2011年7月高等教育自学考试28054数学基础江苏省卷试题

合集下载

江苏省高考数学真题含答案.docx

江苏省高考数学真题含答案.docx

2 0 1 1 江 苏 高 考 数 学 试 卷注意事 :考生在答 前 真 本注意事 及各 答 要求1. 本 卷共 4 ,均 非 (第 1 - 第 20 ,共 20 )。

本卷 分 160 分。

考 120 分 。

考 束后, 将本 卷和答 卡一并交回。

2. 答 前 必将自己的姓名、 准考 号用毫米黑色墨水 字笔填写在 卷及答 卡 的 定位置。

3. 真核 考 在答 卡上所粘 的条形 上的姓名、 准考 号与您本人是否相符。

4. 作答 ,必 用毫米黑色墨水 字笔在答 卡上的指定位置作答, 在其他位置作答一律无效。

5. 如需作 , 用 2B 笔 ,写清楚, 条,符号等 加黑加粗。

参考公式:12 n2=1 n i -x2, 其中 1n(1) 本数据 x ,x ,⋯, x的方差 sn i=1( x)x .n i=1(2) (2) 直棱柱的 面 S=ch, 其中 c 底面 , h 高 .(3)棱柱的体 V=Sh ,其中 S 底面 , h 高 . 一 . 填空 :本大 共 14 小 ,每小 5 分,共 70 分, 把答案填写在答 卡的 ....相 位置上。

......1、已知集合 A { 1,2,2,4}, B { 1,0,2},A B _______,2、函数 f ( x) log 5 (2x 1) 的 增区 是 __________3、 复数 i 足 i(z 1)3 2i ( i 是虚数 位), z 的 部是 _________4、根据如 所示的 代 , 当 入 a,b 分 2,3 ,最后 出的 m 的 是 ________Reada ,b If a>bThenm a Else m b EndIf Printm5、从 1,2,3,4 四个数中一次随机取两个数, 其中一个数是另一个的两倍的概 率是 ______6、某老 从星期一到星期五收到信件数分 是 10,6,8,5,6, 数据的方差s 2___7、已知 tan(x) 2, 则 tan x的值为 __________4tan 2x2的图象交于 P 、8、在平面直角坐标系 xOy 中,过坐标原点的一条直线与函数f ( x)Q 两点,则线段 PQ 长的最小值是 ________x9、函数 f ( x)A sin(wx), ( A, w, 是常数, A0, w0) 的部分图象如图所示,则f (0) ____10、已知 e , e 是夹角为2的两个单位向量, a e2 e , bk e e , 若a b0,则1 231212k 的值为2x a, x 1,若 f (1 a) f (1a) ,则 a 的值为11、已知实数 a 0 ,函数 f (x)2a, x1x________12、在平面直角坐标系 xOy 中,已知点 P 是函数 f (x)e x ( x 0) 的图象上的动点, 该图象在 P 处的切线 l 交 y 轴于点 M ,过点 P 作 l 的垂线交 y 轴于点 N ,设线段 MN 的中点的纵坐标为 t ,则 t 的最大值是 _____________ 13、设 1 a 1a 2a 7 ,其中 a 1 , a 3 , a 5 , a 7 成公比为 q 的等比数列, a 2 , a 4 , a 6 成公差为 1 的等差数列,则 q 的最小值是 ________14、设集合 A{( x, y) | m( x 2) 2y 2m 2 , x, y R} ,2B {( x, y) | 2m x y2m 1, x, yR} , 若 A B , 则实数 m 的取值范围是______________二、解答题:本大题共 6 小题,共计 90 分,请在答题卡指定区域内作答,解答时应 写出文字说明、证明过程活盐酸步骤。

江苏2011年高考数学试卷填空题详解

江苏2011年高考数学试卷填空题详解

江苏2011年高考数学试卷填空题详解1、已知集合{1,1,2,4},{1,0,2},A B =-=- 则_______,=⋂B A 解:由交集定义可知,填{}1,2-。

2、函数)12(log )(5+=x x f 的单调增区间是__________ 解:12102x x +>⇒>-,填1,2⎛⎫-+∞ ⎪⎝⎭。

3、设复数z 满足i z i 23)1(+-=+(i 是虚数单位),则z 的实部是_________ 解:32131iz i i-+=-=+,填 1 。

4、根据如图所示的伪代码,当输入b a ,分别为2,3时,最后输出的m 的值是________ Read a ,b If a >b Then m ←a Else m ←b End If Print m解:以上是求最大值,故填 3 。

5、从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个的两倍的概率是______ 解:本题是考查古典概率公式。

基本事件总数是6种,满足条件的有1,2;2,4 两种,填13。

6、某老师从星期一到星期五收到信件数分别是10,6,8,5,6,则该组数据的方差___2=s 解:该组数据的平均数是7,()21169114155s =++++= 7、已知,2)4tan(=+πx 则xx2tan tan 的值为__________解:先求出tan x ,再运用二倍角公式计算,填498、在平面直角坐标系xOy 中,过坐标原点的一条直线与函数xx f 2)(=的图象交于P 、Q 两点,则线段PQ 长的最小值是________方法一:设直线y kx =与曲线2y x =的交点为,P Q ⎛ ⎝()0k >4PQ ==方法二:画图发现当直线为曲线的对称轴时,PQ 的长最小。

(,42y x P Q PQ y x =⎧⎪⇒=⎨=⎪⎩故填4 。

9、函数ϕϕ,,(),sin()(w A wx A x f +=是常数,)0,0>>w A 的部分图象如图所示,则____)0(=f3ππ127解:1412A ==-⨯()0332f ππϕ⇒=∴== 10、已知→→21,e e 是夹角为π32的两个单位向量,,,22121→→→→→→+=-=e e k b e e a 若0=⋅→→b a ,则实数k 的值为________解:()1211,0212022e e a b k k ⎛⎫=-=⇒-+--= ⎪⎝⎭54k ⇒= 11、已知实数0≠a ,函数⎩⎨⎧≥--<+=1,21,2)(x a x x a x x f ,若)1()1(a f a f +=-,则a 的值为________解:()()0321122a a a a a a >⎧⎪⎨-+=-+-⇒=-⎪⎩或()()0312214a a a a a a <⎧⎪⎨---=++⇒=-⎪⎩故填34-12、在平面直角坐标系xOy 中,已知点P 是函数)0()(>=x e x f x的图象上的动点,该图象在P 处的切线l 交y 轴于点M ,过点P 作l 的垂线交y 轴于点N ,设线段MN 的中点的纵坐标为t ,则t 的最大值是_____________解:设切点P ()11,x y ,则切线方程为()111x xy e e x x -=-,易得M ()()110,1,xe x -过点P作l的垂线其方程为()1111x x y e xx e-=--,易得21111111110,,22x x x x x x x N e t e x e e e ⎛⎫⎛⎫+∴=-+ ⎪⎪⎝⎭⎝⎭求导得()()111111111111'2122x x x x x x x t e e x e x e e e --⎛⎫=--+=-+ ⎪⎝⎭,易得11x =是极大值点也是最大值点,故代入11x =得t 的最大值为()112e e -+。

28054数学基础历年真题

28054数学基础历年真题

28054 数学基础历年真题一、选择题(每小题1分)1、设A={x|x=4k-2 ,k ∈Z},则x 为( )。

A 、偶数B 、奇数C 、自然数D 、整数2、概念的划分要求子项( )。

A 、可相容B 、可不相容C 、必须相容D 、必须不相容3、若“P →Q ”与“Q →P ”都为真,则P 是Q 的( )条件。

A 、充分B 、必要C 、充要D 、非充分也非必要4、在有效的第四格三段论推理中,前提与结论中否命题的个数必须( )。

A 、相同B 、不同C 、有大于关系D 、有小于关系5、A ,B 是两个同阶方阵,〇是相应的零矩阵,则错误的矩阵运算是( )。

A 、A- 〇 =AB 、A+B=B+AC 、AB=BAD 、(A T ) -1=(A -1)T6、数列中收敛的是( )。

A 、a n =cos(2n π)B 、a n =n 31C 、a n =n 31D 、an=31-1n )(+ 7、下列各式中正确的是( )。

A 、⎰x 21dx=32x 23+ CB 、⎰2x dx =x 1+C C 、⎰1x dx x 22+=x + arctanx + CD 、⎰sinxdx = cosx+ C 8、甲盒中有2支红笔、4支黑笔,乙盒中有3支红笔、3支黑笔,现任取一支,发现是红笔,则这支红笔原来在甲盒中的概率是( )。

A 、52B 、53C 、73D 、74 9、阿拉伯数字的发明人是( )。

A 、阿拉伯人B 、中国人C 、印度人D 、希腊人10、全称命题的主项是( )。

A 、周延的B 、不周延的C 、可周延也可不周延的D 、视命题内容而定11、“一尺之棰,日取其半,万世不竭”之极限思想来自( )。

A 、《庄子》B 、《墨经》C 、《周髀算经》D 、《几何原本》12、设A 、B 、C 是三个随机事件,则“A 、B 、C 同时发生”可表示为( )。

A 、A ∪B ∪C B 、A ∩B ∩C C 、A ∪(B ∩C)D 、A (B ∪C )13、下列选项中所给量是变量的是( )。

2011年江苏专转本高等数学试卷及答案

2011年江苏专转本高等数学试卷及答案

江苏省2011年普通高校专转本统一考试试卷高等数学试卷一、选择题(本大题共6小题,每小题4分,共24分,在每小题给出的四个选项中,只有一项是符合题目要求的,请把所选项前的字母填在答题卷的指定位置上)1、当x→0时,函数f(x)=e-x-1是函数g(x)=x的。

A、高阶无穷小B、低阶无穷小C、同阶无穷小D、等价无穷小评析:本题是考查无穷小阶的比较,两个无穷小之间的关系通过作“商的极限”可以得出相x2x2x 2与函数g(x)为同阶无穷小,因此选C。

这种题型还是比较常见的,关键是掌握无穷小阶的比较的概念,即有三种关系:高阶、同阶(包括等价)、低阶。

h→0hA、-4B、-2C、2D、4评析:本题是一道经典的关于导数定义的考查题型,即通过导数的定义来构造极限。

h→0h h→0-2hf'(x0)=-2,因此选B。

3、若点(1,-2)是曲线y=ax-bx的拐点,则。

A、a=1,b=3B、a=-3,b=-1C、a=-1,b=-3D、a=4,b=6评析:本题间接地考查了导数的应用,即利用已知极值点或拐点的有关信息反求函数中的参数。

