2012年全国硕士研究生入学统一考试数学二试题及答案解析

合集下载

2012考研数学二真题及参考答案

2012考研数学二真题及参考答案

2012考研数学二真题及参考答案一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)曲线221x x y x +=-渐近线的条数为()(A )0 (B )1 (C )2 (D )3 【答案】:C【解析】:221lim 1x x xx →+=∞-,所以1x =为垂直的 22lim 11x x xx →∞+=-,所以1y =为水平的,没有斜渐近线 故两条选C (2)设函数2()(1)(2)()xxnx f x e e e n =---,其中n 为正整数,则'(0)f =(A )1(1)(1)!n n ---(B )(1)(1)!nn -- (C )1(1)!n n --(D )(1)!nn - 【答案】:C 【解析】:'222()(2)()(1)(22)()(1)(2)()x x nx x x nx x x nx f x e e e n e e e n e e ne n =--+---+---所以'(0)f =1(1)!n n --(3)设a n >0(n =1,2,…),S n =a 1+a 2+…a n ,则数列(s n )有界是数列(a n )收敛的 (A)充分必要条件. (B)充分非必要条件.(C )必要非充分条件. (D )即非充分地非必要条件. 【答案】:(A)【解析】:由于0na >,则1n n a ∞=∑为正项级数,S n=a 1+a 2+…a n为正项级数1n n a ∞=∑的前n 项和。

正项级数前n 项和有界与正向级数1nn a∞=∑收敛是充要条件。

故选A(4)设2kx keI e=⎰sin x d x (k=1,2,3),则有D(A )I 1< I 2 <I 3. (B) I 2< I 2< I 3.(C) I 1< I 3 <I 1,(D) I 1< I 2< I 3. 【答案】:(D) 【解析】::2sin kx k eI e xdx=⎰看为以k为自变量的函数,则可知()2'sin 0,0,k k I e k k π=≥∈,即可知2sin k x k eI e xdx =⎰关于k 在()0,π上为单调增函数,又由于()1,2,30,π∈,则123I I I <<,故选D(5)设函数f (x,y ) 可微,且对任意x ,y 都 有(,)f x y x∂∂ >0,(,)f x y y ∂∂<0,f (x 1,y 1)<f(x 2,y 2)成立的一个充分条件是(A) x 1> x 2, y 1< y 2. (B) x 1> x 2, y 1>y 1.(C) x 1< x 2, y 1< y 2.(D) x 1< x 2, y 1> y 2.【答案】:(D) 【解析】:(,)0f x y x∂>∂,(,)0f x y y ∂<∂表示函数(,)f x y 关于变量x 是单调递增的,关于变量y 是单调递减的。

2012考研数学二答案真题解析

2012考研数学二答案真题解析

∫ = 16
πθ sin
cos θ
(2 cos 2
θ
− 1) cos8
θ

022
2
22
π
π
∫ ∫ = 32 2 sin t cos11 tdt − 16 2 sin t cos9 tdt
0
0
=8−8 35
= 16 15
(19)(本题满分 11 分)已知函数 f (x) 满足方程 f '' (x) + f ' (x) − 2 f (x) = 0 及 f ' (x) + f (x) = 2ex
2
故选(B)。 二、填空题:9−14 小题,每小题 4 分,共 24 分,请将答案写在答.题.纸.指定位置上.
(9)设 y = y(x) 是由方程 x2 − y +1 =ey 所确定的隐函数,则
【答案】:1
________。
第 3 页,共 11 页
梦想不会辜负每一个努力的人
(10)计算ຫໍສະໝຸດ limx→∞∂z ∂x
+
y2
∂z ∂y
= ________。
【答案】: 0 .
【解析】:因为 ∂z = ∂x
f ′ ⋅ 1 , ∂z = x ∂y
f



1 y2
,所以
x
∂z ∂x
+
y2
∂z ∂y
= 0.
(12)微分方程 ydx + (x − 3y2 )dy = 0 满足初始条件 y |x=1=1 的解为________。
【答案】: x = y2
【解析】: ydx + (x − 3y2 )dy =0 ⇒ dx =3y − 1 x ⇒ dx + 1 x = 3y 为一阶线性微分方程,

