一次函数综合练习(全等三角形,勾股定理)答案

合集下载

八下数学勾股定理与全等三角形综合大题

八下数学勾股定理与全等三角形综合大题

八下数学| 勾股定理与全等三角形综合大题【一】已知,如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于D,过D作DE∥AC交AB于E.(1)求证:AE=DE;【解答】证明:∵DE∥AC,∴∠CAD=∠ADE,∵AD平分∠BAC,∴∠CAD=∠EAD.∴∠EAD=∠ADE.∴AE=DE;(2)如果AC=3,,求AE的长.【解答】解:过点D作DF⊥AB于F.∵∠C=90°,AC=3,AC=2√3,在Rt△ACD中,由勾股定理得AC2+DC2=AD2.∴=√3.∵AD平分∠BAC,∴DF=DC=√3.又∵AD=AD,∠C=∠AFD=90°,∴Rt△DAC≌Rt△DAF(HL).∴AF=AC=3,∴Rt△DEF中,由勾股定理得EF2+DF2=DE2.设AE=x,则DE=x,EF=3﹣x,∴(3-x)²+(√3)²=x²,∴x=2.∴AE=2.【二】如图,在Rt△ACB中,∠ACB=90°,AB=10,AC=6.AD平分∠CAB交BC于点D.(1)求BC的长;【解答】解:在Rt△ACB中,∠ACB=90°,由勾股定理得:=∠AB²-BC²∠10²-6²=.(2)求CD的长.【解答】解:过点D作DE⊥AB于点E,如图.∴∠DEA=90°=∠C(垂直定义).∵AD平分∠CAB(已知),∴∠1=∠2(角平分线定义).在△AED和△ACD中,∠DEA=∠C,∠2=∠1,AD=AD△AED≌△ACD(AAS).∴AE=AC=6,DE=DC(全等三角形的对应边相等).∴BE=AB﹣AE=4.设CD=x,则DE=x,DB=8﹣x.在Rt△DEB中,∠DEB=90°,由勾股定理,得(8﹣x)2=x2+42.解得x=3.即CD=3.【三】如图,在△ABC中,∠ACB=90°,AB=10,BC=6,点P从点A出发,以每秒2个单位长度的速度沿折线A﹣B﹣C运动.设点P的运动时间为t秒(t>0).(1)求AC的长.【解答】解:∵在△ABC中,∠ACB=90°,AB=10,BC=6,∴AC=√AB2-BC2=√102-62=8;(2)求斜边AB上的高.【解答】解:设边AB上的高为h则S△ABC=1/2×BC=1/2AB•h,∴1/2×6×8=1/2×10×h,∴h=24/5,答:斜边AB上的高为24/5;(3)①当点P在BC上时,PC的长为16﹣2t .(用含t的代数式表示)【解答】解:当点P在BC上时,点P运动的长度为AB+BP=2t,则PC=BC﹣BP=6﹣(2t﹣10)=6﹣2t+10=16﹣2t;②若点P在∠BAC的角平分线上,则t的值为20/3 .【解答】解:当点P'在∠BAC的角平分线上时,过点P作PD⊥AB,如图:∵AP平分∠BAC,PC⊥AC,PD⊥AB,∴PD=PC,有①知,PC=16﹣2t,BP=2t﹣10,∴PD=16﹣2t,在Rt△ACP和Rt△ADP中,AP=AP,PD=PC,∴Rt△ACP≌Rt△ADP(HL),∴AD=AC=8,又∵AB=10,∴BD=2,在Rt△BDP中,由勾股定理得:22+(16﹣2t)2=(2t﹣10)2,解得:t=20/3.(4)在整个运动过程中,直接写出△PBC是等腰三角形时t的值.由图可知,当△BCP是等腰三角形时,点P必在线段AB上,①当点P在线段AB上时,若BC=BP,则点P运动的长度为AP=2t,∵AP=AB﹣BP=10﹣6=4,∴2t=4,∴t=2;②若PC=BC,如图,过点C作CH⊥AB于点H,则BP=2BH,在△ABC中,∠ACB=90°,AB=10,BC=6,AC =8,∴AB•CH=AC•BC,∴10CH=8×6,∴CH=24/5,在Rt△BCH中,由勾股定理得:BH=√BC2-CH2=√62-(24/5)2=18/5=3.6,∴BP=2BH=7.2,∴点P运动的长度为:AP=AB﹣BP=10﹣7.2=2.8,∴2t=2.8,∴t=1.4;③若PC=PB,如图所示,过点P作PQ⊥BC于点Q,则BQ=CQ=1/2×BC=3,∠PQB=90°,∴∠ACB=∠PQB=90°,∴PQ∥AC,∴PQ为△ABC的中位线,∴PQ=1/2×AC=1/2×8=4,在Rt△BPQ中,由勾股定理得:BP=√BQ2+PQ2=√32-42=5,点P运动的长度为AP=2t,AP=AB﹣BP=10﹣5=5,∴2t=5,∴t=2.5.综上,t的值为1.4或2或2.5.。

勾股定理练习题及答案(共6套)

勾股定理练习题及答案(共6套)

勾股定理课时练(1)1。

在直角三角形ABC 中,斜边AB=1,则AB 222AC BC ++的值是( )A 。

2 B.4 C 。

6 D 。

82.有一个形状为直角梯形的零件ABCD ,AD ∥BC ,斜腰DC 的长为10 cm ,∠D=120°,则该零件另一腰AB 的长是______ cm (结果不取近似值).3。

直角三角形两直角边长分别为5和12,则它斜边上的高为_______.4.一根旗杆于离地面12m 处断裂,犹如装有铰链那样倒向地面,旗杆顶落于离旗杆地步16m ,旗杆在断裂之前高多少m ?5.如图,如下图,今年的冰雪灾害中,一棵大树在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是 米.6。

飞机在空中水平飞行,某一时刻刚好飞到一个男孩子头顶正上方4000米处,过了20秒,飞机距离这个男孩头顶5000米,求飞机每小时飞行多少千米?7。

如图所示,无盖玻璃容器,高18cm ,底面周长为60cm ,在外侧距下底1cm 的点C 处有一蜘蛛,与蜘蛛相对的容器的上口外侧距开口1cm 的F 处有一苍蝇,试求急于扑货苍蝇充饥的蜘蛛,所走的最短路线的长度。

8。

一个零件的形状如图所示,已知AC=3cm ,AB=4cm ,BD=12cm 。

求CD 的长。

第5题图 第7题图 第8题图9。

如图,在四边形ABCD 中,∠A=60°,∠B=∠D=90°,BC=2,CD=3,求AB 的长.10. 如图,一个牧童在小河的南4km 的A 处牧马,而他正位于他的小屋B 的西8km 北7km 处,他想把他的马牵到小河边去饮水,然后回家。

他要完成这件事情所走的最短路程是多少?11如图,某会展中心在会展期间准备将高5m ,长13m ,宽2m 的楼道上铺地毯,已知地毯平方米18元,请你帮助计算一下,铺完这个楼道至少需要多少元钱?12. 甲、乙两位探险者到沙漠进行探险,没有了水,需要寻找水源.为了不致于走散,他们用两部对话机联系,已知对话机的有效距离为15千米.早晨8:00甲先出发,他以6千米/时的速度向东行走,1小时后乙出发,他以5千米/时的速度向北行进,上午10:00,甲、乙二人相距多远?还能保持联系吗?第9题图5m 13m 第11题勾股定理的逆定理(2)一、选择题1.下列各组数据中,不能作为直角三角形三边长的是( )A.9,12,15 B 。

八上期末复习《一次函数》压轴题含答案解析

八上期末复习《一次函数》压轴题含答案解析

一次函数综合题选讲及练习例1.如图①所示,直线L:y=mx+5m与x轴负半轴,y轴正半轴分别交于A、B两点.(1)当OA=OB时,求点A坐标及直线L的解析式;(2)在(1)的条件下,如图②所示,设Q为AB延长线上一点,作直线OQ,过A、B两点分别作AM⊥OQ于M,BN⊥OQ于N,若AM=,求BN的长;(3)当m取不同的值时,点B在y轴正半轴上运动,分别以OB、AB为边,点B为直角顶点在第一、二象限内作等腰直角△OBF和等腰直角△ABE,连EF交y轴于P点,如图③.问:当点B在y轴正半轴上运动时,试猜想PB的长是否为定值?若是,请求出其值;若不是,说明理由.变式练习:1.已知:如图1,一次函数y=mx+5m的图象与x轴、y轴分别交于点A、B,与函数y=﹣x的图象交于点C,点C的横坐标为﹣3.(1)求点B的坐标;(2)若点Q为直线OC上一点,且S△QAC=3S△AOC,求点Q的坐标;(3)如图2,点D为线段OA上一点,∠ACD=∠AOC.点P为x轴负半轴上一点,且点P到直线CD和直线CO的距离相等.①在图2中,只利用圆规作图找到点P的位置;(保留作图痕迹,不得在图2中作无关元素.)②求点P的坐标.例2.如图1,已知一次函数y=﹣x+6分别与x、y轴交于A、B两点,过点B的直线BC 交x轴负半轴与点C,且OC=OB.(1)求直线BC的函数表达式;(2)如图2,若△ABC中,∠ACB的平分线CF与∠BAE的平分线AF相交于点F,求证:∠AFC=∠ABC;(3)在x轴上是否存在点P,使△ABP为等腰三角形?若存在,请直接写出P点的坐标;若不存在,请说明理由.变式练习:2.如图,直线l:y=x+6交x、y轴分别为A、B两点,C点与A点关于y轴对称.动点P、Q分别在线段AC、AB上(点P不与点A、C重合),满足∠BPQ=∠BAO.(1)点A坐标是,BC=.(2)当点P在什么位置时,△APQ≌△CBP,说明理由.(3)当△PQB为等腰三角形时,求点P的坐标.课后作业:1.已知,如图直线y=2x+3与直线y=﹣2x﹣1相交于C点,并且与两坐标轴分别交于A、B两点.(1)求两直线与y轴交点A,B的坐标及交点C的坐标;(2)求△ABC的面积.2.如图①,直线y=﹣x+1分别与坐标轴交于A,B两点,在y轴的负半轴上截取OC=OB(1)求直线AC的解析式;(2)如图②,在x轴上取一点D(1,0),过D作DE⊥AB交y轴于E,求E点坐标.3.如图,直线L:y=﹣x+2与x轴、y轴分别交于A、B两点,在y轴上有一点C(0,4),动点M从A点以每秒1个单位的速度沿x轴向左移动.(1)求A、B两点的坐标;(2)当M在x轴正半轴移动并靠近0点时,求△COM的面积S与M的移动时间t之间的函数关系式;当M在O点时,△COM的面积如何?当M在x轴负半轴上移动时,求△COM 的面积S与M的移动时间t之间的函数关系式;请写出每个关系式中t的取值范围;(3)当t为何值时△COM≌△AOB,并求此时M点的坐标.参考答案:例1.【考点】一次函数综合题.【分析】(1)当y=0时,x=﹣5;当x=0时,y=5m,得出A(﹣5,0),B(0,5m),由OA=OB,解得:m=1,即可得出直线L的解析式;(2)由勾股定理得出OM的长,由AAS证明△AMO≌△ONB,得出BN=OM,即可求出BN的长;(3)作EK⊥y轴于K点,由AAS证得△ABO≌△BEK,得出对应边相等OA=BK,EK=OB,得出EK=BF,再由AAS证明△PBF≌△PKE,得出PK=PB,即可得出结果.【解答】解:(1)∵对于直线L:y=mx+5m,当y=0时,x=﹣5,当x=0时,y=5m,∴A(﹣5,0),B(0,5m),∵OA=OB,∴5m=5,解得:m=1,∴直线L的解析式为:y=x+5;(2)∵OA=5,AM=,∴由勾股定理得:OM==,∵∠AOM+∠AOB+∠BON=180°,∠AOB=90°,∴∠AOM+∠BON=90°,∵∠AOM+∠OAM=90°,∴∠BON=∠OAM,在△AMO和△OBN中,,∴△AMO≌△ONB(AAS)∴BN=OM=;(3)PB的长是定值,定值为;理由如下:作EK⊥y轴于K点,如图所示:∵点B为直角顶点在第一、二象限内作等腰直角△OBF和等腰直角△ABE,∴AB=BE,∠ABE=90°,BO=BF,∠OBF=90°,∴∠ABO+∠EBK=90°,∵∠ABO+∠OAB=90°,∴∠EBK=∠OAB,在△ABO和△BEK中,,∴△ABO≌△BEK(AAS),∴OA=BK,EK=OB,∴EK=BF,在△PBF和△PKE中,,∴△PBF≌△PKE(AAS),∴PK=PB,∴PB=BK=OA=×5=.【点评】本题是一次函数综合题目,考查了一次函数解析式的求法、等腰直角三角形的性质、勾股定理、全等三角形的判定与性质等知识;本题综合性强,难度较大,特别是(3)中,需要通过作辅助线两次证明三角形全等才能得出结果.变式练习:1.【考点】一次函数综合题.【分析】(1)把点C的横坐标代入正比例函数解析式,求得点C的纵坐标,然后把点C的坐标代入一次函数解析式即可求得m的值,则易求点B的坐标;(2)由S△QAC=3S△AOC得到点Q到x轴的距离是点C到x轴距离的3倍或点Q到x轴的距离是点C到x轴距离的2倍;(3)①如图2,以点A为圆心,AC长为半径画弧,该弧与x轴的交点即为P;②如图3,作P1F⊥CD于F,P1E⊥OC于E,作P2H⊥CD于H,P2G⊥OC于G.利用△CAO∽△DAC,求出AD的长,进而求出D点坐标,再用待定系数法求出CD解析式,利用点到直线的距离公式求出公式,=,解出a的值即可.【解答】解:(1)把x=﹣3代入y=﹣x得到:y=2.则C(﹣3,2).将其代入y=mx+5m,得:2=﹣3m+5m,解得m=1.则该直线方程为:y=x+5.令x=0,则y=5,即B(0,5);(2)由(1)知,C(﹣3,2).如图1,设Q(a,﹣a).∵S△QAC=3S△AOC,∴S△QAO=4S△AOC,或S△QAO=2S△AOC,①当S△QAO=4S△AOC时,OA•y Q=4×OA•y C,∴y Q=4y C,即|﹣a|=4×2=8,解得a=﹣12(正值舍去),∴Q(﹣12,8);②当S△QAO=2S△AOC时,OA•y Q=2×OA•y C,∴y Q=2y C,即|﹣a|=2×2=4,解得a=6(舍去负值),∴Q′(6,﹣4);综上所述,Q(﹣12,8)或(6,﹣4).(3)①如图2,以点A为圆心,AC长为半径画弧,该弧与x轴的交点即为P;②如图3,作P1F⊥CD于F,P1E⊥OC于E,作P2H⊥CD于H,P2G⊥OC于G.∵C(﹣3,2),A(﹣5,0),∴AC==2,∵∠ACD=∠AOC,∠CAO=∠DAC,∴△CAO∽△DAC,∴=,∴AD=,∴OD=5﹣=,则D(﹣,0).设CD解析式为y=kx+b,把C(﹣3,2),D(﹣,0)分别代入解析式得,解得,函数解析式为y=5x+17,设P点坐标为(a,0),根据点到直线的距离公式,=,两边平方得,(5a+17)2=2×4a2,解得a=﹣5±2,∴P1(﹣5﹣2,0),P2(﹣5+2,0).【点评】本题考查了一次函数综合题,涉及坐标与图象的关系、待定系数法求函数解析式、角平分线的性质、点到直线的距离、三角形的面积公式等知识,综合性较强,值得关注.法二:例2.【考点】一次函数综合题.【分析】(1)根据自变量与函数值的对应关系,可得A、B、C点的坐标,根据待定系数法,可得函数解析式;(2)根据角平分线的性质,可得∠FCA=∠BCA,∠FAE=∠BAE,根据三角形外角的关系,可得∠BAE=∠ABC+∠BCA,∠FAE=∠F+∠FCA,根据等式的性质,可得答案;(3)根据等腰三角形的定义,分类讨论:AB=AP=10,AB=BP=10,BP=AP,根据线段的和差,可得AB=AP=10时P点坐标,根据线段垂直平分线的性质,可得AB=BP=10时P点坐标;根据两点间的距离公式,可得BP=AP 时P点坐标.【解答】解:(1)当x=0时,y=6,即B(0,6),当y=0时,﹣x+6=0,解得x﹣8,即A (8,0);由OC=OB,得OC=3,即C(﹣3,0);设BC的函数解析式为,y=kx+b,图象过点B、C,得,解得,直线BC的函数表达式y=2x+6;(2)证明:∵∠ACB的平分线CF与∠BAE的平分线AF相交于点F,∴∠FCA=∠BCA,∠FAE=∠BAE.∵∠BAE是△ABC的外角,∠FAE是△FAC的外角,∴∠BAE=∠ABC+∠BCA,∠FAE=∠F+∠FCA.∴∠ABC+∠BCA=∠F+∠BCA,∠ABC=∠F;(3)当AB=AP=10时,8﹣10=﹣2,P1(﹣2,0),8+10=18,P2(18,0);当AB=BP=10时,AO=PO=8,即P3(﹣8,0);设P(a,0),当BP=AP时,平方,得BP2=AP2,即(8﹣a)2=a2+62化简,得16a=28,解得a=,P4(,0),综上所述:P1(﹣2,0),P2(18,0),P3(﹣8,0);P4(,0).【点评】本题考查了一次函数综合题,(1)利用了函数值与自变量的关系求出A、B、C的值又利用了待定系数法求函数解析式;(2)利用了角平分线的性质,三角形外角的性质,(3)利用了等腰三角形的定义,分类讨论是解题关键.变式练习:2.【考点】一次函数综合题。

《勾股定理》专题复习(含答案)

《勾股定理》专题复习(含答案)

第一章《勾股定理》专项练习专题一:勾股定理考点分析:勾股定理单独命题的题目较少,常与方程、函数,四边形等知识综合在一起考查,在中考试卷中的常见题型为填空题、选择题和较简单的解答题典例剖析例1.(1)如图1是一个外轮廓为矩形的机器零件平面示意图,根据图中的尺寸(单位:mm ),计算两圆 孔中心A 和B 的距离为______mm .(2)如图2,直线l 上有三个正方形a b c ,,, 若a c ,的面积分别为5和11,则b 的面积为( )A.4 B.6C.16D.55分析:本题结合图中的尺寸直接运用勾股定理计算即可.解:(1)由已知得:AC=150-60=90,BC=180—60=120,由勾股定理得: AB 2=902+1202=22500,所以AB=150(mm )(2)由勾股定理得:b=a+c=5+11=16,故选C .点评:以上两例都是勾股定理的直接运用,当已知直角三角形的两边,求第三边时,往往要借助于勾股定理来解决.例2.如图3,正方形网格的每一个小正方形的边长都是1,试求122424454A E A A E C A E C ++∠∠∠的度数.解:连结32A E .32122222A A A A A E A E ==,,32212290A A E A A E ∠=∠=,322122Rt Rt A A E A A E ∴△≌△(SAS ).322122A E A A E A ∴∠=∠.由勾股定理,得:4532C E C E ===,4532A E A E ===,44332A C A C ==,445332A C E A C E ∴△≌△(SSS ).323454A E C A E C ∴∠=∠图1 图21A2A3A 4A 5A 5E 2E 1E 1D 1C 1B 4C1A 2A 3A4A 5A 5E2E 1E1D 1C 1B 4C 3C 2C图3122424454324424323224A E A A E C A E C A E C A E C A E C A E C ∴∠+∠+∠=∠+∠+∠=∠.由图可知224E C C △为等腰直角三角形.22445A E C ∴∠=. 即12242445445A E A A E C A E C ∠+∠+∠=.点评:由于在正方形网格中,它有两个主要特征:(1)任何格点之间的线段都是某正方形或长方形的边或对角线,所以格点间的任何线段长度都能求得.(2)利用正方形的性质,我们很容易知道一些特殊的角,如450、900、1350,便一目了然.以上两例就是根据网格的直观性,再结合图形特点,运用勾股定理进行计算,易求得线段和角的特殊值,重点考查学生的直觉观察能力和数形结合的能力. 专练一:1、△ABC 中,∠A :∠B :∠C=2:1:1,a ,b ,c 分别是∠A 、∠B 、∠C 的对边,则下列各等式中成立的是( )(A )222a b c +=;(B )222a b =; (C)222c a =; (D )222b a = 2、若直角三角形的三边长分别为2,4,x,则x 的可能值有( ) (A )1个; (B )2个; (C )3个; (D )4个3、一根旗杆在离底面4.5米的地方折断,旗杆顶端落在离旗杆底部6米处,则旗杆折断前高为( )(A )10.5米; (B )7。

全等三角形与勾股定理练习题

全等三角形与勾股定理练习题

全等三角形与勾股定理练习题(一)一.填空题1.一个矩形的抽斗长为24cm ,宽为7cm ,在里面放一根铁条,那么铁条最长可以是 .2.在Rt △ABC 中,∠C =90°,BC =12cm ,S △ABC =30cm 2,则AB = .3.在一棵树的10米高处有两只猴子,一只猴子爬下树走到离树20米处的池塘的A 处。

另一只爬到树顶D 后直接跃到A 处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高_________________________米。

4.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边和长为7cm ,则正方形A ,B ,C ,D 的面积之和为___________cm 2。

5.直角三角形两直角边长分别为5和12,则它斜边上的高为__________。

6.在平静的湖面上,有一支红莲,高出水面1米,阵风吹来,红莲被吹到一边,花朵齐及水面,已知红莲移动的水平距离为2米,问这里水深是________m 。

7.已知两条线段的长为5c m 和12c m,当第三条线段的长为 c m 时,这三条线段能组成一个直角三角形.8.一个三角形三边之比为2:5:3,则这个三角形的形状是 . 9.将一根长为24㎝的筷子置于底面直径为5㎝,高为12㎝的圆柱形水杯中, 设筷子露在杯子外面的长为h ㎝,则h 的取值范围是________________. 10.一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A 点沿 纸箱爬到B 点,那么它所行的最短路线的长是____________.11.如图,在△ABC 中,AD 平分∠BAC ,AB =AC -BD ,则∠B ∶∠C 的值是___________。

12.如图,ABE △和ACD △是ABC △分别沿着AB AC ,边翻折180o 形成的,若150BAC ∠=o ,则θ∠的度数是 . 二.选择题1、若Rt ABC V 中,90C ︒∠=且c=37,a=12,则b=( )A 、50B 、35C 、34D 、262、如图,平行四边形ABCD 对角线AC,BD 交于O ,过O 画直线EF 交AD 于E ,交BC 于F,,则图中全等三角形共有( ) (A)7对 (B)6对 (C)5对 (D)4对3.如图,△DAC 和△EBC 均是等边三角形,AE 、BD 分别与CD 、CE 交于点M 、N ,有如下结论:① △ACE ≌△DCB ; ② CM =CN ;③ AC =DN 。

