8下特殊平行四边形综合题型

合集下载

人教版八年级下册:18.2特殊的平行四边形同步练习卷 含答案解析

人教版八年级下册:18.2特殊的平行四边形同步练习卷  含答案解析

人教版八年级下册:18.2特殊的平行四边形同步练习卷一.选择题(共10小题)1.下列性质中,矩形不一定具有的是()A.对角线相等B.对角线互相平分C.4个内角相等D.一条对角线平分一组对角2.如图,菱形ABCD中,∠D=130°,则∠1=()A.30°B.25°C.20°D.15°3.如图,已知△ABC中,AD是BC边上的中线,则下列结论不一定正确的是()A.B.BD=CD C.D.4.如图所示,在平行四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定平行四边形ABCD为矩形的是()A.∠ABC=90°B.AC=BD C.AD=AB D.∠BAD=∠ADC 5.如图,在四边形ABCD中,对角线AC,BD相交于点O,且OA=OC,OB=OD.若要使四边形ABCD为菱形,则可以添加的条件是()A.AC=BD B.AB⊥BC C.∠AOB=60°D.AC⊥BD6.如图,四边形ABCD的对角线相交于点O,且点O是BD的中点,若AB=AD=5,BD =8,∠ABD=∠CDB,则四边形ABCD的面积为()A.40B.24C.20D.157.如图,已知四边形ABCD是正方形,E是AB延长线上一点,且BE=BD,则∠BDE的度数是()A.22.5°B.30°C.45°D.67.5°8.如图,在矩形COED中,点D的坐标是(1,3),则CE的长是()A.3B.C.D.49.已知四边形ABCD是平行四边形,再从四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是()①AB=BC,②∠ABC=90˚,③AC=BD,④AC⊥BDA.选①②B.选①③C.选②③D.选②④10.如图,在正方形ABCD内,以BC为边作等边三角形BCM,连接AM并延长交CD于N,则下列结论不正确的是()A.∠DAN=15°B.∠CMN=45°C.AM=MN D.MN=NC二.填空题(共8小题)11.工人师傅在测量一个门框是否是矩形时,只需要用到一个直角尺,则他用到的判定方法是.12.如图,两张等宽的长方形纸条交叉重叠在一起,重叠的部分ABCD是.13.矩形ABCD中,要使矩形ABCD成为正方形还需满足的条件是(横线只需填一个你认为合适的条件即可)14.如图,已知菱形ABCD的面积为6cm2,BD的长为4cm,则AC的长为cm.15.如图,在矩形ABCD中,AC,BD交于点O,M、N分别为BC、OC的中点.若BD=8,则MN的长为.16.如图,Rt△ABC中,∠ACB=90°,∠A=28°,D是AB的中点,则∠DCB=度.17.在坐标平面内,A,B两点的坐标分别是(1,5),(4,1),点C在y轴上,点D在坐标平面内,以A,B为顶点的四边形是矩形,则点D的坐标为.18.如图,已知点E在正方形ABCD的边AB上,以BE为边向正方形ABCD外部作正方形BEFG,连接DF,M、N分别是DC、DF的中点,连接MN,若AB=9,BE=6,则MN 的长为.三.解答题(共8小题)19.如图,四边形ABCD中,AB=CD,AD=BC,对角线AC,BD相交于点O,且OA=OD.求证:四边形ABCD是矩形.20.如图,正方形ABCD的对角线AC与BD交于点O,过点C作CE∥BD,过点D作DE ∥AC,CE与DE交于点E.求证:四边形OCED是正方形.21.如图.在平行四边形ABCD中,E、F分别为AB、CD的中点,连结DE、DB、BF.(1)求证:DE=BF;(2)若∠ADB=90°,证明:四边形BFDE是菱形.22.已知:如图,平行四边形ABCD中,O是CD的中点,连接AO并延长,交BC的延长线于点E.(1)求证:△AOD≌△EOC;(2)连接AC、DE,当∠B=∠AEB=45°时,求证四边形ACED是正方形.23.如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:四边形ADCF是菱形;(2)若AC=12,AB=16,求菱形ADCF的面积.24.如图,平行四边形ABCD中,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连结CE,DF.(1)求证:四边形CEDF为平行四边形;(2)若AB=6cm,BC=10cm,∠B=60°,①当AE=cm时,四边形CEDF是矩形;②当AE=cm时,四边形CEDF是菱形.25.如图,在菱形ABCD中,对角线AC,BD交于点O,AE⊥BC交CB延长线于E,CF ∥AE交AD延长线于点F.(1)求证:四边形AECF是矩形;(2)连接OE,若AE=4,AD=5,求OE的长.26.已知:如图,菱形ABCD的对角线AC与BD相交于点O,若∠CAD=∠DBC.(1)求证:四边形ABCD是正方形.(2)E是OB上一点,DH⊥CE,垂足为H,DH与OC相交于点F,求证:OE=OF.参考答案一.选择题(共10小题)1.【解答】解:∵矩形的对角线互相平分且相等,故选项A、B不合题意;∵矩形的四个角都是直角,故选项C不合题意;∵矩形的一条对角线不一定平分一组对角;故D符合题意;故选:D.2.【解答】解:∵四边形ABCD是菱形,∴DC∥AB,∠DAC=∠1,∵∠D=130°,∴∠DAB=180°﹣130°=50°,∴∠1=∠DAB=25°.故选:B.3.【解答】解:如图,在△ABC中,AD是BC边上的中线,则BD=CD=BC,故选项A、B、D不符合题意.若∠BAC=90°时,AD=BC才成立,否则不成立.故选项C符合题意.故选:C.4.【解答】解:A.根据有一个角是直角的平行四边形是矩形能判定平行四边形ABCD为矩形,故此选项不符合题意;B.根据对角线相等的平行四边形是矩形能判定平行四边形ABCD为矩形,故此选项不符合题意;C.不能判定平行四边形ABCD为矩形,故此选项符合题意;D.平行四边形ABCD中,AB∥CD,∴∠BAD+∠ADC=180°,又∵∠BAD=∠ADC,∴∠BAD=∠ADC=90°,根据有一个角是直角的平行四边形是矩形能判定平行四边形ABCD为矩形,故此选项不符合题意.故选:C.5.【解答】解:∵OA=OC,OB=OD,∴四边形ABCD为平行四边形,A、∵AC=BD,∴四边形ABCD是矩形,故选项A不符合题意;B、∵AB⊥BC,∴四边形ABCD是矩形,故选项B不符合题意;C、∵∠AOB=60°,不能得出四边形ABCD是菱形;选项C不符合题意;D、∵AC⊥BD,∴四边形ABCD是菱形,故选项D符合题意;故选:D.6.【解答】解:∵AB=AD,点O是BD的中点,∴AC⊥BD,∠BAO=∠DAO,∵∠ABD=∠CDB,∴AB∥CD,∴∠BAC=∠ACD,∴∠DAC=∠ACD,∴AD=CD,∴AB=CD,∴四边形ABCD是菱形,∵AB=5,BO=BD=4,∴AO=3,∴AC=2AO=6,∴四边形ABCD的面积=×6×8=24,故选:B.7.【解答】解:∵BE=DB,∴∠BDE=∠E,∵∠DBA=∠BDE+∠BED=45°∴∠BDE=×45°=22.5°.故选:A.8.【解答】解:∵四边形COED是矩形,∴CE=OD,∵点D的坐标是(1,3),∴OD==,∴CE=,故选:C.9.