2012年考研数学二真题及答案解析

2012年考研数学二真题及答案解析

数学(二)试题 第 5 页 (共 11 页)
(23)(本题满分 11 分)已知
1)求 a 的(k=1,2,3),则有()
0
(A)I1< I2 <I3.
(B) I3< I2< I1.
(C) I2< I3 <I1,
(D) I2< I1< I3.
(5)设函数 f (x,y) 可微,且对任意 x,y 都 有 f (x, y) x
f (x, y) >0, y <0,f(x1,y1)<f
(A) (1)n1(n 1)!
(B) (1)n (n 1)!
(C) (1)n1n!
(D) (1)n n!
(3)设 an>0(n=1,2,…),Sn=a1+a2+…an,则数列(sn)有界是数列(an)收敛的
(A)充分必要条件.
(B)充分非必要条件.
(C)必要非充分条件.
(D)既非充分也非必要条件.
已知函数 f (x) 1 x 1 ,记 a lim f (x)
sin x x,
x0
(1)求 a 的值
(2)若当 x 0 时, f (x) a 是 xk 的同阶无穷小,求 k
(16)(本题满分 10 分)
( ) -x2+y2
求函数 f x, y = xe 2 的极值。
(17)(本题满分 10 分)
(2)记(1)中的实根为
xn
,证明
lim
n
xn
存在,并求此极限。
(22)(本题满分 11 分)
1 a 0 0
1

A


0
1
a

2012考研数学二真题答案(完整版)

2012考研数学二真题答案(完整版)

2012数二参考答案9、21xx e +; 10、4π; 11、0; 12、2x y =; 13、()1,0-; 14、27- 三、解答题15、解:(I )()00011sin lim limlim 011sin sin sin x x x x x x xa f x x x x x x→→→+-==-=+=+=(II )()00011sin sin lim lim 1lim sin sin sin x x x x x x x x f x a x x x xx →→→+--⎛⎫⎛⎫-=--=+⎡⎤⎪ ⎪⎣⎦⎝⎭⎝⎭ ()()3001sin 16lim lim sin sin x x x x x x x x x x →→-+⎛⎫== ⎪⎝⎭()300161sin lim lim 6x x x f x a x x x x →→-⎡⎤==⎢⎥⎣⎦,所以k=1 16、解:()()()()()2222222222222,10,0x yx y x y x y fx y e xex ex xf x y xe y y+++---+-⎧∂=+-=-=⎪∂⎪⎨∂⎪=-=⎪∂⎩得驻点()()121,0,1,0P P -()()()()()()()()22222222222222222222,21,1,1x y x y x y x y f x y xe e x x x f x y e x y x yf x y xe y y++--+-+-⎧∂=-+--⎪∂⎪⎪∂⎪=--⎨∂∂⎪⎪∂⎪=-∂⎪⎩ 根据判断极值的第二充分条件, 把()11,0,P -代入二阶偏导数B=0,A>0,C>0,所以()11,0,P -为极小值点,极小值为()121,0f e --=-把()21,0P 代入二阶偏导数B=0,A<0,C<0,所以()21,0P 为极大值点,极大值为()121,0f e-=(17)解:1y x '=,设切点坐标(),ln o o x x ,切线方程为()1ln o o oy x x x x -=- 又切线过点(0,1),所以2o x e =,故切线方程为211y x e =+ 切线与x 轴交点为B ()2,0e -所围面积()222011y A e e y dy e ⎡⎤=--=-⎣⎦⎰ 旋转体体积()()2222221122ln 333e V e e xdx e πππ⎡⎤=---=+⎣⎦⎰ (18)解:()()1cos 014401d cos sin 1116cos sin 1cos 14415Dxy d d d t t dt πθπσθρθρθρρθθθθ+-= =+=+=⎰⎰⎰⎰⎰⎰(19)解:(I )'''()()2()0f x f x f x +-=对应的特征方程为220r r +-=,r=-2,r=1所以()212xx f x C e C e -=+把()212xx f x C e C e -=+代入''()()2x f x f x e +=,得到()x f x e =(II )同理,当x<0时,0y ''<可知(0,0)点是曲线唯一的拐点。