一次函数综合题(难度较大)带答案

一次函数综合题(难度较大)带答案

一次函数综合题一.解答题(共10小题)1.如图,在直角坐标系中,△ABC满足∠BCA=90°,点A、C分别在x轴和y轴上,AC=BC=2,当点A从原点开始沿x轴的正方向运动时,则点C始终在y轴上运动,点B始终在第一象限运动.(1)当AB∥y轴时,求B点坐标.(2)随着A、C的运动,当点B落在直线y=3x上时,求此时A点的坐标.(3)在(2)的条件下,在y轴上是否存在点D,使以O、A、B、D为顶点的四边形面积是16?如果存在,请直接写出点D的坐标;如果不存在,请说明理由.2.如图,在平面直角坐标系中,直线y=2x+6与x轴,y轴分别交于点A,C,经过点C的直线与x轴交于点B(6,0).(1)求直线BC的解析式;(2)点G是线段BC上一动点,若直线AG把△ABC的面积分成1:2的两部分,请求点G的坐标;(3)已知D为AC的中点,点P是平面内一点,当△CDP是以CD为直角边的等腰直角三角形时,直接写出点P 的坐标.3.如图,在平面直角坐标系中,直线l1:y=kx+1交y轴于点A,交x轴于点B(4,0),过点E(2,0)的直线l2平行于y轴,交直线l1于点D,点P是直线l2上一动点(异于点D),连接P A、PB.(1)求直线l1的解析式;(2)设P(2,m),求△ABP的面积S的表达式(用含m的代数式表示);(3)当△ABP的面积为3时,则以点B为直角顶点作等腰直角△BPC,请直接写出点C的坐标.4.如图,在平面直角坐标系中,一次函数y=﹣2x﹣1的图象分别交x轴、y轴于点A和B,已知点C的坐标为(﹣3,0).若点P是x轴上的一个动点,(1)求直线BC的函数解析式;(2)过点P作y轴的平行线交AB于点M,交BC于点N,当点P恰好是MN的中点时,求出P点坐标.(3)若以点B、P、C为顶点的△BPC为等腰三角形时,请直接写出所有符合条件的P点坐标.5.如图,在平面直角坐标系中,直线m经过点(﹣1,2),交x轴于点A(﹣2,0),交y轴于点B,直线n与直线m交于点P,与x轴、y轴分别交于点C、D(0,﹣2),连接BC,已知点P的横坐标为﹣4.(1)求直线m的函数表达式和点P的坐标;(2)求证:△BOC是等腰直角三角形;(3)直线m上是否存在点E,使得S△ACE=S△BOC?若存在,求出所有符合条件的点E的坐标,若不存在,请说明理由.6.如图,在平面直角坐标系中,A(﹣1,0),B(0,3),直线y=﹣x+1与x轴相交于点C,与直线AB交于点D,交y轴于点E.(1)求直线AB的解析式及点D的坐标;(2)如图2,H是直线AB上位于第一象限内的一点,连接HC,当S△HCD=时,点M、N为y轴上两动点,点M在点N的上方,且MN=,连接HM、NC,求HM+MN+NC的最小值;(3)将△OEC绕平面内某点旋转90°,旋转后的三角形记为△O'E'C',若点E'落在直线AB上,点O'落在直线CD上,请直接写出满足条件的点E'的坐标.7.如图所示,平面直角坐标系中,直线l1:y=﹣2x+3与直线l2:y=x+1相交于点A,直线l2与x轴相交于点B.过直线l2上的一点P(a,﹣1)作y轴的垂线,交直线l1于点C,连接BC.(1)求点A的坐标;(2)求△ABC的面积;(3)将直线l1向下平移4个单位长度得到直线l3,设直线l3与y轴相交于点D,则直线l2上是否存在一点Q,使得△DPQ是以DP为腰的等腰三角形?若存在,请直接写出Q的坐标,若不存在,请说明理由.8.如图,在平面直角坐标系中,一次函数y=kx+b经过A(a,0),B(0,b)两点,且a,b满足(a+8)2+=0,∠ABO的平分线交x轴于点E.(1)求直线AB的表达式;(2)求直线BE的表达式;(3)点B关于x轴的对称点为点C,过点A作y轴的平行线交直线BE于点D,点M是线段AD上一动点,点P 是直线BE上一动点,则△CPM能否为不以点C为直角顶点的等腰直角三角形?若能,请直接写出点P的坐标;若不能,说明理由.9.如图,直线y=﹣x+8与x轴,y轴分别交于A,B两点,点C的坐标为(﹣6,0),连结BC,过点O作OD⊥AB于点D,点Q为线段BC上一个动点.(1)求BC,OD的长;(2)在线段BO上是否存在一点P,使得△BPQ与△ADO全等?若存在,请求出点Q的坐标;若不存在,请说明理由;(3)当点C关于OQ的对称点恰好落在△OBD的边上,请直接写出点Q的坐标.10.已知,如图1,直线AB分别交平面直角坐标系中x轴和y轴于A,B两点,点A坐标为(﹣3,0),点B坐标为(0,6),点C在直线AB上,且点C坐标为(﹣a,a).(1)求直线AB的表达式和点C的坐标;(2)点D是x轴上的一动点,当S△AOB=S△ACD时,求点D坐标;(3)如图2,点E坐标为(0,﹣1),连接CE,点P为直线AB上一点,且∠CEP=45°,求点P坐标.参考答案与试题解析一.解答题(共10小题)1.【分析】(1)根据勾股定理,可得AB的长,根据勾股定理,可得AO的长,可得B点坐标;(2)根据全等三角形的判定与性质,可得BE=OC =x,EC=OA=x,根据勾股定理,可得x的长,可得A点坐标;(3)分类讨论:①D在y轴的正半轴上;②D在y 轴的负半轴上,根据面积的和差,可得关于y的方程,根据解方程,可得答案.【解答】解:(1)∵∠BCA=90°,AC=BC=2,∴∠BAC=45°,AB ==2,∵AB∥y轴,∴∠BAO=90°=∠COA,∴∠CAO=45°=∠OCA,∴CO=AO,∵AO2+CO2=AC2,∴2AO2=(2)2,∴AO =,∴点B 坐标为(,2);(2)如图,过点B作BE⊥y轴,垂足为点E,∵∠BCE+∠ACO=90°,∠ACO+∠CAO=90°,∴∠BCE=∠CAO,且AC=BC,∠BEO=∠AOC,∴△AOC≌△CEB(AAS),∴BE=CO,AO=CE,∵点B落在直线y=3x上,∴设B(x,3x),∴BE=x=OC,OE=3x,∴CE=OA=2x,∵OA2+OC2=AC2,∴(2x)2+x2=20,∴x=2,∴OA=2x=4,∴点A(4,0);(3)设点D(0,y),由(2)得B(2,6),当点D在y轴正半轴上,如图,连接OB,∵S四边形ABDO=S△AOB+S△BDO=16,∴×4×6+×y×2=16,∴y=4,∴点D(0,4);若点D在y轴负半轴上,如图,连接OB,∵S四边形ABDO=S△AOB+S△ADO=16,∴×4×6+×4×(﹣y)=16,∴y=﹣2,∴点D坐标为(0,﹣2).综上,存在点D,使以O、A、B、D为顶点的四边形面积是16,点D的坐标为(0,4)或(0,﹣2).2.【分析】(1)根据题意,求得点C的坐标,结合B的坐标,利用待定系数法求解析式即可;(2)求出S△ABC=27,设G(m,﹣m+6),分两种情况:①S△ABG:S△ACG=1:2时,②S△ABG:S△ACG=2:1时,分别求得m的值,进而求得G点的坐标;(3)分类讨论,①当点D为直角顶点时,②当点C 为直角顶点时,根据等腰直角三角形以及全等三角形的性质即可求解.【解答】解:(1)由y=2x+6得:A(﹣3,0),C(0,6),∵点B(6,0).设直线BC的解析式为y=kx+b(k≠0):∴,解得:,∴直线BC的解析式为y=﹣x+6;(2)∵A(﹣3,0),C(0,6),B(6,0).∴AB=9,∴S△ABC =×9×6=27,设G(m,﹣m+6),(0<m<6),①当S△ABG:S△ACG=1:2时,即S△ABG =S△ABC=9,∴×9(﹣m+6)=9,∴m=4,∴G(4,2);当S△ABG:S△ACG=2:1时,即S△ABG =S△ABC=18,∴×9(﹣m+6)=18,∴m=2,∴G(2,4).综上,点G的坐标为(4,2)或(2,4);(3)∵A(﹣3,0),C(0,6),D为AC的中点,∴D (﹣,3),①当点D为直角顶点时,如图,过点D作DE⊥y轴于E,过点P作PF⊥DE交ED的延长线于F,交x 轴于H,∴∠F=∠CED=90°,∵△CDP是等腰直角三角形,∴DP=CD,∠CDB=90°,∴∠PDF+∠CDE=∠DCE+∠CDE=90°,∴△PDF≌△CDE(AAS),∴DF=CE,PF=DE,∵D (﹣,3),C(0,6).∴DE=PF =,OE=3,CE=DF=6﹣3=3,∴EF=3+=,PH=3+=,∴P (﹣,),同理得:P ′(,);∴P (﹣,)或(,);②当点C为直角顶点时,如图,过点D作DN⊥y轴于N,过点P作PM⊥y轴于M,同①可得△PCM≌△CDN(AAS),∴DN=CM,PM=CN,∵D (﹣,3),C(0,6).∴DN=CM =,ON=3,CN=PM=6﹣3=3,∴OM=6﹣=,∴P(3,),同理得:P′(﹣3,);∴P(3,)或(﹣3,).综上,点P的坐标为(﹣,)或(,)或(3,)或(﹣3,).3.【分析】(1)将B(4,0)代入y=kx+1得到y =﹣x+1;(2)由两直线交点的求法得到点D的坐标;易得线段PD的长度,所以根据三角形的面积公式即可得到结论;(3)根据三角形的面积公式列方程求得m=2,于是得到点P(2,2),推出∠EPB=∠EBP=45°.第1种情况,如图2,过点C作CF⊥x轴于点F根据全等三角形的性质得到BF=CF=PE=EB=2,于是得到C(6,2);第2种情况,如图3根据全等三角形的性质得到PC =CB=PE=EB=2,于是得到C(2,﹣2);第3种情况,当点P在点D下方时,得到(3,2)或(5,﹣2).【解答】解:(1)∵直线l1:y=kx+1交x轴于点B (4,0),∴0=4k+1.∴k =﹣.∴直线l1:y =﹣x+1;(2)由得:.∴D(2,).∵P(2,m),∴PD=|m ﹣|.∴S =×|4﹣0|•PD =×|m ﹣|×4=|2m﹣1|.当m时,S=2m﹣1;当m <时,S=1﹣2m;(3)当S△ABP=3时,2m﹣1=3,解得m=2,∴点P(2,2),∵E(2,0),∴PE=BE=2,∴∠EPB=∠EBP=45°,如图2,∠PBC=90°,BP=BC,过点C作CF⊥x轴于点F,∵∠PBC=90°,∠EBP=45°,∴∠CBF=∠PBE=45°,在△CBF与△PBE中,,∴△CBF≌△PBE(AAS).∴BF=CF=PE=EB=2.∴OF=OB+BF=4+2=6.∴C(6,2);如图3,△PBC是等腰直角三角形,∴PE=CE,∴C(2,﹣2),∴以点B为直角顶点作等腰直角△BPC,点C的坐标是(6,2)或(2,﹣2).当1﹣2m=3时,n=﹣1,可得P(2,﹣1),同法可得C(3,2)或(5,﹣2).综上所述,满足条件的点C坐标为(6,2)或(2,﹣2)或(3,2)或(5,﹣2).4.【分析】(1)由y=﹣2x﹣1得A (﹣,0),B(0,﹣1),设直线BC为y=kx﹣1,用待定系数法可得直线BC为y =﹣x﹣1;(2)设P(m,0),则M(m,﹣2m﹣1),N (﹣m ﹣1),根据点P恰好是MN的中点,可得﹣2m﹣1﹣0=0﹣(﹣m﹣1),即可解得P (﹣,0);(3)设P(t,0),则BC2=10,BP2=t2+1,CP2=(t+3)2,分三种情况:①当BC=BP时,BC2=BP2,10=t2+1,解得P(3,0);②当BC=CP时,10=(t+3)2,解得P (﹣3,0)或(﹣﹣3,0);③当BP=CP时,t2+1=(t+3)2,解得P (﹣,0).【解答】解:(1)在y=﹣2x﹣1中,令x=0得y=﹣1,令y=0得x =﹣,∴A (﹣,0),B(0,﹣1),设直线BC为y=kx﹣1,将C(﹣3,0)代入得:﹣3k﹣1=0,解得k =﹣,∴直线BC解析式为y =﹣x﹣1;(2)设P(m,0),则M(m,﹣2m﹣1),N (﹣m ﹣1),∵点P恰好是MN的中点,∴PM=PN,即﹣2m﹣1﹣0=0﹣(﹣m﹣1),解得m =﹣,∴P (﹣,0);(3)设P(t,0),∵B(0,﹣1),C(﹣3,0),∴BC2=10,BP2=t2+1,CP2=(t+3)2,①当BC=BP时,BC2=BP2,∴10=t2+1,解得t=3或t=﹣3(与B重合,舍去),∴P(3,0);②当BC=CP时,∴10=(t+3)2,解得t =﹣3或t =﹣﹣3,∴P (﹣3,0)或(﹣﹣3,0);③当BP=CP时,∴t2+1=(t+3)2,解得t =﹣,∴P (﹣,0);综上所述,P坐标为(3,0)或(﹣3,0)或(﹣﹣3,0)或(﹣,0).5.【分析】(1)设直线m的函数表达式为y=kx+b(k≠0),把(﹣1,2),(﹣2,0)代入,得,解方程组即可得到结论;(2)设直线n的函数表达式为y=sx+t(s≠0),根据直线n经过点(﹣4,﹣4),(0,﹣2),得到方程组,解方程组得到.求得点B的坐标为(0,4),点C的坐标为(4,0),于是得到结论;(3)根据三角形的面积公式得到,根据题意列方程即可得到结论.【解答】(1)解:设直线m的函数表达式为y=kx+b (k≠0).∵直线m经过点(﹣1,2),(﹣2,0),∴,解得,∴直线m的函数表达式为y=2x+4.将x=﹣4代入y=2x+4,得y=2×(﹣4)+4=﹣4,∴点P的坐标为(﹣4,﹣4);(2)证明:设直线n的函数表达式为y=sx+t(s≠0).∵直线n经过点(﹣4,﹣4),(0,﹣2),∴,解得,∴直线n 的函数表达式为.在y=2x+4中,令x=0,得y=4,即点B的坐标为(0,4).在中,令y=0,得,解得x=4,即点C的坐标为(4,0),∴OB=OC=4,又∵∠BOC=90°,∴△BOC是等腰直角三角形;(3)解:∵OB=OC=4,∠BOC=90°,∴,又∵S△ACE=S△BOC,∴S△ACE=8,即,∵AC=6,∴,即或.①当时,,解得,∴此时点E 的坐标为;②当时,,解得,∴此时点E 的坐标为.综上可知,直线m上存在点E,使得S△ACE=S△BOC,点E 的坐标为或.6.【分析】(1)用待定系数法求函数解析式,再将两个一次函数的解析式联立方程组即可求交点D的坐标;(2)判断△HCD是直角三角形,利用△HCD的面积求出HD的长,再由两点间距离公式求出H点的坐标,作H点关于y轴的对称点H',过点C作CG⊥x轴,且CG =,连接H'G交y轴于点M,当H'、M'、G 三点共线时,HM+MN+NC的值最小,求出H'G的长即可求解;(3)分两种情况,△AOB逆时针旋转90°和顺时针旋转90°分别讨论;根据旋转后O'E'∥x轴,OE=O'E'=1,求出DE'=,设E'(m,3m+3),即可求E'的坐标.【解答】解:(1)设直线AB的解析式为y=kx+b,将A(﹣1,0),B(0,3)代入,∴,∴,∴y=3x+3,联立方程组,∴,∴D (﹣,);(2)设H(t,3t+3),∵OA=1,OB=3,∴tan∠ABO =,直线y =﹣x+1与y轴的交点为(0,1),与x轴的交点C(3,0),∴tan∠DCA =,∴∠DCA=∠ABO,∴∠CDB=90°,∵CD =,∵S△HCD ==××DH,∴DH =,∵=,∴t=﹣3或t =,∵H是直线AB上位于第一象限内的一点,∴t =,∴H (,),如图1,作H点关于y轴的对称点H',过点C作CG ⊥x轴,且CG =,∴G(3,),H'(﹣,),连接H'G交y轴于点M,∵MN =,∴四边形MNCG是平行四边形,∴MG=CN,由对称性可知,MH=MH',∴HM+MN+NC=MH'+MN+MG≥1+H'G,∴当H'、M'、G三点共线时,HM+MN+NC的值最小,∵H'G =,∴HM+MN+NC 的最小值为+;(3)令x=0,则y=1,∴E(0,1),令y=0,则x=3,∴C(3,0),当△OCE绕点逆时针旋转90°时,∵点E'落在直线AB上,点O'落在直线CD上,∴E'O'∥CO,∴∠DO'E'=∠ECO,∵OE=O'E'=1,CO=3,∴EC =,∴sin∠ECO ==,∴DE'=,设E'(m,3m+3),∴=(﹣﹣m)2+(3m+3﹣)2,∴m =﹣或m =﹣,∵此时E'在D点下方,∴m =﹣,∴E'(﹣,);当△OCE绕点顺时针旋转90°时,∵点E'落在直线AB上,点O'落在直线CD上,∴E'O'∥CO,∴∠DO'E'=∠ECO,∵OE=O'E'=1,CO=3,∴EC =,∴sin∠ECO ==,∴DE'=,设E'(m,3m+3),∴=(﹣﹣m)2+(3m+3﹣)2,∴m =﹣或m =﹣,∵此时E'在D点上方,∴m =﹣,∴E'(﹣,);综上所述:E'点坐标为(﹣,)或(﹣,).7.【分析】(1)联立方程组可求解;(2)分别求出点B,点C坐标,由三角形的面积公式可求解;(3)先求出点D坐标,由等腰三角形的性质和两点之间的距离公式可求解.【解答】解:(1)由题意可得:,解得:,∴点A (,);(2)∵直线l2与x轴相交于点B,∴点B(﹣1,0),∵点P(a,﹣1)在直线l2上,∴﹣1=a+1,∴a=﹣2,∴点P(﹣2,﹣1),∴点C的纵坐标为﹣1,∴﹣1=﹣2x+3,∴x=2,∴点C(2,﹣1),如图,设直线l1与x轴相交于点H,∴0=﹣2x+3,∴x =,∴点H (,0),∴BH =,∴△ABC 的面积=××(+1)=;(3)存在,理由如下:∵将直线l1向下平移4个单位长度得到直线l3,∴直线l3,的解析式为:y=﹣2x﹣1,∴点D(0,﹣1),如图,∵点P(﹣2,﹣1),点D(0,﹣1),∴PD⊥y轴,PD=2,设点Q(a,a+1),∵△DPQ是以DP为腰的等腰三角形,∴PQ=PD=2或PD=QD=2,当PQ=PD=2时,则(﹣2﹣a)2+(﹣1﹣a﹣1)2=4,∴a =±﹣2,∴点Q (﹣2,﹣1)或(﹣﹣2,﹣﹣1);当PD=QD=2时,则(a﹣0)2+(﹣1﹣a﹣1)2=4,∴a=0或﹣2(不合题意舍去),∴点Q(0,1),综上所述:点Q坐标为:(﹣2,﹣1)或(﹣﹣2,﹣﹣1)或(0,1).8.【分析】(1)求出点A与点B的坐标,再由待定系数法求直线AB的解析式即可;(2)过点E作EH⊥AB于点H,求出点E的坐标,再由再由待定系数法求直线BE的解析式即可;(3)①当∠MPC=90°时,P点在C点下,过点P 作GH⊥y轴交AD于点G,交y轴于点H,证明△PMG ≌△CPH(AAS),可得8+t=2t+12,求出t即可求P (﹣4,2);②当∠MPC=90°,P点在C点上时,由①得8+t=﹣2t﹣12,求出t即可求P (﹣,);③当∠PMC=90°时,过点M作KL⊥y轴交y轴于点L,过P点作PK⊥KL交于K,证明△PKM≌△MLC (AAS),由8=﹣2t﹣6﹣(14+t),求出t =﹣,即可求P (﹣,).【解答】解:(1)∵(a+8)2+=0,∴a=﹣8,b=﹣6,∴A(﹣8,0),B(0,﹣6),∵一次函数y=+b经过A(﹣8,0),B(0,﹣6),∴,∴,∴直线AB的表达式y =﹣x﹣6;(2)∵A(﹣8,0),B(0,﹣6),∴OA=8,OB=6,∴在Rt△AOB中AB=10,过点E作EH⊥AB于点H,∵∠ABO的平分线交x轴于点E,∴EH=EO,AE=8﹣EO,AH=10﹣6=4,在Rt△AEH中,(8﹣EO)2=42+EO2,解得:EO=3,∴E(﹣3,0),设直线BE的表达式为y=k1x+b1,∴,∴,∴直线BE的表达式为y=﹣2x﹣6;(3)设P(t,﹣2t﹣6),①如图1,当∠MPC=90°时,P点在C点下,过点P作GH⊥y轴交AD于点G,交y轴于点H,∵∠MPC=90°,∴∠MPG+∠CPH=90°,∵∠MPG+∠GMP=90°,∴∠CPH=∠GMP,∵PM=PC,∴△PMG≌△CPH(AAS),∴MG=PH,CH=GP,∵PH=﹣t,CH=6﹣(﹣2t﹣6)=2t+12,∴GP=8﹣(﹣t)=8+t=2t+12,∴t=﹣4,∴P(﹣4,2);②如图2,当∠MPC=90°,P点在C点上时,由①得,HC=﹣2t﹣6﹣6=﹣2t﹣12,GP=8﹣(﹣t)=8+t,∴8+t=﹣2t﹣12,∴t =﹣,∴P (﹣,);③如图3,当∠PMC=90°时,过点M作KL⊥y轴交y轴于点L,过P点作PK⊥KL 交于K,∵∠PMC=90°,∴∠PMK+∠CML=90°,∵∠PMK+∠MPK=90°,∴∠CML=∠MPK,∵PM=CM,∴△PKM≌△MLC(AAS),∴KM=CL,PK=ML,∴ML=PK=8,CL=KM=﹣8﹣t,∴LO=6﹣(﹣8﹣t)=14+t,∴PK=8=﹣2t﹣6﹣(14+t),∴t =﹣,∴P (﹣,);综上所述:点P的坐标为:(﹣4,2)或(﹣,)或(﹣,).9.【分析】(1)先求出点A,点B坐标,由勾股定理和面积法可求解;(2)分两种情况讨论,先求出BQ解析式,由全等三角形的性质可求解;(3)分两种情况讨论,利用折叠的性质,三角形面积公式,等腰三角形的性质可求解.【解答】解:(1)∵直线y =﹣x+8与x轴,y轴分别交于A,B两点,∴点A(6,0),点B(0,8),∴OA=6,OB=8,∵点C的坐标为(﹣6,0),∴OC=6,∴BC ===10,∵OA=OC=6,BO⊥AC,∴AB=BC=10,∵S△AOB =×AB×OD =×OA×OB,∴OD ==;(2)存在,理由如下:∵AB=BC,∴∠BCA=∠BAO,∵∠CBO+∠BCA=90°=∠AOD+∠BAO,∴∠CBO=∠AOD,设直线BC的解析式为y=kx+b,,解得:,∴直线BC的解析式为y =x+8,设点Q(a ,a+8)当△BPQ≌△OAD时,BQ=OD =,∴(a﹣0)2+(a+8﹣8)2=,∴a =±,∵点Q在第二象限,∴点Q (﹣,),当△BPQ≌△ODA时,BQ=OA=6,∴(a﹣0)2+(a+8﹣8)2=36,∴a =±,∵点Q在第二象限,∴点Q (﹣,),综上所述:点Q坐标为:(﹣,)或(﹣,);(3)如图,当点C关于OQ的对称点落在OB上时,作OE⊥CO于点E,OF⊥BO于点F,∴∠COQ=∠C'OQ=45°,又∵OE⊥CO,OF⊥BO,∴OE=OF,∵S△OBC =×OB×OC =×OC×OE +×OB×OF,∴6×8=(6+8)×OE,∴OE=OF =,∴点Q 的坐标为(﹣,).点C关于OQ的对称点落在AB上时,∴OC=OC'=OA,CQ=C'Q,∠OCQ=∠OC'Q,∴∠C'AO=∠OC'A,∴∠OCQ=∠OC'Q=∠C'AO=∠OC'A,∴∠CBA=∠QC'B,∴BQ=C'Q,∴CQ=BQ=C'Q,∴点Q是BC的中点,∴点Q(﹣3,4),综上所述:点Q坐标为(﹣3,4)或(﹣,).10.【分析】(1)用待定系数法求直线AB的解析式即可;(2)由题意可得AD=9,设D(x,0),则|x+3|=9,即可求D的坐标;(3)分两种情况讨论:①当点P在射线CB上时,过点C作CF⊥CE交直线EP于点F,过C作x轴垂线l,分别过F,E作FM⊥l,EN⊥l,证明△FMC≌△CNE(AAS),即可得F点坐标为(1,4),用待定系数法求出直线EF的解析式为y=5x﹣1,联立方程组,即可求P (,);②当点P在射线CA上时,过点C作CH⊥CE交直线EP于点H,过点H作HK⊥y轴交于K,过点H作GH⊥x轴,过点C作CG⊥GH交于G,证明△CHG≌△EHK(AAS),可求得H (﹣,﹣),求出直线HE的解析式为y=﹣x﹣1,联立方程组,则可求P (﹣,﹣).【解答】解:(1)设直线AB的解析式为y=kx+b,∵A(﹣3,0),B(0,6),则有,∴,∴y=2x+6,∵C(﹣a,a),∴C(﹣2,2);(2)∴S△AOB =×3×6=9,∴S△ACD =×2×AD=9,∴AD=9,设D(x,0),∴|x+3|=9,∴x=6或x=﹣12,∴D(6.0)或(﹣12,0);(3)①如图,当点P在射线CB上时,过点C作CF ⊥CE交直线EP于点F,∵∠CEF=45°,∴CE=CF,过C作x轴垂线l,分别过F,E作FM⊥l,EN⊥l,∴∠FMC=∠CNE=90°,∠MCF+∠MFC=90°,∵CF⊥CE,∴∠MCF+∠NCE=90°,∴∠MFC=∠NCE,∴△FMC≌△CNE(AAS),∴FM=CN=3,CM=EN=2,即F点坐标为(1,4),设直线EF的解析式为y=kx+b,∴,∴,∴直线EF的解析式为y=5x﹣1,联立,解得,∴P (,);②当点P在射线CA上时,过点C作CH⊥CE交直线EP于点H,过点H作HK ⊥y轴交于K,过点H作GH⊥x轴,过点C作CG⊥GH交于G,∵∠CHK=90°,∴∠CHG+∠KHE=90°,∵∠CHG+∠HCG=90°,∴∠KHE=∠HCG,∵∠DEP=45°,∴DH=HE,∴△CHG≌△EHK(AAS),∴CG=KE,GH=HK,∵E(0,﹣1),C(﹣2,2),∴GH=3﹣CG=2+OK=2+CG,∴CG =,∴H (﹣,﹣),设直线HE的解析式为y=k'x+b',,∴,∴y =﹣x﹣1,联立方程组,解得,∴P (﹣,﹣),综合上所述,点P 坐标为(,)或(﹣,﹣).第21页(共21页)。

一次函数综合练习(全等三角形,勾股定理)答案

一次函数综合练习(全等三角形,勾股定理)答案

1.如图1,已知直线y=2x+2与y轴、x轴分别交于A、B两点,以B为直角顶点在第二象限作等腰Rt△ABC(1)求点C的坐标,并求出直线AC的关系式.(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE.(3)如图3,在(1)的条件下,直线AC交x轴于M,P(,k)是线段BC上一点,在线段BM上是否存在一点N,使直线PN平分△BCM的面积?若存在,请求出点N的坐标;若不存在,请说明理由.考点:一次函数综合题。

分析:(1)如图1,作CQ⊥x轴,垂足为Q,利用等腰直角三角形的性质证明△ABO≌△BCQ,根据全等三角形的性质求OQ,CQ的长,确定C点坐标;(2)同(1)的方法证明△BCH≌△BDF,再根据线段的相等关系证明△BOE≌△DGE,得出结论;(3)依题意确定P点坐标,可知△BPN中BN变上的高,再由S△PBN=S△BCM,求BN,进而得出ON.解答:解:(1)如图1,作CQ⊥x轴,垂足为Q,∵∠OBA+∠OAB=90°,∠OBA+∠QBC=90°,∴∠OAB=∠QBC,又∵AB=BC,∠AOB=∠Q=90°,∴△ABO≌△BCQ,∴BQ=AO=2,OQ=BQ+BO=3,CQ=OB=1,∴C(﹣3,1),由A(0,2),C(﹣3,1)可知,直线AC:y=x+2;(2)如图2,作CH⊥x轴于H,DF⊥x轴于F,DG⊥y轴于G,∵AC=AD,AB⊥CB,∴BC=BD,∴△BCH≌△BDF,∴BF=BH=2,∴OF=OB=1,∴DG=OB,∴△BOE≌△DGE,∴BE=DE;(3)如图3,直线BC:y=﹣x﹣,P(,k)是线段BC上一点,∴P(﹣,),由y=x+2知M(﹣6,0),∴BM=5,则S△BCM=.假设存在点N使直线PN平分△BCM的面积,则BN•=×,∴BN=,ON=,∵BN<BM,∴点N在线段BM上,∴N(﹣,0).点评:本题考查了一次函数的综合运用.关键是根据等腰直角三角形的特殊性证明全等三角形,利用全等三角形的性质求解.2.如图直线ℓ:y=kx+6与x轴、y轴分别交于点B、C,点B的坐标是(﹣8,0),点A的坐标为(﹣6,0)(1)求k的值.(2)若P(x,y)是直线ℓ在第二象限内一个动点,试写出△OPA的面积S与x的函数关系式,并写出自变量x的取值范围.(3)当点P运动到什么位置时,△OPA的面积为9,并说明理由.考点:一次函数综合题;待定系数法求一次函数解析式;三角形的面积。

勾股定理练习题及答案

勾股定理练习题及答案

八年级上数学专题训练一《勾股定理》典型题练习答案解析一、知识要点:1、勾股定理勾股定理:直角三角形两直角边的平方和等于斜边的平方。

也就是说:如果直角三角形的两直角边为a、b,斜边为c ,那么 a2 + b2= c2。

公式的变形:a2 = c2- b2, b2= c2-a2 。

2、勾股定理的逆定理如果三角形ABC的三边长分别是a,b,c,且满足a2 + b2= c2,那么三角形ABC 是直角三角形。

这个定理叫做勾股定理的逆定理.该定理在应用时,同学们要注意处理好如下几个要点:①已知的条件:某三角形的三条边的长度.②满足的条件:最大边的平方=最小边的平方+中间边的平方.③得到的结论:这个三角形是直角三角形,并且最大边的对角是直角.④如果不满足条件,就说明这个三角形不是直角三角形。

3、勾股数满足a2 + b2= c2的三个正整数,称为勾股数。

注意:①勾股数必须是正整数,不能是分数或小数。

②一组勾股数扩大相同的正整数倍后,仍是勾股数。

常见勾股数有:(3,4,5 )(5,12,13 ) ( 6,8,10 ) ( 7,24,25 ) ( 8,15,17 )(9,12,15 )常用勾股数口诀记忆常见勾股数3,4,5 :勾三股四弦五5,12,13 : 我要爱一生 6,8,10: 连续的偶数 7,24,25 : 企鹅是二百五 8,15,17 : 八月十五在一起 特殊勾股数连续的勾股数只有3,4,5 连续的偶数勾股数只有6,8,104、最短距离问题:主要运用的依据是两点之间线段最短。

二、考点剖析考点一:利用勾股定理求面积1、求阴影部分面积:(1)阴影部分是正方形;(2)阴影部分是长方形;(3)阴影部分是半圆.2. 如图,以Rt △ABC 的三边为直径分别向外作三个半圆,试探索三个半圆的面积之间的关系.3、如图所示,分别以直角三角形的三边向外作三个正三角形,其面积分别是S 1、S 2、S 3,则它们之间的关系是( )A.S 1- S 2= S 3 B. S 1+ S 2= S 3 C. S 2+S 3< S 1 D. S 2- S 3=S 1S 3S 2S 1【类型题总结】(a)如图(1)分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用表示 S1、S2、S3则它们有S2+S3=S1关系.(b)如图(2)分别以直角三角形ABC三边向外作三个正方形,其面积表示S1、S2、S3.则它们有S2+S3=S1关系.(c)如图(3)分别以直角三角形ABC三边向外作三个正三角形,面积表示S1、S2、S3,则它们有S2+S3=S1关系.并选择其中一个命题证明.考点:勾股定理.专题:计算题.分析:(a)分别用AB、BC和AC表示出S1、S2、S3,然后根据AB2=AC2+BC2即可得出S1、S2、S3的关系;(b)分别用AB、BC和AC表示出 S1、S2、S3,然后根据AB2=AC2+BC2即可得出S1、S2、S3的关系;(c)分别用AB、BC和AC表示出 S1、S2、S3,然后根据AB2=AC2+BC2即可得出S1、S2、S3的关系.解答:解:(1)S3=81πAC2,S2=81πBC2S1=81AB2∴S2+S3=S1.(2)S2+S3=S1…(4分)由三个四边形都是正方形则:∵S3=AC2,S2=BC2,S1=AB2,…(8分)∵三角形ABC是直角三角形,又∵AC2+BC2=AB2…(10分)∴S2+S3=S1.(3)S1=43AB2S2=43BC2 S3=43AC2∴S2+S3=S1.点评:此题主要涉及的知识点:三角形、正方形、圆的面积计算以及勾股定理的应用,解题关键是熟练掌握勾股定理的公式,难度一般.4、四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积。

(完整版)勾股定理典型例题详解及练习(附答案)

(完整版)勾股定理典型例题详解及练习(附答案)

典型例题知识点一、直接应用勾股定理或勾股定理逆定理例1:如图,在单位正方形组成的网格图中标有 AB CD EF 、GH 四条线段, 其中能构成一个直角三角形三边的线段是( )1) 题意分析:本题考查勾照定理及勾股定理的逆定理./2) 解题思踏;可利用勾照定理直接求出各也长,再进行判断.卜 解答过程:#ai^AEAF 中,AF=h AE=2,根据勾股定理,得。

跻=J 招己'十』十F = 姊同理 = 2思* QH. = 1 CD = 2^5计算发现(右尸十0招”=(雁沪t 即/费+寥=奇,根据 勾股定理的迎定理得到以AE 、EF 、GH 为也的三角形是直角三角形.故选 B. *解题后B0思考、1.勾股定理只适用于直角三角形,而不适用于锐角三角形和钝角三角形. 因此,解跑时一定要认真分析题目所蛤条件,看是否可用勾股定理来解n ,L 在运用勾股定理时,要正确分析题目所给的条件,不要习惯性地认为 七”就是斜诳而.固执"地运用公式"二/十舛 其实,同样是四"6 NC 不一定就等于叩幻I 不一定就是斜遮,A ABC 不一定就是直角三痢 形.卜A. CD 、EF 、GH C. AB 、CD GHB. AB 、EF 、GHD. AB 、CD EF3.直角三角形的判定条件与勾股定理是互逆的.区别在于勾股定理的运用是一个从"形胡(一个三角形是直角三角形)到板'3’ =疽十瑟)的辿程,而直角三角形的判定是一个从W〔一个三角形的三满是L = ^+广的条件)到胃形'这个三弟形是直急三甬形)的过程.甘1在应用勾股定理解题时,要全面地毒虑问题.注意m题中存在的多种可能性,避免漏解。