对于多项式函数y=ax-bx,显然满足二阶可导的,因此点(1,-2)一定是使得二阶导数等于零的点,因为y''=6ax-2b,所以y''(1)=6a-2b=0,又点(1,-2)本身也是曲线y=ax-bx2上的点,所以y(1)=a-b=-2,结合两个关于a,b的方程解得a=1,b=3,因此选A。

4、设z=f(x,y)为由方程z1 1 3-3yz+3x=8所确定的函数,则∂z∂y|x=0y=0=。

A、-2 B、2C、-2D、2x2 x xe-x-1e-1x 1应的关系,因为lim=lim=lim=(常数),所以当x→0时函数f(x)2f(x-h)-f(x+h)002、设函数f(x)在点x处可导,且lim=4,则f(x)=。

f(x-h)-f(x+h)f(x-h)-f(x+h)'32323评析:本题考查二元隐函数求偏导,利用的是构造三元函数F (x ,y ,z )=z2y3-3yz+3x-8,则F y =-3z,F z =3z -3y ,于是∂y=- z=- 3z 2 -3y=3z 2 -3y;把x=0,y=0代入到原方程中得z =2,所以 ∂z ∂y | x =0 y =0 = 3⋅2 3⋅2-3⋅0 = 12,因此选B 。

2011江苏高考数学真题(附答案)

2011江苏高考数学真题(附答案)

2011江苏高考数学真题1.如图为函数()1)f x x =<<的图象,其在点(())M t f t ,l l y 处的切线为,与轴和直线1=y 分别交于点P 、Q ,点N (0,1),若△PQN 的面积为b 时的点M 恰好有两个,则b 的取值范围为 ▲ . 解:2. 已知⊙A :221x y +=,⊙B : 22(3)(4)4x y -+-=,P 是平面内一动点,过P 作⊙A 、⊙B 的切线,切点分别为D 、E ,若PE PD =,则P 到坐标原点距离的最小值为 ▲ .解:设)(y x P ,,因为PE PD =,所以22PD PE =,即14)4()3(2222-+=--+-y x y x ,整理得:01143=-+y x ,这说明符合题意的点P 在直线01143=-+y x 上,所以点)(y x P ,到坐标原点距离的最小值即为坐标原点到直线01143=-+y x 的距离,为5113. 等差数列{}n a 各项均为正整数,13a =,前n 项和为n S ,等比数列{}n b 中,11b =,且2264b S =,{}n b 是公比为64的等比数列.求n a 与n b ;解:设{}n a 的公差为d ,{}n b 的公比为q ,则d 为正整数,3(1)n a n d =+-,1n n b q -=依题意有1363(1)22642(6)64n n nda d n d ab q q b q S b d q +++-⎧====⎪⎨⎪=+=⎩①由(6)64d q +=知q 为正有理数,故d 为6的因子1,2,3,6之一,解①得2,8d q == 故132(1)21,8n n n a n n b -=+-=+=4. 在ABC ∆中,2==⋅ (1)求22AC AB +(2)求ABC ∆面积的最大值.解:(1)因为||||2BC AC AB =-=,所以4222=+⋅-,又因为 2AB AC ⋅=,所以228AB AC +=;(2)设||||||AB c AC b BC a ===,,,由(1)知822=+c b ,2=a , 又因为bcbc bc a c b A 22282cos 222=-=-+=,所以A bc A bc S ABC2cos 121sin 21-==∆=222222421c b c b c b ⋅-≤34)2(21222=-+c b , 当且仅当c b a ==时取“=”,所以ABC ∆的面积最大值为3.5. 设等差数列{}n a 的公差为d ,0d >,数列{}n b 是公比为q 等比数列,且110b a =>. (1)若33a b =,75a b =,探究使得n m a b =成立时n m 与的关系; (2)若22a b =,求证:当2>n 时,n n b a <.解:记a b a ==11,则1,)1(-=-+=m m n aq b d n a a ,……………1分(1)由已知得2426a d aq a d aq ⎧+=⎨+=⎩,,消去d 得4232aq aq a -=, 又因为0≠a ,所以02324=+-q q ,所以2122==q q 或,……………5分若12=q ,则0=d ,舍去;……………6分 若22=q ,则2a d =,因此12)1(-=-+⇔=m m n aq a n a b a 1211-=-+⇔m q n , 所以1221-=+m n (m 是正奇数)时,m n b a =;……………8分(2)证明:因为0,0>>a d ,所以111212>+=+===ada d a a ab b q , …………11分2>n 时,1)1(---+=-n n n aq d n a b a =d n q a n )1()1(1-+--=d n q q q q a n )1()1)(1(22-+++++--d n n q a )1()1)(1(-+--<=[]0))(1()1()1(22=--=+--b a n d q a n所以,当n n b a n <>时,2. …………………………16分6. 已知圆O :221x y +=,O 为坐标原点.(1的正方形ABCD 的顶点A 、B 均在圆O 上,C 、D 在圆O 外,当点A 在圆O 上运动时,C 点的轨迹为E . (ⅰ)求轨迹E 的方程;(ⅱ)过轨迹E 上一定点00(,)P x y 作相互垂直的两条直线12,l l ,并且使它们分别与圆O 、轨迹E 相交,设1l 被圆O 截得的弦长为a ,设2l 被轨迹E 截得的弦长为b ,求a b +的最大值.(2)正方形ABCD 的一边AB 为圆O 的一条弦,求线段OC 长度的最值.解:(1)(ⅰ)连结OB ,OA ,因为OA =OB =1,AB =2,所以222AB OB OA =+,所以4OBA π∠=,所以34OBC π∠=,在OBC ∆中,52222=⋅-+=BC OB BC OB OC , 所以轨迹E 是以O 为圆心,5为半径的圆,所以轨迹E 的方程为522=+y x ; (ⅱ)设点O 到直线12l l ,的距离分别为12d d ,,因为21l l ⊥,所以2222212005d d OP x y +==+=, 则22215212d d b a -+-=+,则[])5)(1(2)(64)(222122212d d d d b a --++-=+≤4⎥⎥⎦⎤⎢⎢⎣⎡--⋅++-262)(622212221d d d d =22124[122()]d d -+=4(1210)8-=,当且仅当221222125,15,d d d d ⎧+=⎨-=-⎩,即22219,21,2d d ⎧=⎪⎪⎨⎪=⎪⎩时取“=”,所以b a +的最大值为 (2)设正方形边长为a ,OBA θ∠=,则cos 2a θ=,0,2θπ⎡⎫∈⎪⎢⎣⎭.当A 、B 、C 、D 按顺时针方向时,如图所示,在OBC ∆中,2212cos 2a a OC θπ⎛⎫+-+= ⎪⎝⎭,即OC == ==由2,444θππ5π⎡⎫+∈⎪⎢⎣⎭,此时(1,1]OC ∈; 当A 、B 、C 、D 按逆时针方向时,在OBC ∆中,2212cos 2a a OC θπ⎛⎫+--= ⎪⎝⎭,即OC ====,由2,444θππ3π⎡⎫-∈-⎪⎢⎣⎭,此时1,OC ∈, 综上所述,线段OC 1-1.7. 已知函数()1ln ()f x x a x a R =--∈.(1)若曲线()y f x =在1x =处的切线的方程为330x y --=,求实数a 的值; (2)求证:0)(≥x f 恒成立的充要条件是1a =;(3)若0a <,且对任意(]1,0,21∈x x ,都有121211|()()|4||f x f x x x -≤-,求实数a 的取值范围.另解:042≤--ax x 在(]1,0∈x 上恒成立,设4)(2--=ax x x g ,只需[)0,30041)1(04)0(-∈⇒⎪⎩⎪⎨⎧<≤--=<-=a a a g g .8. 已知函数2()3,()2f x mx g x x x m =+=++. (1)求证:函数()()f x g x -必有零点; (2)设函数()G x =()()1f x g x --(ⅰ)若|()|G x 在[]1,0-上是减函数,求实数m 的取值范围;(ⅱ)是否存在整数,a b ,使得()a G x b ≤≤的解集恰好是[],a b ,若存在,求出,a b 的值;若不存在,说明理由.9. 已知函数()1ax x ϕ=+,a 为正常数. (1)若()ln ()f x x x ϕ=+,且92a =,求函数()f x 的单调增区间;(2)若()|ln |()g x x x ϕ=+,且对任意12,(0,2]x x ∈,12x x ≠,都有2121()()1g x g x x x -<--,求a 的的取值范围.解:(1) 2221(2)1'()(1)(1)a x a x f x x x x x +-+=-=++,∵92a =,令'()0f x >,得2x >,或12x <, ∴函数()f x 的单调增区间为1(0,)2, (2,)+∞.(2)∵2121()()1g x g x x x -<--,∴2121()()10g x g x x x -+<-,∴221121()[()]0g x x g x x x x +-+<-,设()()h x g x x =+,依题意,()h x 在(]0,2上是减函数.当12x ≤≤时, ()ln 1ah x x x x =+++,21'()1(1)a h x x x =-++, 令'()0h x ≤,得:222(1)1(1)33x a x x x x x+≥++=+++对[1,2]x ∈恒成立, 设21()33m x x x x =+++,则21'()23m x x x =+-,∵12x ≤≤,∴21'()230m x x x=+->, ∴()m x 在[1,2]上是增函数,则当2x =时,()m x 有最大值为272,∴272a ≥.当01x <<时, ()ln 1ah x x x x =-+++,21'()1(1)a h x x x =--++, 令'()0h x ≤,得: 222(1)1(1)1x a x x x x x+≥-++=+--, 设21()1t x x x x =+--,则21'()210t x x x=++>, ∴()t x 在(0,1)上是增函数,∴()(1)0t x t <=, ∴0a ≥,综上所述,272a ≥10. (1)设10+<<a b ,若对于x 的不等式()()22ax b x >-的解集中的整数恰有3个,则实数a 的取值范围是 ▲ .(2)若关于x 的不等式()2221x ax -<的解集中的整数恰有3个,则实数a 的取值范围是▲ .解:(1)()3,1(2)⎪⎭⎫ ⎝⎛1649,92511. 已知{}n a 是公差不为0的等差数列,{}n b 是等比数列,其中1122432,1,,2a b a b a b ====,且存在常数α、β,使得n a =log n b αβ+对每一个正整数n 都成立,则βα= ▲ .12. 在直角坐标系平面内两点Q P ,满足条件:①Q P ,都在函数)(x f 的图象上;②Q P ,关于原点对称,则称点对),(Q P 是函数)(x f 的一个“友好点对”(点对),(Q P 与),(P Q 看作同一个“有好点对”).已知函数⎪⎩⎪⎨⎧≥<++=,0,2,0,142)(2x ex x x x f x 则函数)(x f 的“友好点对”有 ▲ 个.13. 已知ABC ∆的三边长c b a ,,满足b a c a c b 22≤+≤+,,则ab的取值范围是 ▲ . 解:⎪⎭⎫ ⎝⎛23,32xyO已知ABC ∆的三边长c b a ,,满足b a c a c b 3232≤+≤+,,则ab的取值范围是 ▲ . 解:⎪⎭⎫ ⎝⎛35,4314. 已知分别以21,d d 为公差的等差数列{}n a ,{}n b ,满足120091,409a b ==. (1)若11=d ,且存在正整数m ,使得200920092-=+m m b a ,求2d 的最小值;(2)若0k a =,1600k b =且数列200921121,,,,,,b b b b a a a k k k k ++-,的前项n 和n S 满足200920129045k S S =+,求 {}n a 的通项公式.解:(1)证明:220092009m m a b +=-,21120092[(1)]2009a m d b md ∴+-=+-,即200940922-+=md m , ……4分2160080d m m ∴=+≥=. 等号当且仅当"1600"mm =即"40"=m 时成立,故40m =时,2min []80d = . ……7分(2)0k a =,1600k b =,120091,409a b ===++2)(1k a a k 2)12009)((2009+-+k b b k 2009(2010)22k k -=+,…10分 200920129045k S S =+1()201290452k a a k +=+=904522012+k201290452k ∴⋅+2009(2010)22k k -=+40202009201018090k ∴=⨯-,220099k ∴=-,1000k ∴= ……13分故得1,011000==a a 又,11999d ∴=-,1210001(1)999999n a a n d n ∴=+-=-,因此{}n a 的通项公式为n a n 99919991000-=. ……15分15. 已知函数)(3ln )(R a ax x a x f ∈--=. (1)当1a =时,求函数)(x f 的单调区间;(2)若函数)(x f y =的图像在点))2(,2(f 处的切线的倾斜角为︒45,问:m 在什么范围取值时,对于任意的[]2,1∈t ,函数⎥⎦⎤⎢⎣⎡++=)('2)(23x f m x x x g 在区间)3,(t 上总存在极值?(3)当2=a 时,设函数32)2()(-+--=xep x p x h ,若在区间[]e ,1上至少存在一个0x ,使得)()(00x f x h >成立,试求实数p 的取值范围. 24,1e e ⎛⎫+∞ ⎪-⎝⎭16. 如图,在△ABC 中,已知3=AB ,6=AC ,7BC =,AD 是BAC ∠平分线. (1)求证:2DC BD =; (2)求AB DC ⋅的值.(1)在ABD ∆中,由正弦定理得sin sin AB BDADB BAD=∠∠①, 在ACD ∆中,由正弦定理得sin sin AC DCADC CAD=∠∠②, 所以BAD CAD ∠=∠,sin sin BAD CAD ∠=∠, sin sin()sin ADB ADC ADC π∠=-∠=∠, 由①②得36BD AB DC AC ==,所以2DC BD =(2)因为2DC BD =,所以BC DC 32=. 在△ABC 中,因为22222237611cos 223721AB BC AC B AB BC +-+-===⋅⨯⨯, 所以22()||||cos()33AB DC AB BC AB BC B π⋅=⋅=⋅- 2112237()=⨯⨯⨯-=- AB CD17. 已知数列{}n a 的前n 项和为n S ,数列是公比为2的等比数列.(1)证明:数列{}n a 成等比数列的充要条件是13a =;(2)设n n n n a b )1(5--=(*∈N n ),若1+<n n b b 对任意*∈N n 成立,求1a 的取值范围.18. 已知分别以1d 和2d 为公差的等差数列{}n a 和{}n b 满足181=a ,3614=b .(1)若181=d ,且存在正整数m ,使得45142-=+m mb a ,求证:1082>d ; (2)若0==k k b a ,且数列142121b b b a a a k k k ,,,,,,, ++的前n 项和n S 满足k S S 214=,求数列{}n a 和{}n b 的通项公式;(3)在(2)的条件下,令0>==a a d a c n n b n a n ,,,且1≠a ,问不等式n n n n d c d c +≤+1是否对一切正整数n 都成立?请说明理由.19. 若椭圆)0(12222>>=+b a by a x 过点(-3,2),离心率为33,⊙O 的圆心为原点,直径为椭圆的短轴,⊙M 的方程为4)6()8(22=-+-y x ,过⊙M 上任一点P 作⊙O 的切线P A 、PB ,切点为A 、B . (1)求椭圆的方程;(2)若直线P A 与⊙M 的另一交点为Q ,当弦PQ 最大时,求直线P A 的直线方程; (3)求OB OA ⋅的最大值与最小值.(1)1101522=+y x ;(2)直线PA 的方程为:0509130103=--=+-y x y x 或 (3)20. 已知集合{}k x x x x x x D =+>>=212121,0,0),(,其中k 为正常数. (1)设21x x u =,求u 的取值范围;(2)求证:当1≥k 时,不等式⎪⎭⎫⎝⎛-≤⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-k k x x x x 22112211对任意D x x ∈),(21恒成立; (3)求使不等式⎪⎭⎫⎝⎛-≥⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-k k x x x x 22112211对任意D x x ∈),(21恒成立的k 取值范围.21. 设函数x m mx x x f )4(31)(223-+-=,R x ∈,且函数)(x f 有三个互不相同的零点βα,,0,且βα<,若对任意的[]βα,∈x ,都有)1()(f x f ≥成立,求实数m 的取值范围. 解:。