【解答】解:A、由①得有一组邻边相等的平行四边形是菱形,由②得有一个角是直角的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;B、由①得有一组邻边相等的平行四边形是菱形,由③得对角线相等的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;C、由②得有一个角是直角的平行四边形是矩形,由③得对角线相等的平行四边形是矩形,所以不能得出平行四边形ABCD是正方形,错误,故本选项符合题意.D、由②得有一个角是直角的平行四边形是矩形,由④得对角线互相垂直的平行四边形是菱形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;故选:C.10.【解答】解:作MG⊥BC于G.∵四边形ABCD是正方形,∴BA=BC,∠ABC=∠DAB=°∠DCB=90°∵△MBC是等边三角形,∴MB=MC=BC,∠MBC=∠BMC=60°,∵MG⊥BC,∴BG=GC,∵AB∥MG∥CD,∴AM=MN,∴∠ABM=30°,∵BA=BM,∴∠MAB=∠BMA=75°,∴∠DAN=90°﹣75°=15°,∠CMN=180°﹣75°﹣60°=45°,故A,B,C正确,故选:D.二.填空题(共8小题)11.【解答】解:用直角尺测量门框的三个角是否都是直角,如果都是直角,则四边形是矩形.故答案为:三个角是直角的四边形为矩形12.【解答】解:过点A作AE⊥BC于E,AF⊥CD于F,如图,∵两条纸条宽度相同,∴AE=AF.∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形.∵S▱ABCD=BC•AE=CD•AF.又∵AE=AF.∴BC=CD,∴四边形ABCD是菱形;故答案为:菱形.13.【解答】解:添加的条件可以是AB=BC.理由如下:∵四边形ABCD是矩形,AB=BC,∴四边形ABCD是正方形.故答案为:AB=BC(答案不唯一).14.【解答】解:∵菱形ABCD的面积为6cm2,BD的长为4cm,∴×4×AC=6,解得:AC=3,故答案为:3.15.【解答】解:如图,∵四边形ABCD是矩形,AC,BD交于点O,BD=8∴BD=2BO,即2BO=8.∴BO=4.又∵M、N分别为BC、OC的中点,∴MN是△CBO的中位线,∴MN=BO=2.故答案是:2.16.【解答】解:∵∠ACB=90°,D是AB的中点,∴CD=AB=AD,∴∠ACD=∠A=28°,∴∠DCB=90°﹣28°=62°,故答案为:62.17.【解答】解:如图,当AB为对角线时,观察图象可知D(5,3).当AB为矩形的边时,观察图象可知D2(﹣3,2),∴直线AD2的解析式为y=x+,∴C1(0,),∵AC1=BD1,∴D1(3,),综上所述,满足条件的点D的坐标为(5,3)或(﹣3,2)或(3,).故答案为(5,3)或(﹣3,2)或(3,).18.【解答】解:连接CF,∵正方形ABCD和正方形BEFG中,AB=9,BE=6,∴GF=GB=6,BC=9,∴GC=GB+BC=6+9=15,∴CF===3.∵M、N分别是DC、DF的中点,∴MN==.故答案为:.三.解答题(共8小题)19.【解答】证明;∵四边形ABCD中,AB=CD,AD=BC,∴四边形ABCD是平行四边形,∴AC=2AO,BD=2OD,∵OA=OD,∴AC=BD,∴四边形ABCD是矩形.20.【解答】证明:∵CE∥BD,DE∥AC,∴四边形CODE是平行四边形,∵正方形ABCD的对角线AC与BD交于点O,∴OD=OC,∠DOC=90°,∴四边形CODE是正方形.21.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C,DC=AB,∵E,F分别为边AB、CD的中点,∴DF=CF=DC,AE=BE=AB,∴DF=BE,∴四边形DEFB是平行四边形,∴DE=BF;(2)证明:由(1)得,四边形DEBF是平行四边形,∴DC=AB,CD∥AB,∴DF∥EB,∵E,F分别为边AB、CD的中点,∴DF=CF=DC,AE=BE=AB,∴DF=EB,∴四边形DEBF是平行四边形,∵∠ADB=90°,∴DE=AB,∴DE=EB,∴四边形DEBF是菱形.22.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC.∴∠D=∠OCE,∠DAO=∠E.∵O是CD的中点,∴OC=OD,在△AOD和△EOC中,,∴△AOD≌△EOC(AAS);(2)∵△AOD≌△EOC,∴OA=OE.又∵OC=OD,∴四边形ACED是平行四边形.∵∠B=∠AEB=45°,∴AB=AE,∠BAE=90°∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∴∠COE=∠BAE=90°.∴▱ACED是菱形.∵AB=AE,AB=CD,∴AE=CD.∴菱形ACED是正方形.23.【解答】(1)证明:∵E是AD的中点,∴AE=DE,∵AF∥BC,∴∠AFE=∠DBE,在△AEF和△DEB中,∵,∴△AEF≌△DEB(AAS),∴AF=DB,∴四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,∴AD=CD=BC,∴四边形ADCF是菱形;(2)解:设AF到CD的距离为h,∵AF∥BC,AF=BD=CD,∠BAC=90°,∴S菱形ADCF=CD•h=BC•h=S△ABC=AB•AC=×12×16=96.24.【解答】(1)证明:∵四边形ABCD是平行四边形,∴CF∥ED,∴∠FCD=∠GCD,∵G是CD的中点,∴CG=DG,在△FCG和△EDG中,∴△CFG≌△EDG(ASA),∴FG=EG,∴四边形CEDF是平行四边形;(2)①解:当AE=7时,平行四边形CEDF是矩形,理由是:过A作AM⊥BC于M,∵∠B=60°,AB=6,∴BM=3,∵四边形ABCD是平行四边形,∴∠CDA=∠B=60°,DC=AB=6,BC=AD=10,∵AE=7,∴DE=3=BM,在△MBA和△EDC中,,∴△MBA≌△EDC(SAS),∴∠CED=∠AMB=90°,∵四边形CEDF是平行四边形,∴四边形CEDF是矩形,故答案为:7;②当AE=4时,四边形CEDF是菱形,理由是:∵AD=10,AE=4,∴DE=6,∵CD=6,∠CDE=60°,∴△CDE是等边三角形,∴CE=DE,∵四边形CEDF是平行四边形,∴四边形CEDF是菱形,故答案为:4.25.【解答】(1)证明:∵菱形ABCD,∴AD∥BC.∵CF∥AE,∴四边形AECF是平行四边形.∵AE⊥BC,∴平行四边形AECF是矩形;(2)解:∵AE=4,AD=5,∴AB=5,BE=3.∵AB=BC=5,∴CE=8.∴AC=4,∵对角线AC,BD交于点O,∴AO=CO=2.∴OE=2.26.【解答】(1)证明:∵四边形ABCD是菱形,∴AD∥BC,∠BAD=2∠DAC,∠ABC=2∠DBC,∴∠BAD+∠ABC=180°,∵∠CAD=∠DBC,∴∠BAD=∠ABC,∴2∠BAD=180°,∴∠BAD=90°,∴四边形ABCD是正方形;(2)证明:∵四边形ABCD是正方形,∴AC⊥BD,AC=BD,CO=AC,DO=BO,∴∠COB=∠DOC=90°,CO=DO,∵DH⊥CE,垂足为H,∴∠DHE=90°,∠EDH+∠DEH=90°,∵∠ECO+∠DEH=90°,∴∠ECO=∠EDH,在△ECO和△FDO中,,∴△ECO≌△FDO(ASA),∴OE=OF.。