2012年考研数学二真题及答案

2012年考研数学二真题及答案

2012年考研数学二真题及答案一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上.).(1). 设3(),(1),t x f t y f e π=-⎧⎨=-⎩其中f 可导,且(0)0f '≠,则0t dy dx ==______. (2). 函数2cos y x x =+在[0,]2π上的最大值为______.(3).0x →=______. (4). 21(1)dx x x +∞=+⎰______. (5). 由曲线x y xe =与直线y ex =所围成的图形的面积S =______.二、选择题(本题共5小题,每小题3分,满分15分.在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内.).(1). 当0x →时,sin x x -是2x 的( ).(A). 低阶无穷小 (B). 高阶无穷小(C). 等价无穷小 (D). 同阶但非等价的无穷小(2). 设22 , 0(),0x x f x x x x ⎧≤⎪=⎨+>⎪⎩,则( ). (A). 22 , 0()(),0x x f x x x x ⎧-≤⎪-=⎨-+>⎪⎩ (B). 22(),0() , 0x x x f x x x ⎧-+<⎪-=⎨-≥⎪⎩ (C). 22 , 0(),0x x f x x x x ⎧≤⎪-=⎨->⎪⎩ (D). 22,0() , 0x x x f x x x ⎧-<⎪-=⎨≥⎪⎩ (3). 当1x →时,函数12111x x e x ---的极限( ).(A). 等于2 (B). 等于0(C). 为∞ (D). 不存在但不为∞(4). 设()f x 连续,220()()x F x f t dt =⎰,则()F x '等于( ).(A). 4()f x (B). 24()x f x(C). 42()xf x (D). 22()xf x(5). 若()f x 的导函数是sin x ,则()f x 有一个原函数为( ).(A). 1sin x + (B). 1sin x -(C). 1cos x + (D). 1cos x -三、(本题共5小题,每小题5分,满分25分.).(1). 求123lim()6xx x x-→∞++. (2). 设函数()y y x =由方程1y y xe -=所确定,求220x d y dx =的值.(3).求3. (4).求0π⎰.(5). 求微分方程3()20y x dx xdy --=的通解.四、(本题满分9分).设21,0() , 0x x x f x e x -⎧+<⎪=⎨≥⎪⎩,求31(2)f x dx -⎰.五、(本题满分9分).求微分方程32x y y y xe '''-+=的通解.六、(本题满分9分).计算曲线2ln(1)y x =-上相应于102x ≤≤的一段弧的长度.七、(本题满分9分).求曲线y =的一条切线l ,使该曲线与切线l 及直线0,2x x ==所围成的平面图形面积最小.八、(本题满分9分).已知()0,(0)0f x f ''<=,试证:对任意的二正数1x 和2x ,恒有1212()()()f x x f x f x +<+成立.2012年全国硕士研究生入学统一考试数学二试题解析一、填空题(本题共5小题,每小题3分,满分15分.).