。
整个循环过程中,吸附剂在吸附器中与溴化锂发生吸附反应,从而促使溴化锂分离出水分。
在冷凝过程中,水蒸气在冷凝器中转变成液体。
通过解吸和蒸发的过程,低温的低压蒸汽再次发生蒸发反应。
总的来说,溴化锂制冷机利用吸附-脱附这一特性实现制冷效果。
通过循环流动的溴化锂-水溶液和吸附剂之间的热传递和物质传递,实现制冷效果。
由于溴化锂的特殊性质和热力学循环原理的优势,溴化锂制冷机在制冷效果、节能性能、可靠性等方面具有很大的优势,成为一种受到广泛使用的制冷设备。
双效溴化锂吸收式制冷机的工作原理
双效溴化锂吸收式制冷机的工作原理一、吸收式制冷原理:吸收式制冷原理,都是利用液态制冷剂在低压、低温下汽化,使制冷剂蒸汽吸收载冷剂的热负荷产生制冷效应的。
吸收式制冷机循环工作的工质为二元工质,如溴化锂水溶液。
溶液中水是制冷剂,水在真空状态下蒸发产生低温蒸汽,从而吸收溴化锂溶液中的热量,使溴化锂溶液温度降低,产生制冷效应。
溴化锂水溶液是吸收剂,在常温和低温下具有强烈吸收水蒸汽的特性,而在高温下又能将吸收的水分释放出来。
吸收式制冷装置和工作过程就是使制冷溶液吸收与释放周而复始的循环过程,达到制冷的目的。
二、双效溴化锂吸收式制冷机的工作原理1、串联双效溴化锂吸收式制冷机工作原理示意图图一三筒串联双效溴化锂吸收式制冷机工作原理示意图2、串联双效溴化锂制冷机的工作原理由图一可知:吸收器中的溴化锂稀溶液由发生器泵升压后经高温换热器升温并输送至高压发生器;溶液在高压发生器中被供热蒸汽加热使溶液中的部分制冷剂(水)被汽化产生高温冷剂蒸汽而使溶液浓缩;浓缩后的高温溶液经高温换热器降温后进入低压发生器,溶液在低压发生器中被来自高压发生器的冷剂蒸汽加热使溶液中的制冷剂继续汽化产生低温冷剂蒸汽使溶液进一步浓缩,浓缩后溶液经低温热交换器降温并送回吸收器;由高压发生器产生的冷剂蒸汽经低压发生器降温后进入冷凝器,由低压发生器产生的冷剂蒸汽直接进入冷凝器,这两股冷剂蒸汽在真空冷凝器中冷凝成低温制冷剂;低温制冷剂节流降压后送入真空蒸发器中低压蒸发,蒸发后的蒸汽被吸收器中溶液吸收,一方面使溶液浓度降低成为稀溶液,另一方面使溶液放热而降温达到制冷的目的。
其工作过程循环图,如图二所示。
1-2:等浓升压力加热过程(吸收泵、高低温换热器中完成)2-3:加热增浓过程(高低压发生器中完成)3-4等浓节流降压过程(节流阀)4-1:浓降放热过程(蒸发器、吸收器中完成)图二循环工作过程简化示意图3、并联双效溴化锂制冷机的工作原理图并联双效溴化锂制冷机和串联双效溴化锂制冷机的工作原理相同,其主要差别在于溴化锂溶液所经路径的区别,前者为并联,后者为串联,并联的双效溴化锂制冷机的工作原理,如图三所示,其工作原理在此不再重述。
溴化锂吸收式制冷机工作原理
溴化锂吸收式制冷机工作原理
溴化锂吸收式制冷机是一种热力循环制冷系统,其工作原理大致如下:
1. 蒸发器:在蒸发器中,液态溴化锂吸收氨气,使其蒸发,并吸收周围环境中的热量。
这个过程导致蒸发器中的温度下降,冷却被制冷介质(如空气或水)通过的管道。
2. 吸收器:蒸发器中的氨气和溴化锂混合物流入吸收器中,在吸收器中,这个混合物与脱气的溴化锂反应,生成氨溴化锂溶液。
该过程伴随着放热,将部分吸热器中的热量回馈给吸收器周围的环境。
3. 脱气器:氨溴化锂溶液从吸收器中进入脱气器,在脱气器中,通过加热使氨从氨溴化锂中分离出来,由于氨的沸点较低,因此在此过程中液相可以被分离出来,氨气被释放到外部环境中。
4. 冷凝器:氨气进入冷凝器后,通过冷却装置(如冷却水或大气)的作用,迅速被冷却,并凝结成液态,释放出大量的热量。