八年级下学期-特殊平行四边形的判定与性质专题

八年级下学期-特殊平行四边形的判定与性质专题
垂足为点 D,AN 是△ABC 的外角∠CAM 的平分线,CE⊥AN,垂足 为点 E.
(1)求证:四边形 ADCE 为矩形; (2)当△ABC 满足什么条件时,四边形 ADCE 是一个正方形?并 给出证明.
12.(1)证明:在△ABC 中,AB=AC,AD⊥BC,∴∠BAD=∠DAC.∵AN 是△ABC 的外角∠CAM 的平分线,∴∠MAE=∠CAE,∴∠DAE= ∠DAC+∠CAE=12×180°=90°.又∵AD⊥BC,CE⊥AN,∴∠ADC =∠CEA=90°,∴四边形 ADCE 为矩形;
(1)求证:BF=DE; (2)当点 E 运动到 AC 的中点时(其他条件都不变),四边形 AFBE 是 什么特殊四边形?说明理由.
13.(1)证明:∵正方形 ABCD,∴AB=AD,∠BAD =90°.∵AF⊥AC,∴∠EAF=90°,∴∠BAF=∠EAD. 在△ADE 和△ABF 中,AD=AB,∠DAE=∠BAF,AE =AF,∴△ADE≌△ABF(SAS),∴BF=DE;
(A ) A.3 个
B.2 个
C.1 个
D.0 个
4.如图,正方形 ABCD 的边长为 2,以对角线 AC 为一边作菱形
AEFC,AF 与 BC 交于点 G,则∠BCE 的度数与 BE 的长分别为( C )
A.30°,2 2-2
B.30°,2 2-1
C.22.5°,2 2-2
D.22.5°,2 2-1
(2)解:当△ABC 满足∠BAC=90°时,四边形 ADCE 是一个正方形.证 明如下:∵AB=AC,∠BAC=90°,∴∠ACB=∠B=45°.∵AD⊥ BC,∴∠CAD=∠ACD=45°,∴DC=AD.∵四边形 ADCE 为矩形, ∴矩形 ADCE 是正方形.