2011年江苏省高考数学试卷及答案

2011年江苏省高考数学试卷及答案

2011年江苏省高考数学试卷一、填空题(共14小题,每小题5分,满分70分)1.(5分)已知集合A={﹣1,1,2,4},B={﹣1,0,2},则A∩B=.2.(5分)函数f(x)=log5(2x+1)的单调增区间是.3.(5分)设复数z满足i(z+1)=﹣3+2i(i为虚数单位),则z的实部是.4.(5分)根据如图所示的伪代码,当输入a,b分别为2,3时,最后输出的m 的值为.5.(5分)从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个的两倍的概率是.6.(5分)某老师从星期一到星期五收到信件数分别是10,6,8,5,6,则该组数据的方差s2=.7.(5分)已知,则的值为.8.(5分)在平面直角坐标系xOy中,过坐标原点的一条直线与函数的图象交于P、Q两点,则线段PQ长的最小值是.9.(5分)函数f(x)=Asin(ωx+φ),(A,ω,φ是常数,A>0,ω>0)的部分图象如图所示,则f(0)=.10.(5分)已知,是夹角为的两个单位向量,=﹣2,=k+,若•=0,则实数k的值为.11.(5分)已知实数a≠0,函数f(x)=,若f(1﹣a)=f(1+a),则a的值为.12.(5分)在平面直角坐标系xOy中,已知P是函数f(x)=e x(x>0)的图象上的动点,该图象在点P处的切线l交y轴于点M,过点P作l的垂线交y轴于点N,设线段MN的中点的纵坐标为t,则t的最大值是.13.(5分)设1=a1≤a2≤…≤a7,其中a1,a3,a5,a7成公比为q的等比数列,a2,a4,a6成公差为1的等差数列,则q的最小值是.14.(5分)设集合,B={(x,y)|2m≤x+y≤2m+1,x,y∈R},若A∩B≠∅,则实数m的取值范围是.二、解答题(共9小题,满分120分)15.(14分)在△ABC中,角A,B,C的对边分别是a,b,c.(1)若sin(A+)=2cosA,求A的值.(2)若cosA=,b=3c,求sinC的值.16.(14分)如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点,求证:(1)直线EF∥平面PCD;(2)平面BEF⊥平面PAD.17.(14分)请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上,是被切去的等腰直角三角形斜边的两个端点,设AE=FB=x(cm).(1)若广告商要求包装盒侧面积S(cm2)最大,试问x应取何值?(2)若广告商要求包装盒容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.18.(16分)如图,在平面直角坐标系xOy中,M、N分别是椭圆的顶点,过坐标原点的直线交椭圆于P,A两点,其中点P在第一象限,过P作x轴的垂线,垂足为C,连接AC,并延长交椭圆于点B,设直线PA的斜率为k (1)若直线PA平分线段MN,求k的值;(2)当k=2时,求点P到直线AB的距离d;(3)对任意k>0,求证:PA⊥PB.19.(16分)已知a,b是实数,函数f(x)=x3+ax,g(x)=x2+bx,f′(x)和g′(x)是f(x),g(x)的导函数,若f′(x)g′(x)≥0在区间I上恒成立,则称f(x)和g(x)在区间I上单调性一致(1)设a>0,若函数f(x)和g(x)在区间[﹣1,+∞)上单调性一致,求实数b的取值范围;(2)设a<0,且a≠b,若函数f(x)和g(x)在以a,b为端点的开区间上单调性一致,求|a﹣b|的最大值.20.(16分)设M为部分正整数组成的集合,数列{a n}的首项a1=1,前n项和为S n,已知对任意整数k∈M,当整数n>k时,S n+k+S n﹣k=2(S n+S k)都成立(1)设M={1},a2=2,求a5的值;(2)设M={3,4},求数列{a n}的通项公式.21.(10分)A.选修4﹣1:几何证明选讲如图,圆O1与圆O2内切于点A,其半径分别为r1与r2(r1>r2).圆O1的弦AB 交圆O2于点C (O1不在AB上).求证:AB:AC为定值.B.选修4﹣2:矩阵与变换已知矩阵,向量.求向量,使得A2=.C.选修4﹣4:坐标系与参数方程在平面直角坐标系xOy中,求过椭圆(φ为参数)的右焦点,且与直线(t为参数)平行的直线的普通方程.D.选修4﹣5:不等式选讲(本小题满分10分)解不等式:x+|2x﹣1|<3.22.(10分)如图,在正四棱柱ABCD﹣A1B1C1D1中,AA1=2,AB=1,点N是BC 的中点,点M在CC1上.设二面角A1﹣DN﹣M的大小为θ,(1)当θ=90°时,求AM的长;(2)当时,求CM的长.23.(10分)设整数n≥4,P(a,b)是平面直角坐标系xOy中的点,其中a,b ∈{1,2,3,…,n},a>b.(1)记A n为满足a﹣b=3的点P的个数,求A n;(2)记B n为满足是整数的点P的个数,求B n.2011年江苏省高考数学试卷参考答案与试题解析一、填空题(共14小题,每小题5分,满分70分)1.(5分)(2011•江苏)已知集合A={﹣1,1,2,4},B={﹣1,0,2},则A∩B={﹣1,2} .【分析】根据已知中集合A={﹣1,1,2,4},B={﹣1,0,2},根据集合交集运算法则我们易给出A∩B【解答】解:∵集合A={﹣1,1,2,4},B={﹣1,0,2},∴A∩B={﹣1,2}故答案为:{﹣1,2}2.(5分)(2011•江苏)函数f(x)=log5(2x+1)的单调增区间是(﹣,+∞).【分析】要求函数的单调区间,我们要先求出函数的定义域,然后根据复合函数“同增异减”的原则,即可求出函数的单调区间.【解答】解:要使函数的解析有有意义则2x+1>0故函数的定义域为(﹣,+∞)由于内函数u=2x+1为增函数,外函数y=log5u也为增函数故函数f(x)=log5(2x+1)在区间(﹣,+∞)单调递增故函数f(x)=log5(2x+1)的单调增区间是(﹣,+∞)故答案为:(﹣,+∞)3.(5分)(2011•江苏)设复数z满足i(z+1)=﹣3+2i(i为虚数单位),则z的实部是1.【分析】复数方程两边同乘i,化简后移项可得复数z,然后求出它的实部.【解答】解:因为i(z+1)=﹣3+2i,所以i•i(z+1)=﹣3i+2i•i,所以z+1=3i+2,z=1+3i它的实部为:1;故答案为:14.(5分)(2011•江苏)根据如图所示的伪代码,当输入a,b分别为2,3时,最后输出的m的值为3.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是计算分段函数m=的值,代入a=2,b=3,即可得到答案.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是计算分段函数m=的值,∵a=2<b=3,∴m=3故答案为:35.(5分)(2011•江苏)从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个的两倍的概率是.【分析】根据题意,首先用列举法列举从1,2,3,4这四个数中一次随机取两个数的全部情况,可得其情况数目,进而可得其中一个数是另一个的两倍的情况数目,由古典概型的公式,计算可得答案.【解答】解:从1,2,3,4这四个数中一次随机取两个数,有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共6种情况;其中其中一个数是另一个的两倍的有两种,即(1,2),(2,4);则其概率为=;故答案为:.6.(5分)(2011•江苏)某老师从星期一到星期五收到信件数分别是10,6,8,5,6,则该组数据的方差s2= 3.2.【分析】首先根据所给的这组数据求出这组数据的平均数,再利用求方差的公式,代入数据求出这组数据的方差,得到结果.【解答】解:∵收到信件数分别是10,6,8,5,6,∴收到信件数的平均数是=7,∴该组数据的方差是,故答案为:3.27.(5分)(2011•江苏)已知,则的值为.【分析】先利用两角和的正切公式求得tanx的值,从而求得tan2x,即可求得.【解答】解:∵,∴=2,解得tanx=;∴tan2x===∴==故答案为:.8.(5分)(2011•江苏)在平面直角坐标系xOy中,过坐标原点的一条直线与函数的图象交于P、Q两点,则线段PQ长的最小值是4.【分析】由题意和函数的图象关于原点对称知当过原点的直线的斜率是1时,直线与函数图形的交点之间的距离最短,写出直线的方程,求出直线与函数的交点坐标,利用两点之间的距离公式得到结果.【解答】解:由题意知当过原点的直线的斜率是1时,直线与函数图形的交点之间的距离最短,而y=x与y=的两个交点的坐标是(,)(﹣,﹣),∴根据两点之间的距离公式得到|PQ|===4,故答案为:49.(5分)(2011•江苏)函数f(x)=Asin(ωx+φ),(A,ω,φ是常数,A>0,ω>0)的部分图象如图所示,则f(0)=.【分析】根据已知的函数图象,我们根据函数图象过(,0),(,﹣)点,我们易结合A>0,w>0求出满足条件的A、ω、φ的值,进而求出满足条件的函数f(x)的解析式,将x=0代入即可得到f(0)的值.【解答】解:由的图象可得函数的周期T满足=解得T=π=又∵ω>0,故ω=2又∵函数图象的最低点为(,﹣)故A=且sin(2×+φ)=﹣即+φ=故φ=∴f(x)=sin(2x+)∴f(0)=sin=故答案为:10.