该热量通过冷凝器中的传热管道传递给周围环境介质。
5. 膨胀阀:冷凝过程结束后,液态溴化锂经过膨胀阀进入到蒸发器中,进一步继续循环运行。
通过上述过程,溴化锂吸收式制冷机可以实现制冷剂的循环往复,达到制冷的目的。
整个系统的工作主要依赖于溴化锂和氨
之间的化学反应,通过周期性地加热和冷却来实现吸收、脱气、冷凝、扩散等过程的循环运行。
溴化锂吸收式制冷机的工作原理
溴化锂吸收式制冷机的工作原理溴化锂吸收式制冷机是一种常用的制冷设备,其工作原理基于溴化锂和水之间的吸收作用。
它主要由蒸发器、溴化锂吸收器、溴化锂发生器、冷凝器和泵等组成。
1. 蒸发器:蒸发器是溴化锂吸收式制冷机的起始点,其内部充满了制冷剂,通常为氨或者氨水溶液。
制冷剂在蒸发器中受热蒸发,吸收外界的热量,从而使蒸发器内的温度降低。
2. 溴化锂吸收器:蒸发器中的制冷剂蒸汽进入溴化锂吸收器,与溴化锂溶液接触。
在吸收器中,溴化锂溶液会吸收制冷剂蒸汽,形成浓溴化锂溶液。
这个过程是一个放热的反应,释放出大量的热量。
3. 溴化锂发生器:浓溴化锂溶液从吸收器流入溴化锂发生器。
在发生器中,浓溴化锂溶液受热分解,释放出吸收器中吸收的制冷剂蒸汽,并将溴化锂溶液再次变为稀溴化锂溶液。
这个过程是一个吸热的反应,需要外界提供热量。
4. 冷凝器:稀溴化锂溶液从发生器中流入冷凝器,与冷却水接触。
在冷凝器中,稀溴化锂溶液会释放出吸收过程中吸收的热量,冷却下来。
冷却水则吸收了这部份热量,变热并排出。
5. 泵:泵的作用是将稀溴化锂溶液从冷凝器中抽回到吸收器中,以保持循环。
通过以上的循环过程,溴化锂吸收式制冷机能够实现制冷效果。
它的工作原理基于溴化锂和水之间的吸收作用,通过吸热和放热的反应,将热量从一个区域转移到另一个区域,从而实现制冷效果。
需要注意的是,溴化锂吸收式制冷机的效率会受到外界温度和湿度的影响。
在高温和高湿的环境中,制冷机的制冷效果会降低,需要额外的措施来提高效率。
此外,制冷剂的选择也会影响制冷机的性能,不同的制冷剂有着不同的特性和适合范围。
总之,溴化锂吸收式制冷机是一种常用的制冷设备,通过溴化锂和水之间的吸收作用,实现热量转移和制冷效果。
它的工作原理相对简单,但在实际应用中需要考虑外界环境和制冷剂选择等因素,以提高效率和性能。
溴化锂吸收式制冷原理及设计介绍
吸收器内部装有溴化锂溶液,通过吸 收蒸发器产生的冷剂蒸汽,将其转回 为溴化锂溶液。
溶液泵和冷剂泵
作用
将溴化锂溶液和冷剂水分别循环输送至各个部件。
描述
溶液泵用于将溴化锂溶液从吸收器输送至发生器,而冷剂泵用于将冷剂水从蒸发器输送至吸收器。
03 溴化锂吸收式制冷系统设 计
系统设计流程
选择制冷剂和吸收剂
采用新型紧凑高效的换热器,减小换 热器体积和重量。
系统可靠性的增强措施
选用高质量的材料和元件
选用耐腐蚀、耐高温、高可靠性的材料和元件,提高系统可靠性。
加强系统维护保养
定期对系统进行维护保养,确保系统正常运行。
完善应急预案
制定完善的应急预案,及时处理系统故障,确保系统安全可靠运行。
05 溴化锂吸收式制冷系统的 应用与案例分析
根据系统性能和环保要求,选择 适合的溴化锂或其他吸收剂。
设计热力系统
根据制冷需求和吸收剂、制冷剂 的热力特性,设计合理的热力循 环系统。
结构设计
根据系统工艺和运行要求,设计 合理的结构布局,包括吸收器、 蒸发器、冷凝器、发生器等部件。
确定制冷需求
根据用户需求和系统规模,确定 制冷量、温度和湿度等参数。
应用案例一:大型商场的空调系统
01
在大型商场的空调系统中,溴化 锂吸收式制冷系统能够提供高效 、稳定的冷源,满足商场内大量 人流的舒适需求。