北师大版八年级数学下册第一章特殊的平行四边形专项测试题-附答案解析(一)

北师大版八年级数学下册第一章特殊的平行四边形专项测试题-附答案解析(一)
正方形应是N的一部分,也是 的一部分,
矩形形、正方形、菱形都属于平行四边形,
它们之间的关系是: .
二、填空题(本大题共有5小题,每小题5分,共25分)
16、已知矩形的一条对角线长 ,则另一条对角线的一半是 .
【答案】4
【解析】解:
根据矩形的对角线相等,另一条对角线长 ,则另一条对角线的一半是 .
故正确答案是 .
14、将四根长度相等的细木条首尾相接,用钉子钉成四边形 ,转动这个四边形,使它形状改变,当 时,如图 ,测得 ,当 时,如图 , ( )
A.
B.
C.
D.
15、如图所示,设 表示平行四边形, 表示矩形, 表示菱形, 表示正方形,则下列四个图形中,能表示它们之间关系的是( )
A.
B.
C.
D.
二、填空题(本大题共有5小题,每小题5分,共25分)
四条边相等的四边形是菱形,不一定是正方形,该说法错误,符合题意;
对角线相等的菱形是正方形,该说法正确,不符合题意;
对角线垂直的矩形是正方形,该说法正确,不符合题意.
故正确答案选:四条边相等的四边形是正方形.
3、矩形、菱形、正方形都具有的性质是( ).
A. 对角线互相垂直
B. 对角线平分每一组对角
C. 对角线互相平分
6、 在 中, , 是边 上一点, 交 于点 , 交 于点 ,若要使四边形 是菱形,只需添加条件( ).
A.
B.
C.
D.
【答案】C
【解析】解:只需添加

四边形 是平行四边形
四边形 是菱形
故正确答案是:
7、过矩形 的四个顶点作对角线 、 的平行线分別交于 、 、 、 四点,则四边形 是().

初二数学特殊的平行四边形试题答案及解析

初二数学特殊的平行四边形试题答案及解析

初二数学特殊的平行四边形试题答案及解析1.如图,在菱形ABCD中,已知∠A=60°,AB=5,则△ABD的周长是()A.10B.12C.15D.20【答案】C【解析】∵四边形ABCD是菱形,∴AB=AD,又∵∠A=60°,∴△ABD是等边三角形,∴△ABD的周长=3AB=15.2.如图,菱形ABCD中,AC=8,BD=6,则菱形的周长是()A.20B.24C.28D.40【答案】A【解析】据菱形对角线互相垂直平分的性质,可以求得BO=OD,AO=OC,在Rt△AOD中,根据勾股定理可以求得AB的长,即可求菱形ABCD的周长.3.已知一个菱形的周长是20cm,两条对角线的比是4:3,则这个菱形的面积是()A.12cm2B.24cm2C.48cm2D.96cm2【答案】B【解析】设菱形的对角线分别为8x和6x,已知菱形的周长为20cm,故菱形的边长为5cm,根据菱形的性质可知,菱形的对角线互相垂直平分,即可知(4x)2+(3x)2=25,解得x=1,故菱形的对角线分别为8cm和6cm,所以菱形的面积=×8×6=24cm2.4.矩形ABCD的对角线AC、BD相交于点O,∠AOD=120°,AC=8,则△ABO的周长为()A.16 B.12 C.24 D.20【答案】B【解析】根据矩形性质求出AO=BO=4,得出等边三角形AOB,求出AB,即可求出答案.5.如图,在矩形ABCD中,若AC=2AB,则∠AOB的大小是()A.30°B.45°C.60°D.90°【答案】C【解析】∵AC=2AB,∴∠BAC=60°,OA=OB,∴△OAB是正三角形,∴∠AOB的大小是60°.故选C.6.如图,长方形ABCD中,E点在BC上,且AE平分∠BAC.若BE=4,AC=15,则△AEC面积为()A.15 B.30 C.45 D.60【答案】B【解析】利用角平分线的性质定理可得AC边上的高.进而求得所求三角形的面积.7.如图,正方形ABCD中,对角线AC,BD相交于点O,则图中的等腰三角形有()A.4个B.6个C.8个D.10个【答案】C【解析】先根据正方形的四边相等即对角线相等且互相平分的性质,可得AB=BC=CD=AD,AO=OD=OC=OB,再根据等腰三角形的定义即可得出图中的等腰三角形的个数.8.如图,在正方形ABCD中,点E、F分别在CD、BC上,且BF=CE,连接BE、AF相交于点G,则下列结论不正确的是()A.BE=AF B.∠DAF=∠BEC C.∠AFB+∠BEC="90°" D.AG⊥BE【答案】C【解析】∵ABCD是正方形,∴∠ABF=∠C=90°,AB=BC.∵BF=CE,∴△ABF≌△BCE.∴AF=BE(第一个正确).∠BAF=∠CBE,∠BFA=∠BEC(第三个错误).∵∠BAF+∠DAF=90°,∠BAF+∠BFA=90°,∴∠DAF=∠BEC(第二个正确).∵∠BAF=∠CBE,∠BAF+∠AFB=90°.∴∠CBE+∠AFB=90°.∴AG⊥BE(第四个正确).所以不正确的是C,故选C.9.已知四边形ABCD的两条对角线AC与BD互相垂直,则下列结论正确的是()A.当AC=BD时,四边形ABCD是矩形B.当AB=AD,CB=CD时,四边形ABCD是菱形C.当AB=AD=BC时,四边形ABCD是菱形D.当AC=BD,AD=AB时,四边形ABCD是正方形【答案】C【解析】A、对角线AC与BD互相垂直,AC=BD时,无法得出四边形ABCD是矩形,故此选项错误;B、当AB=AD,CB=CD时,无法得到,四边形ABCD是菱形,故此选项错误;C、当两条对角线AC与BD互相垂直,AB=AD=BC时,∴BO=DO,AO=CO,∴四边形ABCD是平行四边形,∵两条对角线AC与BD互相垂直,∴平行四边形ABCD是菱形,故此选项正确;D、当AC=BD,AD=AB时,无法得到四边形ABCD是正方形,故此选项错误.10.用直尺和圆规作一个以线段AB为边的菱形,作图痕迹如图所示,能得到四边形ABCD是菱形的依据是()A.一组邻边相等的四边形是菱形B.四边相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.每条对角线平分一组对角的平行四边形是菱形【答案】B【解析】由作图痕迹可知,四边形ABCD的边AD=BC=CD=AB,根据四边相等的四边形是菱形可得四边形ABCD是菱形.11.如图,在△ABC中,点E、D、F分别在边AB、BC、CA上,且DE∥CA,DF∥BA.下列四个判断中,不正确的是()A.四边形AEDF是平行四边形B.如果∠BAC=90°,那么四边形AEDF是矩形C.如果AD平分∠BAC,那么四边形AEDF是矩形D.如果AD⊥BC且AB=AC,那么四边形AEDF是菱形【答案】C【解析】由DE∥CA,DF∥BA,根据两组对边分别平行的四边形是平行四边形可得四边形AEDF是平行四边形;又有∠BAC=90°,根据有一角是直角的平行四边形是矩形,可得四边形AEDF是矩形.故A、B正确;如果AD平分∠BAC,那么∠EAD=∠FAD,又有DF∥BA,可得∠EAD=∠ADF,∴∠FAD=∠ADF,∴AF=FD,那么根据邻边相等的平行四边形是菱形,可得四边形AEDF是菱形,而不一定是矩形.故C错误;如果AD⊥BC且AB=AC,那么AD平分∠BAC,同上可得四边形AEDF是菱形.故D正确.12.如图,已知菱形ABCD的一个内角∠BAD=80°,对角线AC、BD相交于点O,点E在AB上且BE=BO,则∠BEO=_______度.【答案】65【解析】因为AB=AD,∠BAD=80°,可求∠ABD=50°;又BE=BO,所以∠BEO=∠BOE,根据三角形内角和定理求解.13.如图,菱形ABCD的对角线的长分别为6和8,点P是对角线AC上的任意一点(点P不与点A,C重合),且PE∥BC交AB于点E,PF∥CD交AD于点F,则阴影部分的面积是______.【答案】12【解析】易知四边形AEPF是平行四边形,设AP与EF相交于O点,则S△POF=S△AOE.所以阴影部分的面积等于菱形面积的一半.14.如图,矩形ABCD的面积为5,它的两条对角线交于点O1,以AB,AO1为两邻边作平行四边形ABC1O1,平行四边形ABC1O1的对角线交于点O2,同样以AB,AO2为两邻边作平行四边形ABC2O2,…,依此类推,则平行四边形ABCnOn的面积为_______.【答案】【解析】后面的每一个平行四边形都与第一个矩形ABCD同底不同高,而第n个平行四边形的高是矩形ABCD的,所以平行四边形ABCn On的面积为.15.如图,在四边形ABCD中,AB=BC=CD=DA,对角线AC与BD相交于点O,若不增加任何字母与辅助线,要使四边形ABCD是正方形,则还需增加一个条件是_______.【答案】AC=BD或AB⊥BC【解析】∵在四边形ABCD中,AB=BC=CD=DA,∴四边形ABCD是菱形,∴要使四边形ABCD是正方形,则还需增加一个条件是:AC=BD或AB⊥BC.16.如图,在Rt△ABC中,∠C=90°,DE垂直平分AC,DF⊥BC,当△ABC满足条件_______时,四边形DECF是正方形.(要求:①不再添加任何辅助线,②只需填一个符合要求的条件)【答案】AC=BC【解析】由已知可得四边形的四个角都为直角,根据有一组邻边相等的矩形是正方形,可知添加条件为AC=BC时,能说明CE=CF,即此四边形是正方形.17.如图,四边形ABCD是矩形,△PBC和△QCD都是等边三角形,且点P在矩形上方,点Q在矩形内.计算:∠PBA=∠PCQ=30°.【答案】解:∵四边形ABCD是矩形.∴∠ABC=∠BCD=90°.∵△PBC和△QCD是等边三角形.∴∠PBC=∠PCB=∠QCD=60°.∴∠PBA=∠ABC-∠PBC=30°,∠PCD=∠BCD-∠PCB=30°.∴∠PCQ=∠QCD-∠PCD=30°.∴∠PBA=∠PCQ=30°.【解析】因为矩形的内角是直角,等边三角形的内角是60∘,所以根据这两个特殊角可以计算角的度数.18.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,过点O作直线EF⊥BD,分别交AD、BC于点E和点F,求证:四边形BEDF是菱形.【答案】证明:∵四边形ABCD是菱形,∴AD∥BC,OB=OD,∴∠EDO=∠FBO,∠OED=∠OFB,∴△OED≌△OFB,∴DE=BF,又∵DE∥BF,∴四边形BEDF是平行四边形,∵EF⊥BD,∴四边形BEDF是菱形.【解析】若要证明四边形BEDF是菱形,只需要证明四边形BEDF是平行四边形即可,而DE∥BF,只需要证明DE=BF即可判定四边形BEDF是平行四边形,证明DE=BF可通过证明△OED≌△OFB.19.如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF.(1) 证明:∠BAC=∠DAC,∠AFD=∠CFE;(2) 若AB∥CD,试证明四边形ABCD是菱形;(3) 在(2)的条件下,试确定E点的位置,使∠EFD=∠BCD,并说明理由.【答案】解:(1) ∵AB=AD,CB=CD,AC=AC,∴△ABC≌△ADC.∴∠BAC =∠DAC.∵ AB=AD,∠BAF =∠DAF,AF=AF.∴△ABF≌△ADF.∴∠AFB=∠AFD.又∵∠CFE =∠AFB,∴∠AFD=∠CFE.∴∠BAC=∠DAC,∠AFD=∠CFE.(2) ∵AB∥CD,∴∠BAC=∠ACD.又∵∠BAC=∠DAC,∴∠BAC=∠ACD.∴∠DAC=∠ACD.∴AD=CD,∵AB="AD" , CB=CD,∴AB=CB=CD=AD.∴四边形ABCD是菱形.(3)当BE⊥CD时,∠EFD=∠BCD.理由:∵四边形ABCD为菱形,∴BC=CD,∠BCF=∠DCF.又∵CF为公共边,∴△BCF≌△DCF.∴∠CBF=∠CDF,∵BE⊥CD,∴∠BEC =∠DEF=90°.∴∠EFD =∠BCD.【解析】(1)利用已知条件和公共边,证得△ABC≌△ADC,即可证明∠BAC=∠DAC;再证明△ABF≌△ADF,得到∠AFB=∠AFD,再利用对顶角相等,易知结论;(2)有平行线的性质和(1)中结论,易知∠DAC=∠ACD,所以AD=CD,进而证得AB=CB=CD=AD,即可证明结论;(3)当BE⊥CD时,有(2)可知BC="CD" ,∠BCF=∠DCF,利用△BCF≌△DCF证得∠CBF=∠CDF,再利用等角的余角相等即可证明结论∠EFD =∠BCD.20.已知矩形BEDG和矩形BNDQ中,BE=BN,DE=DN.(1)将两个矩形叠合成如图10,求证:四边形ABCD是菱形;(2)若菱形ABCD的周长为20,BE=3,求矩形BEDG的面积.【答案】解:(1)答:四边形ABCD是菱形.证明:作AR⊥BC于R,AS⊥CD于S,由题意知:AD∥BC,AB∥CD,∴四边形ABCD是平行四边形,∵矩形BEDG和矩形BNDQ中,BE=BN,DE=DN,∴两个矩形全等,∴AR=AS,∵AR•BC=AS•CD,∴BC=CD,∴平行四边形ABCD是菱形;(2)解:∵菱形ABCD的周长为20,∴AD=AB=BC=CD=5,∵BE=3,∴AE=4,∴DE=5+4=9,∴矩形BEDG的面积为:3×9=27.【解析】(1)作AR⊥BC于R,AS⊥CD于S,根据题意先证出四边形ABCD是平行四边形,再由BC=CD得平行四边形ABCD是菱形;(2)根据菱形的性质得出AD的长,进而得出AE的长,再利用矩形面积公式求出即可.。