(5分)(2011•江苏)已知,是夹角为的两个单位向量,=﹣2,=k+,若•=0,则实数k的值为.【分析】利用向量的数量积公式求出;利用向量的运算律求出,列出方程求出k.【解答】解:∵是夹角为的两个单位向量∴∴==∵∴解得故答案为:11.(5分)(2011•江苏)已知实数a≠0,函数f(x)=,若f (1﹣a)=f(1+a),则a的值为﹣.【分析】对a分类讨论判断出1﹣a,1+a在分段函数的哪一段,代入求出函数值;解方程求出a.【解答】解:当a>0时,1﹣a<1,1+a>1∴2(1﹣a)+a=﹣1﹣a﹣2a解得a=舍去当a<0时,1﹣a>1,1+a<1∴﹣1+a﹣2a=2+2a+a解得a=故答案为12.(5分)(2011•江苏)在平面直角坐标系xOy中,已知P是函数f(x)=e x(x >0)的图象上的动点,该图象在点P处的切线l交y轴于点M,过点P作l的垂线交y轴于点N,设线段MN的中点的纵坐标为t,则t的最大值是.【分析】先设切点坐标为(m,e m),然后根据导数的几何意义求出函数f(x)在x=m处的导数,从而求出切线的斜率,求出切线方程,从而求出点M的纵坐标,同理可求出点N的纵坐标,将t用m表示出来,最后借助导数的方法求出函数的最大值即可.【解答】解:设切点坐标为(m,e m)∴该图象在点P处的切线l的方程为y﹣e m=e m(x﹣m)令x=0,解得y=(1﹣m)e m过点P作l的垂线的切线方程为y﹣e m=﹣e﹣m(x﹣m)令x=0,解得y=e m+me﹣m∴线段MN的中点的纵坐标为t=[(2﹣m)e m+me﹣m]t'=[﹣e m+(2﹣m)e m+e﹣m﹣me﹣m],令t'=0解得:m=1当m∈(0,1)时,t'>0,当m∈(1,+∞)时,t'<0∴当m=1时t取最大值故答案为:13.(5分)(2011•江苏)设1=a1≤a2≤…≤a7,其中a1,a3,a5,a7成公比为q 的等比数列,a2,a4,a6成公差为1的等差数列,则q的最小值是.【分析】利用等差数列的通项公式将a6用a2表示,求出a6的最小值进一步求出a7的最小值,利用等比数列的通项求出公比的范围.【解答】解:方法1:∵1=a1≤a2≤…≤a7;a2,a4,a6成公差为1的等差数列,∴a6=a2+2≥3,∴a6的最小值为3,∴a7的最小值也为3,此时a1=1且a1,a3,a5,a7成公比为q的等比数列,必有q>0,∴a7=a1q3≥3,∴q3≥3,q≥,方法2:由题意知1=a1≤a2≤…≤a7;中a1,a3,a5,a7成公比为q的等比数列,a2,a4,a6成公差为1的等差数列,得,所以,即q3﹣2≥1,所以q3≥3,解得q≥,故q的最小值是:.故答案为:.14.(5分)(2011•江苏)设集合,B={(x,y)|2m≤x+y≤2m+1,x,y∈R},若A∩B≠∅,则实数m的取值范围是[,2+] .【分析】根据题意可把问题转换为圆与直线有交点,即圆心到直线的距离小于或等于半径,进而联立不等式组求得m的范围.【解答】解:依题意可知,若A∩B≠∅,则A≠∅,必有,解可得m≤0或m≥,此时集合A表示圆环内点的集合或点(2,0),集合B表示与x+y=0平行的一系列直线的集合,要使两集合不为空集,需至少一条直线与圆有交点或点在某一条直线上,①m=0时,A={(2,0)},B={(x,y)|0≤x+y≤1},此时A∩B=∅,不合题意;②当m<0时,有||<﹣m或||<﹣m;则有﹣m>﹣m,或﹣m>﹣m,又由m<0,则(﹣1)m<,可得A∩B=∅,不合题意;③当m≥时,有||≤m或||≤m,解可得:2﹣≤m≤2+,1﹣≤m≤1+,又由m≥,则m的范围是[,2+];综合可得m的范围是[,2+];故答案为[,2+].二、解答题(共9小题,满分120分)15.(14分)(2011•江苏)在△ABC中,角A,B,C的对边分别是a,b,c.(1)若sin(A+)=2cosA,求A的值.(2)若cosA=,b=3c,求sinC的值.【分析】(1)利用两角和的正弦函数化简,求出tanA,然后求出A的值即可.(2)利用余弦定理以及b=3c,求出a与c 的关系式,利用正弦定理求出sinC 的值.【解答】解:(1)因为,所以sinA=,所以tanA=,所以A=60°(2)由及a2=b2+c2﹣2bccosA得a2=b2﹣c2故△ABC是直角三角形且B=所以sinC=cosA=16.(14分)(2011•江苏)如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点,求证:(1)直线EF∥平面PCD;(2)平面BEF⊥平面PAD.【分析】(1)要证直线EF∥平面PCD,只需证明EF∥PD,EF不在平面PCD中,PD⊂平面PCD即可.(2)连接BD,证明BF⊥AD.说明平面PAD∩平面ABCD=AD,推出BF⊥平面PAD;然后证明平面BEF⊥平面PAD.【解答】证明:(1)在△PAD中,因为E,F分别为AP,AD的中点,所以EF∥PD.又因为EF不在平面PCD中,PD⊂平面PCD所以直线EF∥平面PCD.(2)连接BD.因为AB=AD,∠BAD=60°.所以△ABD为正三角形.因为F是AD的中点,所以BF⊥AD.因为平面PAD⊥平面ABCD,BF⊂平面ABCD,平面PAD∩平面ABCD=AD,所以BF⊥平面PAD.又因为BF⊂平面EBF,所以平面BEF⊥平面PAD.17.(14分)(2011•江苏)请你设计一个包装盒,如图所示,ABCD是边长为60cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上,是被切去的等腰直角三角形斜边的两个端点,设AE=FB=x (cm).(1)若广告商要求包装盒侧面积S(cm2)最大,试问x应取何值?(2)若广告商要求包装盒容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.【分析】(1)可设包装盒的高为h(cm),底面边长为a(cm),写出a,h与x 的关系式,并注明x的取值范围.再利用侧面积公式表示出包装盒侧面积S关于x的函数解析式,最后求出何时它取得最大值即可;(2)利用体积公式表示出包装盒容积V关于x的函数解析式,最后利用导数知识求出何时它取得的最大值即可.【解答】解:设包装盒的高为h(cm),底面边长为a(cm),则a=x,h=(30﹣x),0<x<30.(1)S=4ah=8x(30﹣x)=﹣8(x﹣15)2+1800,∴当x=15时,S取最大值.(2)V=a2h=2(﹣x3+30x2),V′=6x(20﹣x),由V′=0得x=20,当x∈(0,20)时,V′>0;当x∈(20,30)时,V′<0;∴当x=20时,包装盒容积V(cm3)最大,此时,.即此时包装盒的高与底面边长的比值是.18.(16分)(2011•江苏)如图,在平面直角坐标系xOy中,M、N分别是椭圆的顶点,过坐标原点的直线交椭圆于P,A两点,其中点P在第一象限,过P作x轴的垂线,垂足为C,连接AC,并延长交椭圆于点B,设直线PA的斜率为k(1)若直线PA平分线段MN,求k的值;(2)当k=2时,求点P到直线AB的距离d;(3)对任意k>0,求证:PA⊥PB.【分析】(1)由题设写出点M,N的坐标,求出线段MN中点坐标,根据线PA 过原点和斜率公式,即可求出k的值;(2)写出直线PA的方程,代入椭圆,求出点P,A的坐标,求出直线AB的方程,根据点到直线的距离公式,即可求得点P到直线AB的距离d;(3)要证PA⊥PB,只需证直线PB与直线PA的斜率之积为﹣1,根据题意求出它们的斜率,即证的结果.【解答】解:(1)由题设知,a=2,b=,故M(﹣2,0),N(0,﹣),所以线段MN中点坐标为(﹣1,﹣).由于直线PA平分线段MN,故直线PA过线段MN的中点,又直线PA过原点,所以k=.(2)直线PA的方程为y=2x,代入椭圆方程得,解得x=±,因此P(,),A(﹣,﹣)于是C(,0),直线AC的斜率为1,故直线AB的方程为x﹣y﹣=0.因此,d=.(3)设P(x1,y1),B(x2,y2),则x1>0,x2>0,x1≠x2,A(﹣x1,﹣y1),C(x1,0).设直线PB,AB的斜率分别为k1,k2.因为C在直线AB上,所以k2=,从而kk1+1=2k1k2+1=2•===.因此kk1=﹣1,所以PA⊥PB.19.(16分)(2011•江苏)已知a,b是实数,函数f(x)=x3+ax,g(x)=x2+bx,f′(x)和g′(x)是f(x),g(x)的导函数,若f′(x)g′(x)≥0在区间I上恒成立,则称f(x)和g(x)在区间I上单调性一致(1)设a>0,若函数f(x)和g(x)在区间[﹣1,+∞)上单调性一致,求实数b的取值范围;(2)设a<0,且a≠b,若函数f(x)和g(x)在以a,b为端点的开区间上单调性一致,求|a﹣b|的最大值.【分析】(1)先求出函数f(x)和g(x)的导函数,再利用函数f(x)和g(x)在区间[﹣1,+∞)上单调性一致即f′(x)g′(x)≥0在[﹣1,+∞)上恒成立,以及3x2+a>0,来求实数b的取值范围;(2)先求出f′(x)=0的根以及g′(x)=0的根,再分别求出两个函数的单调区间,综合在一起看何时函数f(x)和g(x)在以a,b为端点的开区间上单调性一致,进而求得|a﹣b|的最大值.【解答】解:f′(x)=3x2+a,g′(x)=2x+b.(1)由题得f′(x)g′(x)≥0在[﹣1,+∞)上恒成立.