02
通过合理的系统设计和布局,能 够实现节能减排,降低运行成本 。
应用案例二:工业冷却系统
在工业冷却系统中,溴化锂吸收式制 冷技术能够为工艺流体提供稳定的冷 却效果,保证生产过程的顺利进行。
强化传热传质
采用新型高效传热传质元 件,改善吸收器和冷凝器 内的传热传质过程。
溴化锂吸收式制冷机工作原理
溴化锂吸收式制冷机工作原理
溴化锂吸收式制冷机是一种利用溴化锂和水的化学反应产生吸热和放热效应来实现制冷的装置。
其工作原理如下:
1. 蒸发器:溴化锂水溶液在低压下喷入蒸发器,此时溶液处于低温和低压状态,溴化锂分子会吸收蒸发器中的热量,从而发生蒸发,使蒸发器内部的温度下降。
2. 吸收器:蒸发器中的溴化锂蒸汽被吸收剂(通常为水)吸收后形成稀溶液,这是一个吸热过程,吸收过程会释放出很多热量,吸收器内部的温度升高。
3. 压缩机:稀溶液通过压缩机被压缩,使其压强和温度升高,压缩机的功将热量从吸收器带走。
4. 冷凝器:高温高压的稀溶液进入冷凝器,这时稀溶液的温度高于环境温度,通过冷凝器的冷却作用,稀溶液中的热量被传给冷却介质(通常为空气或水)。
冷凝器使稀溶液变为高温浓溶液。
5. 膨胀阀:高温浓溶液通过膨胀阀进入蒸发器,膨胀阀的作用是将溶液的温度和压强降低,使其进入蒸发器,重新开始循环。
这样,制冷机就能循环工作,通过不断的吸收和放热过程,从而实现制冷效果。
整个过程没有机械部分,主要依靠化学反应和物质的热力学性质变化来实现制冷,因此溴化锂吸收式制冷机具有无噪音、无振动、无CFC污染的优点。
溴化锂制冷原理
溴化锂制冷原理
溴化锂制冷是一种常见的吸收式制冷方式,它利用溴化锂在水溶液中的吸热性
质来实现制冷的目的。
在这种制冷方式中,溴化锂起着吸收剂的作用,而水则是溶剂。
当水与溴化锂混合后,会发生吸热反应,从而达到制冷的效果。
首先,让我们来了解一下溴化锂的基本性质。
溴化锂是一种无色晶体,具有很
强的吸湿性,可以迅速吸收空气中的水分。
当溴化锂与水混合时,会发生放热反应,这是因为在混合过程中,水分子会与溴化锂分子发生化学反应,释放出大量的热量。
这种放热反应是溴化锂制冷原理的基础。
其次,我们来看一下溴化锂制冷的工作原理。
在溴化锂制冷系统中,首先需要
将溴化锂和水混合成溴化锂溶液。
然后,通过加热溴化锂溶液,使其蒸发成为气态。
在这个过程中,溴化锂会吸收空气中的水分,从而降低周围环境的温度。
接着,将气态的溴化锂通过冷凝器冷却成液态,然后再次循环使用。
这样一来,就可以实现制冷的效果。
溴化锂制冷的优点在于它能够在较低的温度下进行制冷,而且具有较高的制冷
效率。
此外,溴化锂制冷系统的运行稳定性较高,能够适应不同的制冷需求。
因此,溴化锂制冷在工业生产和生活中得到了广泛的应用。
总的来说,溴化锂制冷原理是一种利用溴化锂吸收水分释放热量的制冷方式。
通过将溴化锂溶液加热蒸发和冷凝成液态的循环过程,实现了制冷的效果。
溴化锂制冷具有制冷效率高、运行稳定等优点,因此在各个领域得到了广泛的应用。
希望通过本文的介绍,能够更好地了解溴化锂制冷原理,为相关领域的研究和应用提供帮助。
溴化锂机组工作原理
溴化锂机组工作原理溴化锂机组是一种常用于空调系统中的吸收式制冷机组,其工作原理是利用溴化锂和水之间的化学反应来实现制冷效果。
下面将详细介绍溴化锂机组的工作原理。
1. 溴化锂溶液的制备溴化锂机组中的溴化锂溶液是制冷过程中的关键物质。
溴化锂溶液通常由溴化锂和水按一定比例混合而成。
在机组中,溴化锂溶液分为两个部份:吸收器中的稀溶液和发生器中的浓溶液。
2. 吸收过程吸收过程是溴化锂机组制冷过程的核心。