/例2-如图'有一块直角三角形舐板幽G两直角边ACMkm, BWg 现博直甬边AC沿直线AD折叠,庾它落在斜辿AB上,且点C落到点E处, 则CD等于(EC 。

A. 2cmB. 3cm C 4an D 5cm*" iiEMraZJ VI :『n暴意分析,本题考查勾股定理的应用,:)解题思路;本题若直接在△XOQ中运用勾股定理是无法求得® ffi 长的,因为只知道一条迫应。

勾股定理综合难题 附答案(超好 打印版)

勾股定理综合难题   附答案(超好   打印版)

CBA D E FCA BE D练习题1 如图,圆柱的高为10 cm ,底面半径为2 cm.,在下底面的A 点处有一只蚂蚁,它想吃到上底面上与A 点相对的B 点处,需要爬行的最短路程是多少?2 如图,长方体的高为3 cm ,底面是边长为2 cm 的正方形. 现有一小虫从顶点A 出发,沿长方体侧面到达顶点C 处,小虫走的路程最短为多少厘米? 答案AB=5ACB3、一只蚂蚁从棱长为1的正方体纸箱的B’点沿纸箱爬到D 点,那么它所行的最短路线的长是_____________。

4、如图,小红用一张长方形纸片ABCD 进行折纸,已知该纸片宽AB 为8cm ,•长BC•为10cm .当小红折叠时,顶点D 落在BC 边上的点F 处(折痕为AE ).想一想,此时EC 有多长?•5.如图,将一个边长分别为4、8的长方形纸片ABCD 折叠,使C 点与A 点重合,则EB 的长是( ). A .3B .4C .5D .56.已知:如图,在△ABC 中,∠C=90°,∠B=30°,AB 的垂直平分线交BC 于D ,垂足为E ,D=4cm . 求AC 的长.7、如图,有一个直角三角形纸片,两直角边AC=6,BC=8, 现将直角边AC 沿直线AD 折叠,使其落在斜边AB 上,且 与AE 重合,则CD 的长为8、如图,在矩形ABCD 中,,6=AB 将矩形ABCD 折叠,使点B 与点D 重合,C 落在C '处,若21::=BE AE ,则折 痕EF 的长为 。

9、如图,已知:点E 是正方形ABCD 的BC 边上的点,现将△DCE 沿折痕DE 向上翻折,使DC 落在对角线DB 上,则EB ∶CE =_________.BCAFE DCBAB ’C ’B ′A ′C ′DCBA D10、如图,AD 是△ABC 的中线,∠ADC =45o ,把△ADC 沿AD 对折,点C 落在C´的位置,若BC =2,则BC´=_________.11.如图1,有一块直角三角形纸片,两直角边AC =6cm ,BC =8cm ,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( ) A.2cm B.3 cm C.4 cm D.5 cm12、有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC 沿∠CAB 的角平分线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?13、如图,在△ABC 中,∠B=90,AB=BC=6,把△ABC 进行折叠,使点A 与点D 重合,BD:DC=1:2,折痕为EF , 点E 在AB 上,点F 在AC 上,求EC 的长。

专题09 一次函数中的三角形问题(解析版)

专题09 一次函数中的三角形问题(解析版)

1专题09 一次函数中的三角形问题知识对接考点一、怎样解直线与坐标轴围成图形的面积问题1.求直线与坐标围成的三角形的面积时,一般将在坐标轴上的其中一边作为底,另一边作为高来求面积专项训练一、单选题1.已知直线1:1l y kx k =++与直线2:(1)2l y k x k =+++,(k 为正整数),记直线1l 和2l 与x 轴围成的三角形面积为k S ,则12310S S S S +++⋅⋅⋅+的值为( ) A .511B .1011C .920D .50101【答案】A 【分析】变形解析式得到两条直线都经过点(1,1)-,即可证出无论k 取何值,直线1l 与2l 的交点均为定点(1,1)-;先求出1y kx k =++与x 轴的交点和(1)2y k x k =+++与x 轴的交点坐标,再根据三角形面积公式求出k S ,求出11112124S =⨯=⨯,21(2S =⨯11)23-,以此类推101(2S =⨯11)1011-,相加后得到11(1)211⨯-. 【详解】解:直线1:1(1)1l y kx k k x =++=++,∴直线1:1l y kx k =++经过点(1,1)-;直线2:(1)2(1)(1)1(1)(1)1l y k x k k x x k x =+++=++++=+++,∴直线2:(1)2l y k x k =+++经过点(1,1)-.∴无论k 取何值,直线1l 与2l 的交点均为定点(1,1)-.直线1:1l y kx k =++与x 轴的交点为1(k k+-,0), 直线2:(1)2l y k x k =+++与x 轴的交点为2(1k k +-+,0), 1121||1212(1)K k k S k k k k ++∴=⨯-+⨯=++, 11112124S ∴=⨯=⨯;123101111[]212231011S S S S ∴+++⋯+=++⋯⨯⨯⨯111111[(1)()()]22231011=-+-+⋯+- 11(1)211=⨯- 110211=⨯ 511=, 故选:A . 【点睛】此题考查了一次函数的综合题;解题的关键是一次函数的图象与两坐标轴的交点坐标特点,与x 轴的交点的纵坐标为0,与y 轴的交点的横坐标为0.2.已知2,2a b b a +=≤,那么对于一次函数y ax b =+,给出下列结论:①函数y 一定随x 的增大而增大;①此函数图象与坐标轴所围成的三角形面积最大为43,下列判断正确的是( )A .①正确,①错误B .①错误,①正确C .①,①都正确D .①,①都错误【答案】A 【分析】根据一次函数的性质、配方法即可解决问题; 【详解】 解:2a b +=,2b a ∴=-,2b a ≤,22a a ∴-≤,23a ∴≥, 2y ax a ∴=+-,0a >,y ∴随x 的增大而增大,故①正确,函数图象与坐标轴所围成的三角形面积211||||22b b S b a a==,此函数没有最大值,故①错误, 故选:A . 【点睛】本题考查一次函数的性质,一次函数与坐标轴的交点问题,解题的关键是灵活运用一次函数3知识解决问题,属于中考常考题型.3.将一次函数y =2x +4的图象向右平移后所得直线与坐标轴围成的三角形面积是9,则平移距离是( ) A .4 B .5 C .6 D .7【答案】B 【分析】直接利用一次函数的图象平移规律得出平移后的解析式,进而根据三角形面积公式得出答案 【详解】设平移的距离为k (k >0),则将一次函数y =2x +4向右平移后所得直线解析式为:y =2(x -k )+4=2x -2k +4. 易求得新直线与坐标轴的交点为(k -2,0)、(0,-2k +4)所以,新直线与坐标轴所围成的三角形的面积为:2?2429k k --+÷=,变形得229k -=(),解得k =5或k =-1(舍去). 故选:B . 【点睛】此题主要考查了一次函数图象与几何变换,正确得出平移后解析式是解题关键. 4.下列关于一次函数2y x =-+的图象性质的说法中,不正确的是( ) A .直线与x 轴交点的坐标是(0,2) B .与坐标轴围成的三角形面积为2 C .直线经过第一、二、四象限 D .若点(1,)A a -,(1,)B b 在直线上,则a b >【答案】A 【分析】根据一次函数的图像与性质可直接进行排除选项. 【详解】解:由一次函数2y x =-+,可得:10,20k b =-<=>, ①一次函数经过第一、二、四象限,故C 不符合题意; 令x=0时,则y=2,令y=0时,则02x =-+,解得:2x =, ①直线与x 、y 轴的交点坐标为()2,0和()0,2,故A 错误,符合题意; ①直线与坐标轴围成的三角形面积为12222⨯⨯=,故B 正确,不符合题意;①k <0,①y 随x 的增大而减小,①若点(1,)A a -,(1,)B b 在直线上,则a b >,故D 正确,不符合题意; 故选A .【点睛】本题主要考查一次函数的图像与性质,熟练掌握一次函数的图像与性质是解题的关键.5.如图,直线y=-2x+2与x轴和y轴分别交与A、B两点,射线AP①AB于点A.若点C 是射线AP上的一个动点,点D是x轴上的一个动点,且以C、D、A为顶点的三角形与①AOB 全等,则OD的长为()A.2B.3C.2D.3【答案】D【分析】利用一次函数与坐标轴的交点求出①AOB的两条直角边,并运用勾股定理求出AB.根据已知可得①CAD=①OBA,分别从①ACD=90°或①ADC=90°时,即当①ACD①①BOA时,AD =AB,或①ACD①①BAO时,AD=OB,分别求得AD的值,即可得出结论.【详解】解:①直线y=-2x+2与x轴和y轴分别交与A、B两点,当y=0时,x=1,当x=0时,y=2,①A(1,0),B(0,2).①OA=1,OB=2.①AB=①AP①AB,点C是射线AP上,①①BAC=90°,即①OAB+①CAD=90°,①①OAB+①OBA=90°,①①CAD=①OBA,若以C、D、A为顶点的三角形与①AOB全等,则①ACD=90°或①ADC=90°,即①ACD①①BOA或①ACD①①BAO.如图1所示,当①ACD①①BOA时,①ACD=①AOB=90°,AD=AB,5①OD =AD +OA1;如图2所示,当①ACD①①BAO 时,①ADC =①AOB =90°,AD =OB =2,①OD =OA +AD =1+2=3. 综上所述,OD 的长为31. 故选:D . 【点睛】此题考查了一次函数的应用、全等三角形的判定和性质以及勾股定理等知识,掌握一次函数的图象与性质是解题的关键.6.将一次函数y =3x 向左平移后所得直线与坐标轴围成的三角形面积是24,则平移距离( ) A .4 B .6C .D .12【答案】A 【分析】根据题意直接利用一次函数的图象平移规律得出平移后的解析式,进而根据三角形面积公式得出答案. 【详解】解:设平移的距离为k (k >0),则将一次函数y =3x 向左平移后所得直线解析式为:y =3(x+k )=3x+3k .易求得新直线与坐标轴的交点为(﹣k ,0)、(0,3k ) 所以,新直线与坐标轴所围成的三角形的面积为:12k •3k =24, 解得:k =4或﹣4(舍去). 故选:A . 【点睛】本题主要考查一次函数图象与几何变换,由题意正确得出平移后解析式是解题的关键. 7.已知一次函数的图象过点(0,3),且与两坐标轴在第一象限所围成的三角形面积为3,则这个一次函数的表达式为( ) A .y=1.5x+3 B .y=1.5x -3 C .y=-1.5x+3 D .y=-1.5x -3【答案】C 【分析】设这个一次函数的表达式为y=kx+b (k≠0),与x 轴的交点是(a ,0),根据三角形的面积公式即可求得a 的值,然后利用待定系数法即可求得函数解析式. 【详解】设这个一次函数的表达式为y=kx+b (k≠0),与x 轴的交点是(a ,0), ①一次函数y=kx+b (k≠0)图象过点(0,3), ①b=3,①这个一次函数在第一象限与两坐标轴所围成的三角形面积为3, ①12×3×|a|=3, 解得:a=2,把(2,0)代入y=kx+3,解得:k=-1.5,则函数的解析式是y=-1.5x+3; 故选:C . 【点睛】本题考查了待定系数法求一次函数的解析式,一次函数图象上点的坐标特征,三角形的面积,正确求得与x 轴的交点坐标是解题的关键.8.如图,在直角坐标系中,一次函数25y x =-+的图象1l 与正比例函数的图象2l 交于点(,3)M m ,一次函数2y kx =+的图象为3l ,且1l ,2l ,3l 能围成三角形,则在下列四个数中,k 的值能取的是( )7A .﹣2B .1C .2D .3【答案】C 【分析】把M (m ,3)代入一次函数y=-2x+5得到M (1,3),求得l 2的解析式为y=3x ,根据l 1,l 2,l 3能围成三角形,l 1与l 3,l 3与l 2有交点且一次函数y=kx+2的图象不经过M (1,3),于是得到结论. 【详解】解:把M (m ,3)代入一次函数y=-2x+5得,可得m=1, ①M (1,3),设l 2的解析式为y=ax , 则3=a , 解得a=3,①l 2的解析式为y=3x , ①l 1,l 2,l 3能围成三角形,①l 1与l 3,l 3与l 2有交点且一次函数y=kx+2的图象不经过M (1,3), ①k≠3,k≠-2,k≠1, ①k 的值能取的是2, 故选C . 【点睛】本题考查了两直线平行或相交问题,一次函数图象及性质;熟练掌握函数解析式的求法,直线平行的条件是解题的关键.9.在平面直角坐标系中,一次函数26y x =-+与坐标轴围成的三角形面积是:( ) A .6 B .9 C .15 D .18【答案】B 【分析】根据函数关系式求出图像与坐标轴的交点坐标,即可求出图像与坐标轴围成的三角形的面积. 【详解】根据题中的关系式,可画出函数图像当0x =时,6y =,所以点A 的坐标为()06, 当0y =时,3x =,所以点B 的坐标为()30,12OABS OB OA =⨯ 1362=⨯⨯ 9=故答案为B. 【点睛】解题的关键是能够根据函数关系式求出函数与坐标轴的交点坐标.10.如图,在Rt①ABO 中,AB①OB ,且AB=OB=3,设直线x=t 截此三角形所得的阴影部分 的面积为S ,则S 与t 之间的函数关系式为( )A .S=t (0<t ≤3)B .S=12t 2 (0<t ≤3) C .S=t 2 (0<t ≤3) D .S=12t 2 -1(0<t ≤3)【答案】B 【分析】由AB 、OB 的长度求出点A 、点B 的坐标,进而求出OA 所在直线的解析式,令x =t ,求出y ,确定t 的范围,利用三角形面积公式表示出S 即可. 【详解】 ①AB =OB =3, ①A (3,3),①OA 所在直线解析式为y =x , 当0<t ≤3时,令x =t ,则y =t , ①S =12t 2(0<t ≤3).故选B.9【点睛】本题为一次函数与几何综合题,主要考查一次函数解析式的求解. 二、填空题11.直线44y x =-与坐标轴所围成的三角形面积为__________. 【答案】2 【分析】利用一次函数图象上点的坐标特征可求出直线与两坐标轴的交点坐标,再利用三角形的面积计算公式可求出直线与坐标轴所围成的三角形面积. 【详解】解:当0x =时,4044y =⨯-=-,①直线44y x =-与y 轴的交点坐标为()0,4-; 当0y =时,440x -=,解得:1x =, ①直线44y x =-与x 轴的交点坐标为()1,0.①直线44y x =-与坐标轴所围成的三角形面积14122=⨯⨯=.故答案为:2. 【点睛】本题考查的知识点是一次函数图象上点的坐标特征,解题关键是把求线段的长的问题转化为求函数的交点.12.已知点A (7,0),B (0,m ),且直线AB 与坐标轴围成的三角形面积等于28,则m 的值是__________. 【答案】8± 【分析】先分别求出点A 、点B 到坐标轴的距离即OA 、OB ,再利用三角形的面积公式求解即可. 【详解】解:①点A (7,0),B (0,m ), ①OA =7,OB =|m |,①直线AB 与坐标轴围成的三角形面积等于28, ①12×7×|m |=28, 解得:m =±8, 故答案为:±8. 【点睛】本题考查了坐标与图形性质、三角形的面积公式,熟练掌握坐标与图形的性质,会利用点的坐标求图形的面积的方法是解答的关键.13.已知直线1l :23y x =-+,和直线2l :6y x =-,若直线3l :2y kx =-与1l 、2l 不能围成三角形,则k =_________.【答案】2-或1或13-【分析】由题分析可得,平面直角坐标系中,三条直线123,,l l l 不能围成三角形,有三种情况:①l 1①l 3,①l 2①l 3,①三条直线交于同一点,由此展开讨论即可求得答案. 【详解】解:若l 1①l 3则2k =-; 若l 2①l 3,则1k =; 若三条直线交于一点,236y x y x =-+⎧⎨=-⎩,解得33x y =⎧⎨=-⎩, 即1l 与2l 交于一点(3,3)-, 则3l 过该点,代入: 332k -=-,解得13k =-,综上所述,k 为2-或1或13-,故填:2-或1或13-.【点睛】本题考查一次函数图像和性质,两直线平行k 相等,一次函数与二元一次方程组,解题关键是理解和掌握一次函数图像与性质与求两一次函数交点的方法.14.已知一次函数4y kx =-的图像与两坐标轴围成的三角形周长为12,则k 的值为________. 【答案】43±【分析】先求出直线与坐标轴的交点坐标,再根据三角形的周长列出方程求得k 即可. 【详解】解:令x =0,有y =0−4=−4, 令y =0,有kx −4=0,x =4k,①直线4y kx =-与坐标轴的交点坐标为(0,−4)和(4k,0),①一次函数4y kx =-的图象与两坐标轴所围成的三角形的周长等于12,①|−4|+|4 k①k=43±,经检验:k=43±是方程的解,故答案是:43±.【点睛】本题考查的是一次函数图象与坐标轴的交点坐标,根据三角形的周长列出方程是解答此题的关键.15.将平面直角坐标系中一次函数的图像与坐标轴围成的三角形,叫做此一次函数的坐标轴三角形.如图中的一次函数图像与,x y轴分别交于点,,A B那么ABO为此一次函数的坐标轴三角形.一次函数142y x=-+的坐标轴三角形的面积是_____.【答案】16【分析】求出点A,点B坐标,根据三角形的面积公式解答即可.【详解】解:对于142y x=-+,当x=0时,y=4,当y=0时,x=8①A(8,0)B(0,4),所以OA=8,OB=4,①S①AOB=12×8×4=16.故答案为:16.【点睛】本题考查了一次函数问题,本题中根据一次函数和坐标轴的交点坐标,求坐标三角形的三边长是解题的基础.三、解答题1116.如图,在平面直角坐标系中,ABC 的各顶点坐标分别()2,0A -,()2,0B ,(0,C ,直线l 过点B ,且与x 轴的正半轴成60︒角,将ABC 绕点B 按顺时针方向旋转,记旋转角为α.解答下列问题:(1)填空:ABC 为________三角形(选择“等腰”或“等边”一种),直线l 的函数表达式为_______;(2)若0180α<<︒,在ABC 的旋转过程中,当ABC 的一边与直线l 互相垂直时,记A 点的对应点为A ',求点A '的坐标;(3)当210α︒=时,记旋转后顶点A ,C 的对应点分别为M ,N PQ 在直线l 上移动,连结MQ ,NP ,试求四边形MQPN 周长的最小值.【答案】(1)等边,y -(2)A ´(2-2)或(2,4)或(2);(3).【分析】(1)利用点的坐标,求出OA =OB =2,OC ,利用勾股定理得出边长即可;设l :y =kx +b ,把B 、E 点的坐标代入即可;(2)分'A B l ⊥,''A C l ⊥,'BC l ⊥三种情况分别画出符合的图形,然后再分别求解即可;(3)由题意先确定出点N 坐标,在四边形MQPN 中,MN=4,则只需要MQ +PN 的值最小即可,如图,过点M 作MH //BE ,然后取MF =PQ 作出点M 、F 关于直线l 的对称点M ′,F ′,再分别过点M ′、F ′作x 轴、y 轴的垂线,两垂线交于点G ,连接NF ′,则NF ′的长就是MQ +PN 长的最小值,求出NF ′的长即可. 【详解】(1)①x 轴①y 轴,13①OC ①AB ,又①A (-2,0),B (2,0),C (0,), ①OA =OB =2,OC, ①OC 是AB 的垂直平分线, ①BC =BA ,在Rt OBC 中,BC4= , AB =OA +OB , ①AB =BC =AC =4, ①ABC 为等边三角形;设直线l 与y 轴的交点为E ,在Rt OBE 中,①OBE =60°,OB =2 ①OE. ①E (0,-, 设l :y=kx +b ,代入B (2,0),E (0,-,① 20k b b +=⎧⎪⎨=-⎪⎩,解得k b ⎧=⎪⎨=-⎪⎩,①y-(2)如图,当'A B l ⊥时,过点'A 作'A F x ⊥轴于点F ,①'90A BE ∠=︒,'90A FB ∠=︒, ① ①OBE =60°,①α=①A′BF =90°-60°=30°, ①A′F =1'22A B =,BF=, ①OF =BF -OB =A´B -OB-2,①A ´(2-2);如图,当''A C l ⊥时,垂足为F ,①1'''302A BF A BC ∠=∠=︒,'90A FB ∠=︒,① ①OBE =60°,①α=①A′BA =180°-30°-60°=90°, ①'A B AB ⊥,即'A B x ⊥轴, ①A ´(2,4);如图,当'BC l ⊥时,''A C 交x 轴于点F ,①'90EBC ∠=︒, ① ①OBE =60°,①①FBC ′=180°-90°-60°=30°,①①A′BF =①A′BC ′-①FBC ′=60°-30°=30°, ①α=①A′BA =180°-30°=150°,①A′FB =90°, ①''A C AB ⊥,即''A C x ⊥轴,①A′F =2,BF =①OF=OB+BF①A´(2);综上,A′的坐标为:(2-2)或(2,4)或(2);(3)α=210°时,①ABM=360°-210°=150°,①①ABN=①ABM-①MBN=90°,①N(2,-4)在四边形MQPN中,MN=4,MQ+PN的值最小即可,如图,过点M作MH//BE,然后取MF=PQ分别作出点M、F关于直线l的对称点M′,F′,再分别过点M′、F′作x轴、y轴的垂线,两垂线交于点G,连接NF′,则NF′的长就是MQ+PN长的最小值,①''M F=由对称性可知点①M′BA=30°,又(1)可知M′(2-2),在①M′F′G中,1'''2F G M F==3'4M G=,①3'224F⎛⎫--⎪⎪⎝⎭,即5'24F⎛⎫⎪⎪⎝⎭,①'F N①15【点睛】本题考查了旋转,一次函数的应用等知识,熟练掌握相关知识,正确进行分类讨论是解题的关键.17.如图,在平面直角坐标系中,直线1l :43y x =与直线2l :y kx b =+相交于点A ,点A 的横坐标为3,直线2l 交y 轴负半轴于点B ,且OB OA =. (1)求点B 的坐标及直线2l 的函数表达式;(2)过点B 作31//l l 交x 轴于点C ,连接AC ,求ABC 的面积.【答案】(1)35y x =-;(2)758【分析】(1)利用直线1l 的解析式求出点A 的坐标,再根据勾股定理求出OA 的长度,从而可以得到OB 的长度,根据图象求出点B 的坐标,然后利用待定系数法列式即可求出直线2l 的函数表达式;(2)根据题意易求得直线3l 为453y x =-,即可求得15(4C ,0),根据直线2l 的解析式求得与x 轴的交点D 的坐标,然后根据三角形面积公式即可求得结果.【详解】解:(1)点A 的横坐标为3, ①将x =3代入43y x =,得:4343y =⨯=,∴点A 的坐标是(3,4),5OA ∴=,OA OB =,5OB OA ∴==,17∴点B 的坐标是(0,5)-,把A 、B 的坐标代入y kx b =+得:345k b b +=⎧⎨=-⎩, 解得35k b =⎧⎨=-⎩,∴直线2l 的函数表达式是35y x =-;(2)①31//l l 且点B 的坐标是(0,5)-,∴直线3l 为453y x =-, 令0y =,则154x =, 15(4C ∴,0),设直线2l 与x 轴的交点为D , 将y =0代入35y x =-,得:53x =,5(3D ∴,0),155254312CD ∴=-=, ABC ∴的面积12575(45)2128=⨯⨯+=.【点睛】本题考查了两直线相交或平行的问题,待定系数法求直线的解析式,三角形的面积,求出交点的坐标是解题的关键.18.定义:如果一条直线把一个平面图形的面积分成相等的两部分,我们把这条直线称为平面图形的一条面积等分线.(1)如图1,已知ABC ,请用尺规作出ABC 的一条面积等分线.(2)已知:如图2,在平面直角坐标系xOy 中,矩形OABC 的边OA 在x 轴的正半轴上、OC 在y 轴的正半轴上,6,4OA OC ==. ①请判断直线4833y x =-是否为矩形OABC 的面积等分线,并说明理由; ①若矩形OABC 的面积等分线与坐标轴所围成的三角形面积为4,请直接写出此面积等分线的函数表达式.(3)如图3,在ABC 中,点A 的坐标为()2,0-,点B 的坐标为()4,3,点C 的坐标为()2,0,点D 的坐标()0,2-,求过点D 的一条ABC 的面积等分线的解析式.(4)在ABC 中点A 的坐标为()1,0-,点B 的坐标为()1,0,点C 的坐标为()0,1,直线()0y ax b a =+>是ABC 的一条面积等分线,请直接写出b 的取值范围.【答案】(1)见解析;(2)①直线4833y x =-不是矩形OABC 的面积等分线;①y =2x −4或y =29x +43;(3)22y x =-;(4)01b << 【分析】(1)作出线段BC 的垂直平分线,找到BC 中点D ,连接AD ,AD 即所求的ABC 的一条面积等分线.(2)①连接AC ,OB 交于点M ,根据6,4OA OC ==求出点M 的坐标,然后由矩形性质可知形OABC 的面积等分线必过点M ,将M 点的坐标代入4833y x =-判断M 点不在一次函数图像上,即可判断出直线4833y x =-不是矩形OABC 的面积等分线; ①先设出矩形面积等分线的解析式,利用和坐标轴围城的三角形面积是4建立方程求解即可; (3)根据题意设出三角形面积等分线的解析式,求出直线AB 的解析式,然后两条直线联立表示出交点坐标,根据三角形面积的一半列出方程求解即可; (4)根据图像结合面积等分线的性质即可求出b 的取值范围.19【详解】解:(1)如图1所示,作出BC 的垂直平分线交BC 于点D ,连接AD , ①AD 是三角形ABC 的中线,①AC 所在直线即要求的ABC 的一条面积等分线.(2)①如图2所示,连接AC ,OB 交于点M .①OA =6,OC =4, ①()6,0A ,()0,4C , ①()3,2M ,①四边形OABC 是矩形,①矩形OABC 的面积等分线必过点M , 将x =3代入4833y x =-中,得: 48432333y =⨯-=≠,①直线4833y x =-不过点M , ①直线4833y x =-不是矩形OABC 的面积等分线; ①如图所示,由①知,矩形OABC的面积等分线必过点M(3,2),设矩形OABC的面积等分线的解析式为y=kx+b与x轴相交于点E,与y轴相交于F,①3k+b=2,①b=2−3k,①矩形OABC的面积等分线的解析式为y=kx+2−3k,令x=0,y=2−3k,①F(0,2−3k),①OF=|2−3k|,令y=0,①x=32kk-,①E(32kk-,0),①OE=32kk-,①矩形OABC的面积等分线与坐标轴所围成的三角形面积为4,①142OE OF•=,①OE①OF=8,①|2−3k|①|32kk-|=8,①k=2或k=29,①矩形OABC的面积等分线函数表达式为y=2x−4或y=29x+43.(3)如图所示,设三角形ABC面积的等分线的表达式为y kx b=+,交x轴于点F,交AB 于点E.21①三角形ABC 面积的等分线y kx b =+过点D , ①将D ()0,2-代入表达式得:b =-2, ①表达式为2y kx =-.将y =0代入2y kx =-得:x =2k ,①F 20k ⎛⎫⎪⎝⎭,. ①AF =22k+. ①点A 的坐标为()2,0-,点B 的坐标为()4,3, 利用待定系数法可得AB 的表达式为112y x =+, ①DE 和AB 交于点E , ①联立表达式得:1122y x y kx ⎧=+⎪⎨⎪=-⎩,解得:6216221x k y k ⎧=⎪⎪-⎨⎪=-⎪-⎩.①14362ACB S =⨯⨯=△,①132AEF ACB S S ==△△, ①132E AF y ⨯⨯=, 代入得:126223221k k k ⎛⎫⎛⎫⨯+⨯-= ⎪⎪-⎝⎭⎝⎭, 整理得:24720k k --=,解得:12124k k ==-,(舍去),①三角形ABC 面积的等分线的表达式为22y x =-. (4)如图所示,①直线()0y ax b a =+>是ABC 的一条面积等分线, 由图像可知,当1b ≥或0b ≤时,无论a 取何值,直线()0y ax b a =+>都不能把ABC 的面积平分, ①01b <<. 【点睛】此题考查了待定系数法求一次函数表达式,三角形中线的性质,基本作图,矩形的性质等知识,解题的关键是设出直线表达式,根据三角形面积列出方程求解.19.在如图所示的平面直角坐标系中,直线n 过点A (0,﹣2)且与直线l 交于点B (3,2),直线l 与y 轴正半轴交于点C . (1)求直线n 的函数表达式;(2)若①ABC 的面积为9,求点C 的坐标;(3)若①ABC 是等腰三角形,且AB =BC ,求直线l 的函数表达式.【答案】(1)y =423x -;(2)C (0,4);(3)y =463x -+.【分析】(1)用待定系数法求直线n 的函数解析式;23(2)根据①ABC 的面积为9可求得AC 的长,可得出结论;(3)过点B 作BD ①y 轴于点D ,则CD =AD =4,得C (0,6),设直线l 的解析式为:y =kx +b ,将B ,C 代入即可. 【详解】解:(1)设直线n 的解析式为:y =kx +b ,①直线n :y =kx +b 过点A (0,﹣2),点B (3,2),①232b k b =-⎧⎨+=⎩,解得:432k b ⎧=⎪⎨⎪=-⎩, ①直线n 的函数解析式为:y =423x -; (2)①若①ABC 的面积为9, ①9=132AC , ①AC =6, ①OA =2,①点C 在y 轴正半轴, ①C (0,4);(3)当AB =BC 时,过点B 作BD ①y 轴于点D ,①CD =AD =4, ①C (0,6),设直线l 的解析式为:y =kx +b , 将B (3,2),C (0,6)代入得:326k b b +=⎧⎨=⎩, 解得436k b ⎧=-⎪⎨⎪=⎩,①直线l 的解析式为:y =463x -+.【点睛】本题主要考查一次函数的综合问题,待定系数法求一次函数解析式,两直线交点问题,一次函数与坐标轴交点问题,解题的关键是运用数形结合的思想解题. 20.如图,直线135y x =-与反比例函数21k y x-=的图象交于点()2,A m 、(),6B n -两点,连接OA 、OB .(1)求m 、n 、k 的值; (2)求AOB 的面积;(3)直接写出12y y <时,x 的取值范围.【答案】(1)11,,33m n k ==-=;(2)356;(3)02x << 或13x <-【分析】(1)根据题意可先出m ,n ,可得()2,1A 、1,63⎛⎫⎪⎝--⎭B ,再代入反比例函数解析式求出即可;(2)先求出直线与y 轴的交点坐标,可得AOB 的面积AODBODSS=+,即可求解;(3)观察一次函数图象在反比例函数图象下方时的x 的取值范围,即可求解. 【详解】解:(1)①直线135y x =-与反比例函数21k y x-=的图象交于点()2,A m 、(),6B n -两点, ①当2x = 时,2351m =⨯-= ,当6y =- 时,635n -=- ,解得:13n =- ,①()2,1A 、1,63⎛⎫⎪⎝--⎭B ,将()2,1A 代入反比例函数21k y x -=,得:112k -=, 解得:3k = ,(2)设直线AB 与x 轴交于点C ,交y 轴于点D ,25当0x = ,15y =- , ①()0,5D - , 即OD =5, ①AOB 的面积1112223AODBODSSOD OD =+=⨯⨯+⨯⨯ 111352552236=⨯⨯+⨯⨯= ; (3)①直线135y x =-与反比例函数21k y x -=的图象交于点()2,1A 、1,63⎛⎫⎪⎝--⎭B , ①由图象可知,当12y y <时,02x << 或13x <- . 【点睛】本题主要考查了用待定系数法求反比例函数的解析式,反比例函数与一次函数的交点问题、函数图象上点的坐标特征等知识点,利用反比例函数与一次函数的交点解答是解题的关键. 21.如图直线l 1=kx +5与y 轴交于点A 直线l2=﹣x +1与直线l 1交于B ,与y 轴交于C ,已知点B 的纵坐标为2.(1)确定直线l 1的解析式;(2)直线l 1、l 2与y 轴所围成的三角形的面积为 ;(3)垂直于x 轴的直线x =a 与直线l 1、l 2分别交于M 、N ,若线段MN 的长为2,求a 的值.【答案】(1)35y x ==;(2)2;(3)12a =-或32a =-【分析】(1)根据B 点的纵坐标为2且B 是两直线的交点,先把B 纵坐标代入l 2求出B 点坐标,然后代入l 1解析式即可求解;(2)分别求出A 、C 两点的坐标,然后求解面积即可得到答案;(3)把x a =代入两直线解析式分别求出M 、N 的坐标,然后根据MN =2求解即可得到答案. 【详解】解:(1)解:把2y =代入1y x =-+中 得1x =-①B 点坐标为(-1,2)把1x =-时2y =代入5y kx =+中 得25k =-+3k =直线l 1的解析式为35y x =+(2)①直线l 1的解析式为35y x =+ 与y 轴交于A 点 ①A (0,5)①直线l 2的解析式为1y x =-+ 与y 轴交于C 点 ①C (0,1)27①两直线与y 轴围成的面积=14122⨯⨯=(3)把x a =分别代入21y x =-+,和135y x =+中 得21y a =-+ 135y a =+①M (a ,3a +5),N (a ,-a +1) ①1352a a -+--= 112a +=①12a =-或32a =-【点睛】本题主要考查了两一次函数的交点问题,与坐标轴围成的面积问题,解题的关键在于能够熟练掌握一次函数的相关知识点.22.如图,一次函数y =kx +b (k 、b 为常数,k ≠0)的图象与反比例函数12y x=-的图象交于A 、B 两点,且与x 轴交于点C ,与y 轴交于点D ,点A 的横坐标与点B 的纵坐标都是3. (1)求一次函数的表达式; (2)求①AOB 的面积.【答案】(1)y=-x-1;(2)7 2【分析】(1)根据题意得出A,B点坐标,进而利用待定系数法得出一次函数解析式;(2)求出一次函数与x轴交点,进而利用三角形面积求法得出答案.【详解】解:(1)把x=3代入12yx=-,得y=-4,故A(3,-4),把y=3代入12yx=-,得x=-4,故B(-4,3),把A,B点代入y=kx+b得:34 43k bk b+=-⎧⎨-+=⎩,解得:11kb=-⎧⎨=-⎩,故直线解析式为:y=-x-1;(2)由(1)知:当y=0时,x=-1,故C点坐标为:(-1,0),则①AOB的面积为:12×1×3+12×1×4=72.【点睛】本题主要考查了反比例函数与一次函数的交点问题以及待定系数法求一次函数解析式、三角形面积求法等知识,正确得出A,B点坐标是解题关键.23.已知直线L1为y1=x+1,直线L2为y2=ax+b(a≠0),两条直线如图所示,这两个图象的交点在y轴上,直线L2与x轴的交点B的坐标为(2,0).(1)求a、b的值.(2)求使y1、y2的值都大于0的x的取值范围.(3)求这两条直线与x轴所围成的①ABC的面积.【答案】(1)a=12-,b=1;(2)-1<x<2;(3)32【分析】(1)首先根据直线l1的解析式可求得C点的坐标,进而可由B、C的坐标,利用待定系数法确定a、b的值.(2)根据两个函数的图象以及A、B点的坐标进行解答即可.(也可通过解不等式来求得)(3)根据(1)得到的直线l1的解析式,可求得点A的坐标,以AB为底、OC为高即可求得①ABC的面积.【详解】解:(1)由直线l1的解析式为y1=x+1,可求得C(0,1);则依题意可得:201a bb+=⎧⎨=⎩,解得:a=12-,b=1;(2)由(1)知,直线l2:112y x=-+,①y1=x+1>0,①x>-1;①y2=112x-+>0,①x<2;①-1<x<2.(3)由题意知A(-1,0),则AB=3,且OC=1;①S①ABC=12AB•OC=12×3×1=32.【点睛】此题主要考查了一次函数解析式的确定、一次函数与一元一次不等式的联系以及三角形面积29的计算方法,难度适中.。