人教版八年级数学下册特殊的平行四边形同步练习(解析版)

人教版八年级数学下册特殊的平行四边形同步练习(解析版)

人教版八年级数学下册特殊的平行四边形同步练习(解析版)同步练习参考答案与试题解析一.选择题(共10小题)1.菱形具有而一般平行四边形不具有的性质是()A.对边相等B.对角相等C.对角线互相平分D.对角线互相垂直选D2.如图,矩形ABCD的对角线AC﹨BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形OCED的周长为()A.4 B.8 C.10 D.12解:∵四边形ABCD为矩形,∴OA=OC,OB=OD,且AC=BD,∴OA=OB=OC=OD=2,∵CE∥BD,DE∥AC,∴四边形DECO为平行四边形,∵OD=OC,∴四边形DECO为菱形,∴OD=DE=EC=OC=2,则四边形OCED的周长为2+2+2+2=8,故选B3.有3个正方形如图所示放置,阴影部分的面积依次记为S1,S2,则S1:S2等于()A.1:B.1:2 C.2:3 D.4:9解:设大正方形的边长为x,根据图形可得:∵=,∴=,∴=,∴S1=S正方形ABCD,∴S1=x2,∵=,∴=,∴S2=S正方形ABCD,∴S2=x2,∴S1:S2=x2:x2=4:9;故选D.4.矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为()A.(3,1)B.(3,)C.(3,)D.(3,2)解:如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小.∵D(,0),A(3,0),∴H(,0),∴直线CH解析式为y=﹣x+4,∴x=3时,y=,∴点E坐标(3,)故选:B.5.如图,在矩形ABCD中(AD>AB),点E是BC上一点,且DE=DA,AF⊥DE,垂足为点F,在下列结论中,不一定正确的是()A.△AFD≌△DCE B.AF=AD C.AB=AF D.BE=AD ﹣DF解:(A)由矩形ABCD,AF⊥DE可得∠C=∠AFD=90°,AD∥BC,∴∠ADF=∠DEC.又∵DE=AD,∴△AFD≌△DCE(AAS),故(A)正确;(B)∵∠ADF不一定等于30°,∴直角三角形ADF中,AF不一定等于AD的一半,故(B)错误;(C)由△AFD≌△DCE,可得AF=CD,由矩形ABCD,可得AB=CD,∴AB=AF,故(C)正确;(D)由△AFD≌△DCE,可得CE=DF,由矩形ABCD,可得BC=AD,又∵BE=BC﹣EC,∴BE=AD﹣DF,故(D)正确;故选B.6.如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC 边上的点E处,折痕为GH.若BE:EC=2:1,则线段CH的长是()A.3 B.4 C.5 D.6解:设CH=x,则DH=EH=9﹣x,∵BE:EC=2:1,BC=9,∴CE=BC=3,∴在Rt△ECH中,EH2=EC2+CH2,即(9﹣x)2=32+x2,解得:x=4,即CH=4.故选(B).7.下列语句正确的是()A.对角线互相垂直的四边形是菱形B.有两边及一角对应相等的两个三角形全等C.矩形的对角线相等D.平行四边形是轴对称图形解:∵对角线互相垂直的四边形不一定是菱形,∴选项A错误;∵有两边及一角对应相等的两个三角形不一定全等,∴选项B错误;∵矩形的对角线相等,∴选项C正确;∵平行四边形是中心对称图形,不一定是轴对称图形,∴选项D错误;故选:C.8.如图,正方形ABCD的面积为1,则以相邻两边中点连线EF为边正方形EFGH的周长为()A.B.2C.+1 D.2+1解:∵正方形ABCD的面积为1,∴BC=CD==1,∠BCD=90°,∵E﹨F分别是BC﹨CD的中点,∴CE=BC=,CF=CD=,∴CE=CF,∴△CEF是等腰直角三角形,∴EF=CE=,∴正方形EFGH的周长=4EF=4×=2;故选:B.9.如图,有一平行四边形ABCD与一正方形CEFG,其中E点在AD 上.若∠ECD=35°,∠AEF=15°,则∠B的度数为何?()A.50 B.55 C.70 D.75解:∵四边形CEFG是正方形,∴∠CEF=90°,∵∠CED=180°﹣∠AEF﹣∠CEF=180°﹣15°﹣90°=75°,∴∠D=180°﹣∠CED﹣∠ECD=180°﹣75°﹣35°=70°,∵四边形ABCD为平行四边形,∴∠B=∠D=70°(平行四边形对角相等).故选C.10.如图是由三个边长分别为6﹨9﹨x的正方形所组成的图形,若直线AB将它分成面积相等的两部分,则x的值是()A.1或9 B.3或5 C.4或6 D.3或6解:如图,∵若直线AB将它分成面积相等的两部分,∴(6+9+x)×9﹣x•(9﹣x)=×(62+92+x2)﹣6×3,解得x=3,或x=6,故选D.二.填空题(共5小题)11.如图,在菱形ABCD中,对角线AC=6,BD=10,则菱形ABCD的面积为30.解:∵在菱形ABCD中,对角线AC=6,BD=10,∴菱形ABCD的面积为:AC•BD=30.故答案为:30.12.如图,在矩形ABCD中,AD=4,点P是直线AD上一动点,若满足△PBC是等腰三角形的点P有且只有3个,则AB的长为4或2.解:①如图,当AB=AD时满足△PBC是等腰三角形的点P有且只有3个,△P1BC,△P2BC是等腰直角三角形,△P3BC是等腰直角三角形(P3B=P3C),则AB=AD=4.②当AB<AD,且满足△PBC是等腰三角形的点P有且只有3个时,如图,∵P2是AD的中点,∴BP2==,易证得BP1=BP2,又∵BP1=BC,∴=4∴AB=2.③当AB>AD时,直线AD上只有一个点P满足△PBC是等腰三角形.故答案为:4或2.13.有一面积为5的等腰三角形,它的一个内角是30°,则以它的腰长为边的正方形的面积为20和20.解:如图1中,当∠A=30°,AB=AC时,设AB=AC=a,作BD⊥AC于D,∵∠A=30°,∴BD=AB=a,∴•a•a=5,∴a2=20,∴△ABC的腰长为边的正方形的面积为20.如图2中,当∠ABC=30°,AB=AC时,作BD⊥CA交CA的延长线于D,设AB=AC=a,∵AB=AC,∴∠ABC=∠C=30°,∴∠BAC=120°,∠BAD=60°,在RT△ABD中,∵∠D=90°,∠BAD=60°,∴BD=a,∴•a•a=5,∴a2=20,∴△ABC的腰长为边的正方形的面积为20.故答案为20或20.14.如图,正方形ABCD边长为3,连接AC,AE平分∠CAD,交BC 的延长线于点E,FA⊥AE,交CB延长线于点F,则EF的长为6.解:∵四边形ABCD为正方形,且边长为3,∴AC=3,∵AE平分∠CAD,∴∠CAE=∠DAE,∵AD∥CE,∴∠DAE=∠E,∴∠CAE=∠E,∴CE=CA=3,∵FA⊥AE,∴∠FAC+∠CAE=90°,∠F+∠E=90°,∴∠FAC=∠F,∴CF=AC=3,∴EF=CF+CE=3=6,故答案为:6.15.如图,在平面直角坐标系中,边长为1的正方形OA1B1C1的两边在坐标轴上,以它的对角线OB1为边作正方形OB1B2C2,再以正方形OB1B2C2的对角线OB2为边作正方形OB2B3C3,以此类推…﹨则正方形OB2015B2016C2016的顶点B2016的坐标是(21008,0).解:∵正方形OA1B1C1边长为1,∴OB1=,∵正方形OB1B2C2是正方形OA1B1C1的对角线OB1为边,∴OB2=2,∴B2点坐标为(0,2),同理可知OB3=2,∴B3点坐标为(﹣2,2),同理可知OB4=4,B4点坐标为(﹣4,0),B5点坐标为(﹣4,﹣4),B6点坐标为(0,﹣8),B7(8,﹣8),B8(16,0)B9(16,16),B10(0,32),由规律可以发现,每经过8次作图后,点的坐标符号与第一次坐标符号相同,每次正方形的边长变为原来的倍,∵2016÷8=252∴B2016的纵横坐标符号与点B8的相同,横坐标为正值,纵坐标是0,∴B2016的坐标为(21008,0).故答案为:(21008,0).三.解答题(共5小题)16.如图,在△ABC中,∠ACB=90°,D,E分别为AC,AB的中点,BF∥CE交DE的延长线于点F.(1)求证:四边形ECBF是平行四边形;(2)当∠A=30°时,求证:四边形ECBF是菱形.证明:(1)∵D,E分别为边AC,AB的中点,∴DE∥BC,即EF∥BC.又∵BF∥CE,∴四边形ECBF是平行四边形.(2)∵∠ACB=90°,∠A=30°,E为AB的中点,∴CB=AB,CE=AB.∴CB=CE.又由(1)知,四边形ECBF是平行四边形,∴四边形ECBF是菱形.17.如图,矩形ABCD中,延长AB至E,延长CD至F,BE=DF,连接EF,与BC﹨AD分别相交于P﹨Q两点.(1)求证:CP=AQ;(2)若BP=1,PQ=2,∠AEF=45°,求矩形ABCD的面积.(1)证明:∵四边形ABCD是矩形,∴∠A=∠ABC=∠C=∠ADC=90°,AB=CD,AD=BC,AB∥CD,AD∥BC,∴∠E=∠F,∵BE=DF,∴AE=CF,在△CFP和△AEQ中,,∴△CFP≌△AEQ(ASA),∴CP=AQ;(2)解:∵AD∥BC,∴∠PBE=∠A=90°,∵∠AEF=45°,∴△BEP﹨△AEQ是等腰直角三角形,∴BE=BP=1,AQ=AE,∴PE=BP=,∴EQ=PE+PQ=+2=3,∴AQ=AE=3,∴AB=AE﹣BE=2,∵CP=AQ,AD=BC,∴DQ=BP=1,∴AD=AQ+DQ=3+1=4,∴矩形ABCD的面积=AB•AD=2×4=8.18.如图,点E正方形ABCD外一点,点F是线段AE上一点,△EBF 是等腰直角三角形,其中∠EBF=90°,连接CE﹨CF.(1)求证:△ABF≌△CBE;(2)判断△CEF的形状,并说明理由.(1)证明:∵四边形ABCD是正方形,∴AB=CB,∠ABC=90°,∵△EBF是等腰直角三角形,其中∠EBF=90°,∴BE=BF,∴∠ABC﹣∠CBF=∠EBF﹣∠CBF,∴∠ABF=∠CBE.在△ABF和△CBE中,有,∴△ABF≌△CBE(SAS).(2)解:△CEF是直角三角形.理由如下:∵△EBF是等腰直角三角形,∴∠BFE=∠FEB=45°,∴∠AFB=180°﹣∠BFE=135°,又∵△ABF≌△CBE,∴∠CEB=∠AFB=135°,∴∠CEF=∠CEB﹣∠FEB=135°﹣45°=90°,∴△CEF是直角三角形.19.如图,已知四边形ABCD是平行四边形,并且∠A=∠D.(1)求证:四边形ABCD为矩形;(2)点E是AB边的中点,F为AD边上一点,∠1=2∠2,若CE=4,CF=5,求DF的长.(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A+∠D=180°,又∠A=∠D,∴∠A=∠D=90°,∴平行四边形ABCD为矩形;(2)解:延长DA,CE交于点G,∵四边形ABCD是矩形,∴∠DAB=∠B=90°,AD∥BC,∴∠GAE=90°,∠G=∠ECB,∵E是AB边的中点,∴AE=BE,在△AGE和△BCE中,,∴△AGE≌△BCE(AAS),∴AG=BC,若CE=4,CF=5,设DF=x,根据勾股定理得:CD2=CF2﹣DF2=CG2﹣DG2,即52﹣x2=82﹣(5+x)2,解得:x=,即DF=.20.在菱形ABCD中,∠ABC=60°,E是对角线AC上任意一点,F是线段BC延长线上一点,且CF=AE,连接BE﹨EF.(1)如图1,当E是线段AC的中点时,求证:BE=EF.(2)如图2,当点E不是线段AC的中点,其它条件不变时,请你判断(1)中的结论:成立.(填“成立”或“不成立”)(3)如图3,当点E是线段AC延长线上的任意一点,其它条件不变时,(1)中的结论是否成立?若成立,请给予证明;若不成立,请说明理由.(1)证明:∵四边形ABCD是菱形,∴AB=BC,∵∠ABC=60°,∴△ABC是等边三角形,∴∠BCA=60°,∵E是线段AC的中点,∴∠CBE=∠ABE=30°,AE=CE,∵CF=AE,∴CE=CF,∴∠F=∠CEF=∠BCA=30°,∴∠CBE=∠F=30°,∴BE=EF;(2)解:结论成立;理由如下:过点E作EG∥BC交AB于点G,如图2所示:∵四边形ABCD为菱形,∴AB=BC,∠BCD=120°,AB∥CD,∴∠ACD=60°,∠DCF=∠ABC=60°,∴∠ECF=120°,又∵∠ABC=60°,∴△ABC是等边三角形,∴AB=AC,∠ACB=60°,又∵EG∥BC,∴∠AGE=∠ABC=60°,又∵∠BAC=60°,∴△AGE是等边三角形,∴AG=AE=GE,∠AGE=60°,∴BG=CE,∠BGE=120°=∠ECF,又∵CF=AE,∴GE=CF,在△BGE和△CEF中,,∴△BGE≌△ECF(SAS),∴BE=EF.又∵EG∥BC,∴∠AGE=∠ABC=60°,又∵∠BAC=60°,∴△AGE是等边三角形,∴AG=AE=GE,∠AGE=60°,∴BG=CE,∠AGE=∠ECF,又∵CF=AE,∴GE=CF,在△BGE和△CEF中,,∴△BGE≌△ECF(SAS),∴BE=EF.。