在吸收器中,稀溶液与蒸发器中的制冷剂(普通为水蒸气)接触,发生吸收反应。
在这个过程中,溴化锂溶液中的溴化锂与水反应生成溴化锂水合物,并释放出大量的热量。
这个过程是一个放热反应,使得蒸发器中的制冷剂蒸发并带走热量,从而实现制冷效果。
3. 泵送过程泵送过程是将稀溶液从吸收器泵送到发生器的过程。
泵送过程需要消耗一定的能量,通常使用电动泵来完成。
4. 发生过程发生过程是溴化锂机组制冷过程中的另一个重要步骤。
在发生器中,浓溶液与热源(普通为蒸汽或者燃气)接触,发生发生反应。
在这个过程中,溴化锂水合物分解成溴化锂溶液和水蒸气,并吸收大量的热量。
这个过程是一个吸热反应,使得发生器中的溴化锂溶液升温并释放出水蒸气。
5. 冷凝过程冷凝过程是将发生器中的水蒸气冷凝成液体的过程。
冷凝过程需要通过冷却水或者冷却剂来完成,将水蒸气冷却成液体。
6. 膨胀过程膨胀过程是将液体制冷剂通过膨胀阀或者节流阀放松成低压、低温的过程。
在这个过程中,制冷剂的压力和温度均下降,从而实现制冷效果。
7. 循环过程溴化锂机组的工作是一个循环过程,通过不断重复上述步骤,实现持续的制冷效果。
稀溶液从吸收器中泵送到发生器,发生器中的溴化锂水合物分解成溴化锂溶液和水蒸气,水蒸气经过冷凝过程变成液体,然后通过膨胀过程放松成低压、低温的制冷剂,最后再回到吸收器中与蒸发器中的制冷剂接触,从而实现制冷循环。
总结:溴化锂机组通过溴化锂和水之间的化学反应来实现制冷效果。
在吸收过程中,溴化锂溶液与蒸发器中的制冷剂接触,发生吸收反应,释放出大量的热量,从而实现制冷效果。
溴化锂机组制冷原理
溴化锂机组制冷原理
溴化锂机组制冷原理是通过冷冻剂溴化锂在吸附和脱附过程中释放和吸收热量来实现制冷的。
具体而言,溴化锂制冷机组由吸附器、蒸发器、冷凝器和脱附器等主要组成部分。
溴化锂机组的工作循环可以分为吸附过程、冷凝过程、脱附过程和蒸发过程四个阶段。
在吸附过程中,制冷剂溴化锂会吸附在吸附剂上,并释放热量。
此时,吸附剂的温度会升高,吸附器内的压力也会上升。
在冷凝过程中,高温高压的溴化锂和吸附剂混合物进入冷凝器,经过冷凝器的冷凝和凝固作用后,制冷剂会变为液体,并释放出的热量。
进入脱附过程后,制冷剂溴化锂开始从吸附剂上脱附并分离。
脱附过程中,制冷剂的温度会下降,并吸收热量。
最后,在蒸发过程中,制冷剂溴化锂在蒸发器中蒸发并吸收热量,从而使蒸发器内的温度降低。
同时,蒸发的制冷剂会被吸附剂重新吸附,准备开始下一轮的循环。
通过不断循环上述四个阶段,溴化锂机组可以实现制冷效果。
这种机组在制冷过程中能够将热量从低温区域吸收并释放到高温区域,从而实现对物体进行制冷的目的。
溴化锂吸收式制冷机工作原理、
溴化锂吸收式制冷机工作原理、特点及相关产品参数感谢大家的使用,希望对您能有所帮助溴化锂吸收式制冷机工作原理、特点及相关产品参数溴化锂吸收式制冷机工作原理:溴化锂吸收式制冷机是以溴化锂溶液为吸收剂,以水为制冷剂,利用水在高真空下蒸发吸热达到制冷的目的。
为使制冷过程能连续不断地进行下去,蒸发后的冷剂水蒸气被溴化锂溶液所吸收,溶液变稀,这一过程是在吸收器中发生的,然后以热能为动力,将溶液加热使其水份分离出来,而溶液变浓,这一过程是在发生器中进行的。
发生器中得到的蒸汽在冷凝器中凝结成水,经节流后再送至蒸发器中蒸发。
如此循环达到连续制冷的目的。
溴化锂吸收式制冷机的特点一、优点(一)以热能为动力,电能耗用较少,且对热源要求不高。
能利用各种低势热能和废汽、废热,如高于20kPa(0.2kgf/cm2)表压饱和蒸汽、高干75℃的热水以及地热、太阳能等,有利于热源的综合利用。