(1).【答案】:3(2).【答案】6π(3).【答案】:0 (4).【答案】:1ln 22(5).【答案】:12e - 二、选择题(本题共5小题,每小题3分,满分15分.).(1).【答案】:(B).(2).【答案】:(D).(3).【答案】:(D).(4).【答案】:(C).(5).【答案】:(B).(3).【答案】:322(1)x C + 其中C 为任意常数.方法1:积分的凑分法结合分项法,有(4).【答案】:1)(5).【答案】:315y x =,其中C 为任意常数四、(本题满分9分).分段函数的积分应六、(本题满分9分).由于2ln(1)y x =-, 2222222(1),1,1(1)x x y y x x -+''=+=--2211,(0)12x ds dx x x +==≤≤-, 所以 221/21/2220012(1)11x x s dx dx x x +--==--⎰⎰1/21/21/22000211111112dx dx dx x x x ⎛⎫=-=+- ⎪--+⎝⎭⎰⎰⎰ 1/20111ln ln 3122x x +⎛⎫=-=- ⎪-⎝⎭. 七、(本题满分9分).过曲线上已知点00(,)x y 的切线方程为00()y y k x x -=-,其中当0()y x '存在时,0()k y x '=.如图所示,设曲线上一点(,)t t 处的切线方程为 1()2y t x t t -=-,化简即得 22xt y t =+. 面积 2014()2232x t S t x dx t t t ⎡⎤⎛⎫=+-=+-⎢⎥ ⎪ ⎪⎢⎥⎝⎭⎣⎦⎰, 其一阶导数 3/21/2111()222t S t t t t t---'=-+=. 令()0S t '=解得唯一驻点1t =,而且S '在此由负变正,即()S t 在(,1]-∞单调递减,在[1,)+∞单调递增,在此过程中()S t 在1t =时取极小值也是最小值,所以将1t =代入先前所设的切线方程中,得所求切线方程为122x y =+.八、(本题满分9分).证法一:用拉格朗日中值定理证明.不妨设210x x >>,要证的不等式是 1221()()()(0)f x x f x f x f +-<-.在1[0,]x 上用中值定理,有 11()(0)(),f x f f x ξ'-=10x ξ<<,在212[,]x x x +上用中值定理,又有 1221212()()(),f x x f x f x x x x ηη'+-=<<+,由()0,f x ''<所以()f x '单调减,而12x x ξη<<<,有()()f f ξη''>,所以12211()()()(0)()f x x f x f x f f x +-<-=,O 2即 1212()()()f x x f x f x +<+. 证法二:用函数不等式来证明.要证 11()()(),0f x x f x f x x +<+>. 令辅助函数11()()()()x f x f x f x x ϕ=+-+,则1()()()x f x f x x ϕ'''=-+. 由()0,()f x f x '''<单调减,1()(),()0f x f x x x ϕ'''>+>,由此, 11()(0)()(0)()0(0)x f x f f x x ϕϕ>=+-=>. 改x 为2x 即得证.。