人教版八年级数学下册专题讲解+课后训练:特殊平行四边形的综合

人教版八年级数学下册专题讲解+课后训练:特殊平行四边形的综合

特殊平行四边形重难点易错点辨析矩形、菱形、正方形题一:如图,四边形ABCD是平行四边形,下列说法不正确的是()A.当AC=BD时,四边形ABCD是矩形B.当AB=BC时,四边形ABCD是菱形C.当AC⊥BD时,四边形ABCD是菱形D.当∠DAB=90°时,四边形ABCD是正方形金题精讲题一:如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点.点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD、AN.(1)求证:四边形AMDN是平行四边形;(2)填空:①当AM的值为时,四边形AMDN是矩形;②当AM的值为时,四边形AMDN是菱形.题二:(1)如图矩形ABCD的对角线AC、BD交于点O,过点D作DP∥OC,且DP=OC,连接CP,判断四边形CODP的形状并说明理由(2)如果题目中的矩形变为菱形,结论应变为什么?说明理由.(3)如果题目中的矩形变为正方形,结论又应变为什么?说明理由.题三:已知:如图,在正方形ABCD中,G是CD上一点,延长BC到E,使CE=CG,连接DE,连接BG 并延长交DE于F.(1)求证:△BCG≌△DCE;(2)将△DCE绕点D顺时针旋转90°得到△DA'E,判断四边形E'BGD是什么特殊四边形?并说明理由.题四:如图,矩形ABCD中,AB=4cm,BC=8cm,动点M从点D出发,按折线DCBAD方向以2cm/s的速度运动,动点N从点D出发,按折线DABCD方向以1cm/s的速度运动.(1)若动点M、N同时出发,经过几秒钟两点相遇?(2)若点E在线段BC上,BE=2cm,动点M、N同时出发且相遇时均停止运动,那么点M运动到第几秒钟时,与点A、E、M、N恰好能组成平行四边形?思维拓展==CD=6,∠ABC=135°,题一:如图,四边形ABCD中,已知AB BC5∠BCD=120°,求AD的长.题一:下列说法中,正确的是()A.对角线互相垂直且相等的四边形是正方形B.对角线相等的四边形是平行四边形C.四条边相等的四边形是菱形D.矩形的对角线一定互相垂直题二:如图,四边形ABCD中,AB∥CD.则下列说法中,不正确的是()A.当AB=CD,AO=DO时,四边形ABCD为矩形B.当AB=AD,AO=CO时,四边形ABCD为菱形C.当AD∥BC,AC=BD时,四边形ABCD为正方形D.当AB≠CD,AC=BD时,四边形ABCD为等腰梯形题三:如图,已知四边形ABCD中,E、F、G、H分别为AB、BC、CD、DA的中点,①求证:四边形EFGH是平行四边形.②探索下列问题,并选择一个进行证明.a.原四边形ABCD的对角线AC、BD满足________时,四边形E FGH是矩形.b.原四边形ABCD的对角线AC、BD满足________时,四边形EFGH是菱形.c.原四边形ABCD的对角线AC、BD满足________时,四边形EFGH是正方形.题四:如图所示,在△ABC中,分别以AB、AC、BC为边在BC的同侧作等边△ABD,等边△ACE、等边△BCF.(1)求证:四边形DAEF是平行四边形;(2)探究下列问题:(只填满足的条件,不需证明)①当△ABC满足_________条件时,四边形DAEF是矩形;②当△ABC满足_________条件时,四边形DAEF是菱形;③当△ABC满足_________条件时,以D、A、E、F为顶点的四边形不存在.题五:如图所示,在四边形ABCD中,点E、F是对角线BD上的两点,且BE=FD.(1)若四边形AECF是平行四边形,求证:四边形ABCD是平行四边形;(2)若四边形AECF是菱形,那么四边形ABCD也是菱形吗?为什么?(3)若四边形AECF是矩形,试判断四边形ABCD是否为矩形,不必写理由.题六:如图,任意四边形ABCD,对角线AC、BD交于O点,过各顶点分别作对角线AC、BD的平行线,四条平行线围成一个四边形EFGH.试想当四边形ABCD的形状发生改变时,四边形EFGH的形状会有哪些变化?完成以下题目:(1)①当ABCD为任意四边形时,EFGH为___________;②当ABCD为矩形时,EFGH为___________;③当ABCD为菱形时,EFGH为___________;④当ABCD为正方形时,EFGH为___________;(2)请对(1)中①②你所写的结论进行证明.(3)反之,当用上述方法所围成的平行四边形EFGH分别是矩形、菱形时,相应的原四边形ABCD必须满足怎样的条件?题七:如图,在矩形ABCD中,M、N分别是AD、BC的中点,P、Q分别是BM、DN的中点.(1)求证:△MBA≌△NDC;(2)四边形MPNQ是什么样的特殊四边形?请说明理由.题八:在折纸这种传统手工艺术中,蕴含许多数学思想,我们可以通过折纸得到一些特殊图形.把一张正方形纸片按照图①~④的过程折叠后展开.(1)猜想四边形ABCD是什么四边形;(2)请证明你所得到的数学猜想.题九:如图,在梯形ABCD中,AD∥BC,AD=5cm,BC=8cm,M是CD的中点,P是BC边上的一动点(P 与B,C不重合),连接PM并延长交AD的延长线于Q.(1)试说明△PCM≌△QDM;(2)当P在B、C之间运动到什么位置时,四边形ABPQ是平行四边形?并说明理由.题十:如图,矩形ABCD中,AB=5cm,BC=10cm,动点M从点D出发,按折线D-C-B方向以2cm/s的速度运动,动点N从点D出发,沿DA方向以1cm/s的速度向点A运动.动点M、N同时出发,当一个点到达终点时,另一个点也随即停止运动.(1)若点E在线段BC上,且BE=4cm,经过几秒钟,点A、E、M、N组成平行四边形?(2)动点M、N在运动的过程中,线段MN是否经过矩形ABCD的两条对角线的交点?如果线段MN过此交点,请求出运动的时间;如果线段MN不过此交点,请说明理由.题十一:如图,已知,在四边形ABCD中,AD∥BC,BD平分∠ABC,∠A=120°,CD= 4,∠ABC=∠DCB,求BC的长.题十二:已知:如图,四边形ABCD中,AD∥BC,AB= 4,BC=6,CD=5,AD=3.求:四边形ABCD的面积.。