具有很好的节电、节能效果,经济性好。
(二)整个机组除功率很小的屏蔽泵外,没有其他运动部件,振动小、噪声低、运行比较安静。
(三)以溴化锂溶液为工质,机器在真空状态下运转,无臭、无毒、无爆炸危险、安全可靠、无公害、有利于满足环境保护的要求。
(四)冷量调节范围宽。
随着外界负荷变化,机组可在10%~100%的范围内进行冷量的无级调节。
即使低负荷运行,热效率几乎不下降,性能稳定,能很好适应负荷变化的要求。
(五)对外界条件变化的适应性强。
如标准外界条件为:蒸汽压力5.88 X 105Pa(6kgf/cm2)表压,冷却水进口温度32℃,冷媒水出口温度10℃的蒸汽双效机,实际运行表明,能在蒸汽压力(1.96~7.84)X 105Pa(2.0~8.0kgf/cm2)表压,冷却水进口温度25~40℃,冷媒水出口温度5~15C的宽阔范围内稳定运转。
(六)安装简便,对安装基础要求低。
机器运转时振动小,无需特殊基础,只考虑静负荷即可。
可安装在室内、室外、底层、楼层或屋顶。
溴化锂吸收式制冷机原理
溴化锂吸收式制冷机原理制冷原理一、一般制冷原理根据热力学的基本原理我们知道,一般的制冷循环由四个主要部件组成:压缩机、冷凝器、节流阀和蒸发器,其制冷原理如下一般制冷机的制冷原理压缩机的作用是把压力较低的蒸汽压缩成压力较高的蒸汽,使蒸汽的体积减小,压力升高。
压缩机吸入从蒸发器出来的较低压力的工质蒸汽,使之压力升高后送入冷凝器,在冷凝器中冷凝成压力较高的液体,经节流阀节流后,成为压力较低的液体后,送入蒸发器,在蒸发器中吸热蒸发而成为压力较低的蒸汽,再送入蒸发器的入口,从而完成制冷循环。
根据在冷凝器中冷却冷剂蒸汽的流体介质不同,可分为空冷式和水冷式。
空冷式的冷却介质为空气,而水冷式的冷却介质为水。
在蒸发器中使冷剂介质吸热蒸发的介质称为冷媒。
如冷媒为水,就称为冷媒水。
作为冷媒还有盐水等。
能作为冷剂的工质很多,既有氟利昂之类的工质,也可是水等。
压缩机是消耗能源的装置,它的目的是使压力较低的工质蒸汽变成压力较高的工质蒸汽。
实际上,能达到上述目的不只是压缩机,也有其他手段二、制冷的能源制冷实际上是一个能量的转换过程。
在制冷机中,把压缩机(或能起到压缩机作用的其他部件)中消耗的能量转换成冷能(其温度低于环境温度)。
所以,原则上讲,只要是有一定品质的能量,都能作为压缩机的能源。
压缩机消耗的是电能或机械能。
而有一定压力和较高温度的蒸汽也是一种能源,是否也可转变为冷能呢?还有其他一些能源,如太阳能、化学能等,是否也可转变为冷能呢?答案是肯定的。
如利用蒸汽作为能源的溴化锂吸收式制冷机和蒸汽喷射式制冷机等。
溴化锂吸收式制冷机中是怎样利用蒸汽作为能源取代压缩机的呢?三、水为什么能作为能源目前,在一般制冷机中使用的是象氟利昂之类的工质。
实际上,能作为制冷剂的工质有很多,只要它们具有以下条件。
1.在要求的温度范围你内,其状态会发生变化(相变);2.有较大的蒸发潜热;3.工作压力适中;4.物理、化学性质稳定;5.经济、实用。
可见,水就具有以上条件。
溴化锂吸收式制冷机
❖ 单效制冷机使用能源广泛,可以采用各种工业 余热,废热,因此在钢铁、轻工、纺织、化工 等企业中应用前景广泛。也可以采用地热、太 阳能等作为驱动热源,在能源的综合利用和梯 级利用方面有着显著的优势。而且具有负荷及 热源自动跟踪功能,确保机组处于最佳运行状 态。
❖ 单效制冷机的驱动热源为低品位热源,其 COP(Coefficient Of Performance,即能量与 热量之间的转换比率,简称能效比)在0.5-0.7.