因为a>0,故3x2+a>0,进而2x+b≥0,即b≥﹣2x在[﹣1,+∞)上恒成立,所以b≥2.故实数b的取值范围是[2,+∞)(2)令f′(x)=0,得x=.若b>0,由a<0得0∈(a,b).又因为f′(0)g′(0)=ab<0,所以函数f(x)和g(x)在(a,b)上不是单调性一致的.因此b≤0.现设b≤0,当x∈(﹣∞,0)时,g′(x)<0;当x∈(﹣∝,﹣)时,f′(x)>0.因此,当x∈(﹣∝,﹣)时,f′(x)g′(x)<0.故由题设得a≥﹣且b≥﹣,从而﹣≤a<0,于是﹣<b≤0,因此|a﹣b|≤,且当a=﹣,b=0时等号成立,又当a=﹣,b=0时,f′(x)g′(x)=6x(x2﹣),从而当x∈(﹣,0)时f′(x)g′(x)>0.故函数f(x)和g(x)在(﹣,0)上单调性一致,因此|a﹣b|的最大值为.20.(16分)(2011•江苏)设M为部分正整数组成的集合,数列{a n}的首项a1=1,前n项和为S n,已知对任意整数k∈M,当整数n>k时,S n+k+S n﹣k=2(S n+S k)都成立(1)设M={1},a2=2,求a5的值;(2)设M={3,4},求数列{a n}的通项公式.【分析】(1)由集合M的元素只有一个1,得到k=1,所以当n大于1即n大于等于2时,S n+S n﹣1=2(S n+S1)都成立,变形后,利用S n+1﹣S n=a n+1,及a1=1化+1简,得到当n大于等于2时,此数列除去首项后为一个等差数列,根据第2项的值和确定出的等差写出等差数列的通项公式,因为5大于2,所以把n=5代入通项公式即可求出第5项的值;(2)当n大于k时,根据题意可得S n+S n﹣k=2(S n+S k),记作①,把n换为n+1,+k得到一个关系式记作②,②﹣①后,移项变形后,又k等于3或4得到当n大于,a n﹣3,a n,a n+3,a n+6成等等于8时此数列每隔3项或4项成等差数列,即a n﹣6,a n﹣2,a n+2,差数列,根据等差数列的性质得到一个关系式,记作(*),且a n﹣6a n+6也成等差数列,又根据等差数列的性质得到另外一个关系式,等量代换得到a n+2﹣a n=a n﹣a n﹣2,得到当n大于等于9时,每隔两项成等差数列,设出等差数列的四项,根据等差数列的性质化简变形,设d=a n﹣a n﹣1,从而得到当n大于等于2小于等于8时,n+6大于等于8,把n+6代入(*)中,得到一个关系式,同时把n+7也代入(*)得到另外一个关系式,两者相减后根据设出的d=a n﹣a n﹣1,经过计算后,得到n大于等于2时,d=a n﹣a n﹣1都成立,从而把k=3和k=4代入到已知的等式中,化简后得到d与前3项的和及d与前4项和的关系式,两关系式相减即可表示出第4项的值,根据d=a n﹣a n﹣1,同理表示出第3项,第2项及第1项,得到此数列为等差数列,由首项等于1即可求出d的值,根据首项和等差写出数列的通项公式即可.+S n﹣1=2(S n+S1),【解答】解:(1)由M={1},根据题意可知k=1,所以n≥2时,S n+1即(S n﹣S n)﹣(S n﹣S n﹣1)=2S1,又a1=1,+1则a n﹣a n=2a1=2,又a2=2,+1所以数列{a n}除去首项后,是以2为首项,2为公差的等差数列,故当n≥2时,a n=a2+2(n﹣2)=2n﹣2,所以a5=8;(2)根据题意可知当k∈M={3,4},且n>k时,S n+S n﹣k=2(S n+S k)①,且S n+1+k+S n+1﹣k=2(S n+1+S k)②,+k﹣S n+k)+(S n+1﹣k﹣S n﹣k)=2(S n+1﹣S n),②﹣①得:(S n+1+k即a n+a n+1﹣k=2a n+1,可化为:a n+1+k﹣a n+1=a n+1﹣a n+1﹣k+1+k,a n﹣3,a n,a n+3,a n+6成等差数列,且a n﹣6,a n﹣2,a n+2,a n+6所以n≥8时,a n﹣6也成等差数列,从而当n≥8时,2a n=a n﹣3+a n+3=a n﹣6+a n+6,(*)且a n﹣2+a n+2=a n﹣6+a n+6,所以当n≥8时,2a n=a n﹣2+a n+2,即a n+2﹣a n=a n﹣a n﹣2,,a n﹣1,a n+1,a n+3成等差数列,从而a n﹣3+a n+3=a n﹣1+a n+1,于是得到当n≥9时,a n﹣3由(*)式可知:2a n=a n﹣1+a n+1,即a n+1﹣a n=a n﹣a n﹣1,当n≥9时,设d=a n﹣a n﹣1,=a n+a n+12,得到则当2≤n≤8时,得到n+6≥8,从而由(*)可知,2a n+62a n+7=a n+1+a n+13,﹣a n+6)=a n+1﹣a n+(a n+13﹣a n+12),两式相减得:2(a n+7则a n﹣a n=2d﹣d=d,+1因此,a n﹣a n﹣1=d对任意n≥2都成立,+S n﹣k﹣2S n=2S k,可化为:(S n+k﹣S n)﹣(S n﹣S n﹣k)=2S k,又由S n+k﹣S n)﹣(S n﹣S n﹣3)=9d=2S3;同理当k=4时,得到16d=2S4,当k=3时,(S n+3两式相减得:2(S4﹣S3)=2a4=16d﹣9d=7d,解得a4=d,因为a4﹣a3=d,解得a3=d,同理a2=d,a1=,则数列{a n}为等差数列,由a1=1可知d=2,所以数列{a n}的通项公式为a n=1+2(n﹣1)=2n﹣1.21.(10分)(2011•江苏)A.选修4﹣1:几何证明选讲如图,圆O1与圆O2内切于点A,其半径分别为r1与r2(r1>r2).圆O1的弦AB 交圆O2于点C (O1不在AB上).求证:AB:AC为定值.B.选修4﹣2:矩阵与变换已知矩阵,向量.求向量,使得A2=.C.选修4﹣4:坐标系与参数方程在平面直角坐标系xOy中,求过椭圆(φ为参数)的右焦点,且与直线(t为参数)平行的直线的普通方程.D.选修4﹣5:不等式选讲(本小题满分10分)解不等式:x+|2x﹣1|<3.【分析】A、如图,利用EC∥DB,AB:AC=AD:AE=2r1:2r2,证出结论.B、设向量=,由A2=,利用矩阵的运算法则,用待定系数法可得x 和y 的值,从而求得向量.C、把椭圆的参数方程化为普通方程,求出右焦点的坐标,把直线参数方程化为普通方程,求出斜率,用点斜式求得所求直线的方程.D、原不等式可化为,或,分别解出这两个不等式组的解集,再把解集取并集.【解答】解:A、如图:连接AO1并延长,交两圆于D,E,则O2在AD上,根据直径对的圆周角等于90°可得,∠ACE=∠ABD=90°,∴EC∥DB,∴AB:AC=AD:AE=2r1:2r2=r1:r2为定值.B、A2==,设向量=,由A2=可得=,∴,解得x=﹣1,y=2,∴向量=.C、椭圆(φ为参数)的普通方程为+=1,右焦点为(4,0),直线(t为参数)即x﹣2 y+2=0,斜率等于,故所求的直线方程为y﹣0=(x﹣4),即x﹣2 y﹣4=0.D、原不等式可化为,或,解得≤x<,或﹣2<x<,故不等式的解集为{x|﹣2<x<}.22.(10分)(2011•江苏)如图,在正四棱柱ABCD﹣A1B1C1D1中,AA1=2,AB=1,点N是BC的中点,点M在CC1上.设二面角A1﹣DN﹣M的大小为θ,(1)当θ=90°时,求AM的长;(2)当时,求CM的长.【分析】(1)建立如图所示的空间直角坐标系,D﹣xyz,设CM=t(0≤t≤2),通过,求出平面DMN的法向量为,,求出平面A1DN的法向量为,推出(1)利用θ=90°求出M的坐标,然后求出AM的长.(2)利用cos=以及,求出CM 的长.【解答】解:建立如图所示的空间直角坐标系,D﹣xyz,设CM=t(0≤t≤2),则各点的坐标为A(1,0,0),A1(1,0,2),N(,1,0),M(0,1,t);所以=(,1,0).=(1,0,2),=(0,1,t)设平面DMN的法向量为=(x1,y1,z1),则,,即x1+2y1=0,y1+tz1=0,令z1=1,则y1=﹣t,x1=2t所以=(2t,﹣t,1),设平面A1DN的法向量为=(x2,y2,z2),则,,即x2+2z2=0,x2+2y2=0,令z2=1则y2=1,x2=﹣2所以=(﹣2,1,1),(1)因为θ=90°,所以解得t=从而M(0,1,),所以AM=(2)因为,所以,cos==因为=θ或π﹣θ,所以=解得t=0或t=根据图形和(1)的结论,可知t=,从而CM的长为.23.(10分)(2011•江苏)设整数n≥4,P(a,b)是平面直角坐标系xOy中的点,其中a,b∈{1,2,3,…,n},a>b.(1)记A n为满足a﹣b=3的点P的个数,求A n;(2)记B n为满足是整数的点P的个数,求B n.【分析】(1)A n为满足a﹣b=3 的点P 的个数,显然P(a,b)的坐标的差值,与A n中元素个数有关,直接写出A n的表达式即可.(2)设k为正整数,记f n(k)为满足题设条件以及a﹣b=3k的点P的个数,讨论f n(k)≥1的情形,推出f n(k)=n﹣3k,根据k的范围,说明n﹣1是3的倍数和余数,然后求出B n.【解答】解:(1)点P的坐标中,满足条件:1≤b=a﹣3≤n﹣3,所以A n=n﹣3;(2)设k为正整数,记f n(k)为满足题设条件以及a﹣b=3k的点P的个数,只要讨论f n(k)≥1的情形,由1≤b=a﹣3k≤n﹣3k,知f n(k)=n﹣3k且,设n﹣1=3m+r,其中m∈N+,r∈{0,1,2},则k≤m,所以B n===mn﹣=将m=代入上式,化简得B n=所以B n=。