2012年考研数学二真题及答案解析

2012年考研数学二真题及答案解析

2012年全国硕士研究生入学统一考试数学二试题
一、选择题:18小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选 项符合题目要求的,请将所选项前的字母填在答题纸指定位置上.
(1) 曲线渐近线的条数 221
x x y x +=-( )
(A) 0 (B) 1 (C) 2 (D) 3
【答案】C
【考点】函数图形的渐近线
【难易度】★★
【详解】本题涉及到的主要知识点:
(i )当曲线上一点M 沿曲线无限远离原点时,如果M 到一条直线的距离无限趋近于零,那么这条直线称为这条曲线的渐近线。

(ii )渐近线分为水平渐近线(,为常数)、垂直渐近线()和lim ()x f x b →∞=b 0lim ()x x f x →=∞斜渐近线(,为常数)。

lim[()()]0x f x ax b →∞
-+=,a b (iii )注意:如果
(1)不存在;()lim x f x x
→∞(2),但不存在,可断定不存在斜渐近线。

()lim x f x a x
→∞=lim[()]x f x ax →∞-()f x 在本题中,函数的间断点只有.221
x x y x +=-1x =±由于,故是垂直渐近线.1
lim x y →=∞1x =1。

2012年考研数学(二)真题

2012年考研数学(二)真题

lim
x
【解析】
x2 x x2 1
lim
1
1 x
x
1
1 x2
1 ,可得有一条水平渐近线 y 1 ;
lim
x1
x2 x2
x 1
lim
x1
2 x2
1
,可得有一条铅直渐近线
x
1;
lim
x1
x2 x2
x 1
lim
x1
(x
x(x 1) 1)(x 1)
lim
x 1
x
x 1
1 2
,可得
x
1 不是铅直渐近线。
0 1
1 0
1
a
3 阶矩阵
0
a
1 , AT 为 矩 阵 A 的 转 置 , 已 知 R( AT A) = 2 , 且 二 次 型
f = xT AT Ax 。 (1)求实数 a 的值。
(2)求利用正交变换 x Qy 将 f 化为规范形。
2012 年全国硕士研究生招生考试数学(二)答案及解析
一、选择题 1. 【答案】C
xn
,证明
lim
n
xn
存在,并求此极限。
22.(本题满分 11 分)。
1 a 0 0
1
A
0 0
1 0
a 1
0 a
,
1 0
设 a 0 0 1
0 。
(1)计算行列式 A 。
(2)当实数 a 为何值时,方程组 Ax 有无穷多解,并求其通解。
23.(本题满分 11 分)。
1 0 1
A
(2)求曲线
0
的拐点。
20.(本题满分 10 分)。
x ln 1 x cos x 1 证明: 1 x

2012考研数学二真题及答案解析

2012考研数学二真题及答案解析

dy
,所以
=
2x
dx ey +1
(10)计算
lim
x→∞
n
⎛ ⎜⎝
1
1 +n
2
+
22
1 +
n2
+…+
n2
1 +
n2
⎞ ⎟⎠
= ________。
3
π
【答案】:
4
∑ ∫ 【解析】:原式 = lim 1
n→∞ n
n
1
i=1
1
+
⎛ ⎜⎝
i n
⎞2 ⎟⎠
=
1 dx 0 1+ x2
=
arctan x 1 0
三、解答题:15—23 小题,共 94 分.请将解答写在答.题.纸.指定位置上.解答应写出文字说明、证明过程或 演算步骤. (15)(本题满分 10 分)
已知函数 f (x) = 1+ x − 1 ,记 a = lim f (x)
sin x x,
x→0
(1)求 a 的值
(2)若当 x → 0 时, f (x) − a 是 xk 的同阶无穷小,求 k
D
∫∫ ∫ ∫ 【解析】:
xydσ = π dθ 1+cosθ r cosθ ⋅ r sin θ ⋅ rdr
0
0
D
∫ = 1 π sin θ ⋅ cosθ ⋅ (1 + cosθ )4 dθ 40
6
∫ = 16
πθ sin
cos θ
(2 cos2
θ
− 1) cos8
θ

022
2
22
π

2012考研数学二真题及参考答案

2012考研数学二真题及参考答案

2012考研数学二真题及参考答案一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)曲线221x x y x +=-渐近线的条数为()(A )0 (B )1 (C )2 (D )3 【答案】:C【解析】:221lim 1x x xx →+=∞-,所以1x =为垂直的 22lim 11x x xx →∞+=-,所以1y =为水平的,没有斜渐近线 故两条选C (2)设函数2()(1)(2)()xxnx f x e e e n =---,其中n 为正整数,则'(0)f =(A )1(1)(1)!n n ---(B )(1)(1)!nn -- (C )1(1)!n n --(D )(1)!nn - 【答案】:C 【解析】:'222()(2)()(1)(22)()(1)(2)()x x nx x x nx x x nx f x e e e n e e e n e e ne n =--+---+---所以'(0)f =1(1)!n n --(3)设a n >0(n =1,2,…),S n =a 1+a 2+…a n ,则数列(s n )有界是数列(a n )收敛的 (A)充分必要条件. (B)充分非必要条件.(C )必要非充分条件. (D )即非充分地非必要条件. 【答案】:(A)【解析】:由于0na >,则1n n a ∞=∑为正项级数,S n=a 1+a 2+…a n为正项级数1n n a ∞=∑的前n 项和。