溴化锂余热制冷技术
应用:
溴化锂式中央空调
收式制冷技术已经有200多年的发展历史,自从1950年溴 化锂制冷机组第一次进入工业应用开始,其在余热资源 丰富的工业部门得到了广泛的应用。与采用传统电力空 调制冷相比,吸收式制冷技术可以充分利用各种余热、 废热资源,达到节能降耗的目的,且可降低环境污染。 1987年,国务院《关于进一步加强节约用电的若干规定》 中明确规定“有热源的大面积空调单位,装设溴化锂吸 收式制冷装置”
目前, 我国溴冷机冷水机组的水平已达到国际先进 水平, 生产能力达到10000台/ 年, 实际生产3500 台/ 年, 与日本相当, 名列世界前茅。我国已成为 溴冷机的生产、使用大国。溴冷机发展至今, 技术 日益完善, 机组向节约能耗、降低温室效应、小型 化、轻量化、美观化、智能化方向发展。
可以说, 五六十年代溴冷机的发展中心在美国, 七 八十年代溴冷机的发展中心在日本, 而到了九十年 代, 中国已成为直燃式溴冷机的产销大户
安全可靠 6.易于实现自动化 7.制冷量调节范围广
缺点 1.腐蚀性强,气密性要求高 2.对外排热量大 3.热力系数较低 4.溴化锂价格贵
溴化锂吸收式制冷机的分类
1. 按用途分: 1)冷水机组 2)冷热水机组 3)热泵机组
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
溴化锂吸收式制冷机原理制冷原理一、一般制冷原理根据热力学的基本原理我们知道,一般的制冷循环由四个主要部件组成:压缩机、冷凝器、节流阀和蒸发器,其制冷原理如下一般制冷机的制冷原理压缩机的作用是把压力较低的蒸汽压缩成压力较高的蒸汽,使蒸汽的体积减小,压力升高。
压缩机吸入从蒸发器出来的较低压力的工质蒸汽,使之压力升高后送入冷凝器,在冷凝器中冷凝成压力较高的液体,经节流阀节流后,成为压力较低的液体后,送入蒸发器,在蒸发器中吸热蒸发而成为压力较低的蒸汽,再送入蒸发器的入口,从而完成制冷循环。
根据在冷凝器中冷却冷剂蒸汽的流体介质不同,可分为空冷式和水冷式。
空冷式的冷却介质为空气,而水冷式的冷却介质为水。
在蒸发器中使冷剂介质吸热蒸发的介质称为冷媒。
如冷媒为水,就称为冷媒水。
作为冷媒还有盐水等。
能作为冷剂的工质很多,既有氟利昂之类的工质,也可是水等。
压缩机是消耗能源的装置,它的目的是使压力较低的工质蒸汽变成压力较高的工质蒸汽。
实际上,能达到上述目的不只是压缩机,也有其他手段二、制冷的能源制冷实际上是一个能量的转换过程。
在制冷机中,把压缩机(或能起到压缩机作用的其他部件)中消耗的能量转换成冷能(其温度低于环境温度)。
所以,原则上讲,只要是有一定品质的能量,都能作为压缩机的能源。
压缩机消耗的是电能或机械能。
而有一定压力和较高温度的蒸汽也是一种能源,是否也可转变为冷能呢?还有其他一些能源,如太阳能、化学能等,是否也可转变为冷能呢?答案是肯定的。
如利用蒸汽作为能源的溴化锂吸收式制冷机和蒸汽喷射式制冷机等。
溴化锂吸收式制冷机中是怎样利用蒸汽作为能源取代压缩机的呢?三、水为什么能作为能源目前,在一般制冷机中使用的是象氟利昂之类的工质。
实际上,能作为制冷剂的工质有很多,只要它们具有以下条件。
1.在要求的温度范围你内,其状态会发生变化(相变);2.有较大的蒸发潜热;3.工作压力适中;4.物理、化学性质稳定;5.经济、实用。
可见,水就具有以上条件。
它在一定的压力下,在适当的温度范围内,能够容易地由液态转变成汽态,或者相反;其蒸发潜热也较大,工作压力和物理、化学性质十分稳定,且绝对经济、实用。
所以,水是一种非常合适的制冷剂。
但它也有一定的局限性:0℃以下时,它能转变为固体,所以,以水作为制冷剂的制冷机,不能制取0℃以下的冷媒。