八年级下册数学特殊平行四边形重点题型附答案

八年级下册数学特殊平行四边形重点题型附答案

八年级下册数学特殊平行四边形重点题型附答案一.选择题(共14小题)1.如图,在正方形ABCD的外侧,作等边三角形ADE,AC、BE相交于点F,则∠BFC为()A.45°B.55°C.60°D.75°2.如图,将n个边长都为2的正方形按如图所示摆放,点A1,A2,…A n分别是正方形的中心,则这n个正方形重叠部分的面积之和是()A.n B.n﹣1 C.()n﹣1 D.n3.如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为()A.1 B.2 C.3 D.44.如图,菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD,垂足分别为E,F,连接EF,则△AEF的面积是()A.4 B.3 C.2 D.5.如图,E是边长为1的正方形ABCD的对角线BD上一点,且BE=BC,P为CE 上任意一点,PQ⊥BC于点Q,PR⊥BE于点R,则PQ+PR的值是()A.B.C.D.6.过矩形ABCD的对角线AC的中点O作EF⊥AC,交BC边于点E,交AD边于点F,分别连接AE、CF.若AB=,∠DCF=30°,则EF的长为()A.2 B.3 C.D.10.如图,将矩形纸片ABCD沿直线EF折叠,使点C落在AD边的中点C′处,点B落在点B′处,其中AB=9,BC=6,则FC′的长为()A.B.4 C.4.5 D.511.如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点(且点P不与点B、C重合),PE⊥AB于E,PF⊥AC于F.则EF的最小值为()A.4 B.4.8 C.5.2 D.612.则在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F.若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG、BG,∠BDG的大小是()A.30°B.45°C.60°D.75°13.如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,点D在BC上,以AC为对角线的所有▱ADCE中,DE最小的值是()A.2 B.3 C.4 D.514.如图,在平行四边形ABCD中,BC=2AB,CE⊥AB于E,F为AD的中点,若∠AEF=54°,则∠B=()A.54°B.60°C.66°D.72°16.如图,在四边形ABCD中,AC=BD=6,E、F、G、H分别是AB、BC、CD、DA 的中点,则EG2+FH2=.22.如图所示,以Rt△ABC的斜边BC为一边在△ABC的同侧作正方形BCEF,设正方形的中心为O,连接AO,如果AB=4,AO=6,那么AC=.三.解答题(共12小题)23.如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.(1)求证:BD=DF;(2)求证:四边形BDFG为菱形;(3)若AG=13,CF=6,求四边形BDFG的周长.24.如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN 交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.25.已知:在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B、C重合).以AD为边作正方形ADEF,连接CF.(1)如图1,当点D在线段BC上时,求证:①BD⊥CF.②CF=BC﹣CD.(2)如图2,当点D在线段BC的延长线上时,其它条件不变,请直接写出CF、BC、CD三条线段之间的关系;(3)如图3,当点D在线段BC的反向延长线上时,且点A、F分别在直线BC 的两侧,其它条件不变:①请直接写出CF、BC、CD三条线段之间的关系.②若连接正方形对角线AE、DF,交点为O,连接OC,探究△AOC的形状,并说明理由.26.已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.(1)如图1,连接AF、CE.求证四边形AFCE为菱形,并求AF的长;(2)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,①已知点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.②若点P、Q的运动路程分别为a、b(单位:cm,ab≠0),已知A、C、P、Q四点为顶点的四边形是平行四边形,求a与b满足的数量关系式.27.已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E,(1)求证:四边形ADCE为矩形;(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.28.如图甲,在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.解答下列问题:(1)如果AB=AC,∠BAC=90°,①当点D在线段BC上时(与点B不重合),如图乙,线段CF、BD之间的位置关系为,数量关系为.②当点D在线段BC的延长线上时,如图丙,①中的结论是否仍然成立,为什么?(2)如果AB≠AC,∠BAC≠90°点D在线段BC上运动.试探究:当△ABC满足一个什么条件时,CF⊥BC(点C、F重合除外)?并说明理由.29.如图,正方形CGEF的对角线CE在正方形ABCD的边BC的延长线上(CG>BC),M是线段AE的中点,DM的延长线交CE于N.(1)求证:AD=NE(2)求证:①DM=MF;②DM⊥MF.30.如图,在矩形ABCD中,AB=24cm,BC=8cm,点P从A开始沿折线A﹣B﹣C ﹣D以4cm/s的速度移动,点Q从C开始沿CD边以2cm/s的速度移动,如果点P、Q分别从A、C同时出发,当其中一点到达D时,另一点也随之停止运动,设运动时间为t(s).当t为何值时,四边形QPBC为矩形?31.数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点.∠AEF=90°,且EF交正方形外角∠DCG的平分线CF于点F,求证:AE=EF.经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证△AME≌△ECF,所以AE=EF.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.32.如图.在△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠BAC,分别于BC、CD交于E、F,EH⊥AB于H.连接FH,求证:四边形CFHE是菱形.33.如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为F,连接DF.(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.34.观察探究,完成证明和填空.如图,四边形ABCD中,点E、F、G、H分别是边AB、BC、CD、DA的中点,顺次连接E、F、G、H,得到的四边形EFGH叫中点四边形.(1)求证:四边形EFGH是平行四边形;(2)如图,当四边形ABCD变成等腰梯形时,它的中点四边形是菱形,请你探究并填空:当四边形ABCD变成平行四边形时,它的中点四边形是;当四边形ABCD变成矩形时,它的中点四边形是;当四边形ABCD变成菱形时,它的中点四边形是;当四边形ABCD变成正方形时,它的中点四边形是;(3)根据以上观察探究,请你总结中点四边形的形状由原四边形的什么决定的?八年级下册数学特殊平行四边形重点题型附答案参考答案与试题解析一.选择题(共14小题)1.如图,在正方形ABCD的外侧,作等边三角形ADE,AC、BE相交于点F,则∠BFC为()A.45°B.55°C.60°D.75°【解答】解:∵四边形ABCD是正方形,∴AB=AD,又∵△ADE是等边三角形,∴AE=AD=DE,∠DAE=60°,∴AB=AE,∴∠ABE=∠AEB,∠BAE=90°+60°=150°,∴∠ABE=(180°﹣150°)÷2=15°,又∵∠BAC=45°,∴∠BFC=45°+15°=60°.故选:C.2.如图,将n个边长都为2的正方形按如图所示摆放,点A1,A2,…A n分别是正方形的中心,则这n个正方形重叠部分的面积之和是()A.n B.n﹣1 C.()n﹣1 D.n【解答】解:由题意可得一个阴影部分面积等于正方形面积的,即是×4=1,5个这样的正方形重叠部分(阴影部分)的面积和为:1×4,n个这样的正方形重叠部分(阴影部分)的面积和为:1×(n﹣1)=n﹣1.