一次函数与几何图形综合题10及答案

一次函数与几何图形综合题10及答案

一次函数与几何图形综合题10及答案1、1) AC的解析式为y=-x-2;2) 设BP与PQ的交点为R,由相似三角形可得BP/PQ=OB/OQ,即BP/PQ=1/2,故BP=2PQ。

证明如下:设BP=x,PQ=y,则由OC=OB可得AC=-x-2,又由直线AC和BP的垂线PQ相似可得y/x=(x+2)/(y+2),解得y=2x,代入AC 的解析式可得BP=2PQ,结论得证。

3) 正确结论为①(MQ+AC)/PM的值不变。

证明如下:由(2)可得BP=2PQ,又由相似三角形可得MQ/PM=OB/OQ,即MQ/PM=1/3,代入AC的解析式可得(MQ+AC)/PM=-2/3,为定值。

而(MQ-AC)/PM=(MQ+AC)/PM-2AC/PM=-2/3-2x/(x+2),不是定值。

故正确结论为①。

2、1) 直线L的解析式为y=-x+5;2) 由相似三角形可得MN/BN=AM/AB=4/(4+3),即MN=12/7;3) 猜想PB的长为定值,其值为2.证明如下:设点B在y轴上的坐标为h,则BP=h,由△OBF和△ABE相似可得BE=BF=h/2,EF=AB-BE=5-h/2,由相似三角形可得FP/EF=BP/BE=h/(5-h/2),所以FP=5h/(5-h/2),由于P在y轴上,故FP=2h,解得h=2,即PB=2,结论得证。

3、1) 直线l2的解析式为y=-x+1;2) 画图如下,由相似三角形可得BE/BC=AB/AC,即BE/(BE+CF)=(AB+BC+AC)/AC,代入AB=1,BC=3,AC=4可得BE/(BE+CF)=5/4,即BE=5CF/3,代入△BEC的勾股定理可得CF=3/2,BE=5/2,故BE+CF=8/2=4=EF,结论得证。

3) 正确结论为①OM为定值,其值为1/2.证明如下:设△ABC沿y轴向下平移的距离为h,则BP=CQ=h,由相似三角形可得OM/AB=OC/AC,即OM/1=(h+2)/(h+4),解得OM=(2h+4)/(h+4),为定值。

最新初二数学一次函数综合压轴题精选汇总(含答案)

最新初二数学一次函数综合压轴题精选汇总(含答案)

最新初二数学一次函数综合压轴题精选汇总例1.如图①所示,直线L:y=mx+5m与x轴负半轴,y轴正半轴分别交于A、B两点.(1)当OA=OB时,求点A坐标及直线L的解析式;(2)在(1)的条件下,如图②所示,设Q为AB延长线上一点,作直线OQ,过A、B 两点分别作AM⊥OQ于M,BN⊥OQ于N,若AM=,求BN的长;(3)当m取不同的值时,点B在y轴正半轴上运动,分别以OB、AB为边,点B为直角顶点在第一、二象限内作等腰直角△OBF和等腰直角△ABE,连EF交y轴于P点,如图③.问:当点B在y轴正半轴上运动时,试猜想PB的长是否为定值?若是,请求出其值;若不是,说明理由.变式练习:1.已知:如图1,一次函数y=mx+5m的图象与x轴、y轴分别交于点A、B,与函数y=﹣x的图象交于点C,点C的横坐标为﹣3.(1)求点B的坐标;(2)若点Q为直线OC上一点,且S△QAC=3S△AOC,求点Q的坐标;(3)如图2,点D为线段OA上一点,∠ACD=∠AOC.点P为x轴负半轴上一点,且点P到直线CD和直线CO的距离相等.①在图2中,只利用圆规作图找到点P的位置;(保留作图痕迹,不得在图2中作无关元素.)②求点P的坐标.例2.如图1,已知一次函数y=﹣x+6分别与x、y轴交于A、B两点,过点B的直线BC 交x轴负半轴与点C,且OC=OB.(1)求直线BC的函数表达式;(2)如图2,若△ABC中,∠ACB的平分线CF与∠BAE的平分线AF相交于点F,求证:∠AFC=∠ABC;(3)在x轴上是否存在点P,使△ABP为等腰三角形?若存在,请直接写出P点的坐标;若不存在,请说明理由.变式练习:2.如图,直线l:y=x+6交x、y轴分别为A、B两点,C点与A点关于y轴对称.动点P、Q分别在线段AC、AB上(点P不与点A、C重合),满足∠BPQ=∠BAO.(1)点A坐标是 ,BC= .(2)当点P在什么位置时,△APQ≌△CBP,说明理由.(3)当△PQB为等腰三角形时,求点P的坐标.课后作业:1.已知,如图直线y=2x+3与直线y=﹣2x﹣1相交于C点,并且与两坐标轴分别交于A、B 两点.(1)求两直线与y轴交点A,B的坐标及交点C的坐标;(2)求△ABC的面积.2.如图①,直线y=﹣x+1分别与坐标轴交于A,B两点,在y轴的负半轴上截取OC=OB(1)求直线AC的解析式;(2)如图②,在x轴上取一点D(1,0),过D作DE⊥AB交y轴于E,求E点坐标.3.如图,直线L:y=﹣x+2与x轴、y轴分别交于A、B两点,在y轴上有一点C(0,4),动点M从A点以每秒1个单位的速度沿x轴向左移动.(1)求A、B两点的坐标;(2)当M在x轴正半轴移动并靠近0点时,求△COM的面积S与M的移动时间t之间的函数关系式;当M在O点时,△COM的面积如何?当M在x轴负半轴上移动时,求△COM的面积S与M的移动时间t之间的函数关系式;请写出每个关系式中t的取值范围;(3)当t为何值时△COM≌△AOB,并求此时M点的坐标.参考答案:例1.【考点】一次函数综合题.【分析】(1)当y=0时,x=﹣5;当x=0时,y=5m,得出A(﹣5,0),B(0,5m),由OA=OB,解得:m=1,即可得出直线L的解析式;(2)由勾股定理得出OM的长,由AAS证明△AMO≌△ONB,得出BN=OM,即可求出BN的长;(3)作EK⊥y轴于K点,由AAS证得△ABO≌△BEK,得出对应边相等OA=BK,EK=OB,得出EK=BF,再由AAS证明△PBF≌△PKE,得出PK=PB,即可得出结果.【解答】解:(1)∵对于直线L:y=mx+5m,当y=0时,x=﹣5,当x=0时,y=5m,∴A(﹣5,0),B(0,5m),∵OA=OB,∴5m=5,解得:m=1,∴直线L的解析式为:y=x+5;(2)∵OA=5,AM=,∴由勾股定理得:OM==,∵∠AOM+∠AOB+∠BON=180°,∠AOB=90°,∴∠AOM+∠BON=90°,∵∠AOM+∠OAM=90°,∴∠BON=∠OAM,在△AMO和△OBN中,,∴△AMO≌△ONB(AAS)∴BN=OM=;(3)PB的长是定值,定值为;理由如下:作EK⊥y轴于K点,如图所示:∵点B为直角顶点在第一、二象限内作等腰直角△OBF 和等腰直角△ABE,∴AB=BE,∠ABE=90°,BO=BF,∠OBF=90°,∴∠ABO+∠EBK=90°,∵∠ABO+∠OAB=90°,∴∠EBK=∠OAB,在△ABO和△BEK中,,∴△ABO≌△BEK(AAS),∴OA=BK,EK=OB,∴EK=BF,在△PBF和△PKE中,,∴△PBF≌△PKE(AAS),∴PK=PB,∴PB=BK=OA=×5=.【点评】本题是一次函数综合题目,考查了一次函数解析式的求法、等腰直角三角形的性质、勾股定理、全等三角形的判定与性质等知识;本题综合性强,难度较大,特别是(3)中,需要通过作辅助线两次证明三角形全等才能得出结果.变式练习:1.【考点】一次函数综合题.【分析】(1)把点C的横坐标代入正比例函数解析式,求得点C的纵坐标,然后把点C的坐标代入一次函数解析式即可求得m的值,则易求点B的坐标;(2)由S△QAC=3S△AOC得到点Q到x轴的距离是点C到x轴距离的3倍或点Q到x轴的距离是点C到x轴距离的2倍;(3)①如图2,以点A为圆心,AC长为半径画弧,该弧与x轴的交点即为P;②如图3,作P1F⊥CD于F,P1E⊥OC于E,作P2H⊥CD于H,P2G⊥OC于G.利用△CAO∽△DAC,求出AD的长,进而求出D点坐标,再用待定系数法求出CD解析式,利用点到直线的距离公式求出公式,=,解出a的值即可.【解答】解:(1)把x=﹣3代入y=﹣x得到:y=2.则C(﹣3,2).将其代入y=mx+5m,得:2=﹣3m+5m,解得m=1.则该直线方程为:y=x+5.令x=0,则y=5,即B(0,5);(2)由(1)知,C(﹣3,2).如图1,设Q(a,﹣a).∵S△QAC=3S△AOC,∴S△QAO=4S△AOC,或S△QAO=2S△AOC,①当S△QAO=4S△AOC时,OA•y Q=4×OA•y C,∴y Q=4y C,即|﹣a|=4×2=8,解得a=﹣12(正值舍去),∴Q(﹣12,8);②当S△QAO=2S△AOC时,OA•y Q=2×OA•y C,∴y Q=2y C,即|﹣a|=2×2=4,解得a=6(舍去负值),∴Q′(6,﹣4);综上所述,Q(﹣12,8)或(6,﹣4).(3)①如图2,以点A为圆心,AC长为半径画弧,该弧与x轴的交点即为P;②如图3,作P1F⊥CD于F,P1E⊥OC于E,作P2H⊥CD于H,P2G⊥OC于G.∵C(﹣3,2),A(﹣5,0),∴AC==2,∵∠ACD=∠AOC,∠CAO=∠DAC,∴△CAO∽△DAC,∴=,∴AD=,∴OD=5﹣=,则D(﹣,0).设CD解析式为y=kx+b,把C(﹣3,2),D(﹣,0)分别代入解析式得,解得,函数解析式为y=5x+17,设P点坐标为(a,0),根据点到直线的距离公式,=,两边平方得,(5a+17)2=2×4a2,解得a=﹣5±2,∴P1(﹣5﹣2,0),P2(﹣5+2,0).【点评】本题考查了一次函数综合题,涉及坐标与图象的关系、待定系数法求函数解析式、角平分线的性质、点到直线的距离、三角形的面积公式等知识,综合性较强,值得关注.法二:例2.【考点】一次函数综合题.【分析】(1)根据自变量与函数值的对应关系,可得A、B、C点的坐标,根据待定系数法,可得函数解析式;(2)根据角平分线的性质,可得∠FCA=∠BCA,∠FAE=∠BAE,根据三角形外角的关系,可得∠BAE=∠ABC+∠BCA,∠FAE=∠F+∠FCA,根据等式的性质,可得答案;(3)根据等腰三角形的定义,分类讨论:AB=AP=10,AB=BP=10,BP=AP,根据线段的和差,可得AB=AP=10时P点坐标,根据线段垂直平分线的性质,可得AB=BP=10时P点坐标;根据两点间的距离公式,可得BP=AP时P点坐标.【解答】解:(1)当x=0时,y=6,即B(0,6),当y=0时,﹣x+6=0,解得x﹣8,即A (8,0);由OC=OB,得OC=3,即C(﹣3,0);设BC的函数解析式为,y=kx+b,图象过点B、C,得,解得,直线BC的函数表达式y=2x+6;(2)证明:∵∠ACB的平分线CF与∠BAE的平分线AF相交于点F,∴∠FCA=∠BCA,∠FAE=∠BAE.∵∠BAE是△ABC的外角,∠FAE是△FAC的外角,∴∠BAE=∠ABC+∠BCA,∠FAE=∠F+∠FCA.∴∠ABC+∠BCA=∠F+∠BCA,∠ABC=∠F;(3)当AB=AP=10时,8﹣10=﹣2,P1(﹣2,0),8+10=18,P2(18,0);当AB=BP=10时,AO=PO=8,即P3(﹣8,0);设P(a,0),当BP=AP时,平方,得BP2=AP2,即(8﹣a)2=a2+62化简,得16a=28,解得a=,P4(,0),综上所述:P1(﹣2,0),P2(18,0),P3(﹣8,0);P4(,0).【点评】本题考查了一次函数综合题,(1)利用了函数值与自变量的关系求出A、B、C 的值又利用了待定系数法求函数解析式;(2)利用了角平分线的性质,三角形外角的性质,(3)利用了等腰三角形的定义,分类讨论是解题关键.变式练习:2.【考点】一次函数综合题。