四、吸收式制冷机中的吸收剂的循环为什么能起到压缩机的作用压缩机的作用是把压力较低的冷剂蒸汽变成压力较高的冷剂蒸汽。
所以,只要能将压力较低的冷剂蒸汽变成压力较高的冷剂蒸汽的部件都可取代压缩机。
下面就是一例。
我们都知道,食盐在夏天的时候容易吸收空气中的水蒸汽而变得比较潮湿。
这也是一般盐类所具有的性质。
溴化锂也是一种盐,它也有吸收水蒸汽的能力,且其吸收水蒸汽的能力远大于食盐。
不但固态的溴化锂能吸收水蒸汽,浓度较高的溴化锂水溶液(以下简称溴化锂溶液)也具有较强的吸收水蒸汽的能力。
溴化锂溶液所处的容器压力较低且水蒸汽的分压力较高时,溴化锂溶液的吸收能力较强。
吸收水蒸汽后,溴化锂溶液的浓度变低,需浓缩后才能循环使用。
浓缩可在一个压力和温度都较高的容器中进行。
而浓缩时又产生一定数量的水蒸汽。
所以,溴化锂溶液可在低压下吸收水蒸汽,而在高压下产生水蒸汽。
也就是说,溴化锂溶液有把低压水蒸汽变成高压水蒸汽的能力。
因此,溴化锂溶液可把低压制剂蒸汽变成高压冷剂蒸汽从而取代压缩机。
吸收水蒸汽的容器叫作吸收器。
产生水蒸汽的容器叫作发生器。
在吸收器中吸收了水蒸汽的浓溶液变成了稀溶液,由溶液泵送至发生器,由其中的高温蒸汽加热沸腾浓缩,并产生温度较高的高压冷剂蒸汽,稀溶液的浓度也变高,浓缩后的浓溶液经节流阀送至吸收器,吸收来自蒸发器的低压冷剂蒸汽,从而达到了把低压冷剂蒸汽变成高压冷剂蒸汽,取代压缩机的目的。
图1.5.1吸收器和发生器取代压缩机的原理图五、溴化锂吸收式制冷机原理溴化锂吸收式制冷机是以溴化锂溶液为吸收剂,以水为制冷剂,利用水在高真空下蒸发吸热达到制冷的目的。
为使制冷过程能连续不断地进行下去,蒸发后的冷剂水蒸气被溴化锂溶液所吸收,溶液变稀,这一过程是在吸收器中发生的,然后以热能为动力,将溶液加热使其水份分离出来,而溶液变浓,这一过程是在发生器中进行的。
发生器中得到的蒸汽在冷凝器中凝结成水,经节流后再送至蒸发器中蒸发。
如此循环达到连续制冷的目的。
可见溴化锂吸收式制冷机主要是由吸收器、发生器、冷凝器和蒸发器四部分组成的。
从吸收器出来的溴化锂稀溶液,由溶液泵(即发生器泵),升压经溶液热交换器,被发生器出来的高温浓溶液加热温度提高后,进入发生器。
在发生器中受到传热管内热源蒸汽加热,溶液温度提高直至沸腾,溶液中的水份逐渐蒸发出来,而溶液浓度不断增大。
单效溴化锂吸收式制冷机的热源蒸汽压力一般为0.098MPa(表压)。
发生器中蒸发出来的冷剂水蒸气向上经挡液板进入冷凝器,挡液板起汽液分离作用,防止液滴随蒸汽进入凝凝器。
冷凝器的传热管内通入冷却水,所以管外冷剂水蒸气被冷却水冷却,冷凝成水,此即冷剂水。
积聚在冷凝器下部的冷剂水经节流后流入蒸发器内,因为冷凝器中的压力比蒸发器中的压力要高。
如:当冷凝器温度为45℃时,冷凝压力为9580Pa(71.9mmHg);蒸发温度为5℃时,蒸发压力872Pa(6.45mmHg)。
U型管是起液封作用的,防止冷凝器中的蒸汽直接进入蒸发器。
冷剂水进入蒸发器后,由于压力降低首先闪蒸出部分冷剂水蒸气。
因蒸发器为喷淋式热交换器,喷啉量要比蒸发量大许多倍,故大部分冷剂水是聚集在蒸发器的水盘内的,然后由冷剂水泵升压后送入蒸发器的喷淋管中,经喷嘴喷淋到管簇外表面上,在吸取了流过管内的冷媒水的热量后,蒸发成低压的冷剂水蒸气。
由于蒸发器内压力较低,故可以得到生产工艺过程或空调系统所需要的低温冷媒水,达到制冷的目的。
例如蒸发器压力为872Pa时,冷剂水的蒸发温度为5℃,这时可以得到7℃的冷媒水。
蒸发出来的冷剂蒸汽经挡液板将其夹杂的液滴分离后进入吸收器,被由吸收器泵送来并均匀喷淋在吸收管簇外表的中间溶液所吸收,溶液重新变稀。
中间溶液是由来自溶液热交换器放热降温后的浓溶液和吸收器液囊中的稀溶液混合得到的。
为保证吸收过程的不断进行,需将吸收过程所放出的热量由传热管内的冷却水及时带走。