正项级数前n 项和有界与正向级数1nn a∞=∑收敛是充要条件。

故选A(4)设2kx keI e=⎰sin x d x (k=1,2,3),则有D(A )I 1< I 2 <I 3. (B) I 2< I 2< I 3.(C) I 1< I 3 <I 1,(D) I 1< I 2< I 3. 【答案】:(D) 【解析】::2sin kx k eI e xdx=⎰看为以k为自变量的函数,则可知()2'sin 0,0,k k I e k k π=≥∈,即可知2sin k x k eI e xdx =⎰关于k 在()0,π上为单调增函数,又由于()1,2,30,π∈,则123I I I <<,故选D(5)设函数f (x,y ) 可微,且对任意x ,y 都 有(,)f x y x∂∂ >0,(,)f x y y ∂∂<0,f (x 1,y 1)<f(x 2,y 2)成立的一个充分条件是(A) x 1> x 2, y 1< y 2. (B) x 1> x 2, y 1>y 1.(C) x 1< x 2, y 1< y 2.(D) x 1< x 2, y 1> y 2.【答案】:(D) 【解析】:(,)0f x y x∂>∂,(,)0f x y y ∂<∂表示函数(,)f x y 关于变量x 是单调递增的,关于变量y 是单调递减的。

2012年考研数学二真题和答案

2012年考研数学二真题和答案

2012年全国硕士研究生入学统一考试数学二试题解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)曲线221x x y x +=-渐近线的条数为()(A )0 (B )1 (C )2 (D )3 【答案】:(C ) 【解析】:221lim1x x x x →+=∞-,所以1x =为垂直渐近线22l i m 11x x x x →∞+=-,所以1y =为水平渐近线,没有斜渐近线,总共两条渐近线,选(C )。

(2)设函数2()(1)(2)()x x nx f x e e e n =--- ,其中n 为正整数,则'(0)f = (A )1(1)(1)!n n --- (B )(1)(1)!n n -- (C )1(1)!n n -- (D )(1)!n n - 【答案】:(C )【解析】:''22()(2)()(1)(2)()x x nx x x nx f x e e e n e e e n ⎡⎤=--+---⎣⎦所以'(0)f =1(1)!n n --,故选(C )。

(3)设0,(1,2,...)n a n >=,1...n n s a a =++,则数列{}n s 有界是数列{}n a 收敛的 (A)充分必要条件.(B)充分非必要条件.(C )必要非充分条件.(D )即非充分地非必要条件.【答案】:(B)【解析】:由于0n a >,{}n s 是单调递增的,可知当数列{}n s 有界时,{}n s 收敛,也即lim n n s →∞是存在的,此时有()11lim lim lim lim 0n n n n n n n n n a s s s s --→∞→∞→∞→∞=-=-=,也即{}n a 收敛。

反之,{}n a 收敛,{}n s 却不一定有界,例如令1n a =,显然有{}n a 收敛,但n s n =是无界的。

2012考研数二真题及解析

2012考研数二真题及解析

2012 年全国硕士研究生入学统一考试数学二试题解析一、选择题:1~ 8 小题,每小题 4 分,共 32 分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸指定位置上 ....x2x ( 1)曲线yx2 1 (A ) 0(C) 2渐近线的条数为()(B) 1(D) 3( 2)设函数 f ( x) (e x1)(e2 x2) (e nx n) ,其中 n 为正整数,则 f ' (0)( A )( 1)n 1(n 1)! ( B)( C)( 1)n 1n! ( D)( 1)n ( n 1)! ( 1)n n!(3)设a n>0(n=1,2, ),S n=a1+a2+ a n,则数列(s n)有界是数列(a n)收敛的(A) 充分必要条件 .(B)充分非必要条件 .(C)必要非充分条件 .(D)即非充分地非必要条件.( 4)设I kk e x2 sinxdx(k=1,2,3),则有 De(A)I1< I2 <I 3. (B) I2< I2< I3.(C) I1< I3 <I 1, (D) I1< I2< I3.( 5)设函数f (x,y)可微,且对任意x,y都有f ( x, y)> 0,f ( x, y)<0,f(x1,y1)<f x y(x2,y2)成立的一个充分条件是(A) x1> x2, y1< y2. (B) x1> x2, y1>y1.(C) x1< x2, y1< y2. (D) x1< x2, y1> y2.( 6)设区域 D 由曲线y sin x, x , y 1, 围成,则x5 y 1 dxdy ( )2(A)(B)2 (C) 2 (D)0 1 1 (7)设 1 0 ,21,3 1 , 41 其中 c 1, c 2 , c 3 , c 4 为任意常数,则下列向量组线性相关c 1 c 2 c 3 c 4的是( )(A ) 1, 2 , 3 (B ) 1, 2 , 4(C ) 1, 3 , 4 (D ) 2, 3 , 41(8)设 A 为 3 阶矩阵, P 为 3 阶可逆矩阵,且P 1AP 1,P 1,2,3, 2Q 1 2, 2, 3 则Q 1AQ ( )1 1( A ) 2 ( B ) 11 22 2( C ) 1 ( D ) 22 1二、填空题: 9 14 小题,每小题 4 分,共 24 分,请将答案写在答题纸 指定位置上 ....( 9)设 y y( x) 是由方程 x 2 y 1 e y 所确定的隐函数,则 ________。