2011年普通高等学校招生全国统一考试(江苏卷)数学(不分文理)试题及答案解析

2011年普通高等学校招生全国统一考试(江苏卷)数学(不分文理)试题及答案解析

绝密★启用前2011年普通高等学校招生全国统一考试(江苏卷)数学I参考公式:(1)样本数据12,,,n x x x 的方差2211()n i i s x x n ==-∑,其中11n i i x x n ==∑(2)直柱体的侧面积S ch =,其中c 为底面周长,h 是高 (3)柱体的体积公式V Sh =,其中S 为底面面积,h 是高一、填空题:本大题共14小题,每小题5分,共70分。

请把答案填写在答题卡相应位置上........。

1、已知集合{1,1,2,4},{1,0,2},A B =-=- 则_______,=⋂B A 答案:{}1-,22、函数)12(log )(5+=x x f 的单调增区间是__________答案:+∞1(-,)23、设复数i 满足i z i 23)1(+-=+(i 是虚数单位),则z 的实部是_________ 答案:14、根据如图所示的伪代码,当输入b a ,分别为2,3时,最后输出的m 的值是________答案:35、从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个的两倍的概率是______ 答案:136、某老师从星期一到星期五收到信件数分别是10,6,8,5,6,则该组数据的方差___2=s★此卷上交考点保存★ 姓名___________________ 准考证号___________________2解析:可以先把这组数都减去6再求方差,1657、已知,2)4tan(=+πx 则xx2tan tan 的值为__________解析:22tan()11tan tan 1tan 44tan tan(),2tan 443tan 229tan()141tan x x x x x x x x x xππππ+-+-===++(-)===-8、在平面直角坐标系xOy 中,过坐标原点的一条直线与函数xx f 2)(=的图象交于P 、Q 两点,则线段PQ 长的最小值是________解析:4,设交点为2(,)x x ,2(,)x x --,则4PQ =≥9、函数ϕϕ,,(),sin()(w A wx A x f +=是常数,)0,0>>w A 的部分图象如图所示,则____)0(=f 解析:由图可知:7,2,41234T A πππω==-==2,3k k πϕπϕπ⨯+==10、已知→→21,e e 是夹角为π32的两个单位向量,,,22121→→→→→→+=-=e e k b e e a 若,则k 的值为解析:由0=⋅→→b a 得:k=211、已知实数0≠a ,函数⎩⎨⎧≥--<+=1,21,2)(x a x x a x x f ,若)1()1(a f a f +=-,则a 的值为________解析:30,2212,2a a a a a a >-+=---=-,30,1222,4a a a a a a <-+-=++=- 12、在平面直角坐标系xOy 中,已知点P 是函数)0()(>=x e x f x的图象上的动点,该图象在P 处的切线l 交y 轴于点M ,过点P 作l 的垂线交y 轴于点N ,设线段MN 的中点的纵坐标为t ,则t 的最大值是_____________ 解析:设00(,),xP x e 则00000:(),(0,(1))x x x l y ee x x M x e -=-∴-,过点P 作l 的垂线000000(),(0,)x x x x y e e x x N e x e ---=--+,00000000011[(1)]()22x x x x x x t x e e x e e x e e --=-++=+-00'01()(1)2x x t e e x -=+-,所以,t 在(0,1)上单调增,在(1,)+∞单调减,max 11()2t e e=+。

2011年4月江苏省高等教育自学考试历年试题27872会计基础(含答案)

2011年4月江苏省高等教育自学考试历年试题27872会计基础(含答案)

2011年10月江苏省高等教育自学考试27872会计基础一、单项选择题(每小题1分,共20分)在下列每小题的四个备选答案中选出一个正确答案。

并将其字母标号填入题干的括号内。

1.结账时划通栏双红线的情况是( D )A.日结 B.月结 C.季结 D.年结2.所有者权益是企业所有者在企业资产中享有的经济利益,在数量上等于( D ) A.全部资产减去全部所有者权益 B.全部资产减去流动负债C.企业的新增利润 D.全部资产减去全部负债3.一般来说,一个账户的增加方发生额与该账户的期末余额都应该记在账户的( C ) A.借方 B.贷方 C.相同方向 D.相反方向4.以下各项目中属于资产的有( B )A.短期借款 B.应收账款 C.实收资本 D.应付股利5.期末,企业将期间费用账户的借方发生额合计转入( D )A.“生产成本”账户借方 B.“制造费用”账户借方C.“管理费用”账户借方 D.“本年利润”账户借方6.短期借款利息支出,应计入( A )A.财务费用账户 B.营业外支出账户 C.管理费用账户 D.生产成本账户7.生产成本账户期末余额反映( C )A.本期发生的产品成本 B.本期发生的直接成本.C.期末在产品生产成本 D.期末在产品直接成本8.下列费用中,构成产品成本的有( A )A.制造费用 B.管理费用 C.财务费用 D.营业费用9.企业用借款直接偿还应付购货款,属于( B )A.资产项目和负债项目同增 B.负债项目之间此增彼减C.资产项目和负债项目同减 D.资产项目之间此增彼减l0.“待摊费用”账户属于( B )A.费用类账户 B.资产类账户 C.负债类账户 D.所有者权益类账户11.预提费用是指( B )A.先批准后支付的费用 B.先预提后支付的费用C.先支付后计入的费用 D.先预提后计入的费用12.已完成全部生产过程并已验收入库,可对外销售的产品为( D )A.已销产品 B.生产成本 C.销售成本 D.产成品13.出纳人员清点现金应该是( D )A.每季度一次 B.每月一次 C.每星期一次 D.每天一次14.企业现金清查中,发现库存现金较账面余额短缺500元,在未查明原因之前,应借记的会计科目是( A )A.待处理财产损溢 B.营业外支出 C.其他应收款 D.管理费用15.下列属于外来原始凭证的是( C )A.入库单 B.发料汇总表 C.银行收账通知单 D.出库单16.会计凭证按填制程序和用途的不同,可分为( B )A.单式凭证和复式凭证 B.原始凭证和记账凭证C.一次凭证和累计凭证 D.收付款凭证和转账凭证17.“生产成本”明细账应该采用( B )A.三栏式 B.多栏式 C.数量金额式 D.任意格式18.总账与明细账之间进行平行登记的原因是总账与明细账( C )A.格式相同 B.登记时间相同 C.反映经济业务内容相同 D.提供指标详细程度相同19.资产负债表是反映企业财务状况的会计报表,它的时间特征是( A )A.某一特定日期 B.一定时期内 C.某一年份内 D.某一月份内20.划分各种会计核算程序的根据在于( D )A.记账凭证与账簿设置不同 B.适用范围不同C.会计核算工作基本环节不同 D.登记总分类账的依据不同二、双项选择题(每小题1分,共5分)在下列每小题的五个备选答案中选出两个正确答案,并将其字母标号填入题干的括号内。