中间溶液吸收了一定量的水蒸气后成为稀溶液,聚集在吸收器底部液囊中,再由发生器泵送到发生器,如此循环不已。
由上述循环工作过程可见,吸收式制冷机与压缩式制冷机在获取冷量的原理上是相同的,都是利用高压液体制冷剂经节流阀(或U型管)节流降压后,在低压下蒸发来制取冷量,它们都有起同样作用的冷凝、蒸发和节流装置。
而主要区别在于由低压冷剂蒸汽如何变成高压蒸汽所采用的方法不同,压缩式制冷机是通过原动机驱动压缩机来实现的,而吸收式制冷机是通过吸收器,溶液泵和发生器等设备来实现的。
从吸收器出来的稀溶液温度较低,而稀溶液温度越低,则在发生器中需要更多热量。
自发生器出来的浓溶液温度较高,而浓溶液温度越高,在吸收器中则要求更多的冷却水量。
因此设置溶液交换器,由温度较高的浓溶液加热温度较低的稀溶液,这样既减少了发生器加热负荷,也减少了吸收器的冷却负荷,可谓一举两得。
溴化锂吸收式制冷机除了上述冷剂水和溴化锂溶液两个内部循环外,还有三个系统与外部相联,这就是:①热源系统;②冷却水系统;③冷媒水系统。
热源蒸汽(或热水)通入发生器,在管内流过,加热管外溶液使其沸腾并蒸发出冷剂蒸汽,而热源蒸汽放出汽化潜热后凝结成水排出。
一般情况下,应将该凝结水回收并送回锅炉加以利用。
在吸收器中溶液吸收来自蒸发器的低压冷剂蒸汽,是个放热过程。
为使吸收过程连续进行下去,需不断加以冷却。
在冷凝器中也需冷却水,以便将来自发生器的高压冷剂蒸汽变成冷剂水。
冷却水先流经吸收器后,再流过冷凝器,出冷凝器的冷却水温度较高,一般是通入冷却水塔,降温后再打入吸收器循环使用。
来自用户的冷媒水通入蒸发器的管簇内,由于管外冷剂水的蒸发吸热,使冷媒水降温。
制冷机的工作目的是获得低温(如7℃)的冷媒水,冷媒水就是冷量的“媒体”。
六、溴化锂吸收式制冷机溶液循环在吸收式制冷机中,溶液的循环是至关重要的。
因为它是用溶液的浓缩和吸收而使低压蒸汽变成高压蒸汽,从而取代压缩机的的关键问题所在。
在溴化锂吸收式制冷机中,发生器和吸收器中起到上述作用的是溴化锂溶液,它的吸收水蒸汽的能力很强。
吸收式制冷机的溶液循环原理如图2.2.1所示。
图2.2.1吸收式制冷机的溶液循环七、溴化锂吸收式制冷机中的制冷剂循环溴化锂吸收式制冷机中的制冷剂就是水。
水在制冷循环中状态不断改变,并利用其在蒸发时的吸热而产生制冷的。
首先,从发生器中产生的高压冷剂蒸汽在冷凝器中被冷却水冷凝成冷剂水。
因其压力较高,故通过一个节流阀送入蒸发器,在蒸发器中吸收管内冷媒水的热量而蒸发,蒸发后的冷剂蒸汽压力较低,通过挡水板送入吸收器以被较浓的溴化锂溶液吸收,而后又在发生器产生出压力较高的冷剂蒸汽,从而完成循环。
在溴化锂吸收式制冷机中,蒸发器中的压力非常低,以至于水在5℃时即达到饱和而蒸发,在蒸发时吸收管内冷媒水的热量而使其温度降低,从而达到制冷的目的。
一般而言,冷媒水进蒸发器的温度为12℃,放热后温度降低到7℃,由冷媒水泵送给用户使用。
在吸收器中吸收了低压水蒸汽的溴化锂溶液浓度变小,温度也较低,被溶液泵送往使之浓缩的发生器中,被管内流动的高压工作蒸汽加热至对应压力下的沸点,使之沸腾并产生冷剂蒸汽,因发生器中的压力较高,所以冷剂蒸汽的压力也较高,也就是说通过泵的升压和工作蒸汽的加热,使低压蒸汽的压力升高。
溶液沸腾产生出冷剂蒸汽后,浓度和温度都有所升高,又具有了吸收水蒸汽的能力。
因发生器中的压力比吸收器中的压力要高得多,故在送往吸收器中让其吸收水蒸汽时必须通过节流阀降压。
在吸收器中,溶液被喷淋在内通冷却水的传热管管簇上,因溶液在吸收水蒸汽时要放出大量的吸收热,故需大量的冷却水进行冷却,实验和理论都表明,溶液的浓度越高、温度越低,吸收水蒸汽的能力就越强,所以,在实际中,要努力提高其浓度、降低其温度,但要注意避免因浓度过高、温度过低而结晶。