2012年考研数学(二)真题

2012年考研数学(二)真题

(D) 0 0 1
二、填空题(9—14 小题,每小题 4 分,共 24 分)
9.设 y
d2y y(x) 是由方程 x2 y 1 ey 所确定的隐函数,则 dx2
x0
________。
10.
lim
n
n
1
1 n2
22
1
n2
n2
1
n2
________。
11.设
z
f
2. 【答案】A
【解析】 f (0) (11)(1 2)(1 n) 0 ,则
f
'(0)
lim
x0
y(x) x
y(0) 0
lim
x0
(ex
1)(e2x
2)(enx x
n)
lim
x0
x(e2x
2) (enx x
n)
(1 2)(1 n) (1)n1(n 1)!。
3. 【答案】B
【解析】充分性:因为 an 0 ,所以数列 Sn 单调递增,又因为数列{Sn} 有界,所以数列{Sn}
0 1
1 0
1
a
3 阶矩阵
0
a
1 , AT 为 矩 阵 A 的 转 置 , 已 知 R( AT A) = 2 , 且 二 次 型
f = xT AT Ax 。 (1)求实数 a 的值。
(2)求利用正交变换 x Qy 将 f 化为规范形。
2012 年全国硕士研究生招生考试数学(二)答案及解析
一、选择题 1. 【答案】C
(2)求曲线
0
的拐点。
20.(本题满分 10 分)。
x ln 1 x cos x 1 证明: 1 x
x2 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2 0 0 1
2
故选(B)。 二、填空题:9−14 小题,每小题 4 分,共 24 分,请将答案写在答.题.纸.指定位置上.
(9)设 y = y(x) 是由方程 x2 − y +1 =ey 所确定的隐函数,则
【答案】:1
________。
更多考研资料分享+qq810958634
更多考研资料分享+qq810958634
(10)计算
lim
x→∞
n

1
1 + n2
+
22
1 +
n2
+…+
n2
1 +
n2

= ________。
π
【答案】:
4
【解析= 】:原式
∑ lim
n→∞
1 n
n i=1
1+= 1ni 2
∫= 1 dx
0 1+ x2
arc= tan x 1 0

(A)


2

1
1

(B)


1

2
2

(C)


1
2
2

(D)