2011年高考江苏数学卷试题及参考答案

2011年高考江苏数学卷试题及参考答案
1. 知 P , 是 夹 角 为 o已


的 两

的 等腰 直 角 三 角 形 , 沿虚 线 折 起 , 得 A, C, 四 再 使 B, D
… 一
个 点 重 合 于 图 中 的 点 P, 好 形 成 一 个 正 四 棱 柱 形 状 正 的 包 装 盒 . F在 A 上 , 被 切 去 的一 个 等 腰 直 角三 E, B 是 角 形 斜 边 的 两个 端 点 . A — F = z(m) 设 E B c .
— —

4 根 据 如 图 1所 示 的伪 代 码 , 输 入 r … … … … … 一 . 当 : 。 6 别 为 2 3时 , 后 输 出 的 m Red , , 分 , 最 a 口6
的值 是 . I a>b hn f e T 脚一“
() s ( 1 若 i A+要 ) cs 求A的值 ; n 一2o A,
个单 位 向量 , n— P I~ 2 2 b e ,
图 2
= 1 e. d・ 一 0 则 实 + 2若 b , 数 k的值 为
( ) 广 告 商 要 求 包 装 盒 的 侧 面 积 S c 最 大 , 问 1某 (m ) 试
z应 取 何 值 ?
1已 实 a o 数 ( 一f-一 2a, - <1.若 1 知 数 ≠ , , ) I z≥ . 函 z ~z : 2+ ’
… … . .



别 是 AP, AD 的 中点 . 证 : 求 () 线 E ∥ 平面 P D; 1直 F C () 面 B F上 平面 P 2平 E AD.


图 1
7 知t(+ 一 , . a 詈) 2 已 n 则

(解析版)2011年普通高等学校招生全国统一考试数学试卷(江苏卷)-推荐下载

(解析版)2011年普通高等学校招生全国统一考试数学试卷(江苏卷)-推荐下载

1 2
(e
答案: 1 (e e1) 2
x0 )ex0

e x0
1) 。 e
ex0
)(1

x0 )
x0e x0 ]
,所以,t

e x0

1 2
在 (0,1)
x0 (e x0
从而 f (0) 2 sin(2k 1 ) 6
x




e1
,若
1
ex0
)

6
1
答案:
3
6、某老师从星期一到星期五收到信件数分别是 10,6,8,5,6,则该组数据的方差 s 2 =
▲.
[解析]考查统计中样本数据的方差的计算。先把这组数都减去 7 以后分别为 3,-1,1,-
2,-1,从而求得平均数为 7,再求方差 s2 1 [32 (1)2 12 (2)2 (1)2 ] 16 ,
绝密★启用前
2011 年普通高等学校招生全国统一考试(江苏卷)
数学 I
注 意 事 项
考生在答题前请认真阅读本注意事项及各题答题要求 1.本试卷共 4 页,均为非选择题(第 1 题~第 20 题,共 20 题)。本卷满分为 160 分,考试
时间为 120 分钟。考试结束后,请将本试卷和答题卡一并交回。 2.答题前,请您务必将自己的姓名、准考证号用 0.5 毫米黑色墨水的签字笔填写在试卷及

x
当 a 0 时, f (1 a) 2 2a a 1 a 2a f (1 a), a 3 ,(舍去) 2

2a,
当 a 0 时, f (1 a) 1 a 2a 2 2a a f (1 a), a 3 。 答案: 3 。

2011年江苏数学高考试卷含答案和解析

2011年江苏数学高考试卷含答案和解析

精心整理2011年江苏数学高考试卷一、填空题(共14小题,每小题5分,满分70分)1.(5分)已知集合A={﹣1,1,2,4},B={﹣1,0,2},则A∩B=_________.2.(5分)函数f(x)=log5(2x+1)的单调增区间是_________.3.(5分)设复数z满足i(z+1)=﹣3+2i(i为虚数单位),则z的实部是_________.4.(5分)根据如图所示的伪代码,当输入a,b分别为2,3时,最后输出的m的值为_________.5.(5分)从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个的两倍的概率是_________.6.(5分)某老师从星期一到星期五收到信件数分别是10,6,8,5,6,则该组数据的方差s2=_________.7.(5分)已知,则的值为_________.分)已知,是夹角为的两个单位向量,=﹣2,=k+,若?=0,函数,若设集合,)若,求)若,求AD的中点求证:(1)直线EF∥平面PCD;(2)平面BEF⊥平面PAD.17.(14分)请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上,是被切去的等腰直角三角形斜边的两个端点,设AE=FB=x(cm).(1)若广告商要求包装盒侧面积S(cm2)最大,试问x应取何值?(2)若广告商要求包装盒容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.18.(16分)如图,在平面直角坐标系xOy中,M、N分别是椭圆的顶点,过坐标原点的直线交椭圆于P,A两点,其中点P在第一象限,过P作x轴的垂线,垂足为C,连接AC,并延长交椭圆于点B,设直线PA的斜率为k(1)若直线PA平分线段MN,求k的值;(2)当k=2时,求点P到直线AB的距离d;(3)对任意k>0,求证:PA⊥PB.19.(16分)已知a,b是实数,函数f(x)=x3+ax,g(x)=x2+bx,f'(x)和g'(x)是f(x),g(x)的导函数,若f'(x)g'(x)≥0在区间I上恒成立,则称f(x)和g(x)在区间I上单调性一致(1)设a>0,若函数f(x)和g(x)在区间[﹣1,+∞)上单调性一致,求实数b的取值范围;(2)设a<0,且a≠b,若函数f(x)和g(x)在以a,b为端点的开区间上单调性一致,求|a﹣b|的最大值.20.(16∈M,当整数n>k(1)设(2)设21.(10如图,圆1不在AB 上)B.选修4已知矩阵,向量.求向量,使得2=.C.选修4中,求过椭圆(为参数)的右焦点,且与直线D.选修422.(10CC1上.设二面角A1(2)当23.(10>b.(1)记A n为满足a﹣b=3 的点(2)记B n为满足2011年江苏数学高考试卷参考答案与试题解析一、填空题(共14小题,每小题5分,满分70分)2.(5分)函数f(x)=log5(2x+1)的单调增区间是(﹣,+∞).故函数的定义域为(﹣,)在区间(﹣(﹣,,m=的值,代入m=5.(5分)从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个的两倍的概率是.则其概率为=故答案为:∴收到信件数的平均数是=7∴该组数据的方差是,分)已知,则的值为,即可求得解:∵,∴=2;=∴=故答案为8.(5分)在平面直角坐标系xOy中,过坐标原点的一条直线与函数的图象交于P、Q两点,则线段PQy=的两个交点的坐标是(,(﹣,﹣|PQ|=.根据已知的函数图象,我们根据函数图象过(,(,﹣=又∵函数图象的最低点为(,﹣)点A=且sin×+﹣即=sin2x+)sin=故答案为:10.(5分)已知,是夹角为的两个单位向量,=﹣2,=k+,若?=0,则实数k的值为.利用向量的数量积公式求出;利用向量的运算律求出解:∵是夹角为的两个单位向量∴∴==∵∴解得故答案为:,函数,若a=故答案为12.(5分)在平面直角坐标系xOy中,已知P是函数f(x)=e(x>0)的图象上的动点,该图象在点P处的切线l交y轴于点M,过点P作l的垂线交y轴于点N,设线段MN的中点的纵坐标为t,则t的最大值是.t=[取最大值故答案为:≥,等差数列,得,所以的最小值是:故答案为:14.(5分)设集合,B={(x,y)|2m≤x+y≤2m+1,x,y∈R},若A∩B≠?,则实数m的取值范围是[,2+].两集合不为空集,需直线与圆有交点,由||||则有﹣,m|||2+﹣1+,则[2+[,][,],求)若,求)因为所以sinA=tanA=B=16.(14分)如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点求证:(1)直线EF∥平面PCD;x((﹣此时,即此时包装盒的高与底面边长的比值是18.(16分)如图,在平面直角坐标系xOy中,M、N分别是椭圆的顶点,过坐标原点的直线交椭圆于P,A两点,其中点P在第一象限,过P作x轴的垂线,垂足为C,连接AC,并延长交椭圆于点B,设直线PA的斜率为k(1)若直线PA平分线段MN,求k的值;(2)当k=2时,求点P到直线AB的距离d;b=,﹣,﹣).,代入椭圆方程得,解得±,()(﹣,﹣)(=0d=.+1=2?=.19.(16分)已知a,b是实数,函数f(x)=x3+ax,g(x)=x2+bx,f'(x)和g'(x)是f(x),g(x)的导函数,若f'(x)g'(x)≥0在区间I上恒成立,则称f(x)和g(x)在区间I上单调性一致(1)设a>0,若函数f(x)和g(x)在区间[﹣1,+∞)上单调性一致,求实数b的取值范围;x=﹣﹣从而﹣≤,于是﹣<﹣﹣,﹣,)在(﹣,的最大值为.,当整数n>k时,S n+k+S n﹣k=2(S n+S k)都成立(1)设M={1},a2=2,求a5的值;dd d,21.(10分)A.选修4﹣1:几何证明选讲如图,圆O1与圆O2内切于点A,其半径分别为r1与r2(r1>r2).圆O1的弦AB交圆O2于点C (O1不在AB 上).求证:AB:AC为定值.B.选修4﹣2:矩阵与变换已知矩阵,向量.求向量,使得A2=.C.选修4﹣4:坐标系与参数方程在平面直角坐标系xOy中,求过椭圆(φ为参数)的右焦点,且与直线(t为参数)平行的直线的普通方程.D.选修4﹣5:不等式选讲(本小题满分10分)、设向量=2=从而求得向量.原不等式可化为,或,分别解出这两个不等式组的,设向量=,由2==,∴,解得∴向量=.、椭圆(为参数)的普通方程为+直线(,故所求的直线方程为(,或,≤<<}111111上.设二面角A1﹣DN﹣M的大小为θ(1)当θ=90°时,求AM 的长;(2)当时,求CM 的长.通过,,,的法向量为推出(cos以及,所以=,.,的法向量为,则,,所以==,则,=解得t=,AM=)因为,所以,cos==因为=,所以t=t=的长为.23.(10分)设整数n≥4,P(a,b)是平面直角坐标系xOy 中的点,其中a,b∈{1,2,3,…,n},a>b.(1)记A n为满足a﹣b=3 的点P 的个数,求A n;(2)记B n为满足是整数的点P 的个数,求B n.,说明,设====本题是难题,考查数列通项公式的求法,数列求和的方法,考查发现问题解决问题的能力,。