勾股定理习题与详细答案

勾股定理习题与详细答案

勾股定理11111111一.选择题(共10小题)1.(2016•淄博)如图,正方形ABCD的边长为10,AG=CH=8,BG=DH=6,连接GH,则线段GH的长为()A.B.2C.D.10﹣52.(2016•漳州)如图,在△ABC中,AB=AC=5,BC=8,D是线段BC上的动点(不含端点B、C).若线段AD长为正整数,则点D的个数共有()A.5个B.4个C.3个D.2个3.(2016•青海)如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…,按照此规律继续下去,则S9的值为()A.()6B.()7C.()6D.()74.(2016•东营)在△ABC中,AB=10,AC=2,BC边上的高AD=6,则另一边BC等于()A.10 B.8 C.6或10 D.8或105.(2016•株洲)如图,以直角三角形a、b、c为边,向外作等边三角形,半圆,等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3图形个数有()A.1 B.2 C.3 D.46.(2016•黔东南州)2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的弦图,它是由四个全等的直角三角形和中间的小正方形拼成的大正方形,如图所示,如果大正方形的面积是13,小正方形的面积为1,直角三角形的较短直角边长为a,较长直角边长为b,那么(a+b)2的值为()A.13 B.19 C.25 D.1697.(2016•南京)下列长度的三条线段能组成钝角三角形的是()A.3,4,4 B.3,4,5 C.3,4,6 D.3,4,78.(2016•绵阳)如图,沿AC方向开山修建一条公路,为了加快施工进度,要在小山的另一边寻找点E同时施工,从AC上的一点B取∠ABD=150°,沿BD的方向前进,取∠BDE=60°,测得BD=520m,BC=80m,并且AC,BD和DE在同一平面内,那么公路CE段的长度为()A.180m B.260m C.(260﹣80)m D.(260﹣80)m9.(2016•达州)如图,在5×5的正方形网格中,从在格点上的点A,B,C,D中任取三点,所构成的三角形恰好是直角三角形的概率为()A.B.C.D.10.(2016•杭州)已知直角三角形纸片的两条直角边长分别为m和n(m<n),过锐角顶点把该纸片剪成两个三角形,若这两个三角形都为等腰三角形,则()A.m2+2mn+n2=0 B.m2﹣2mn+n2=0 C.m2+2mn﹣n2=0 D.m2﹣2mn﹣n2=0二.填空题(共10小题)11.(2016•资阳)如图,在等腰直角△ABC中,∠ACB=90°,CO⊥AB于点O,点D、E分别在边AC、BC上,且AD=CE,连结DE交CO于点P,给出以下结论:①△DOE是等腰直角三角形;②∠CDE=∠COE;③若AC=1,则四边形CEOD的面积为;④AD2+BE2﹣2OP2=2DP•PE,其中所有正确结论的序号是.12.(2016•枣庄)如图,是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD为米(结果精确到0.1米,参考数据:=1.41,=1.73).13.(2016•哈尔滨)在等腰直角三角形ABC中,∠ACB=90°,AC=3,点P为边BC的三等分点,连接AP,则AP的长为.14.(2016•江西三模)如图,Rt△ABC中,∠ABC=90°,DE垂直平分AC,垂足为O,AD ∥BC,且AB=5,BC=12,则AD的长为.15.(2016•南岗区模拟)在△ABC中,∠ABC=30°,AB=8,AC=2,边AB的垂直平分线与直线BC相交于点F,则线段CF的长为.16.(2016•道外区一模)如图,在△ABC中,∠ACB=90°,AC=BC,P为三角形内部一点,且PC=3,PA=5,PB=7,则△PAB的面积为.17.(2016•余干县二模)如图,在△ABC中,AB=AC=4,AO=BO,P是射线CO上的一个动点,∠AOC=120°,则当△PAB为直角三角形时,AP的长为.18.(2016•通州区一模)在我国古算书《周髀算经》中记载周公与商高的谈话,其中就有勾股定理的最早文字记录,即“勾三股四弦五”,亦被称作商高定理.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,AC=4,则D,E,F,G,H,I都在矩形KLMJ的边上,那么矩形KLMJ的面积为.19.(2016•富顺县校级模拟)如图,在一根长90cm的灯管上,缠满了彩色丝带,已知可近似地将灯管看作圆柱体,且底面周长为4cm,彩色丝带均匀地缠绕了30圈,则彩色丝带的总长度为.20.(2016•南陵县一模)如图,要使宽为2米的矩形平板车ABCD通过宽为2米的等宽的直角通道,平板车的长不能超过米.三.解答题(共10小题)21.(2016春•周口期末)在四边形ABCD中,AB=AD=8,∠A=60°,∠D=150°,四边形周长为32,求BC和CD的长度.22.(2016•徐州模拟)一、阅读理解:在△ABC中,BC=a,CA=b,AB=c;(1)若∠C为直角,则a2+b2=c2;(2)若∠C为锐角,则a2+b2与c2的关系为:a2+b2>c2;(3)若∠C为钝角,试推导a2+b2与c2的关系.二、探究问题:在△ABC中,BC=a=3,CA=b=4,AB=c,若△ABC是钝角三角形,求第三边c的取值范围.23.(2016•安徽模拟)定义:若三角形三个内角的度数分别是x、y和z,满足x2+y2=z2,则称这个三角形为勾股三角形.(1)根据上述定义,“直角三角形是勾股三角形”是真命题还是假命题;(2)已知一勾股三角形三个内角从小到大依次为x、y和z,且xy=2160,求x+y的值;(3)如图,△ABC中,AB=,BC=2,AC=1+,求证:△ABC是勾股三角形.24.(2016•陕西校级模拟)超速行驶是引发交通事故的主要原因.上周末,小鹏等三位同学在滨海大道红树林路段,尝试用自己所学的知识检测车速,观测点设在到公路l的距离为100米的P处.这时,一辆富康轿车由西向东匀速驶来,测得此车从A处行驶到B处所用的时间为3秒,并测得∠APO=60°,∠BPO=45°,试判断此车是否超过了每小时80千米的限制速度?(参考数据:=1.41,=1.73)25.(2016•丹东模拟)校车安全是近几年社会关注的热点问题,安全隐患主要是超速和超载,某中学九年级数学活动小组进行了测试汽车速度的实验.如图,先在笔直的公路1旁选取一点A,在公路1上确定点B、C,使得AC⊥l,∠BAC=60°,再在AC上确定点D,使得∠BDC=75°,测得AD=40米.已知本路段对校车限速是50千米/时,测得某校车从B到C匀速行驶用时10秒.(1)求CD的长.(结果保留根号)(2)问这辆车在本路段是否超速?请说明理由(参考数据:=1.414,=1.73)26.(2016•长春模拟)探索:如图①,以△ABC的边AB、AC为直角边,A为直角顶点,向外作等腰直角△ABD和等腰直角△ACE,连结BE、CD,试确定BE与CD有怎样数量关系,并说明理由.应用:如图②,要测量池塘两岸B、E两地之间的距离,已知测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的长.27.(2016•东明县一模)如图,已知△ABC中,∠BAC=90°,AB=AC.D为线段AC上任一点,连接BD,过C点作CE∥AB且AD=CE,试说明BD和AE之间的关系,并证明.28.(2016•安徽模拟)如图,在Rt△ABC中,∠C=90°,AC=BC,点D在AB的垂直平分线上,∠DAB=15°且AD=10cm,求BC的长.29.(2016春•丰城市期末)如图,已知四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积.30.(2016春•柳江县期末)如图,某中学有一块四边形的空地ABCD,学校计划在空地上种植草皮,经测量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,问学校需要投入多少资金买草皮?勾股定理11111111参考答案与试题解析一.选择题(共10小题)1.(2016•淄博)如图,正方形ABCD的边长为10,AG=CH=8,BG=DH=6,连接GH,则线段GH的长为()A.B.2C.D.10﹣5【考点】勾股定理.【分析】延长BG交CH于点E,根据正方形的性质证明△ABG≌△CDH≌△BCE,可得GE=BE﹣BG=2、HE=CH﹣CE=2、∠HEG=90°,由勾股定理可得GH的长.【解答】解:如图,延长BG交CH于点E,在△ABG和△CDH中,,∴△ABG≌△CDH(SSS),AG2+BG2=AB2,∴∠1=∠5,∠2=∠6,∠AGB=∠CHD=90°,∴∠1+∠2=90°,∠5+∠6=90°,又∵∠2+∠3=90°,∠4+∠5=90°,∴∠1=∠3=∠5,∠2=∠4=∠6,在△ABG和△BCE中,,∴△ABG≌△BCE(ASA),∴BE=AG=8,CE=BG=6,∠BEC=∠AGB=90°,∴GE=BE﹣BG=8﹣6=2,同理可得HE=2,在RT△GHE中,GH===2,故选:B.【点评】本题主要考查正方形的性质、全等三角形的判定与性质、勾股定理和其逆定理的综合运用,通过证三角形全等得出△GHE为等腰直角三角形是解题的关键.2.(2016•漳州)如图,在△ABC中,AB=AC=5,BC=8,D是线段BC上的动点(不含端点B、C).若线段AD长为正整数,则点D的个数共有()A.5个B.4个C.3个D.2个【考点】勾股定理;等腰三角形的性质.【专题】分类讨论.【分析】首先过A作AE⊥BC,当D与E重合时,AD最短,首先利用等腰三角形的性质可得BE=EC,进而可得BE的长,利用勾股定理计算出AE长,然后可得AD的取值范围,进而可得答案.【解答】解:过A作AE⊥BC,∵AB=AC,∴EC=BE=BC=4,∴AE==3,∵D是线段BC上的动点(不含端点B、C).∴3≤AD<5,∴AD=3或4,∵线段AD长为正整数,∴点D的个数共有3个,故选:C.【点评】此题主要考查了等腰三角形的性质和勾股定理,关键是正确利用勾股定理计算出AD的最小值,然后求出AD的取值范围.3.(2016•青海)如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…,按照此规律继续下去,则S9的值为()A.()6B.()7C.()6D.()7【考点】勾股定理.【分析】根据等腰直角三角形的性质可得出S2+S2=S1,写出部分S n的值,根据数的变化找出变化规律“S n=()n﹣3”,依此规律即可得出结论.【解答】解:在图中标上字母E,如图所示.∵正方形ABCD的边长为2,△CDE为等腰直角三角形,∴DE2+CE2=CD2,DE=CE,∴S2+S2=S1.观察,发现规律:S1=22=4,S2=S1=2,S3=S2=1,S4=S3=,…,∴S n=()n﹣3.当n=9时,S9=()9﹣3=()6,故选:A.【点评】本题考查了等腰直角三角形的性质、勾股定理以和规律型中数的变化规律,解题的关键是找出规律“S n=()n﹣3”.本题属于中档题,难度不大,解决该题型题目时,写出部分S n的值,根据数值的变化找出变化规律是关键.4.(2016•东营)在△ABC中,AB=10,AC=2,BC边上的高AD=6,则另一边BC等于()A.10 B.8 C.6或10 D.8或10【考点】勾股定理.【分析】分两种情况考虑,如图所示,分别在直角三角形ABC与直角三角形ACD中,利用勾股定理求出BD与CD的长,即可求出BC的长.【解答】解:根据题意画出图形,如图所示,如图1所示,AB=10,AC=2,AD=6,在Rt△ABD和Rt△ACD中,根据勾股定理得:BD==8,CD==2,此时BC=BD+CD=8+2=10;如图2所示,AB=10,AC=2,AD=6,在Rt△ABD和Rt△ACD中,根据勾股定理得:BD==8,CD==2,此时BC=BD﹣CD=8﹣2=6,则BC的长为6或10.故选C.【点评】此题考查了勾股定理,熟练掌握勾股定理是解本题的关键.5.(2016•株洲)如图,以直角三角形a、b、c为边,向外作等边三角形,半圆,等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3图形个数有()A.1 B.2 C.3 D.4【考点】勾股定理.【专题】计算题;推理填空题.【分析】根据直角三角形a、b、c为边,应用勾股定理,可得a2+b2=c2.(1)第一个图形中,首先根据等边三角形的面积的求法,表示出3个三角形的面积;然后根据a2+b2=c2,可得S1+S2=S3.(2)第二个图形中,首先根据圆的面积的求法,表示出3个半圆的面积;然后根据a2+b2=c2,可得S1+S2=S3.(3)第三个图形中,首先根据等腰直角三角形的面积的求法,表示出3个等腰直角三角形的面积;然后根据a2+b2=c2,可得S1+S2=S3.(4)第四个图形中,首先根据正方形的面积的求法,表示出3个正方形的面积;然后根据a2+b2=c2,可得S1+S2=S3.【解答】解:(1)S1=a2,S2=b2,S3=c2,∵a2+b2=c2,∴a2+b2=c2,∴S1+S2=S3.(2)S1=a2,S2=b2,S3=c2,∵a2+b2=c2,∴a2+b2=c2,∴S1+S2=S3.(3)S1=a2,S2=b2,S3=c2,∵a2+b2=c2,∴a2+b2=c2,∴S1+S2=S3.(4)S1=a2,S2=b2,S3=c2,∵a2+b2=c2,∴S1+S2=S3.综上,可得面积关系满足S1+S2=S3图形有4个.故选:D.【点评】(1)此题主要考查了勾股定理的应用,要熟练掌握,解答此题的关键是要明确:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.(2)此题还考查了等腰直角三角形、等边三角形、圆以和正方形的面积的求法,要熟练掌握.6.(2016•黔东南州)2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的弦图,它是由四个全等的直角三角形和中间的小正方形拼成的大正方形,如图所示,如果大正方形的面积是13,小正方形的面积为1,直角三角形的较短直角边长为a,较长直角边长为b,那么(a+b)2的值为()A.13 B.19 C.25 D.169【考点】勾股定理的证明.【专题】数学建模思想;构造法;等腰三角形与直角三角形.【分析】根据题意,结合图形求出ab与a2+b2的值,原式利用完全平方公式化简后代入计算即可求出值.【解答】解:根据题意得:c2=a2+b2=13,4×ab=13﹣1=12,即2ab=12,则(a+b)2=a2+2ab+b2=13+12=25,故选C【点评】此题考查了勾股定理的证明,利用了数形结合的思想,熟练掌握勾股定理是解本题的关键.7.(2016•南京)下列长度的三条线段能组成钝角三角形的是()A.3,4,4 B.3,4,5 C.3,4,6 D.3,4,7【考点】勾股定理的逆定理.【分析】在能够组成三角形的条件下,如果满足较小两边平方的和等于最大边的平方是直角三角形;满足较小两边平方的和大于最大边的平方是锐角三角形;满足较小两边平方的和小于最大边的平方是钝角三角形,依此求解即可.【解答】解:A、因为32+42>42,所以三条线段能组锐角三角形,不符合题意;B、因为32+42=52,所以三条线段能组成直角三角形,不符合题意;C、因为3+4>6,且32+42<62,所以三条线段能组成钝角三角形,符合题意;D、因为3+4=7,所以三条线段不能组成三角形,不符合题意.故选:C.【点评】本题考查了勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.掌握组成钝角三角形的条件是解题的关键.8.(2016•绵阳)如图,沿AC方向开山修建一条公路,为了加快施工进度,要在小山的另一边寻找点E同时施工,从AC上的一点B取∠ABD=150°,沿BD的方向前进,取∠BDE=60°,测得BD=520m,BC=80m,并且AC,BD和DE在同一平面内,那么公路CE段的长度为()A.180m B.260m C.(260﹣80)m D.(260﹣80)m【考点】勾股定理的应用.【分析】先根据三角形外角的性质求出∠E的度数,再根据锐角三角函数的定义可求BE,再根据线段的和差故选即可得出结论.【解答】解:在△BDE中,∵∠ABD是△BDE的外角,∠ABD=150°,∠D=60°,∴∠E=150°﹣60°=90°,∵BD=520m,∵sin60°==,∴DE=520•sin60°=260(m),公路CE段的长度为260﹣80(m).答:公路CE段的长度为(260﹣80)m.故选:C.【点评】本题考查的是解直角三角形的应用,熟知三角形外角的性质和锐角三角函数的定义是解答此题的关键.9.(2016•达州)如图,在5×5的正方形网格中,从在格点上的点A,B,C,D中任取三点,所构成的三角形恰好是直角三角形的概率为()A.B.C.D.【考点】勾股定理的应用.【分析】从点A,B,C,D中任取三点,找出所有的可能,以和能构成直角三角形的情况数,即可求出所求的概率.【解答】解:∵从点A,B,C,D中任取三点能组成三角形的一共有4种可能,其中△ABD,△ADC,△ABC是直角三角形,∴所构成的三角形恰好是直角三角形的概率为.故选D.【点评】此题考查了列表法与树状图法,以和三角形的三边关系和勾股定理的逆定理运用,用到的知识点为:概率=所求情况数与总情况数之比,属于中考常考题型.10.(2016•杭州)已知直角三角形纸片的两条直角边长分别为m和n(m<n),过锐角顶点把该纸片剪成两个三角形,若这两个三角形都为等腰三角形,则()A.m2+2mn+n2=0 B.m2﹣2mn+n2=0 C.m2+2mn﹣n2=0 D.m2﹣2mn﹣n2=0【考点】等腰直角三角形;等腰三角形的性质.【分析】如图,根据等腰三角形的性质和勾股定理可得m2+m2=(n﹣m)2,整理即可求解【解答】解:如图,m2+m2=(n﹣m)2,2m2=n2﹣2mn+m2,m2+2mn﹣n2=0.故选:C.【点评】考查了等腰直角三角形,等腰三角形的性质,勾股定理,关键是熟练掌握等腰三角形的性质,根据勾股定理得到等量关系.二.填空题(共10小题)11.(2016•资阳)如图,在等腰直角△ABC中,∠ACB=90°,CO⊥AB于点O,点D、E分别在边AC、BC上,且AD=CE,连结DE交CO于点P,给出以下结论:①△DOE是等腰直角三角形;②∠CDE=∠COE;③若AC=1,则四边形CEOD的面积为;④AD2+BE2﹣2OP2=2DP•PE,其中所有正确结论的序号是①②③④.【考点】勾股定理;四点共圆.【分析】①正确.由ADO≌△CEO,推出DO=OE,∠AOD=∠COE,由此即可判断.②正确.由D、C、E、O四点共圆,即可证明.③正确.由S△ABC=×1×1=,S四边形DCEO=S△DOC+S△CEO=S△CDO+S△ADO=S△AOC=S△ABC即可解决问题.④正确.由D、C、E、O四点共圆,得OP•PC=DP•PE,所以2OP2+2DP•PE=2OP2+2OP•PC=2OP (OP+PC)=2OP•OC,由△OPE∽△OEC,得到=,即可得到2OP2+2DP•PE=2OE2=DE2=CD2+CE2,由此即可证明.【解答】解:①正确.如图,∵∠ACB=90°,AC=BC,CO⊥AB∴AO=OB=OC,∠A=∠B=∠ACO=∠BCO=45°,在△ADO和△CEO中,,∴△ADO≌△CEO,∴DO=OE,∠AOD=∠COE,∴∠AOC=∠DOE=90°,∴△DOE是等腰直角三角形.故①正确.②正确.∵∠DCE+∠DOE=180°,∴D、C、E、O四点共圆,∴∠CDE=∠COE,故②正确.③正确.∵AC=BC=1,∴S△ABC=×1×1=,S四边形DCEO=S△DOC+S△CEO=S△CDO+S△ADO=S△AOC=S△ABC=,故③正确.④正确.∵D、C、E、O四点共圆,∴OP•PC=DP•PE,∴2OP2+2DP•PE=2OP2+2OP•PC=2OP(OP+PC)=2OP•OC,∵∠OEP=∠DCO=∠OCE=45°,∠POE=∠COE,∴△OPE∽△OEC,∴=,∴OP•OC=OE2,∴2OP2+2DP•PE=2OE2=DE2=CD2+CE2,∵CD=BE,CE=AD,∴AD2+BE2=2OP2+2DP•PE,∴AD2+BE2﹣2OP2=2DP•PE.故④正确.【点评】本题考查勾股定理、四点共圆、全等三角形的判定和性质、等腰直角三角形的性质、相似三角形的判定和性质等知识,解题的关键是正确寻找全等三角形,学会利用四点共圆解决问题,题目比较难,用到的知识点比较多.12.(2016•枣庄)如图,是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD为 2.9米(结果精确到0.1米,参考数据:=1.41,=1.73).【考点】勾股定理的应用.【分析】首先根据等腰直角三角形的性质可得DM=AM=4m,再根据勾股定理可得MC2+MB2=(2MC)2,代入数可得答案.【解答】解:由题意可得:∵AM=4米,∠MAD=45°,∴DM=4m,∵AM=4米,AB=8米,∴MB=12米,∵∠MBC=30°,∴BC=2MC,∴MC2+MB2=(2MC)2,MC2+122=(2MC)2,∴MC=4,则DC=4﹣4≈2.9(米),故答案为:2.9.【点评】此题主要考查了勾股定理得应用,关键是掌握直角三角形中,两直角边的平方和等于斜边的平方.13.(2016•哈尔滨)在等腰直角三角形ABC中,∠ACB=90°,AC=3,点P为边BC的三等分点,连接AP,则AP的长为或.【考点】等腰直角三角形.【分析】①如图1根据已知条件得到PB=BC=1,根据勾股定理即可得到结论;②如图2,根据已知条件得到PC=BC=1,根据勾股定理即可得到结论.【解答】解:①如图1,∵∠ACB=90°,AC=BC=3,∵PB=BC=1,∴CP=2,∴AP==,②如图2,∵∠ACB=90°,AC=BC=3,∵PC=BC=1,∴AP==,综上所述:AP的长为或,故答案为:或.【点评】本题考查了等腰直角三角形的性质,勾股定理,熟练掌握等腰直角三角形的性质是解题的关键.14.(2016•江西三模)如图,Rt△ABC中,∠ABC=90°,DE垂直平分AC,垂足为O,AD ∥BC,且AB=5,BC=12,则AD的长为.【考点】勾股定理;线段垂直平分线的性质.【分析】连接AE,根据垂直平分线的性质可得AE=EC,然后在直角△ABE中利用勾股定理即可列方程求得EC的长,然后证明△AOD≌△COE,即可求得.【解答】解:连接AE.∵DE是线段AC的垂直平分线,∴AE=EC.设EC=x,则AE=EC=x,BE=BC﹣EC=12﹣x,∵在直角△ABE中,AE2=AB2+BE2,∴x2=52+(12﹣x)2,解得:x=.即EC=.∵AD∥BC,∴∠D=∠OEC,在△AOD和△COE中,,∴△AOD≌△COE,∴AD=EC=.故答案是:.【点评】本题考查了线段的垂直平分线的性质以和全等三角形的判定与性质,正确列方程求得EC的长是关键.15.(2016•南岗区模拟)在△ABC中,∠ABC=30°,AB=8,AC=2,边AB的垂直平分线与直线BC相交于点F,则线段CF的长为或.【考点】勾股定理;线段垂直平分线的性质.【分析】在△ABC中,已知两边和其中一边的对角,符合题意的三角形有两个,画出△ABC 与△ABC′.作AD⊥BC于D,根据等腰三角形三线合一的性质得出C′D=CD.由EF为AB 的垂直平分线求出AE和BE长,根据勾股定理和解直角三角形求出AD、CD、BD、BF,即可求出答案.【解答】解:如图,作AD⊥BC于D,∵AC=AC′=2,AD⊥BC于D,∴C′D=CD,∵EF为AB垂直平分线,∴AE=BE=AB=4,EF⊥AB,∵∠ABC=30°,∴EF=BE×tan30°=,BF=2EF=,在Rt△ABD中,∵∠ADB=90°,∠ABD=30°,∴AD=AB=4,由勾股定理得:CD==2,BD==4,即F在C和D之间,∵BC=BD﹣CD=4﹣2=2,∴CF=BF﹣BC=﹣2=,C′F=BC′﹣BF=4+2﹣=,故答案为:或.【点评】本题考查了含30度角的直角三角形,线段垂直平分线的性质,等腰三角形三线合一的性质,勾股定理的应用,根据题意画出图形进行分类讨论是解题的关键.16.(2016•道外区一模)如图,在△ABC中,∠ACB=90°,AC=BC,P为三角形内部一点,且PC=3,PA=5,PB=7,则△PAB的面积为14.【考点】勾股定理;等腰直角三角形.【分析】过P作PD⊥AC于D,PE⊥BC于E,根据四边形CDPE是矩形,得到CD=PE=y,CE=PD=x,设PD=x,PE=y,AC=BC=a,列方程组即可得到结论.【解答】解:过P作PD⊥AC于D,PE⊥BC于E,则四边形CDPE是矩形,设PD=x,PE=y,AC=BC=a,∴CD=PE=y,CE=PD=x,∴,∴,∴a2﹣ay﹣ax=28,∴S△APB=S△ABC﹣S△APC﹣S△BCP=a2﹣ax﹣ay=14.故答案为:14.【点评】本题考查了勾股定理,等腰直角三角形的性质,熟记各性质是解题的关键.17.(2016•余干县二模)如图,在△ABC中,AB=AC=4,AO=BO,P是射线CO上的一个动点,∠AOC=120°,则当△PAB为直角三角形时,AP的长为2或2.【考点】勾股定理.【专题】分类讨论.【分析】利用分类讨论,当∠APB=90°时,分两种情况讨论,情况一:如图1,易得∠PBA=30°,利用直角三角形斜边的中线等于斜边的一半得出结论;情况二:利用锐角三角函数得AP的长;如图2,当∠BAP=90°时,如图3,利用锐角三角函数得AP的长.【解答】解:当∠APB=90°时,分两种情况讨论,情况一:如图1,∵AO=BO,∴PO=BO,∵∠AOC=120°,∴∠AOP=60°,∴△AOP为等边三角形,∴∠OAP=60°,∴∠∠PBA=30°,∴AP=AB=2;情况二:如图2,∵AO=BO,∠APB=90°,∴PO=BO,∵∠AOC=120°,∴∠BOP=60°,∴△BOP为等边三角形,∴∠OBP=60°,∴AP=AB•sin60°=4×=2;当∠BAP=90°时,如图3,∵∠AOC=120°,∴∠AOP=60°,∴AP=OA•tan∠AOP=2×=2.故答案为:2或2.【点评】本题主要考查了勾股定理,含30°直角三角形的性质和直角三角形斜边的中线,利用分类讨论,数形结合是解答此题的关键.18.(2016•通州区一模)在我国古算书《周髀算经》中记载周公与商高的谈话,其中就有勾股定理的最早文字记录,即“勾三股四弦五”,亦被称作商高定理.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,AC=4,则D,E,F,G,H,I都在矩形KLMJ的边上,那么矩形KLMJ的面积为110.【考点】勾股定理的证明.【分析】延长AB交KF于点O,延长AC交GM于点P,可得四边形AOLP是正方形,然后求出正方形的边长,再求出矩形KLMJ的长与宽,然后根据矩形的面积公式列式计算即可得解.【解答】解:如图,延长AB交KF于点O,延长AC交GM于点P,则四边形OALP是矩形.∵∠CBF=90°,∴∠ABC+∠OBF=90°,又∵直角△ABC中,∠ABC+∠ACB=90°,∴∠OBF=∠ACB,在△OBF和△ACB中,∴△OBF≌△ACB(AAS),∴AC=OB,同理:△ACB≌△PGC,∴PC=AB,∴OA=AP,∴矩形AOLP是正方形,边长AO=AB+AC=3+4=7,∴KL=3+7=10,LM=4+7=11,∴矩形KLMJ的面积为10×11=110.【点评】本题考查了勾股定理的证明,作出辅助线构造出正方形是解题的关键.19.(2016•富顺县校级模拟)如图,在一根长90cm的灯管上,缠满了彩色丝带,已知可近似地将灯管看作圆柱体,且底面周长为4cm,彩色丝带均匀地缠绕了30圈,则彩色丝带的总长度为150cm.【考点】勾股定理的应用.【分析】根据题意抽象出直角三角形,利用勾股定理求得彩色丝带的长即可.【解答】解:如下图,彩色丝带的总长度为=150cm,故答案为:150cm.【点评】本题考查了勾股定理的应用,解题的关键是从实际问题中抽象出直角三角形,难度不大.20.(2016•南陵县一模)如图,要使宽为2米的矩形平板车ABCD通过宽为2米的等宽的直角通道,平板车的长不能超过4米.【考点】勾股定理的应用.【分析】如图,先设平板手推车的长度不能超过x米,则得出x为最大值时,平板手推车所形成的三角形CBP为等腰直角三角形.连接PO,与BC交于点G,利用△CBP为等腰直角三角形即可求得平板手推车的长度不能超过多少米.【解答】解:设平板手推车的长度不能超过x米则x为最大值,且此时平板手推车所形成的三角形CBP为等腰直角三角形.连接PO,与BC交于点N.∵直角走廊的宽为2m,∴PO=4m,∴GP=PO﹣OG=4﹣2=2(m).又∵△CBP为等腰直角三角形,∴AD=BC=2CG=2GP=4(m).故答案为:4【点评】本题主要考查了勾股定理的应用以和等腰三角形知识,解答的关键是由题意得出要想顺利通过直角走廊,此时平板手推车所形成的三角形为等腰直角三角形.三.解答题(共10小题)21.(2016春•周口期末)在四边形ABCD中,AB=AD=8,∠A=60°,∠D=150°,四边形周长为32,求BC和CD的长度.【考点】勾股定理;等边三角形的判定与性质.【分析】如图,连接BD,构建等边△ABD、直角△CDB.利用等边三角形的性质求得BD=8;然后利用勾股定理来求线段BC、CD的长度.【解答】解:如图,连接BD,由AB=AD,∠A=60°.则△ABD是等边三角形.即BD=8,∠1=60°.又∠1+∠2=150°,则∠2=90°.设BC=x,CD=16﹣x,由勾股定理得:x2=82+(16﹣x)2,解得x=10,16﹣x=6所以BC=10,CD=6.【点评】本题考查了勾股定理、等边三角形的判定与性质.根据已知条件推知△CDB是解题关键.22.(2016•徐州模拟)一、阅读理解:在△ABC中,BC=a,CA=b,AB=c;(1)若∠C为直角,则a2+b2=c2;(2)若∠C为锐角,则a2+b2与c2的关系为:a2+b2>c2;(3)若∠C为钝角,试推导a2+b2与c2的关系.二、探究问题:在△ABC中,BC=a=3,CA=b=4,AB=c,若△ABC是钝角三角形,求第三边c的取值范围.【考点】勾股定理.【分析】一、(1)由勾股定理即可得出结论;(2)作AD⊥BC于D,则BD=BC﹣CD=a﹣CD,由勾股定理得出AB2﹣BD2=AD2,AC2﹣CD2=AD2,得出AB2﹣BD2=AC2﹣CD2,整理得出a2+b2=c2+2a•CD,即可得出结论;(3)作AD⊥BC于D,则BD=BC+CD=a+CD,由勾股定理得出AD2=AB2=BD2,AD2=AC2﹣CD2,得出AB2﹣BD2=AC2﹣CD2,整理即可得出结论;二、分两种情况:①当∠C为钝角时,由以上(3)得:<c<a+b,即可得出结果;②当∠B为钝角时,得:b﹣a<c<,即可得出结果.【解答】一、解:(1)∵∠C为直角,BC=a,CA=b,AB=c,∴a2+b2=c2;(2)作AD⊥BC于D,如图1所示:则BD=BC﹣CD=a﹣CD,在△ABD中,AB2﹣BD2=AD2,在△ACD中,AC2﹣CD2=AD2,∴AB2﹣BD2=AC2﹣CD2,∴c2﹣(a﹣CD)2=b2﹣CD2,整理得:a2+b2=c2+2a•CD,∵a>0,CD>0,∴a2+b2>c2;(3)作AD⊥BC于D,如图2所示:则BD=BC+CD=a+CD,在△ABD中,AD2=AB2=BD2,在△ACD中,AD2=AC2﹣CD2,∴AB2﹣BD2=AC2﹣CD2,∴c2﹣(a+CD)2=b2﹣CD2,整理得:a2+b2=c2﹣2a•CD,∵a>0,CD>0,∴a2+b2<c2;二、解:当∠C为钝角时,由以上(3)得:<c<a+b,即5<c<7;当∠B为钝角时,得:b﹣a<c<,即1<c<;综上所述:第三边c的取值范围为5<c<7或1<c<.【点评】本题考查了勾股定理的综合运用、完全平方公式;熟练掌握勾股定理,通过作辅助线运用勾股定理是解决问题的关键.23.(2016•安徽模拟)定义:若三角形三个内角的度数分别是x、y和z,满足x2+y2=z2,则称这个三角形为勾股三角形.(1)根据上述定义,“直角三角形是勾股三角形”是真命题还是假命题;(2)已知一勾股三角形三个内角从小到大依次为x、y和z,且xy=2160,求x+y的值;(3)如图,△ABC中,AB=,BC=2,AC=1+,求证:△ABC是勾股三角形.【考点】勾股定理.【专题】新定义.【分析】(1)直接根据“勾股三角形”的定义,判断得出即可;(2)利用已知得出等量量关系组成方程组,进而求出x+y的值;(3)过B作BH⊥AC于H,设AH=x,利用勾股定理首先得出AH=BH=,HC=1,进而得出∠A=45°,∠C=60°,∠B=75°,即可得出结论.【解答】(1)解:“直角三角形是勾股三角形”是假命题;理由如下:∵对于任意的三角形,设其三个角的度数分别为x°、y°和z°,若满足x2+y2=z2,则称这个三角形为勾股三角形,∴无法得到,所有直角三角形是勾股三角形,故是假命题;(2)解:由题意可得:,解得:x+y=102;(3)证明:过B作BH⊥AC于H,如图所示:设AH=xRt△ABH中,BH=,Rt△CBH中,()2+(1+﹣x)2=4,解得:x=,∴AH=BH=,HC=1,∴∠A=∠ABH=45°,∴tan∠HBC===,∴∠HBC=30°,∴∠BCH=60°,∠B=75°,∴452+602=752∴△ABC是勾股三角形.【点评】此题主要考查了新定义、多元方程组解法、勾股定理和锐角三角函数关系,利用勾股定理得出AH,HC的长是解题关键.24.(2016•陕西校级模拟)超速行驶是引发交通事故的主要原因.上周末,小鹏等三位同学在滨海大道红树林路段,尝试用自己所学的知识检测车速,观测点设在到公路l的距离为100米的P处.这时,一辆富康轿车由西向东匀速驶来,测得此车从A处行驶到B处所用的时间为3秒,并测得∠APO=60°,∠BPO=45°,试判断此车是否超过了每小时80千米的限制速度?(参考数据:=1.41,=1.73)【考点】勾股定理的应用.【分析】首先利用两个直角三角形求得AB的长,然后除以时间即可得到速度.【解答】解:由题意知:PO=100米,∠APO=60°,∠BPO=45°,在直角三角形BPO中,∵∠BPO=45°,∴BO=PO=100m在直角三角形APO中,∵∠APO=60°,∴AO=PO•tan60°=100∴AB=AO﹣BO=(100﹣100)≈73米,∵从A处行驶到B处所用的时间为3秒,∴速度为73÷3≈24.3米/秒=87.6千米/时>80千米/时,∴此车超过每小时80千米的限制速度.【点评】本题考查了解直角三角形的应用,从复杂的实际问题中整理出直角三角形并求解是解决此类题目的关键.25.(2016•丹东模拟)校车安全是近几年社会关注的热点问题,安全隐患主要是超速和超载,某中学九年级数学活动小组进行了测试汽车速度的实验.如图,先在笔直的公路1旁选取一点A,在公路1上确定点B、C,使得AC⊥l,∠BAC=60°,再在AC上确定点D,使得∠BDC=75°,测得AD=40米.已知本路段对校车限速是50千米/时,测得某校车从B到C匀速行驶用时10秒.(1)求CD的长.(结果保留根号)(2)问这辆车在本路段是否超速?请说明理由(参考数据:=1.414,=1.73)。

勾股定理全章练习题含答案

勾股定理全章练习题含答案

勾股定理课堂学习检测—、填空题:! •若是直角三角形的两直角边长别离为a、b,斜边长为c,那么 _______ 二3 ;这必然理在我国被称为 ______ ・2・厶中,zC二90°, a、b、c别离是乙B、/U的对边・(1) ____________________________ 假设a=5, b = 12t那么c二;⑵假设c 41, ”40,那么0二____________ ;(3) 假设z»=30\ a",那么c二 _________ . b二____ :(4) 假设z/l二45°,日二丄,那么" ______ , c二____ ・3•如图是由边长为lm的正方形地砖铺设的地面示用意,小明沿图中所示的折线从XB-C所走的路程为4 •等腰直角三角形的斜边为10,那么腰长为_______ ,斜边上的高为______ •5 •在直角三角形中,一条直角边为11cm ,另两边是两个持续自探数,那么此直角三角形的周长为二瞬题6 • R^ABC中#斜边BC二2 .那么+ BO的值为()•(A)8 (B)4 (C)6 (D)无法计算7 •如图,L ABC中f AB二AC^ 10 , BD是边上的高线.DC=2 ,那么SQ等于().(A)4 (B)6 (C)8 (D) 2 価8 •如图,M^ABC中,zC 90°,假设AB二15cm #那么正方形"比和正方形BCFG的面积和为().(A)l 50cm2(B )200cm2(C)225cm2(D)无法计算三、解答题9.在RtZUBC 中,ZC=90° , ZA> ZB. ZC 的对边别离为a、b. c.(1)假设a : b=3 : 4, c=75cm,求a、b;(2)假设a : c = 15 : 17, b=2A,求AABC 的面积;(3)假设c—a=4, b = 16f求a、c;(4)假设ZA=30。

(完整word版)最新人教版第十七章勾股定理整理练习题及详细解析答案

(完整word版)最新人教版第十七章勾股定理整理练习题及详细解析答案

题型一:直接考查勾股定理 例1。

在ABC ∆中,90C ∠=︒.(1)知6AC =,8BC =.求AB 的长.(2)已知17AB =,15AC =,求BC 的长。

题型二:应用勾股定理建立方程例2。

⑴在ABC ∆中,90ACB ∠=︒,5AB =cm ,3BC =cm ,CD AB ⊥于D ,CD =__________ ⑵已知直角三角形的两直角边长之比为3:4,斜边长为15,则这个三角形的面积为___________ ⑶已知直角三角形的周长为30cm ,斜边长为13cm ,则这个三角形的面积为_______________例3.如图ABC ∆中,90C ∠=︒,12∠=∠, 1.5CD =, 2.5BD =,求AC 的长21EDCBA例4.如图Rt ABC ∆,90C ∠=︒3,4AC BC ==,分别以各边为直径作半圆,求阴影部分面积题型三:实际问题中应用勾股定理例5。

如图有两棵树,一棵高8cm ,另一棵高2cm ,两树相距8cm ,一只小鸟从一棵树的树梢飞到另一棵数的树梢,至少飞了 mABCD E题型四:应用勾股定理逆定理,判定一个三角形是否是直角三角形例6。