2
1
【答案】:(B)
1 0 0
1 0 0
【解析】:
Q
=
P

1
1
0

,则
Q
−1
=

−1
1
0

P
−1

0 0 1
0 0 1
c1
c2
c3
c4
的是( )
更多考研资料分享+qq810958634
更多考研资料分享+qq810958634
(A)α1,α2 ,α3
(B)α1,α2 ,α4
(C) α1 , α 3 , α 4
(D)α2 ,α3,α4
【答案】:(C)
0 1 −1
【解析】:由于 (α1,α3,α4 ) =0
>0, ∂y <0,f(x1,y1)<f
(x2,y2)成立的一个充分条件是
(A) x1> x2, y1< y2.
(B) x1> x2, y1>y1.
(C) x1< x2, y1< y2.
(D) x1< x2, y1> y2.
【答案】:(D)
【解析】: ∂f (x, y) > 0 , ∂f (x, y) < 0 表示函数 f (x, y) 关于变量 x 是单调递增的,关于变
∂x
∂y
量 y 是单调递减的。因此,当 x1 < x2, y1 > y2 必有 f (x1, y1) < f (x2, y2 ) ,故选 D
( ) ∫∫ (6)设区域 D 由曲线 y = sin x, x = ± π , y = 1, 围成,则 x5 y −1 dxdy =( ) 2 ( A)π (B)2 (C) − 2 (D) − π
所以 f ' (0) = (−1)n−1n!
(3)设 an>0(n=1,2,…),Sn=a1+a2+…an,则数列(sn)有界是数列(an)收敛的
(A)充分必要条件.
(B)充分非必要条件.
(C)必要非充分条件.
(D)即非充分地非必要条件.
【答案】:(B)
更多考研资料分享+qq810958634
更多考研资料分享+qq810958634
π. 4
(1= 1)设 z
f
ln
∫ (4)设 Ik =
ek x2
e
sinxdx(k=1,2,3),则有 D
(A)I1< I2 <I3.
(B) I2< I2< I3.
(C) I1< I3 <I1,
(D) I1< I2< I3.
【答案】:(D)
∫ 【 解 析 】::
Ik =
k ex2 sin xdx
e
看为以
k
为自变量的函数,则可知
∫ = Ik '
【答案】:(D) 【解析】: 由二重积分的区域对称性,
∫∫ ( ) ∫ ∫ ( ) x5 y − 1 dxdy =
π
2 −π
dx
1 sin x
x5 y − 1 dy = −π
2
0 0 1 −1
(7)设α1 = 0 ,α2 = 1 ,α3 = −1 ,α4 = 1 其中 c1, c2 , c3, c4 为任意常数,则下列向量组线性相关
(A) (−1)n−1(n −1)!
(B) (−1)n (n −1)!
(C) (−1)n−1n!
(D) (−1)n n! 【答案】: C 【解析】: f ' (= x) ex (e2x − 2)(enx − n) + (ex −1)(2e2x − 2)(enx − n) + (ex −1)(e2x − 2)(nenx − n)
ek2 sin k ≥ 0, k ∈(0,π ) ,即可知 Ik =
k ex2 sin xdx 关于 k 在(0,π ) 上为单调增
e
函数,又由于1, 2,3∈(0,π ),则 I1 < I2 < I3,故选 D
∂f (x, y) ∂f (x, y)
(5)设函数 f (x,y) 可微,且对任意 x,y 都 有 ∂x
更多考研资料分享+qq810958634
2012 年全国硕士研究生入学统一考试
数学二试题解析
一、选择题:1~8 小题,每小题 4 分,共 32 分,下列每小题给出的四个选项中,只有一项符合题目要求 的,请将所选项前的字母填在答.题.纸.指定位置上.
(1)曲线
y
=
x2 x2
+x −1
渐近线的条数为()
(A)0 (B)1 (C)2 (D)3
【答案】: C
【解析】: lim x2 + x = ∞ ,所以 x = 1 为垂直的 x→1 x2 −1
lim x2 + x = 1,所以 y = 1为水平的,没有斜渐近线 故两条选 C x→∞ x2 −1
(2)设函数 f (x) =(ex −1)(e2x − 2)(enx − n) ,其中 n 为正整数,则 f ' (0) =
−1
1 −1 1 =c1 −1 1 =0 ,可知α1,α3,α4 线性相关。故选(C)
c1 c3 c4
1

(8)设 A 为
3
阶矩阵, P 为
3




阵,且
P−1 AP
=


1


P
=
(α1,α2,α3 )

2
=Q (α1 + α2 ,α2 ,α3 ) 则 Q−1AQ = ( )
1
1 0 0
1 0 0 1 0 01
1 0 0 1

故 Q−1A −1 1 0 1 1
1
0

= 1
0 0 1
0 0 1 0 0 1
相关文档
最新文档