江苏数学文精校版--2011普通高等学校招生统一考试

江苏数学文精校版--2011普通高等学校招生统一考试

2011年普通高等学校招生全国统一考试理科数学一、填空题1. 已知集合},2,0,1{},4,2,2,1{-=-=B A 则_______,=⋂B A2. 函数)12(log )(5+=x x f 的单调增区间是__________3. 设复数i 满足i z i 23)1(+-=+(i 是虚数单位),则z 的实部是_________4. 根据如图所示的伪代码,当输入b a ,分别为2,3时,最后输出的m 的值是________5. 从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个的两倍的概率是______6. 某老师从星期一到星期五收到信件数分别是10,6,8,5,6,则该组数据的方差___2=s7. 已知,2)4tan(=+πx 则xx2tan tan 的值为__________ 8. 在平面直角坐标系xOy 中,过坐标原点的一条直线与函数xx f 2)(=的图象交于P. Q两点,则线段PQ 长的最小值是________9. 函数ϕϕ,,(),sin()(w A wx A x f +=是常数,)0,0>>w A 的部分图象如图所示,则____)0(=f10. 已知→→21,e e 是夹角为π32的两个单位向量,,,22121→→→→→→+=-=e e k b e e a 若0=⋅→→b a ,则k 的值为________11. 已知实数0≠a ,函数⎩⎨⎧≥--<+=1,21,2)(x a x x a x x f ,若)1()1(a f a f +=-,则a 的值为________12. 在平面直角坐标系xOy 中,已知点P 是函数)0()(>=x e x f x 的图象上的动点,该图象在P 处的切线l 交y 轴于点M ,过点P 作l 的垂线交y 轴于点N ,设线段MN 的中点的纵坐标为t ,则t 的最大值是_____________13. 设7211a a a ≤≤≤≤ ,其中7531,,,a a a a 成公比为q 的等比数列,642,,a a a 成公差为1的等差数列,则q 的最小值是________ 14. 设集合},,)2(2|),{(222R y x m y x my x A ∈≤+-≤=, },,122|),{(R y x m y x m y x B ∈+≤+≤=, 若,φ≠⋂B A 则实数m 的取值范围是______________ 二、解答题:15. 在△ABC 中,角A. B. C 所对应的边为c b a ,, (1)若,cos 2)6sin(A A =+π求A 的值;(2)若c b A 3,31cos ==,求C sin 的值.16. 如图,在四棱锥ABCD P -中,平面PAD ⊥平面ABCD ,AB=AD ,∟BAD=60°,E 、F 分别是AP 、AD 的中点,求证: (1)直线EF ‖平面PCD ; (2)平面BEF ⊥平面PAD17. 请你设计一个包装盒,如图所示,ABCD 是边长为60cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得ABCD 四个点重合于图中的点P ,正好形成一个正四棱柱形状的包装盒,E. F 在AB 上是被切去的等腰直角三角形斜边的两个端点,设AE=FB=xcm(1)若广告商要求包装盒侧面积S (cm 2)最大,试问x 应取何值?FEACDBPxxEF AB D C(2)若广告商要求包装盒容积V (cm 3)最大,试问x 应取何值?并求出此时包装盒的高与底面边长的比值。

2011年江苏(理数)高考试题

2011年江苏(理数)高考试题

2011年普通高等学校招生全国统一考试(江苏卷)数学(理数)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分160分,考试时间120分钟.第Ⅰ卷(选择题 共70分)参考公式:(1)样本数据12,,,n x x x 的方差2211()n i i s x x n ==-∑,其中11ni i x x n ==∑(2)直柱体的侧面积S ch =,其中c 为底面周长,h 是高 (3)柱体的体积公式V Sh =,其中S 为底面面积,h 是高一、填空题:本大题共14小题,每小题5分,共70分。

1、已知集合{1,1,2,4},{1,0,2},A B =-=- 则_______,A B =2、函数)12(log )(5+=x x f 的单调增区间是__________3、设复数z 满足i z i 23)1(+-=+(i 是虚数单位),则z 的实部是_________4、根据如图所示的伪代码,当输入b a ,分别为2,3时,最后输出的m 的值是________5、从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个的两倍的概率是______6、某老师从星期一到星期五收到信件数分别是10,6,8,5,6,则该组数据的方差___2=s 7、已知,2)4tan(=+πx 则xx2tan tan 的值为__________8、在平面直角坐标系xOy 中,过坐标原点的一条直线与函数xx f 2)(=的图象交于,P Q 两点,则线段PQ 长的最小值是________ 9、函数ϕϕ,,(),sin()(w A wx A x f +=是常数,)0,0>>w A 的部分图象如图所示,则____)0(=f 10、已知12,e e 是夹角为π32的两个单位向量,12122,.0k =-=+=若a e e b e e a b ,则实数k 的值为 11、已知实数0≠a,函数2,1()2,1x a x f x x a x +<⎧=⎨--≥⎩,若)1()1(a f a f +=-,则a 的值为________12、在平面直角坐标系xOy 中,已知P 是函数)0()(>=x e x f x 的图象上的动点,该图象在点P 处的切线l交y 轴于点M ,过点P 作l 的垂线交y 轴于点N ,设线段MN 的中点的纵坐标为t ,则t 的最大值是__________13、设1271a a a = ≤≤≤,其中7531,,,a a a a 成公比为q 的等比数列,642,,a a a 成公差为1的等差数列,则q 的最小值是________14、设集合222{(,)|(2),,}2mA x y x y m x y =-+∈≤≤R , {(,)|221,,}B x y m x y m x y =++∈≤≤R , 若,A B ≠∅ 则实数m 的取值范围是______________ 二、解答题:本大题共6小题,共90分。

2011-江苏高考_数学试题含详细解析(20200910042304)

2011-江苏高考_数学试题含详细解析(20200910042304)

x| = 1,解得
1 x=e或 x
= e( 舍去 ) .
当 x>1 时,由 | f ( x)+ g( x) | = 1 得 | ln x| = 3- | x2- 4| 或 | ln x| = 1- | x2-4| . 分
别在同一个坐标系中作出函数
y = | ln x| 与 y= 3- | x2-4| 的图像 ( 如图 1) 和函数 y=
6
+ cos
6
kπ ( k+ 1)π
kπ ( k+ 1)π
kπ ( k+1)π

= 2cos 6 cos
6
+ sin 6 sin
6
+ s(k+ 1)π sin
6
= cos kπ cos ( k+ 1)π + cos π + sin ( 2k+1)π = 1 cos ( 2k+1)π +
[ 解析 ] 不妨设点 P( x0, x20- 1)( x0 ≥ 1) ,则点 P 到直线 x- y+ 1= 0 的距离 d=
| | x0-
x20- 1+ 1 . 令 u( x) = x-
2
x 2- 1 = x+
1
x2-
,则 1
u( x) 是单调递减函数,且
u( x)>0.
2
2
当 x→+∞时, u( x) →0,所以 d> 2 ,故 cmax= 2 .
17.解: (1) 由题意知,点 M, N的坐标分别为 (5 , 40) , (20 ,.
将其分别代入
a y= x2+b,得
a 25+ b= 40,
a 400+ b=,
a=1000, 解得
b=0.
1000
1000
(2) ①由 (1) 知, y= x2 ( 5≤ x≤20 ) ,则点 P 的坐标为 t , t 2 .

江苏自考28054数学基础重点知识点汇总速记宝典

江苏自考28054数学基础重点知识点汇总速记宝典

数学基础(28054适用江苏)速记宝典简答题命题来源:围绕学科的基本概念、原理、特点、内容。

答题攻略:(1)不能像名词解释那样简单,也不能像论述题那样长篇大论,但需要加以简要扩展。

(2)答案内容要简明、概括、准确,即得分的关键内容一定要写清楚。

(3)答案表述要有层次性,列出要点,分点分条作答,不要写成一段;(4)如果对于考题内容完全不知道,利用选择题找灵感,找到相近的内容,联系起来进行作答。

如果没有,随意发挥,不放弃。

考点1:简述集合之间的运算。

答:1、并集:设A与B是两个集合,那么由A的元素或B的元素所组成的集合,称为A与B的并集,记作A∪B;2、交集:设A与B是两个集合,那么既是A的元素又是B的元素所组成的集合,称为A与B的交集,记作A∩B。

如果两个集合没有公共元素,即A∩B=∅,那么就称这两个集合不相交;3、差集:设A与B是两个集合,那么由A中不是B的元素所组成的集合,称为B相对于A 的余集或差集,记作A-B。

考点2:简述集合基本运算律。

答:1)交换律:A∪B=B∪A,A∩B=B∩A;2)结合律:A∪(B∪C)=(A∪B)∪C,A∩(B∩C)=(A∩B)∩C;3)分配律:A∩(B∪C)=(A∩B)∪(A∩C),A∪(B∩C)=(A∪B)∩(A∪C)。

考点3:简述定义的规则。

答:1)定义项和被定义项的外延必须是全同;2)定义项不能直接或间接包含被定义项;3)定义项中不能包含含混的概念,一般不能使用比喻;4)定义项一般不应包含负概念。

考点4:简述划分的规则。

答:1)子项必须穷尽母项,否则会犯“划分不全”或“多出子项”的逻辑错误;2)子项必须不相容,即不相交,否则会犯“子项相容”的逻辑错误;3)每次划分必须只按照同一标准进行,否则会犯“标准不同一”的逻辑错误。

考点5:简述命题的四种形式及其关系。

答:1)若“P→Q”叫做原命题;2)“Q→P”叫做原命题的逆命题;3)“¬P→¬Q”叫做原命题的否命题;4)“¬Q→¬P”叫做原命题的逆否命题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档