已知三角形的三边长为a ,b ,c ,判定ABC ∆是否为直角三角形。

① 1.5a =,2b =, 2.5c = ②54a =,1b =,23c =例7。

三边长为a ,b ,c 满足10a b +=,18ab =,8c =的三角形是什么形状?题型五:勾股定理与勾股定理的逆定理综合应用例8。

已知ABC ∆中,13AB =cm ,10BC =cm ,BC 边上的中线12AD =cm ,求证:AB AC =【例1】、分析:直接应用勾股定理222a b c +=解:⑴10AB⑵8BC【例2】分析:在解直角三角形时,要想到勾股定理,及两直角边的乘积等于斜边与斜边上高的乘积.有时可根据勾股定理列方程求解解:⑴4AC =, 2.4AC BCCD AB⋅==3k ,4k ∴222(3)(4)15k k +=,3k ∴=,⑵ 两直角边的长分别为54S =⑶ 两直角边分别为a ,b ,则17a b +=,22289a b +=,可得60ab =1302S ab ∴==2cm【例3】分析:此题将勾股定理与全等三角形的知识结合起来 解:作DE AB ⊥于E , 12∠=∠,90C ∠=︒ ∴ 1.5DE CD == 在BDE ∆中90,2BED BE ∠=︒= Rt ACD Rt AED ∆≅∆ AC AE ∴=在Rt ABC ∆中,90C ∠=︒222AB AC BC ∴=+,222()4AE EB AC +=+3AC ∴=【例4】答案:6【例5】分析:根据题意建立数学模型,如图8AB =m ,2CD =m ,8BC =m ,过点D 作DE AB ⊥,垂足为E ,则6AE =m ,8DE =m在Rt ADE ∆中,由勾股定理得10AD 【例6】答案:10m【例7】解:①22221.52 6.25a b +=+=,222.5 6.25c == ∴ABC ∆是直角三角形且90C ∠=︒②22139b c +=,22516a =,222bc a +≠ABC ∴∆不是直角三角形 【例8】解:此三角形是直角三角形理由:222()264a b a b ab +=+-=,且264c =222a b c ∴+= 所以此三角形是直角三角形【例9】证明:AD 为中线,5BD DC ∴==cm在ABD ∆中,22169AD BD +=,2169AB =222AD BD AB ∴+=,90ADB ∴∠=︒,222169AC AD DC ∴=+=,13AC =cm ,AB AC ∴=勾股定理练习题(家教课后练习)DCBADBA C1。

勾股定理练习题含答案

勾股定理练习题含答案

一、选择题1.如图,点A 的坐标是(2)2,,若点P 在x 轴上,且APO △是等腰三角形,则点P 的坐标不可能是( )A .(2,0)B .(4,0)C .(-22,0)D .(3,0)2.如图,OP =1,过点P 作PP 1⊥OP ,且PP 1=1,得OP 1=2;再过点P 1作P 1P 2⊥OP 1且P 1P 2=1,得OP 2=3;又过点P 2作P 2P 3⊥OP 2且P 2P 3=1,得OP 3=2……依此法继续作下去,得OP 2018的值为( )A .2016B .2017C .2018D .2019 3.如图,在四边形ABCD 中,∠ABC =∠ACB =∠ADC =45︒,若AD =4,CD =2,则BD 的长为( )A .6B .27C .5D .254.如图,在ABC 中,13AB =,10BC =,BC 边上的中线12AD =,请试着判定ABC 的形状是( )A .直角三角形B .等边三角形C .等腰三角形D .以上都不对 5.以下列各组数为边长,不能构成直角三角形的是( )A .3,4,5B .1,12C.8,12,13 D.2、3、56.《九章算术》是我国古代第一部数学专著,它的出现标志中国古代数学形成了完整的体系.“折竹抵地”问题源自《九章算术》中:“今有竹高一丈,末折抵地,去本四尺,问折者高几何?”意思是:一根竹子,原高一丈,一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远(如图),则折断后的竹子高度为多少尺?(1丈=10尺)()A.3 B.5 C.4.2 D.47.将一根 24cm 的筷子,置于底面直径为 15cm,高 8cm 的装满水的无盖圆柱形水杯中,设筷子浸没在杯子里面的长度为hcm,则 h 的取值范围是()A.h≤15cm B.h≥8cm C.8cm≤h≤17cm D.7cm≤h≤16cm 8.已知三组数据:①2,3,4;②3,4,5;③1,25三角形的三边长,能构成直角三角形的是()A.②B.①②C.①③D.②③9.已知一个直角三角形的两边长分别为3和5,则第三边长是()A.5 B.4 C34D.43410.由下列条件不能判定△ABC为直角三角形的是()A.∠A+∠B=∠C B.∠A:∠B:∠C=1:3:2C.a=2,b=3,c=4 D.(b+c)(b-c)=a²二、填空题11.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,若S1+S2+S3=10,则S2的值是_________.12.如图,RT ABC ,90ACB ∠=︒,6AC =,8BC =,将边AC 沿CE 翻折,使点A 落在AB 上的点D 处;再将边BC 沿CF 翻折,使点B 落在CD 的延长线上的点B '处,两条折痕与斜边AB 分别交于点E 、F ,则B FC '△的面积为______.13.如图,这是由八个全等的直角三角形拼接而成,记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为 1S ,2S ,3S ,若123144S S S ++=,则2S 的值是__________.14.如图,等腰梯形ABCD 中,//AD BC ,1AB DC ==,BD 平分ABC ∠,BD CD ⊥,则AD BC +等于_________.15.如图,△ABC 是一个边长为1的等边三角形,BB 1是△ABC 的高,B 1B 2是△ABB 1的高,B 2B 3是△AB 1B 2的高,……B n-1B n 是△AB n-2B n-1的高,则B 4B 5的长是________,猜想B n-1B n 的长是________.16.若ABC ∆为直角三角形,90B ∠=︒,6AB =,8BC =,点D 在斜边AC 上,且2AC BD =,则AD 的长为__________.17.如图,在△ABC 中,AB =AC ,∠BAC =120°,AC 的垂直平分线交 BC 于 F ,交 AC 于 E ,交 BA 的延长线于 G ,若 EG =3,则 BF 的长是______.18.如图,在四边形ABCD 中,∠A=60°,∠B=∠D=90°,AD=4,AB=3,则CD=_________19.如图,30AOB ∠=︒,点,M N 分别在,OA OB 上,且6,8OM ON ==,点,P Q 分别在,OB OA 上运动,则PM PQ QN ++的最小值为______.20.已知,在△ABC 中,BC=3,∠A=22.5°,将△ABC 翻折使得点B 与点A 重合,折痕与边AC 交于点P ,如果AP=4,那么AC 的长为_______三、解答题21.定义:有一组邻边均和一条对角线相等的四边形叫做邻和四边形.(1)如图1,四边形ABCD 中,∠ABC =70°,∠BAC =40°,∠ACD =∠ADC =80°,求证:四边形ABCD 是邻和四边形.(2)如图2,是由50个小正三角形组成的网格,每个小正三角形的顶点称为格点,已知A 、B 、C 三点的位置如图,请在网格图中标出所有的格点.......D .,使得以A 、B 、C 、D 为顶点的四边形为邻和四边形.(3)如图3,△ABC 中,∠ABC =90°,AB =2,BC =3D ,使四边形ABCD 是邻和四边形,求邻和四边形ABCD 的面积.22.定义:如图1,平面上两条直线AB 、CD 相交于点O ,对于平面内任意一点M ,点M 到直线AB 、CD 的距离分别为p 、q ,则称有序实数对(p ,q )是点M 的“距离坐标”,根据上述定义,“距离坐标”为(0,0)的点有1个,即点O .(1)“距离坐标”为(1,0)的点有 个;(2)如图2,若点M 在过点O 且与直线AB 垂直的直线l 上时,点M 的“距离坐标”为(p ,q ),且∠BOD = 150︒,请写出p 、q 的关系式并证明;(3)如图3,点M 的“距离坐标”为(1,3),且∠DOB = 30︒,求OM 的长.23.如图,△ACB 和△ECD 都是等腰直角三角形,∠ACB =∠ECD =90°,点D 在边AB 上,点E 在边AC 的左侧,连接AE .(1)求证:AE =BD ;(2)试探究线段AD 、BD 与CD 之间的数量关系;(3)过点C 作CF ⊥DE 交AB 于点F ,若BD :AF =1:2,CD 36,求线段AB 的长.24.已知ABC ∆中,AB AC =.(1)如图1,在ADE ∆中,AD AE =,连接BD 、CE ,若DAE BAC ∠=∠,求证:BD CE =(2)如图2,在ADE ∆中,AD AE =,连接BE 、CE ,若60DAE BAC ∠=∠=,CE AD ⊥于点F ,4AE =,5EC =,求BE 的长;(3)如图3,在BCD ∆中,45CBD CDB ∠=∠=,连接AD ,若45CAB ∠=,求AD AB的值.25.如果一个三角形的两条边的和是第三边的两倍,则称这个三角形是“优三角形”,这两条边的比称为“优比”(若这两边不等,则优比为较大边与较小边的比),记为k . (1)命题:“等边三角形为优三角形,其优比为1”,是真命题还是假命题?(2)已知ABC 为优三角形,AB c =,AC b =,BC a =,①如图1,若90ACB ∠=︒,b a ≥,6b =,求a 的值.②如图2,若c b a ≥≥,求优比k 的取值范围.(3)已知ABC 是优三角形,且120ABC ∠=︒,4BC =,求ABC 的面积.26.在ABC ∆中,AB AC =,CD 是AB 边上的高,若10,45AB BC ==.(1)求CD 的长.(2)动点P 在边AB 上从点A 出发向点B 运动,速度为1个单位/秒;动点Q 在边AC 上从点A 出发向点C 运动,速度为v 个单位秒()v>1,设运动的时间为()0t t >,当点Q 到点C 时,两个点都停止运动.①若当2v =时,CP BQ =,求t 的值.②若在运动过程中存在某一时刻,使CP BQ =成立,求v 关于t 的函数表达式,并写出自变量t 的取值范围.27.定义:在△ABC 中,若BC =a ,AC =b ,AB =c ,若a ,b ,c 满足ac +a 2=b 2,则称这个三角形为“类勾股三角形”,请根据以上定义解决下列问题:(1)命题“直角三角形都是类勾股三角形”是 命题(填“真”或“假”);(2)如图1,若等腰三角形ABC 是“类勾股三角形”,其中AB =BC ,AC >AB ,请求∠A 的度数;(3)如图2,在△ABC 中,∠B =2∠A ,且∠C >∠A .①当∠A =32°时,你能把这个三角形分成两个等腰三角形吗?若能,请在图2中画出分割线,并标注被分割后的两个等腰三角形的顶角的度数;若不能,请说明理由; ②请证明△ABC 为“类勾股三角形”.28.如图1, △ABC 和△CDE 均为等腰三角形,AC=BC, CD=CE, AC>CD, ∠ACB=∠DCE=a ,且点A 、D 、E 在同一直线上,连结BE.(1)求证: AD=BE.(2)如图2,若a=90°,CM ⊥AE 于E.若CM=7, BE=10, 试求AB 的长.(3)如图3,若a=120°, CM ⊥AE 于E, BN ⊥AE 于N, BN=a, CM=b,直接写出AE 的值(用a, b 的代数式表示).29.如图,在平面直角坐标系中,点O 是坐标原点,ABC ∆,ADE ∆,AFO ∆均为等边三角形,A 在y 轴正半轴上,点0()6,B -,点(6,0)C ,点D 在ABC ∆内部,点E 在ABC ∆的外部,32=AD 30DOE ∠=︒,OF 与AB 交于点G ,连接DF ,DG ,DO ,OE .(1)求点A 的坐标;(2)判断DF 与OE 的数量关系,并说明理由;(3)直接写出ADG ∆的周长.30.如图1,点E 是正方形ABCD 边CD 上任意一点,以DE 为边作正方形DEFG ,连接BF ,点M 是线段BF 中点,射线EM 与BC 交于点H ,连接CM .(1)请直接写出CM 和EM 的数量关系和位置关系.(2)把图1中的正方形DEFG 绕点D 顺时针旋转45︒,此时点F 恰好落在线段CD 上,如图2,其他条件不变,(1)中的结论是否成立,请说明理由.(3)把图1中的正方形DEFG 绕点D 顺时针旋转90︒,此时点E 、G 恰好分别落在线段AD 、CD 上,连接CE ,如图3,其他条件不变,若2DG =,6AB =,直接写出CM 的长度.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【详解】解:(1)当点P 在x 轴正半轴上,①以OA 为腰时,∵A的坐标是(2,2),∴∠AOP=45°,OA=22,∴P的坐标是(4,0)或(22,0);②以OA为底边时,∵点A的坐标是(2,2),∴当点P的坐标为:(2,0)时,OP=AP;(2)当点P在x轴负半轴上,③以OA为腰时,∵A的坐标是(2,2),∴OA= 22∴OA=AP=2∴P的坐标是(-220).故选D.2.D解析:D【解析】【分析】由勾股定理求出各边,再观察结果的规律.【详解】∵OP=1,OP12OP23OP34=2,∴OP45…,OP20182019故选D【点睛】本题考查了勾股定理,读懂题目信息,理解定理并观察出被开方数比相应的序数大1是解题的关键.3.A解析:A【解析】【分析】作AD′⊥AD ,AD′=AD ,连接C D′,DD′,根据等式的性质,可得∠BAD 与∠CAD′的关系,根据SAS ,可得△BAD 与△CAD′的关系,根据全等三角形的性质,可得BD 与CD′的关系,根据勾股定理,可得答案.【详解】作AD′⊥AD ,AD′=AD ,连接CD′,DD′,则有∠AD′D=∠D′AD=45︒,∵∠BAC+∠CAD=∠DAD′+∠CAD ,即∠BAD=∠CAD′,在△BAD 与△CAD′中,''BC CA BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩, ∴△BAD ≌△CAD′(SAS ),∴BD=CD′,∠DAD′=90°,由勾股定理得DD′=22'AD AD +=42,∠D′DA+∠ADC=90°,由勾股定理得CD′=22DC DD +'=()22422+=6,故选 A.【点睛】本题考查了全等三角形的判定与性质,利用了全等三角形的判定与性质,勾股定理,添加辅助线作出全等图形是解题关键.4.C解析:C【分析】利用勾股定理的逆定理可以推导出ABD △是直角三角形.再利用勾股定理求出A C ,可得出AB=AC ,即可判断.【详解】解:由已知可得CD=BD=5,22251213+=即222BD AD AB +=,ABD ∴是直角三角形,90ADB ∠=︒,90ADC ∴∠=︒222AD CD AC ∴+= 2251213AC ∴=+=13AB AC ∴==故ABC 是等腰三角形.故选C【点睛】本题考查了勾股定理和它的逆定理,熟练掌握定理是解题关键.5.C解析:C【分析】根据勾股定理的逆定理,只要验证两小边的平方和是否等于最长边的平方即可作出判断.【详解】A. 32+42=52,能构成直角三角形,故不符合题意;B. 12+12=(2)2,能构成直角三角形,故不符合题意;C. 82+122≠132,不能构成直角三角形,故符合题意;D.(2)2+(3)2=(5)2,能构成直角三角形,故不符合题意,故选C.【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.6.C解析:C【分析】根据题意可设折断处离地面的高度OA 是x 尺,折断处离竹梢AB 是(10-x )尺,结合勾股定理即可得出折断处离地面的高度.【详解】设折断处离地面的高度OA 是x 尺,则折断处离竹梢AB 是(10-x )尺,由勾股定理可得:222=OA OB AB +即:()2224=10x x +-,解得:x =4.2故折断处离地面的高度OA 是4.2尺.故答案选:C .本题主要考查直角三角形勾股定理的应用,解题的关键是熟练运用勾股定理.7.C解析:C【分析】筷子浸没在水中的最短距离为水杯高度,最长距离如下图,是筷子斜卧于杯中时,利用勾股定理可求得.【详解】当筷子笔直竖立在杯中时,筷子浸没水中距离最短,为杯高=8cmAD 是筷子,AB 长是杯子直径,BC 是杯子高,当筷子如下图斜卧于杯中时,浸没在水中的距离最长由题意得:AB=15cm ,BC=8cm ,△ABC 是直角三角形∴在Rt △ABC 中,根据勾股定理,AC=17cm∴8cm≤h≤17cm故选:C【点睛】本题考查勾股定理在实际生活中的应用,解题关键是将题干中生活实例抽象成数学模型,然后再利用相关知识求解.8.D解析:D【分析】根据三角形勾股定理的逆定理符合222a b c +=即为直角三角形 ,所以将数据分别代入,符合即为能构成直角三角形.【详解】由题意得:①2222+3=134≠ ;②2223+4=25=5 ;③2221+2=5=5 , 所以能构成直角三角形的是②③.故选D .【点睛】考查直角三角形的构成,学生熟悉掌握勾股定理的逆定理是本题解题的关键,利用勾股定理的逆定理判断是否能够成直角三角形.解析:D【详解】解:∵一个直角三角形的两边长分别为3和5,∴①当5是此直角三角形的斜边时,设另一直角边为x,则由勾股定理得到:x;②当5是此直角三角形的直角边时,设另一直角边为x,则由勾股定理得到:x故选:D10.C解析:C【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方或最大角是否是90°即可.【详解】A、∠A+∠B=∠C,可得∠C=90°,是直角三角形,错误;B、∠A:∠B:∠C=1:3:2,可得∠B=90°,是直角三角形,错误;C、∵22+32≠42,故不能判定是直角三角形,正确;D、∵(b+c)(b﹣c)=a2,∴b2﹣c2=a2,即a2+c2=b2,故是直角三角形,错误;故选C.【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.二、填空题11.103.【解析】试题解析:将四边形MTKN的面积设为x,将其余八个全等的三角形面积一个设为y,∵正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,S1+S2+S3=10,∴得出S1=8y+x,S2=4y+x,S3=x,∴S1+S2+S3=3x+12y=10,故3x+12y=10,x+4y=103,所以S2=x+4y=103.考点:勾股定理的证明.12.96 25【分析】将△B´CF的面积转化为求△BCF的面积,由折叠的性质可得CD=AC=6,∠ACE=∠DCE,∠BCF=∠B´CF,CE⊥AB,可证得△ECF是等腰直角三角形,EF=CE,∠EFC=45°,由等面积法可求CE的长,由勾股定理可求AE的长,进而求得BF的长,即可求解.【详解】根据折叠的性质可知,CD=AC=6,∠ACE=∠DCE,∠BCF=∠B´CF,CE⊥AB,∴∠DCE+∠B´CF=∠ACE+∠BCF,∵∠ACB=90°,∴∠ECF=45°,且CE⊥AB,∴△ECF是等腰直角三角形,∴EF=CE,∠EFC=45°,∵S△ABC=12AC•BC=12AB•CE,∴AC•BC=AB•CE,∵根据勾股定理求得AB=10,∴CE=245,∴EF=245,∵AE 185,∴BF=AB−AE−EF=10-185-245=85,∴S△CBF=12×BF×CE=12×85×245=9625,∴S△CB´F=96 25,故填:96 25.【点睛】此题主要考查了翻折变换,等腰三角形的判定和性质,勾股定理的应用等知识,根据折叠的性质求得相等的角是解决本题的关键.13.48【分析】用a和b表示直角三角形的两个直角边,然后根据勾股定理列出正方形面积的式子,求出2S的面积.【详解】解:本图是由八个全等的直角三角形拼成的,设这个直角三角形两个直角边中较长的长度为a ,较短的长度为b ,即图中的AE a =,AH b =,则()221S AB a b ==+,2222S HE a b ==+,()223S TM a b ==-, ∵123144S S S ++=,∴()()2222144a b a b a b ++++-= 22222222144a b ab a b a b ab ++++++-=2233144a b +=2248a b +=,∴248S =.故答案是:48.【点睛】本题考查勾股定理,解题的关键是要熟悉赵爽弦图中勾股定理的应用.14.3【分析】由//AD BC ,BD 平分ABC ∠,易证得ABD ∆是等腰三角形,即可求得1AD AB ==,又由四边形ABCD 是等腰梯形,易证得2C DBC ∠=∠,然后由BD CD ⊥,根据直角三角形的两锐角互余,即可求得30DBC ∠=︒,则可求得BC 的值,继而求得AD BC +的值.【详解】解:∵//AD BC ,AB DC =,∴C ABC ∠=∠,ADB DBC ∠=∠,∵BD 平分ABC ∠,∴2ABC DBC ∠=∠,ABD DBC ∠=∠,∴ABD ADB ∠=∠,∴1AD AB ==,∴2C DBC ∠=∠,∵BD CD ⊥,∴90BDC ∠=︒,∵三角形内角和为180°,∴90DBC C ∠+∠=︒,∴260C DBC ∠=∠=︒,∴2212BC CD ==⨯=,∴123AD BC +=+=.故答案为:3.【点睛】本题主要考查对勾股定理,含30度角的直角三角形,等腰三角形的性质和判定,平行线的性质,等腰梯形的性质等知识点的理解和掌握,综合运用这些性质进行推理和计算是解此题的关键.15 【分析】 根据等边三角形性质得出AB 1=CB 1=12,∠AB 1B =∠BB 1C =90°,由勾股定理求出BB 1=ABC 113ABB BCB S S ==B 1B 2,由勾股定理求出BB 2,根据11221ABB BB B AB B S S S =+代入求出B 2B 3=,B 3B 4=B 4B 5=,推出B n ﹣1B n =2n . 【详解】解:∵△ABC 是等边三角形,∴BA =AC ,∵BB 1是△ABC 的高,∴AB 1=CB 1=12,∠AB 1B =∠BB 1C =90°,由勾股定理得:BB 1=;∴△ABC 的面积是12×1=;∴1112ABB BCB SS ==⨯,12=×1×B 1B 2,B 1B 2,由勾股定理得:BB 234=, ∵11221ABB BB B AB B S S S =+,2313112422B B =⨯⨯⨯,B 2B 3,B 3B 4=16,B 4B 5=332, …, B n ﹣1B n =32n .故答案为:332,32n . 【点睛】 本题考查了等边三角形的性质,勾股定理,三角形的面积等知识点的应用,关键是能根据计算结果得出规律.16.5【分析】 在直角ABC 中,依据勾股定理求出AC 的长度,再算出BD ,过点B 作BE AC ⊥于点E ,通过等面积法求出BE ,得到两个直角三角形,分别运用勾股定理算出AE ED 、,两者相加即为AD 的长.【详解】解:如图,过点B 作BE AC ⊥于点E ,则90BEA ∠=︒,90BED ∠=︒,∵直角ABC 中,90B ∠=︒,6AB =,8BC =,∴22=10AC AB BC +=,又∵2ABC S AB BC AC BE =⋅=⋅,2AC BD =∴6810BE ⨯=,5BD =,∴=4.8BE ,∵90BEA ∠=︒,90BED ∠=︒∴22= 3.6AE AB BE -=,22= 1.4ED BD BE -=,∴5AD AE ED =+=.故答案为:5.【点睛】本题考查了勾股定理,通过作直角三角形斜边上的高,既构造了两个直角三角形求位置线段,又通过等面积法求出了一条直角边的长度,为运用勾股定理求线段创造了条件;故在求线段长时,可以考虑构造直角三角形.17.4【分析】根据线段垂直平分线得出AE=EC,∠AEG=∠AEF=90°,求出∠B=∠C=∠G=30°,根据勾股定理和含30°角的直角三角形性质求出AE和EF,即可求出FG,再求出BF=FG即可【详解】∵AC的垂直平分线FG,∴AE=EC,∠AEG=∠AEF=90°,∵∠BAC=120°,∴∠G=∠BAC-∠AEG=120°-90°=30°,∵∠BAC=120°,AB=AC,∴∠B=∠C=12(180°-∠BAC)=30°,∴∠B=∠G,∴BF=FG,∵在Rt△AEG中,∠G=30°,EG=3,∴AG=2AE,即(2AE)2=AE2+32,∴AE=3(负值舍去)即CE=3,同理在Rt△CEF中,∠C=30°,CF=2EF,(2EF)2=EF2+(3)2,∴EF=1(负值舍去),∴BF=GF=EF+CE=1+3=4,故答案为4.【点睛】本题考查了勾股定理,含30°角的直角三角形性质,等腰三角形的性质和判定等知识点,能综合运用定理进行推理是解此题的关键.18.【解析】【分析】延长BC,AD交于E点,在直角三角形ABE和直角三角形CDE中,根据30°角所对的直角边等于斜边的一半和勾股定理即可解答.【详解】如图,延长AD、BC相交于E,∵∠A=60°,∠B=∠ADC=90°,∴∠E=30°∴AE=2AB,CE=2CD∵AB=3,AD=4,∴AE=6, DE=2设CD=x,则CE=2x,DE=x即x=2x=即CD=故答案为:【点睛】本题考查了勾股定理的运用,含30°角所对的直角边是斜边的一半的性质,本题中构建直角△ABE和直角△CDE,是解题的关键.19.10【分析】首先作M关于OB的对称点M′,作N关于OA的对称点N′,连接M′N′,即为MP+PQ+QN 的最小值,易得△ONN′为等边三角形,△OMM′为等边三角形,∠N′OM′=90°,继而可以求得答案.【详解】作M关于OB的对称点M′,作N关于OA的对称点N′,连接M′N′,即为MP+PQ+QN的最小值.根据轴对称的定义可知:∠N′OQ=∠M′OB=30°,∠ONN′=60°,OM′=OM=6,ON′=ON=8,∴△ONN′为等边三角形,△OMM′为等边三角形,∴∠N′OM′=90°.在Rt△M′ON′中,M′N′=22+=10.OM ON''故答案为10.【点睛】本题考查了最短路径问题,根据轴对称的定义,找到相等的线段,得到直角三角形是解题的关键.20.522,32++【分析】过B作BF⊥CA于F,构造直角三角形,分两种情况讨论,利用勾股定理以及等腰直角三角形的性质,即可得到AC的长.【详解】分两种情况:①当∠C为锐角时,如图所示,过B作BF⊥AC于F,由折叠可得,折痕PE垂直平分AB,∴AP=BP=4,∴∠BPC=2∠A=45°,∴△BFP是等腰直角三角形,∴BF=DF=22,又∵BC=3,∴Rt△BFC中,CF=221-=,BC BF∴AC=AP+PF+CF=5+22;②当∠ACB为钝角时,如图所示,过B作BF⊥AC于F,同理可得,△BFP是等腰直角三角形,∴BF=FP=22又∵BC=3,∴Rt△BCF中,221-=,BC BF∴AC=AF-CF=3+22故答案为:5+223+22【点睛】本题主要考查了折叠问题以及勾股定理的运用,解决问题的关键是分两种情况画出图形进行求解.解题时注意:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.三、解答题21.(1)见解析;(2)见解析;(3)363【分析】(1)先由三角形的内角和为180°求得∠ACB的度数,从而根据等腰三角形的判定证得AB=AC=AD ,按照邻和四边形的定义即可得出结论.(2)以点A 为圆心,AB 长为半径画圆,与网格的交点,以及△ABC 外侧与点B 和点C 组成等边三角形的网格点即为所求.(3)先根据勾股定理求得AC 的长,再分类计算即可:①当DA=DC=AC 时;②当CD=CB=BD 时;③当DA=DC=DB 或AB=AD=BD 时.【详解】(1)∵∠ACB =180°﹣∠ABC ﹣∠BAC =70°,∴∠ACB =∠ABC ,∴AB =AC .∵∠ACD =∠ADC ,∴AC =AD ,∴AB =AC =AD .∴四边形ABCD 是邻和四边形;(2)如图,格点D 、D'、D''即为所求作的点;(3)∵在△ABC 中,∠ABC =90°,AB =2,BC =23,∴AC =()22222234AB BC +=+=,显然AB ,BC ,AC 互不相等.分两种情况讨论:①当DA =DC =AC=4时,如图所示:∴△ADC 为等边三角形,过D 作DG ⊥AC 于G ,则∠ADG =160302⨯︒=︒, ∴122AG AD ==,22224223DG AD AG =-=-=,∴S △ADC =1423432⨯⨯=,S △ABC =12AB×BC =23, ∴S 四边形ABCD =S △ADC +S △ABC =63;②当CD =CB =BD =23时,如图所示:∴△BDC 为等边三角形,过D 作DE ⊥BC 于E ,则∠BDE =160302⨯︒=︒, ∴132BE BD == ()()22222333DE BD BE =-=-=, ∴S △BDC =1233332⨯= 过D 作DF ⊥AB 交AB 延长线于F , ∵∠FBD=∠FBC -∠DBC =90︒-60︒=30︒,∴DF=123 S △ADB =12332⨯=, ∴S 四边形ABCD =S △BDC +S △ADB =3;③当DA =DC =DB 或AB =AD =BD 时,邻和四边形ABCD 不存在.∴邻和四边形ABCD 的面积是3或3【点睛】本题属于四边形的新定义综合题,考查了等腰三角形的判定和性质、勾股定理、三角形的面积计算等知识点,数形结合并读懂定义是解题的关键.22.(1)2;(2)32q p =;(3)27OM =【分析】(1)根据“距离坐标”的定义结合图形判断即可;(2)过M 作MN ⊥CD 于N ,根据已知得出MN q =,OM p =,求出∠MON =60°,根据含30度直角三角形的性质和勾股定理求出2232MN MO NO p =-=即可解决问题; (3)分别作点M 关于AB 、CD 的对称点F 、E ,连接EF 、OE 、OF ,连接MF 、ME 分别交AB 、CD 于P 点、Q 点,首先证明OM OE OF EF ===,求出2MF =,23ME =,然后过F 作FG QM ⊥,交QM 延长线于G ,根据含30度直角三角形的性质求出1FG =,3MG =,再利用勾股定理求出EF 即可.【详解】解:(1)由题意可知,在直线CD 上,且在点O 的两侧各有一个,共2个,故答案为:2;(2)过M 作MN CD ⊥于N ,∵直线l AB ⊥于O ,150BOD ∠=︒,∴60MON ∠=︒,∵MN q =,OM p =,∴1122NO MO p ==, ∴223MN MO NO p =-=, ∴32q p =; (3)分别作点M 关于AB 、CD 的对称点F 、E ,连接EF 、OE 、OF ,连接MF 、ME 分别交AB 、CD 于P 点、Q 点.∴OFP OMP △≌△,OEQ OMQ △≌△,∴FOP MOP ∠=∠,EOQ MOQ ∠=∠,OM OE OF ==,∴260EOF BOD ∠=∠=︒,∴△OEF 是等边三角形,∴OM OE OF EF ===,∵1MP =,3MQ =∴2MF =,23ME =, ∵30BOD ∠=︒,∴150PMQ ∠=︒,过F 作FG QM ⊥,交QM 延长线于G ,∴30FMG ∠=︒, 在Rt FMG △中,112FG MF ==,则3MG =,在Rt EGF 中,1FG =,33EG ME MG =+=,∴22(33)127EF =+=,∴27OM =.【点睛】本题考查了轴对称的应用,含30度直角三角形的性质,勾股定理以及等边三角形的判定和性质等,正确理解题目中的新定义是解答本题的关键.23.(1)见解析;(2)BD 2+AD 2=2CD 2;(3)AB =2+4.【分析】(1)根据等腰直角三角形的性质证明△ACE ≌△BCD 即可得到结论;(2)利用全等三角形的性质及勾股定理即可证得结论;(3)连接EF ,设BD =x ,利用(1)、(2)求出EF=3x ,再利用勾股定理求出x ,即可得到答案.【详解】(1)证明:∵△ACB 和△ECD 都是等腰直角三角形∴AC =BC ,EC =DC ,∠ACB =∠ECD =90°∴∠ACB ﹣∠ACD =∠ECD ﹣∠ACD∴∠ACE =∠BCD ,∴△ACE ≌△BCD (SAS ),∴AE =BD .(2)解:由(1)得△ACE ≌△BCD ,∴∠CAE =∠CBD ,又∵△ABC 是等腰直角三角形,∴∠CAB =∠CBA =∠CAE =45°,∴∠EAD =90°,在Rt △ADE 中,AE 2+AD 2=ED 2,且AE =BD ,∴BD 2+AD 2=ED 2,∵ED =2CD ,∴BD 2+AD 2=2CD 2,(3)解:连接EF ,设BD =x ,∵BD :AF =1:2AF =2x ,∵△ECD 都是等腰直角三角形,CF ⊥DE ,∴DF =EF ,由 (1)、(2)可得,在Rt △FAE 中,EF 22AF AE +22(22)x x +3x , ∵AE 2+AD 2=2CD 2,∴222(223)2(36)x x x ++=,解得x =1,∴AB =2+4.【点睛】此题考查三角形全等的判定及性质,等腰直角三角形的性质,勾股定理.24.(1)详见解析;(241;(33【分析】 (1)证∠EAC=∠DAB.利用SAS 证△ACE ≌△ABD 可得;(2)连接BD ,证1302FEA AED ∠=∠=,证△ACE ≌△ABD 可得30FEA BDA ∠=∠=,CE=BD=5,利用勾股定理求解;(3)作CE 垂直于AC,且CE=AC,连接AE,则90,45ACE CAE ∠=∠=,利用勾股定理得AE 2AB =,3AB ,根据(1)思路得3AB .【详解】(1) 证明:∵∠DAE=∠BAC ,∴∠DAE+∠CAD=∠BAC+∠CAD ,即∠EAC=∠DAB.在△ACE 与△ABD 中,AD AE EAC BAB AC AB =⎧⎪∠=∠⎨⎪=⎩,∴△ACE ≌△ABD(SAS),∴BD CE =;(2)连接BD因为AD AE =, 60DAE BAC ∠=∠=,所以ADE ∆是等边三角形因为60DAE DEA EDA ∠=∠=∠=,ED=AD=AE=4因为CE AD ⊥ 所以1302FEA AED ∠=∠= 同(1)可知△ACE ≌△ABD(SAS),所以30FEA BDA ∠=∠=,CE=BD=5所以90BDE BDA ADE ∠=∠+∠=所以BE=22225441BD DE +=+=(3)作CE 垂直于AC,且CE=AC,连接AE,则90,45ACE CAE ∠=∠=所以222AB AC AC +因为AB AC =所以AE 2=又因为45CAB ∠=所以90ABE ∠= 所以()222223BE AE AB AB AB AB =+=+= 因为45CBD CDB ∠=∠=所以BC=CD, 90BCD ∠=因为同(1)可得△ACD ≌△ECB(SAS)所以3AB所以33AD AB AB ==【点睛】考核知识点:等边三角形;勾股定理.构造全等三角形和直角三角形是关键.25.(1)该命题是真命题,理由见解析;(2)①a 的值为92;②k 的取值范围为13k ≤<;(3)ABC ∆203123. 【分析】 (1)根据等边三角形的性质、优三角形和优比的定义即可判断;(2)①先利用勾股定理求出c 的值,再根据优三角形的定义列出,,a b c 的等式,然后求解即可;②类似①分三种情况分析,再根据三角形的三边关系定理得出每种情况下,,a b c 之间的关系,然后根据优比的定义求解即可;(3)如图(见解析),设BD x =,先利用直角三角形的性质、勾股定理求出AC 、AB 的长及ABC ∆面积的表达式,再类似(2),根据优三角形的定义分三种情况分别列出等式,然后解出x 的值,即可得出ABC ∆的面积.【详解】(1)该命题是真命题,理由如下:设等边三角形的三边边长为a则其中两条边的和为2a ,恰好是第三边a 的2倍,满足优三角形的定义,即等边三角形为优三角形又因该两条边相等,则这两条边的比为1,即其优比为1故该命题是真命题;(2)①90,6CB b A ∠=︒=22236c a b a ∴=++根据优三角形的定义,分以下三种情况:当2a b c +=时,26236a a +=+,整理得24360a a -+=,此方程没有实数根 当2a c b +=时,23612a a +=,解得92a = 当2bc a +=时,26362a a +=,解得86a =>,不符题意,舍去综上,a 的值为92; ②由题意得:,,a b c 均为正数 根据优三角形的定义,分以下三种情况:(c b a ≥≥)当2a b c +=时,则1b k a=≥ 由三角形的三边关系定理得b a c a b -<<+ 则2a b b a a b +-<<+,解得3b a <,即3b k a=< 故此时k 的取值范围为13k ≤< 当2a c b +=时,则1c k a =≥ 由三角形的三边关系定理得c a b a c -<<+ 则2a c c a a c +-<<+,解得3c a <,即3c k a=< 故此时k 的取值范围为13k ≤< 当2b c a +=时,则1c k b =≥ 由三角形的三边关系定理得c b a b c -<<+ 则2b c c b b c +-<<+,解得3c b <,即3c k b=< 故此时k 的取值范围为13k ≤<综上,k 的取值范围为13k ≤<;(3)如图,过点A 作AD BC ⊥,则180********ABC ABD ∠=︒-︒∠-==︒︒ 设BD x =22,AB BD x AD ∴====AC ===11422ABC S BC AD ∆=⋅=⨯= ABC ∆是优三角形,分以下三种情况:当2AC BC AB +=时,即44x =,解得103x =则103ABC S ∆===当2AC AB BC +=时,即28x =,解得65x =则655ABC S ∆===当2BC AB AC +=时,即242424x x x +=++,整理得234120x x ++=,此方程没有实数根综上,ABC ∆的面积为2033或1235.【点睛】本题考查了等边三角形的性质、直角三角形的性质、勾股定理、三角形的三边关系定理等知识点,理解题中的新定义,正确分多种情况讨论是解题关键.26.(1)CD=8;(2)t=4;(3)12-=t v t (26t ≤<) 【分析】(1)作AE ⊥BC 于E ,根据等腰三角形三线合一的性质可得BE=12BC ,然后利用勾股定理求出AE ,再用等面积法可求出CD 的长;(2)①过B 作BF ⊥AC 于F ,易得BF=CD ,分别讨论Q 点在AF 和FC 之间时,根据△BQF ≌△CPD ,得到PD=QF ,建立方程即可求出t 的值;(3)同(2)建立等式关系即可得出关系式,再根据Q 在FC 之间求出t 的取值范围即可.【详解】解:(1)如图,作AE ⊥BC 于E ,∵AB=AC ,∴BE=12BC=25在Rt △ABE 中,()2222AE=AB BE =1025=45--∵△ABC 的面积=11BC AE=AB CD 22⋅⋅∴BC AE4545 CD===8AB10⋅⨯(2)过B作BQ⊥AC,当Q在AF之间时,如图所示,∵△ABC的面积=11AC BF=AB CD22⋅⋅,AB=AC∴BF=CD在Rt△CPD和Rt△BQF中∵CP=BQ,CD=BF,∴Rt△CPD≌Rt△BQF(HL)∴PD=QF在Rt△ACD中,CD=8,AC=AB=10∴22AD=AC CD=6-同理可得AF=6∴PD=AD=AP=6-t,QF=AF-AQ=6-2t由PD=QF得6-t=6-2t,解得t=0,∵t>0,∴此种情况不符合题意,舍去;当Q点在FC之间时,如图所示,此时PD=6-t,QF=2t-6由PD=QF得6-t=2t-6,解得t=4,综上得t的值为4.(3)同(2)可知v>1时,Q在AF之间不存在CP=BQ,Q在FC之间存在CP=BQ,Q在F点时,显然CP ≠BQ ,∵运动时间为t ,则AP=t ,AQ=vt ,∴PD=6-t ,QF=vt-6,由PD=QF 得6-t=vt-6, 整理得12-=t v t, ∵Q 在FC 之间,即AF <AQ ≤AC∴610<≤vt ,代入12-=t v t得 61210<-≤t ,解得26t ≤<所以答案为12-=t v t (26t ≤<) 【点睛】本题考查三角形中的动点问题,熟练掌握勾股定理求出等腰三角形的高,利用全等三角形对应边相等建立方程是解题的关键.27.(1)假;(2)∠A =45°;(3)①不能,理由见解析,②见解析【分析】(1)先由直角三角形是类勾股三角形得出ab+a 2=c 2,再由勾股定理得a 2+b 2=c 2,即可判断出此直角三角形是等腰直角三角形;(2)由类勾股三角形的定义判断出此三角形是等腰直角三角形,即可得出结论; (3)①分三种情况,利用等腰三角形的性质即可得出结论;②先求出CD=CB=a ,AD=CD=a ,DB=AB-AD=c-a ,DG=BG=12(c-a ),AG=12(a+c ),两个直角三角形中利用勾股定理建立方程即可得出结论.【详解】解:(1)如图1,假设Rt △ABC 是类勾股三角形,∴ab +a 2=c 2,在Rt △ABC 中,∠C =90°,根据勾股定理得,a 2+b 2=c 2,∴ab +b 2=a 2+b 2,∴ab =a 2,∴a =b ,∴△ABC 是等腰直角三角形,∴等腰直角三角形是类勾股三角形,即:原命题是假命题,故答案为:假;(2)∵AB=BC,AC>AB,∴a=c,b>c,∵△ABC是类勾股三角形,∴ac+a2=b2,∴c2+a2=b2,∴△ABC是等腰直角三角形,∴∠A=45°,(3)①在△ABC中,∠ABC=2∠BAC,∠BAC=32°,∴∠ABC=64°,根据三角形的内角和定理得,∠ACB=180°﹣∠BAC﹣∠ABC=84°,∵把这个三角形分成两个等腰三角形,∴(Ⅰ)、当∠BCD=∠BDC时,∵∠ABC=64°,∴∠BCD=∠BDC=58°,∴∠ACD=∠ACB﹣∠BCD=84°﹣58°=26°,∠ADC=∠ABC+∠BCD=122°∴△ACD不是等腰三角形,此种情况不成立;(Ⅱ)、当∠BCD=∠ABC=64°时,∴∠BDC=52°,∴∠ACD=20°,∠ADC=128°,∴△ACD是等腰三角形,此种情况不成立;(Ⅲ)、当∠BDC=∠ABC=64°时,∴∠BCD=52°,∴∠ACD=∠ACB﹣BCD=32°=∠BAC,∴△ACD是等腰三角形,即:分割线和顶角标注如图2所示,Ⅱ、分∠ABC,同(Ⅰ)的方法,判断此种情况不成立;Ⅲ、分∠BAC,同(Ⅱ)的方法,判断此种情况不成立;②如图3,在AB边上取点D,连接CD,使∠ACD=∠A。

初中数学全等三角形判定综合练习(附答案)

初中数学全等三角形判定综合练习(附答案)

初中数学全等三角形判定综合练习一、单选题1.如图,已知AB AD =,那么添加下列一个条件后,仍无法判定ABC ADC △≌△的是( )A. CB CD =B. BAC DAC ∠=∠C. BCA DCA ∠=∠D. 90B D ∠=∠=︒2.如图,已知ABC DCB ∠=∠,添加下列所给的条件不能证明ABC DCB △≌△的是( )A. A D ∠=∠B. AB DC =C. ACB DBC ∠=∠D. AC BD =3.如图,点,D E 分别在线段,AB AC 上,CD 与BE 相交于O 点,已知AB AC =,现添加以下的哪个条件仍不能判定ABE ACD ≅△△( )A.B C ∠=∠B.AD AE =C. BD CE =D.BE CD =4.某同学把一块三角形的玻璃打碎成了三块(如图所示),现在要到玻璃店去配一块与原来完全一样的玻璃,那么最省事的方法是( )A.带①去B.带②去C.带③去D.带①②③去5.如图,BF EC B E =∠=∠请问添加下面哪个条件不能判断ABC DEF ≅△△( )A.A D ∠=∠B.AB ED =C.//DF ACD.AC DF =6.如图,点B E C F 、、、在同一条直线上,//AB DE ,AB DE =,要用SAS 证明ABC DEF ≅△△,可以添加的条件是( )A .A D ∠=∠B .//AC DF C .BE CF =D .AC DF =7.下列各图中a b c ,,为三角形的边长,则甲、乙、丙三个三角形和左侧ABC △全等的是( )A.甲和乙B.乙和丙C.甲和丙D.只有丙8.如图,点D E ,分别在线段AB AC ,上,CD 与BE 相交于O 点,已知AB AC =,现添加以下的哪个条件仍不能判定ABE ACD ≅△△?( )A.B C ∠=∠B.AD AE =C. BD CE =D.BE CD =9.如图所示的是用直尺和圆规作一个角等于已知角 的示意图,则说明'''A O B AOB ∠=∠的依据 是( )A.S.A.SB.S.S.S.C.A.A.S.D.A.S.A.10.如图,AOB ∠是一个任意角,在边OA OB ,上分别取OM ON =,移动角尺,使角尺两边相同的刻度分别与M N ,重合,过角尺顶点C 的射线OC 便是AOB ∠的平分线这种方法所用的三角形全等的判定方法是( )A.S.A.S.B.S.S.S.C.A.S.A.D.A.A.S.11.如图,AB AD =,BC CD =,点E 在AC 上,则全等三角形共有( )A.1对B.2对C.3对D.4对12.如图,在ABC △和DEF △中,,B E C F ,,在同一直线上,AB DE =,AC DF =,要使ABC DEF ≅△△,还需要添加的一个条件是( )A.EC CF =B.BE CF =C.B DEF ∠=∠D.//AC DF13.如图,ABC △中,AB AC =,EB EC =,则由“S.S.S.”可以判定( )A.ABD ACD ≅△△B.ABE ACE ≅△△C.BDE CDE ≅△△D.以上答案都不对14.如图,点E 在ABC △的外部,点D 在边BC 上,DE 交AC 于点F .若12∠=∠,E C ∠=∠,AE AC =,则( )A.ABC AFE ≅△△B.AFE ADC ≅△△C.AFE DFC ≅△△D.ABC ADE ≅△△15.下列条件能判 断两个三角形全等的是( )A.有两边对应相等B.有两角对应相等C.有一边一角对应相等D.能够完全重合16.如图,全等的两个三角形是( )A.③④B.②③C.①②D.①④17.如图,点,,,B E C F 在同一条直线上,//,AB DE AB DE = ,要用“边角边”证明ABC DEF ≅△△,可以添加的条件是( ).A.A D ∠=∠B.//AC DFC.BE CF =D.AC DF =18.如图,点P 是AB 上任一点,ABC ABD ∠=∠,从下列各条件中补充一个条件,不一定能推出APC APD ≅△△.的是( )A.BC BD =B.ACB ADB ∠=∠C.AC AD =D. CAB DAB ∠=∠二、证明题19.如图:点C D 、在AB 上,且//AC BD AE FB AE BF ==,,.求证://DE CF .20.如图,已知CA CB =,AD BD =,M N ,分别是CB CA ,的中点,求证:DN DM =.21.如图,已知AB AE =,12∠=∠,B E ∠=∠.求证:BC ED =.22.如图,90A D ∠=∠=︒,AC DB =,AC DB ,相交于点O .求证:OB OC =.23.如图(1)在ABC △中,90ACB AC BC ∠=︒=,,直线MN 经过点C ,且AD MN ⊥于点D ,BE MN ⊥于点E 。

全等三角形综合题目及答案

全等三角形综合题目及答案

1.如图,AB∥CD,AB=CD,O为AC的中点,过点O作一条直线分别与AB、CD交于点M、N,E、F在直线MN上,且OE=OF.根据以上信息.(1)请说出图中共有几对全等三角形?(2)证明:∠EAM=∠NCF.解答:(1)解:有四对全等三角形,分别为①△AMO≌△CNO,②△OCF≌△OAE,③△AME≌△CNF,④△ABC≌△CDA;(2)证明:∵O为AC的中点,∴OA=OC,在△EAO和△FCO中∵,∴△EAO≌△FCO(SAS),∴∠EAO=∠FCO.∵AB∥CD∴∠BAO=∠DCO,∴∠EAM=∠NCF.2.如图,在△ABC中,BD=CD,AG平分∠DAC,BF⊥AG,垂足为H,与AD交于E,与AC交于F,过点C的直线CM交AD的延长线于M,且∠EBD=∠MCD,AC=AM.求证:DE=CF.解答:证明:∵△BED和△CMD中∴△BED≌△CMD,∴ED=MD=,又AG平分∠DAC,∴∠DAG=∠CAG,∵BF⊥AG,∴∠AHE=∠AHF=90°,在△AEH和△AFH中∴△AEH≌△AFH,∴AE=AF,又∵AC=AM,∴AC﹣AE=AM﹣AF,∴EM=CF,∴DE=CF.3.已知:如图,在Rt△ABC中,∠CAB=90°,AB=AC,D为AC的中点,过点作CF⊥BD交BD的延长线于点F,过点作AE⊥AF于点.(1)求证:△ABE≌△ACF;(2)过点作AH⊥BF于点H,求证:CF=EH.解答:证明:(1)∵AE⊥AF,∠CAB=90°,∴∠EAF=∠CAB=90°∴∠EAF﹣∠EAC=∠CAB﹣∠EAC即∠BAE=∠CAF,∵CF⊥BD,∴∠BFC=90°=∠CAB,∴∠BDA+∠ABD=90°,∠DCF+∠FDC=90°,∵∠ADB=∠FDC,∴∠ABD=∠DCF,在△ABE和△ACF中,,∴△ABE≌△ACF(ASA),(2)∵由(1)知△ABE≌△ACF,∴AE=AF,∵∠EAF=90°,∴∠AEF=∠AFE=45°,∵AH⊥BF,∴∠AHF=∠AHE=90°=∠CFH,∴∠EAH=180°﹣∠AHE﹣∠AEF=45°=∠AEF,∴AH=EH,∵D为AC中点,∴AD=CD,在△ADH和△CDF中,,∴△ADH≌△CDF(AAS),∴AH=CF,∴EH=CF.4.如图,在△ABC中,已知∠DBC=60°,AC>BC,又△ABC′、△BCA′、△CAB′都是△ABC形外的等边三角形,而点D在AC上,且BC=DC(1)证明:△C′BD≌△B′DC;(2)证明:△AC′D≌△DB′A;(3)对△ABC、△ABC′、△BCA′、△CAB′,从面积大小关系上,你能得出什么结论?解答:(1)△C′BD与△ABC中,BC=DC,AB=BC′,∠C′BD=60°+∠ABD=∠ABC,∴△C′BD≌△ABC,∴C′D=AC又在△BCA与△DCB′中,BC=DC,AC=B′C,∠ACB=∠B′CD=60°,∴△BCA≌△DCB′.∴DB′=BA.∴△C′BD≌△B′DC(2)由(1)的结论知:C′D=B′C=AB′,B′D=BC′=AC′,又∵AD=AD,∴△AC′D≌△DB′A.(3)S△AB′C>S△ABC′>S△ABC>S△A′BC;S△AB′C=,S△A′BC=,S△ABC′=,S△ABC=,因为AB2=(AC2+BC2﹣2AC×BC×cos60°)整理得S△ACB′+S△BCA′=S△ABC′+S△ABC5.如图1,在正方形ABCD中,点E是BC的中点,将△ABE沿AE折叠后得到△AFE,点F在正方形ABCD内部,延长AF交CD于点G.(1)请判断线段GF与GC的大小关系是FG=CG.(2)若将图1中的正方形改成矩形,其他条件不变,如图2,那么线段GF与GC之间的大小关系是否改变?并证明你的结论.(3)若将图1中的正方形改为平行四边形,其他条件不变,如图3,那么线段GF与GC之间的大小关系是否会改变?并证明你的结论.解答:解:(1)∵E是BC的中点∴BE=CE∵将△ABE沿AE折叠后得到△AFE∴BE=EF,∴EF=EC;同样,在折叠中,∠B=∠EFA=90°又∵∠C=∠B,∠EFG=∠EFA∴∠C=∠EFG=90°∵EG=EG,∴△ECG≌△EFG∴FG=CG;(2)不会改变.证明:连接EG∵E是BC的中点∴BE=CE∵将△ABE沿AE折叠后得到△AFE∴BE=EF,∴EF=EC;同样,在折叠中,∠B=∠EFA=90°又∵∠C=∠B,∠EFG=∠EFA∴∠C=∠EFG=90°∵EG=EG,∴△ECG≌△EFG∴FG=CG;(3)不会改变.证明:连接EG、FC∵E是BC的中点∴BE=CE∵将△ABE沿AE折叠后得到△AFE∴BE=EF,∠B=∠AFE∴EF=EC∴∠EFC=∠ECF∵矩形ABCD改为平行四边形∴∠B=∠D∵∠ECD=180°﹣∠D,∠EFG=180°﹣∠AFE=180°﹣∠B=180°﹣∠D∴∠ECD=∠EFG∴∠GFC=∠GFE﹣∠EFC=∠ECG﹣∠ECF=∠GCF∴∠GFC=∠GCF∴△ECG≌△EFG∴FG=CG即(1)中的结论仍然成立.6.在四边形ABCD中,对角线AC平分∠DAB.(1)如图①,当∠DAB=120°,∠B=∠D=90°时,求证:AB+AD=AC.(2)如图②,当∠DAB=120°,∠B与∠D互补时,线段AB、AD、AC有怎样的数量关系?写出你的猜想,并给予证明.(3)如图③,当∠DAB=90°,∠B与∠D互补时,线段AB、AD、AC有怎样的数量关系?写出你的猜想,并给予证明.解答:证明:(1)在四边形ABCD中,∵AC平分∠DAB,∠DAB=120°,∴∠CAB=∠CAD=60°.又∵∠B=∠D=90°,∴∠ACB=∠ACD=30°.∴AB=AD=AC,即AB+AD=AC.(2)AB+AD=AC.证明如下:如图②,过C点分别作AD和AB延长线的垂线段,垂足分别为E、F.∵AC平分∠DAB,∴CE=CF.∵∠ABC+∠D=180°,∠ABC+∠CBF=180°,∴∠CBF=∠D.又∵∠CED=∠CFB=90°,∴△CED≌△CFB.∴ED=BF.∴AD+AB=AE+ED+AB=AE+BF+AB=AE+AF.∵AC为角平分线,∠DAB=120°,∴∠ECA=∠FCA=30°,∴AE=AF=AC,∴AE+AF=AC,∴AB+AD=AE+AF=AC.∴AB+AD=AC.(3)AB+AD=AC.证明如下:如图③,过C点分别作AB和AD延长线的垂线段,垂足分别是E、F.∵AC平分∠DAB,∵CE⊥AD,CF⊥AF,∴CE=CF.∵∠ABC+∠ADC=180°,∠ADC+∠EDC=180°,∴∠ABC=∠EDC.又∵∠CED=∠CFB=90°.∴△CFB≌△CED(AAS).∴CB=CD.延长AB至G,使BG=AD,连接CG.∵∠ABC+∠ADC=180°,∠ABC+∠CBG=180°,∴∠CBG=∠ADC.∴△GBC≌△ADC(SAS).∴∠G=∠DAC=∠CAB=45°.∴∠ACG=90°.∴AG=AC.∴AB+AD=AC.7.(1)如图,△ABC中,CA=CB,∠ACB=90°,D为△ABC外一点,且AD⊥BD,BD交AC于E,G为BC上一点,且∠BCG=∠DCA,过G点作GH⊥CG交CB于H.求证:CD=CG;(2)如图,△ABC中,CA=CB,∠ACB=90°,D为△ABC外一点,且AD⊥BD,AD交BC于点E,连接CD,过点C作CG⊥CD,交AD于点G.若AD=CG,求证:AB=AC+BH.解答:(1)解:∵AD⊥BD,∴∠ADB=90°,∵∠ACB=90°,∠AED=∠BEC,∴∠CAD=∠DBH,∵∠BCG=∠DCA,∵在△ACD和△BGC中∴△ACD≌△BGC(ASA),∴CD=CG;(2)证明:延长EC到F使CF=CE,如图,∵△AGC≌△BCD∴AG=BD,∵CG=BD,∴AG=CG,∴∠GAC=∠GCA,∵△CDG为等腰直角三角形,∴∠CGD=45°,∴∠GAC=22.5°,∵AC⊥BC,CF=CE,∴△AEF为等腰三角形,∴∠FAC=∠EAC=22.5°,∵△ABC为等腰直角三角形,∵∠CAB=45°,∠ABC=45°,∴∠FAB=22.5°+45°=67.5°,∴∠F=180°﹣45°﹣67.5°=67.5°,∴∠F=∠FAB,∴AB=BF,而BF=BC+CF=AC+CE,∴AB=AC+CE.8.把两个全等的直角三角板的斜边重合,组成一个四边形ABCD以D为顶点作∠MDN,交边AC、BC于M、N.(1)若∠ACD=30°,∠MDN=60°,当∠MDN绕点D旋转时,AM、MN、BN三条线段之间有何种数量关系?证明你的结论;(2)当∠ACD+∠MDN=90°时,AM、MN、BN三条线段之间有何数量关系?证明你的结论;(3)如图③,在(2)的结论下,若将M、N分改在CA、BC的延长上,完成图3,其余条件不变,则AM、MN、BN之间有何数量关系(直接写出结论,不必证明)解答:(1)AM+BN=MN,证明:延长CB到E,使BE=AM,∵∠A=∠CBD=90°,∴∠A=∠EBD=90°,在△DAM和△DBE中,∴△DAM≌△DBE,∴∠BDE=∠MDA,DM=DE,∵∠MDN=∠ADC=60°,∴∠ADM=∠NDC,∴∠BDE=∠NDC,∴∠MDN=∠NDE,在△MDN和△EDN中,∴△MDN≌△EDN,∴MN=NE,∵NE=BE+BN=AM+BN,∴AM+BN=MN.(2)AM+BN=MN,证明:延长CB到E,使BE=AM,连接DE,∵∠A=∠CBD=90°,∴∠A=∠DBE=90°,∵∠CDA+∠ACD=90°,∠MDN+∠ACD=90°,∴∠MDN=∠CDA,∵∠MDN=∠BDC,∴∠MDA=∠CDN,∠CDM=∠NDB,在△DAM和△DBE中,∴△DAM≌△DBE,∴∠BDE=∠MDA=∠CDN,DM=DE,∵∠MDN+∠ACD=90°,∠ACD+∠ADC=90°,∴∠NDM=∠ADC=∠CDB,∴∠ADM=∠CDN=∠BDE,∵∠CDM=∠NDB∴∠MDN=∠NDE,在△MDN和△EDN中,∴△MDN≌△EDN,∴MN=NE,∵NE=BE+BN=AM+BN,∴AM+BN=MN.(3)BN﹣AM=MN,证明:在CB截取BE=AM,连接DE,∵∠CDA+∠ACD=90°,∠MDN+∠ACD=90°,∴∠MDN=∠CDA,∵∠ADN=∠ADN,∴∠MDA=∠CDN,∵∠B=∠CAD=90°,∴∠B=∠DAM=90°,在△DAM和△DBE中,∴△DAM≌△DBE,∴∠BDE=∠ADM=∠CDN,DM=DE,∵∠ADC=∠BDC=∠MDN,∴∠MDN=∠EDN,在△MDN和△EDN中,∴△MDN≌△EDN,∴MN=NE,∵NE=BN﹣BE=BN﹣AM,∴BN﹣AM=MN.9.△ABC中,∠C=90°,射线AD交射线BC于D,过D作DE垂直射线BA于点E,点F在射线CA上,BD=DF.(1)如图1,若AD是∠BAC的角平分线,求证:BE+AF=AC;(2)如图2,若射线AD平分△ABC的外角,且点F在射线DE上,则线段BE、AF和AC的数量关系是BE=AF+AC;(3)如图3,在(2)的条件下,过D作DM∥AB交AC延长线于点M,若AE=2,AF=3,DM=BE,求CM的长.解答:(1)证明:∵AD是∠BAC的角平分线,∠C=90°(CD⊥AC),DE⊥AB,∴CD=DE,∠C=∠DEB=90°,∵在Rt△ECD和Rt△BED中,∴Rt△ECD≌Rt△BED(HL),∴CF=BE,∵AC=AF+CF,∴BE+AF=AC;(2)解:BE=AF+AC,理由是:∵AD平分∠EAC,∠ACD=90°(CD⊥AC),AE⊥DE,∴DE=DC,由勾股定理得:AE2=AD2﹣DE2,AC2=AD2﹣DC2,∴AE=AC,∵CD⊥AC,AE⊥DE,∴∠ACB=∠AEF=90°,在△AEF和△ACB中,∴△AEF≌△ACB(ASA),∴AF=AB,∵BE=AB+AE,AE=AC,∴BE=AF+AC;(3)解:∵AE=2,AF=3,DM=BE,∴由(2)知:AC=AE=2,AB=AF=3,BE=AF+AC=2+3=5,∴DM=6,∵DM∥AB,∴△DCM∽△BCA,∴=,∴=,CM=4.10.已知四边形ABCD中,AB⊥AD,BC⊥CD,AB=BC,∠ADC=120°.将一块足够大的三角尺MNB的30°角顶点与四边形顶点B重合,当三角尺的30°角(∠MBN)绕着点B旋转时,它的两边分别交边AD,DC所在直线于E,F.(1)当∠MBN绕B点旋转到AE=CF时(如题图1),请直接写出AE,CF,EF之间的数量关系.(2)当∠MBN绕B点旋转到AE≠CF时(如题图2),(1)中的结论是否仍成立?若成立,请给予证明;若不成立,线段AE,CF,EF又有怎样的数量关系?请写出你的猜想,并说明理由.(3)当∠MBN绕B点旋转到AE≠CF时(如题图3和题图4),请分别直接写出线段AE,CF,EF之间的数量关系.解答:解:(1)AE+CF=EF;(2)成立.理由是:延长EA到G,使AG=FC,∵GA=FC,∠GAB=∠FCB=90°,AB=CB,∴△GAB≌△FCB(SAS),∴∠GBA=∠FBC,GB=FB,AG=CF,∵∠FBC+∠FBA=60°,∴∠GBA+∠FBA=60°,即:∠GBF=60°∵∠EBF=30°,∴∠GBE=30°,∵GB=FB,∠GBE=∠FBE,BE=BE,∴△GBE≌△FBE,∴GE=FE∵GE=AG+AE,∴EF=AE+CF;(3)图3:AE﹣CF=EF;图4:AE+EF=CF.11.在四边形ABCD中,AD∥BC,点E在直线AB上,且DE=CE.(1)如图(1),若∠DEC=∠A=90°,BC=3,AD=2,求AB的长;(2)如图(2),若DE交BC于点F,∠DFC=∠AEC,猜想AB、AD、BC之间具有怎样的数量关系?并加以证明.解答:(1)解:∵∠DEC=∠A=90°,∴∠ADE+∠AED=90°,∠AED+∠BEC=90°,∴∠ADE=∠BEC,∵AD∥BC,∠A=90°,∴∠B+∠A=180°,∴∠B=∠A=90°,在△AED和△CEB中,∴△AED≌△CEB,∴AE=BC=3,BE=AD=2,∴AB=AE+BE=2+3=5.(2)AB+AD=BC,证明:∵AD∥BC,∵∠DFC=∠AEC,∠DFC=﹣∠BCE+∠DEC,∠AEC=∠AED+∠DEC,∴∠AED=∠BCE,在△AED和△BCE中,∴△AED≌△BCE,∴AD=BE,AE=BC,∵BC=AE=AB+BE=AB+AD,即AB+AD=BC.12.如图1,△ABC的边BC在直线l上,AC⊥BC,且AC=BC;△EFP的边FP也在直线l上,边EF与边AC重合,且EF=FP.(1)示例:在图1中,通过观察、测量,猜想并写出AB与AP所满足的数量关系和位置关系.答:AB与AP的数量关系和位置关系分别是AB=AP、AB⊥AP.(2)将△EFP沿直线l向左平移到图2的位置时,EP交AC于点Q,连结AP,BQ.请你观察、测量,猜想并写出BQ与AP所满足的数量关系和位置关系.答:BQ与AP的数量关系和位置关系分别是BQ=AP、BQ⊥AP.(3)将△EFP沿直线l向左平移到图3的位置时,EP的延长线交AC的延长线于点Q,连结AP、BQ.你认为(2)中所猜想的BQ与AP的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.解答:解:(1)AB=AP,AB⊥AP;(2)BQ=AP,BQ⊥AP;(3)成立.证明:如图,∵∠EPF=45°,∴∠CPQ=45°.∵AC⊥BC,∴∠CQP=∠CPQ,CQ=CP.在Rt△BCQ和Rt△ACP中,∴Rt△BCQ≌Rt△ACP(SAS)∴BQ=AP;延长QB交AP于点N,∴∠PBN=∠CBQ.∵Rt△BCQ≌Rt△ACP,在Rt△BCQ中,∠BCQ+∠CBQ=90°,∴∠APC+∠PBN=90°.∴∠PNB=90°.∴QB⊥AP.13.如图,△ABC的角平分线AD、BE相交于点P,(1)在图1中,分别画出点P到边AC、BC、BA的垂线段PF、PG、PH,这3条线段相等吗?为什么?(2)在图2中,∠ABC是直角,∠C=60°,其余条件都不变,请你判断并写出PE与PD之间的数量关系,并说明理由.解答:解:(1)PF=PH=PG,理由如下:∵AD平分∠BAC,PF⊥AC,PH⊥AB,∴PF=PH,∵BE平分∠ABC,PG⊥BC,PH⊥AB,∴PG=PH,∴PF=PH=PG;(2)PE=PD.证明:∵∠ABC=90°,∠C=60°,∴∠CAB=30°,∵AD平分∠BAC,BE平分∠ABC,∴∠CAD=∠BAD=∠CAB=15°,∠ABE=∠CBE=∠ABC=45°,过点P作PF⊥AC,PG⊥BC,垂足分别为F、G,则∠PFE=∠PGD=90°,∵∠PDG为△ADC的一个外角,∴∠PDG=∠C+∠CAD=60°+∠CAB=60°+15°=75°,∵∠PEF是△ABE的一个外角,∴∠PEF=∠CAB+∠ABE=30°+∠CBA=30°+45°=75°,∴∠PEF=∠PDG,∵PF⊥AC,PG⊥BC,∴∠PFE=∠PGD=90°,由第一问得:PF=PG,∴△PFE≌△PGD,∴PE=PD.14.如图所示:AM∥DN,AE、DE分别平分∠MAD和∠AND,并交于E点.过点E的直线分别交AM、DN于B、C.(1)如图,当点B、C分别位于点AD的同侧时,猜想AD、AB、CD之间的存在的数量关系:AD=AB+CD.(2)试证明你的猜想.(3)若点B、C分别位于点AD的两侧时,试写出AD、AB、CD之间的关系,并选择一个写出证明过程.解答:解:(1)AD=AB+CD;(2)证明:在AD上截取AF=AB,连接EF.∵AE平分∠BAD,∴∠BAE=∠FAE.在△ABE和△AFE中,AB=AF,∠BAE=∠FAE,AE=AE,∴△ABE≌△AFE,∴∠ABC=∠AFE.∵AB∥CD,∴∠ABC+∠BCD=180°,又∵∠AFE+∠DFE=180°,∴∠DFE=∠BCD.∵DE平分∠ADC,∴∠ADE=∠CDE.在△FDE和△CDE中,∠DFE=∠DCE,∠ADE=∠CDE,DE=DE,∴△FDE≌△CDE,∴DF=CD,∴AF+DF=AB+CD.即AD=AB+CD;(3)证明:第一种情况:当点B位于点A左侧,点C位于点D右侧时,DC=AD+AB.在CD上截取DF=AD,连接EF.∵DE平分∠ADC∴∠ADE=∠CDE在△ADE和△FDE中,DA=DF,∠ADE=∠CDE,DE=DE,∴△ADE≌△FDE.∴EA=EF,∠DAE=∠DFE.∵AE平分∠DAM,∴∠DAE=∠EAM,∴∠DFE=∠EAM,又∵∠BAE+∠EAM=180°,∠DFE+∠CFE=180°,∴∠BAE=∠CFE.∵AM∥DN,∴∠ABC=∠BCD.在△BAE和△CFE中,∠BAE=∠CFE,∠ABC=∠BCD,EA=EF,∴△BAE≌△CFE,∴AB=FC.∵DC=DF+FC,∴DC=AD+AB;第二种情况:当点B位于点A右侧,点C位于点D左侧时,AB=AD+CD.在AB上截取AF=AD,连接EF.∵AE平分∠BAD,∴∠BAE=∠DAE.在△ADE和△AEF中,AF=AD,∠BAE=∠DAE,AE=AE,∴△AEF≌△AED,∴EF=ED,∴∠AFE=∠ADE.∵DE平分∠ADN,∴∠ADE=∠EDN,∴∠AFE=∠EDN,又∵∠AFE+∠BFE=180°,∠EDN+∠EDC=180°,∴∠BFE=∠EDC.∵AM∥DN,∴∠ABC=∠BCD.在△BEF和△CED中,∠BFE=∠EDC,∠ABC=∠BCD,DE=EF,∴△BFE≌△CDE,∴CD=BF.∵AB=AF+FB,∴AB=AD+CD.15.如图1,在四边形ABCD中,AB⊥AD,BC⊥CD,AB=BC,∠ABC=120°,∠MBN=60°,它的两边分别交AD、DC于点E、F,且AE≠CF.(1)求证:EF=AE+CF.(2)如图2,当∠MBN的两边分别交AD、DC的延长线于点E、F,其余条件均不变时,(1)中的结论是否成立?如果成立,请证明.如果不成立,线段AE、CF,EF又有怎样的数量关系?并证明你的结论.解答:(1)证明:延长FC到H,使CH=AE,连接BH,∵AB⊥AD,BC⊥CD,∴∠A=∠BCH=90°,∵在△BCH和△BAE中∴△BCH≌△BAE(SAS),∴BH=BE,∠CBH=∠ABE,∵∠ABC=120°,∠MBN=60°,∴∠ABE+∠CBF=120°﹣60°=60°,∴∠HBC+∠CBF=60°,∴∠HBF=60°=∠MBN,在△HBF和△EBF中∵,∴△HBF≌△EBF(SAS),∴HF=EF,∵HF=HC+CF=AE+CF,∴EF=AE+CF.(2)(1)中的结论不成立,线段AE、CF,EF的数量关系是AE=EF+CF,证明:在AE上截取AQ=CF,连接BQ,∵AB⊥AD,BC⊥CD,∴∠A=∠BCF=90°,在△BCF和△BAQ中,∴△BCF≌△BAQ(SAS),∴BF=BQ,∠CBF=∠ABQ,∵∠MBN=60°=∠CBF+∠CBE,∴∠CBE+∠ABQ=60°,∵∠ABC=120°,∴∠QBE=120°﹣60°=60°=∠MBN,在△FBE和△QBE中,∴△FBE≌△QBE(SAS),∴EF=QE,∵AE=QE+AQ=EF+CF,∴AE=EF+CF,即(1)中的结论不成立,线段AE、CF,EF的数量关系是AE=EF+CF.16.已知点C为线段AB上一点,分别以AC、BC为边在线段AB同侧作△ACD和△BCE,且CA=CD,CB=CE,∠ACD=∠BCE,直线AE与BD交于点F.(1)如图1,求证:△ACE≌△DCB.(2)如图1,若∠ACD=60°,则∠AFB=120°;如图2,若∠ACD=90°,则∠AFB=90°;(3)如图3,若∠ACD=β,则∠AFB=180°﹣β(用含β的式子表示)并说明理由.解答:(1)证明:∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE,∴∠ACE=∠DCB,在△ACE和△DCB中∵,∴△ACE≌△DCB;(2)解:∵∠ACD=60°,∴∠CDB+∠DBC=∠ACD=60°,∵△ACE≌△DCB,∴∠AEC=∠DBC,∠CDB=∠CAE,∴∠CAE+∠DBC=60°,∴∠AFB=180°﹣60°=120°;当∠ACD=90°时,∵∠ACD=90°,∴∠CDB+∠DBC=∠ACD=90°,∵△ACE≌△DCB,∴∠AEC=∠DBC,∠CDB=∠CAE,∴∠CAE+∠DBC=90°,∴∠AFB=180°﹣90°=90°;故答案为:120°,90°;(3)解:当∠ACD=β时,∠AFB=180°﹣β,理由是:∵∠ACD=β,∴∠CDB+∠DBC=∠ACD=β,∵△ACE≌△DCB,∴∠AEC=∠DBC,∠CDB=∠CAE,∴∠CAE+∠DBC=β,∴∠AFB=180°﹣(∠CAE+∠DBC)=180°﹣β;故答案为:180°﹣β.17.如图①A、E、F、C在一条直线上,AE=CF,过E、F分别作DE⊥AC,B F⊥AC,若AB=CD.(1)图①中有3对全等三角形,并把它们写出来△AFB≌△DEC,△DEG≌△BFG,△AGB≌△CGD;(2)求证:BD与EF互相平分于G;(3)若将△ABF的边AF沿GA方向移动变为图②时,其余条件不变,第(2)题中的结论是否成立,如果成立,请予证明.解答:解:(1)图①中有3对全等三角形,它们是△AFB≌△DEC,△DEG≌△BFG,△AGB≌△CGD.(2)∵DE⊥AC,BF⊥AC,∴∠AFB=∠CED=90°∵AE=CF,∴AE+EF=CF+EF,即AF=CE,在Rt△ABF和Rt△CDE中,,∴Rt△ABF≌Rt△CED(HL),∴ED=BF.由∠AFB=∠CED=90°得DE∥BF,∴∠EDG=∠GBF,∵∠EGD和∠FGB是对顶角,ED=BF,△DEG≌△BFG,∴EG=FG,DG=BG,所以BD与EF互相平分于G;(3)第(2)题中的结论成立,理由:∵AE=CF,∴AE﹣EF=CF﹣EF,即AF=CE,∵DE⊥AC,BF⊥AC,∴∠AFB=∠CED=90°,在Rt△ABF和Rt△CDE中,,∴Rt△ABF≌Rt△CED(HL),∴BF=ED.∵∠BFG=∠DEG=90°,∴BF∥ED,∴∠FBG=∠EDG,∴△BFG≌△DEG,∴FG=GE,BG=GD,即第(2)题中的结论仍然成立.18.【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC中,若AB=8,AC=6,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到点E,使DE=AD,请根据小明的方法思考:(1)由已知和作图能得到△ADC≌△EDB的理由是B.A.SSS B.SAS C.AAS D.HL(2)求得AD的取值范围是C.A.6<AD<8 B.6≤AD≤8 C.1<AD<7 D.1≤AD≤7【感悟】解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】(3)如图2,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF.求证:AC=BF.解答:(1)解:∵在△ADC和△EDB中,∴△ADC≌△EDB(SAS),故选B;(2)解:∵由(1)知:△ADC≌△EDB,∴BE=AC=6,AE=2AD,∵在△ABE中,AB=8,由三角形三边关系定理得:8﹣6<2AD<8+6,∴1<AD<7,故选C.(3)证明:延长AD到M,使AD=DM,连接BM,∵AD是△ABC中线,∴BD=DC,∵在△ADC和△MDB中,∴△ADC≌△MDB,∴BM=AC,∠CAD=∠M,∵AE=EF,∴∠CAD=∠AFE,∵∠AFE=∠BFD,∴∠BFD=∠CAD=∠M,∴BF=BM=AC,即AC=BF.点评:本题考查了三角形的中线,三角形的三边关系定理,等腰三角形性质和判定,全等三角形的性质和判定等知识点,主要考查学生运用定理进行推理的能力.19.如图1,已知AM∥BN,AC平分∠MAB,BC平分∠NBA.(1)过点C作直线DE,分别交AM、BN于点D、E.求证:AB=AD+BE;(2)如图2,若将直线DE绕点C转动,使DE与AM交于点D,与NB的延长线交于点E,则AB、AD、BE三条线的长度之间存在何种等量关系?请你给出结论并加以证明.解答:(1)证明:如图1,延长AC交BE于Q,∵AC平分∠MAB,∴∠1=∠2,∵AM∥BN,∴∠1=∠3,∴∠2=∠3,∴AB=BQ,∵BC平分∠ABQ,∴AC=CQ.∵AM∥BN,∴==1,∴AD=EQ,∴AD+BE=AB;(2)AD=BE+AB.理由如下:如图2,延长AC交BE于Q,∵AC平分∠MAB,∴∠1=∠2,∵AM∥BN,∴∠1=∠3,∴∠2=∠3,∴AB=BQ,∵BC平分∠ABQ,∴AC=CQ.∵AM∥BN,∴==1,∴AD=EQ,∴EQ=BE+BQ=BE+AB,即∴AD=BE+AB.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.如图1,已知直线y=2x+2与y轴、x轴分别交于A、B两点,以B为直角顶点在第二象限作等腰Rt△ABC(1)求点C的坐标,并求出直线AC的关系式.(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE.(3)如图3,在(1)的条件下,直线AC交x轴于M,P(,k)是线段BC上一点,在线段BM上是否存在一点N,使直线PN平分△BCM的面积?若存在,请求出点N的坐标;若不存在,请说明理由.考点:一次函数综合题。

分析:(1)如图1,作CQ⊥x轴,垂足为Q,利用等腰直角三角形的性质证明△ABO≌△BCQ,根据全等三角形的性质求OQ,CQ的长,确定C点坐标;(2)同(1)的方法证明△BCH≌△BDF,再根据线段的相等关系证明△BOE≌△DGE,得出结论;(3)依题意确定P点坐标,可知△BPN中BN变上的高,再由S△PBN=S△BCM,求BN,进而得出ON.解答:解:(1)如图1,作CQ⊥x轴,垂足为Q,∵∠OBA+∠OAB=90°,∠OBA+∠QBC=90°,∴∠OAB=∠QBC,又∵AB=BC,∠AOB=∠Q=90°,∴△ABO≌△BCQ,∴BQ=AO=2,OQ=BQ+BO=3,CQ=OB=1,∴C(﹣3,1),由A(0,2),C(﹣3,1)可知,直线AC:y=x+2;(2)如图2,作CH⊥x轴于H,DF⊥x轴于F,DG⊥y轴于G,∵AC=AD,AB⊥CB,∴BC=BD,∴△BCH≌△BDF,∴BF=BH=2,∴OF=OB=1,∴DG=OB,∴△BOE≌△DGE,∴BE=DE;(3)如图3,直线BC:y=﹣x﹣,P(,k)是线段BC上一点,∴P(﹣,),由y=x+2知M(﹣6,0),∴BM=5,则S△BCM=.假设存在点N使直线PN平分△BCM的面积,则BN•=×,∴BN=,ON=,∵BN<BM,∴点N在线段BM上,∴N(﹣,0).点评:本题考查了一次函数的综合运用.关键是根据等腰直角三角形的特殊性证明全等三角形,利用全等三角形的性质求解.2.如图直线ℓ:y=kx+6与x轴、y轴分别交于点B、C,点B的坐标是(﹣8,0),点A的坐标为(﹣6,0)(1)求k的值.(2)若P(x,y)是直线ℓ在第二象限内一个动点,试写出△OPA的面积S与x的函数关系式,并写出自变量x的取值范围.(3)当点P运动到什么位置时,△OPA的面积为9,并说明理由.考点:一次函数综合题;待定系数法求一次函数解析式;三角形的面积。

专题:动点型。

分析:(1)将B点坐标代入y=kx+6中,可求k的值;(2)用OA的长,y分别表示△OPA的底和高,用三角形的面积公式求S与x的函数关系式;(3)将S=9代入(2)的函数关系式,求x、y的值,得出P点位置.解答:解:(1)将B(﹣8,0)代入y=kx+6中,得﹣8k+6=0,解得k=;(2)由(1)得y=x+6,又OA=6,∴S=×6×y=x+18,(﹣8<x<0);(3)当S=9时,x+18=9,解得x=﹣4,此时y=x+6=3,∴P(﹣4,3).点评:本题考查了一次函数的综合运用,待定系数法求一次函数解析式,三角形面积的求法.关键是将面积问题转化为线段的长,点的坐标来表示.3.如图①,过点(1,5)和(4,2)两点的直线分别与x轴、y轴交于A、B两点.(1)如果一个点的横、纵坐标均为整数,那么我们称这个点是格点.图中阴影部分(不包括边界)所含格点的个数有10个(请直接写出结果);(2)设点C(4,0),点C关于直线AB的对称点为D,请直接写出点D的坐标(6,2);(3)如图②,请在直线AB和y轴上分别找一点M、N使△CMN的周长最短,在图②中作出图形,并求出点N的坐标.考点:一次函数综合题。

分析:(1)先利用待定系数法求得直线AB的解析式为y=﹣x+6;再分别把x=2、3、4、5代入,求出对应的纵坐标,从而得到图中阴影部分(不包括边界)所含格点的坐标;(2)首先根据直线AB的解析式可知△OAB是等腰直角三角形,然后根据轴对称的性质即可求出点D的坐标;(3)作出点C关于直线y轴的对称点E,连接DE交AB于点M,交y轴于点N,则此时△CMN 的周长最短.由D、E两点的坐标利用待定系数法求出直线DE的解析式,再根据y轴上点的坐标特征,即可求出点N的坐标.解答:解:(1)设直线AB的解析式为y=kx+b,把(1,5),(4,2)代入得,kx+b=5,4k+b=2,解得k=﹣1,b=6,∴直线AB的解析式为y=﹣x+6;当x=2,y=4;当x=3,y=3;当x=4,y=2;当x=5,y=1.∴图中阴影部分(不包括边界)所含格点的有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(3,1),(3,2),(4,1).一共10个;(2)∵直线y=﹣x+6与x轴、y轴交于A、B两点,∴A点坐标为(6,0),B点坐标为(0,6),∴OA=OB=6,∠OAB=45°.∵点C关于直线AB的对称点为D,点C(4,0),∴AD=AC=2,AB⊥CD,∴∠DAB=∠CAB=45°,∴∠DAC=90°,∴点D的坐标为(6,2);(3)作出点C关于直线y轴的对称点E,连接DE交AB于点M,交y轴于点N,则NC=NE,点E(﹣4,0).又∵点C关于直线AB的对称点为D,∴CM=DM,∴△CMN的周长=CM+MN+NC=DM+MN+NE=DE,此时周长最短.设直线DE的解析式为y=mx+n.把D(6,2),E(﹣4,0)代入,得6m+n=2,﹣4m+n=0,解得m=,n=,∴直线DE的解析式为y=x+.令x=0,得y=,∴点N的坐标为(0,).故答案为10;(6,2).点评:本题考查了待定系数法求一次函数的解析式,横纵坐标都为整数的点的坐标的确定方法,轴对称的性质及轴对称﹣最短路线问题,综合性较强,有一定难度.4.若直线y=mx+8和y=nx+3都经过x轴上一点B,与y轴分别交于A、C(1)填空:写出A、C两点的坐标,A(0,8),C(0,3);(2)若∠ABO=2∠CBO,求直线AB和CB的解析式;(3)在(2)的条件下若另一条直线过点B,且交y轴于E,若△ABE为等腰三角形,写出直线BE的解析式(只写结果).考点:一次函数综合题。

分析:(1)由两条直线解析式直接求出A、C两点坐标;(2)由直线y=mx+8得B(﹣,0),即OB=,而AO=8,利用勾股定理求AB,根据角平分线性质得比例求m的值,再根据直线BC与x轴的交点为B求n即可;(3)根据(2)的条件,分别以A、B为圆心,AB长为半径画弧与y轴相交,作AB的垂直平分线与y轴相交,分别求交点坐标.解答:解:(1)由直线y=mx+8和y=nx+3得A(0,8),C(0,3),故答案为:(0,8),(0,3);(2)令直线y=mx+8中y=0,得B(﹣,0),即OB=,又AO=8,∴AB==8,∵∠ABO=2∠CBO,∴=,即24=5×,解得m=,又由y=nx+3经过点B,得﹣=﹣,解得n=,∴直线AB:y=x+8,直线CB:y=x+3;(3)由(2)可知OB=6,AB==10,当△ABE为等腰三角形时,直线BE的解析式为:y=3x+18或y=﹣x﹣2或y=﹣x﹣8或y=x+.点评:本题考查了一次函数的综合运用.关键是根据题意求出点的坐标,根据图形的特殊性利用比例,勾股定理求一次函数解析式.5.如图,在平面直角坐标系中,O为坐标原点,P(x,y),PA⊥x轴于点A,PB⊥y轴于点B,C(a,0),点E在y轴上,点D,F在x轴上,AD=OB=2FC,EO是△AEF的中线,AE交PB于点M,﹣x+y=1.(1)求点D的坐标;(2)用含有a的式子表示点P的坐标;(3)图中面积相等的三角形有几对?考点:一次函数综合题;列代数式;点的坐标;三角形的面积。

分析:(1)根据P点坐标得出A,B两点坐标,进而求出﹣x+y=DO,即可得出DO的长,即可得出D点坐标;(2)利用C点坐标得出CO的长,进而得出y与a的关系式,即可得出P点坐标;(3)利用三角形面积公式以及AO与FO的关系,进而得出等底等高的三角形.解答:解:(1)∵P(x,y),PA⊥x轴于点A,PB⊥y轴于点B,∴A(x,0),B(0,y),即:OA=﹣x,BO=﹣y,∵AD=BO,∴﹣x﹣DO=﹣y,∴﹣x+y=DO,又∵﹣x+y=1,∴OD=1,即:点D的坐标为(﹣1,0).(2)∵EO是△AEF的中线,∴AO=OF=﹣x,∵OF+FC=CO,又∵OB=2FC=﹣y,OC=a,∴﹣x﹣=a,又∵﹣x+y=1,∴y=1﹣a,∴y=,∴x=,∴P(,);(3)图中面积相等的三角形有3对,分别是:△AEO与△FEO,△AMO与△FBO,△OME与△FBE.点评:此题主要考查了三角形面积求法以及点的坐标求法和坐标系中点的坐标与线段长度关系,根据已知得出y=1﹣a是解题关键.6.如图,在平面直角坐标系中,直线l经过点A(2,﹣3),与x轴交于点B,且与直线平行.(1)求:直线l的函数解析式及点B的坐标;(2)如直线l上有一点M(a,﹣6),过点M作x轴的垂线,交直线于点N,在线段MN上求一点P,使△PAB是直角三角形,请求出点P的坐标.考点:一次函数综合题。

分析:(1)设直线l的解析式为:y=kx+b,因为直线l与直线平行,所以k=3,又直线l经过点A(2,﹣3),从而求出b的值,进而直线l的函数解析式及点B的坐标可求出;(2)点M(a,﹣6)在直线l上,所以可先求出a的值,再分别分:当AB为斜边时;当PB为斜边时;当PA为斜边时,进行讨论求出满足题意的P点的坐标即可.解答:解:(1)设直线l的解析式为y=kx+b(k≠0),∵直线l平行于y=3x﹣,∴k=3,∵直线l经过点A(2,﹣3),∴﹣3=2×3+b,b=﹣9,∴直线l的解析式为y=3x﹣9,点B坐标为(3,0);(2)∵点M(a,﹣6)在直线l上,∴a=1,则可设点P(1,y),∵,∴y的取值范围是﹣6≤y≤,当AB为斜边时,PA2+PB2=AB2,即1+(y+3)2+4+y2=10,解得y1=﹣1,y2=﹣2,∴P(1,﹣1),P(1,﹣2),当PB为斜边时,PA2+AB2=PB2,即1+(y+3)2+10=4+y2,解得y=﹣,∴,当PA为斜边时,PB2+AB2=PA2,即10+4+y2=1+(y+3)2,解得y=,(舍去),∴综上所述,点P的坐标为P1(1,﹣1),P2(1,﹣2),P3点评:本题考查了用待定系数法求出一次函数的解析式和一次函数与几何图形(直角三角形)问题首先要根据题意画出草图,结合图形分析其中的几何图形,从已知函数图中获取信息,求出函数值、函数表达式,并解答相应的问题.7.已知如图,直线y=﹣x+4与x轴相交于点A,与直线y=x相交于点P.(1)求点P的坐标;(2)求S△OPA的值;(3)动点E从原点O出发,沿着O→P→A的路线向点A匀速运动(E不与点O、A重合),过点E分别作EF⊥x轴于F,EB⊥y轴于B.设运动t秒时,F的坐标为(a,0),矩形EBOF 与△OPA重叠部分的面积为S.求:S与a之间的函数关系式.考点:一次函数综合题。

相关文档
最新文档