故选:B.3.如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为()A.1 B.2 C.3 D.4【解答】解:作F点关于BD的对称点F′,连接EF′交BD于点P,则PF=PF′.∴EP+FP=EP+F′P.由两点之间线段最短可知:当E、P、F′在一条直线上时,EP+FP的值最小,此时EP+FP=EP+F′P=EF′.∵四边形ABCD为菱形,周长为12,∴AB=BC=CD=DA=3,AB∥CD,∵AF=2,AE=1,∴DF=DF′=AE=1,∴四边形AEF′D是平行四边形,∴EF′=AD=3.∴EP+FP的最小值为3.故选:C.4.如图,菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD,垂足分别为E,F,连接EF,则△AEF的面积是()A.4 B.3 C.2 D.【解答】解:∵四边形ABCD是菱形,∴BC=CD,∠B=∠D=60°,∵AE⊥BC,AF⊥CD,∴BC×AE=CD×AF,∠BAE=∠DAF=30°,∴AE=AF,∵∠B=60°,∴∠BAD=120°,∴∠EAF=120°﹣30°﹣30°=60°,∴△AEF是等边三角形,∴AE=EF,∠AEF=60°,∵AB=4,∴BE=2,∴AE==2,∴EF=AE=2,过A作AM⊥EF,∴AM=AE•sin60°=3,∴△AEF的面积是:EF•AM=×2×3=3.故选:B.5.如图,E是边长为1的正方形ABCD的对角线BD上一点,且BE=BC,P为CE 上任意一点,PQ⊥BC于点Q,PR⊥BE于点R,则PQ+PR的值是()A.B.C.D.【解答】解:连接BP,过C作CM⊥BD,∵S△BCE =S△BPE+S△BPC=BC×PQ×+BE×PR×=BC×(PQ+PR)×=BE×CM×,BC=BE,∴PQ+PR=CM,∵BE=BC=1,且正方形对角线BD=BC=,又∵BC=CD,CM⊥BD,∴M为BD中点,又△BDC为直角三角形,∴CM=BD=,即PQ+PR值是.6.过矩形ABCD的对角线AC的中点O作EF⊥AC,交BC边于点E,交AD边于点F,分别连接AE、CF.若AB=,∠DCF=30°,则EF的长为()A.2 B.3 C.D.【解答】解:∵矩形对边AD∥BC,∴∠ACB=∠DAC,∵O是AC的中点,∴AO=CO,在△AOF和△COE中,,∴△AOF≌△COE(ASA),∴OE=OF,又∵EF⊥AC,∴四边形AECF是菱形,∵∠DCF=30°,∴∠ECF=90°﹣30°=60°,∴△CEF是等边三角形,∴EF=CF,∴CD=AB=,∵∠DCF=30°,∴CF=÷=2,∴EF=2.故选:A.7.下列命题中,真命题是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形【解答】解:A、两条对角线相等且相互平分的四边形为矩形;故本选项错误;B、对角线互相垂直的平行四边形是菱形;故本选项错误;C、对角线互相平分的四边形是平行四边形;故本选项正确;D、对角线互相垂直平分且相等的四边形是正方形;故本选项错误;故选:C.8.如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为()A.B.C.D.【解答】解:∵在△ABC中,AB=3,AC=4,BC=5,∴AB2+AC2=BC2,即∠BAC=90°.又∵PE⊥AB于E,PF⊥AC于F,∴四边形AEPF是矩形,∴EF=AP.∵M是EF的中点,∴AM=EF=AP.因为AP的最小值即为直角三角形ABC斜边上的高,即等于,∴AM的最小值是.故选:D.9.如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在边OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离为()A.+1 B.C.D.【解答】解:如图,取AB的中点E,连接OE、DE、OD,∵OD≤OE+DE,∴当O、D、E三点共线时,点D到点O的距离最大,此时,∵AB=2,BC=1,∴OE=AE=AB=1,DE===,∴OD的最大值为:+1.故选:A.10.如图,将矩形纸片ABCD沿直线EF折叠,使点C落在AD边的中点C′处,点B落在点B′处,其中AB=9,BC=6,则FC′的长为()A.B.4 C.4.5 D.5【解答】解:设FC′=x,则FD=9﹣x,∵BC=6,四边形ABCD为矩形,点C′为AD的中点,∴AD=BC=6,C′D=3.在Rt△FC′D中,∠D=90°,FC′=x,FD=9﹣x,C′D=3,∴FC′2=FD2+C′D2,即x2=(9﹣x)2+32,解得:x=5.故选:D.11.如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点(且点P不与点B、C重合),PE⊥AB于E,PF⊥AC于F.则EF的最小值为()A.4 B.4.8 C.5.2 D.6【解答】解:如图,连接PA.∵在△ABC中,AB=6,AC=8,BC=10,∴BC2=AB2+AC2,∴∠A=90°.又∵PE⊥AB于点E,PF⊥AC于点F.∴∠AEP=∠AFP=90°,∴四边形PEAF是矩形.∴AP=EF.∴当PA最小时,EF也最小,即当AP⊥CB时,PA最小,∵AB•AC=BC•AP,即AP===4.8,∴线段EF长的最小值为4.8;故选:B.12.则在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F.若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG、BG,∠BDG的大小是()A.30°B.45°C.60°D.75°【解答】解:延长AB、FG交于H,连接HD.∵AD∥GF,AB∥DF,∴四边形AHFD为平行四边形,∵∠ABC=120°,AF平分∠BAD,∴∠DAF=30°,∠ADC=120°,∠DFA=30°,∴△DAF为等腰三角形,∴AD=DF,∴平行四边形AHFD为菱形,∴△ADH,△DHF为全等的等边三角形,∴DH=DF,∠BHD=∠GFD=60°,∵FG=CE,CE=CF,CF=BH,∴BH=GF,在△BHD和△GFD中,,∴△BHD≌△GFD(SAS),∴∠BDH=∠GDF,∴∠BDG=∠BDH+∠HDG=∠GDF+∠HDG=60°.故选:C.13.如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,点D在BC上,以AC为对角线的所有▱ADCE中,DE最小的值是()A.2 B.3 C.4 D.5【解答】解:∵在Rt△ABC中,∠B=90°,∴BC⊥AB.∵四边形ADCE是平行四边形,∴OD=OE,OA=OC.∴当OD取最小值时,DE线段最短,此时OD⊥BC.∴OD∥AB.又点O是AC的中点,∴OD是△ABC的中位线,∴OD=AB=1.5,∴ED=2OD=3.故选:B.14.如图,在平行四边形ABCD中,BC=2AB,CE⊥AB于E,F为AD的中点,若∠AEF=54°,则∠B=()A.54°B.60°C.66°D.72°【解答】解:过F作FG∥AB∥CD,交BC于G;则四边形ABGF是平行四边形,所以AF=BG,即G是BC的中点;连接EG,在Rt△BEC中,EG是斜边上的中线,则BG=GE=FG=BC;∵AE∥FG,∴∠EFG=∠AEF=∠FEG=54°,∴∠AEG=∠AEF+∠FEG=108°,∴∠B=∠BEG=180°﹣108°=72°.故选:D.二.填空题(共8小题)15.如图,在矩形ABCD中,AD=6,AB=4,点E、G、H、F分别在AB、BC、CD、AD上,且AF=CG=2,BE=DH=1,点P是直线EF、GH之间任意一点,连接PE、PF、PG、PH,则△PEF和△PGH的面积和等于7.【解答】解:∵在矩形ABCD中,AD=6,AB=4,AF=CG=2,BE=DH=1,∴AE=AB﹣BE=4﹣1=3,CH=CD﹣DH=4﹣1=3,∴AE=CH,在△AEF与△CGH中,,∴△AEF≌△CGH(SAS),∴EF=GH,同理可得,△BGE≌△DFH,∴EG=FH,∴四边形EGHF是平行四边形,∵△PEF和△PGH的高的和等于点H到直线EF的距离,∴△PEF和△PGH的面积和=×平行四边形EGHF的面积,平行四边形EGHF的面积=4×6﹣×2×3﹣×1×(6﹣2)﹣×2×3﹣×1×(6﹣2),=24﹣3﹣2﹣3﹣2,=14,∴△PEF和△PGH的面积和=×14=7.故答案为:7.16.如图,在四边形ABCD中,AC=BD=6,E、F、G、H分别是AB、BC、CD、DA 的中点,则EG2+FH2=36.【解答】解:如右图,连接EF,FG,GH,EH,∵E、H分别是AB、DA的中点,∴EH是△ABD的中位线,∴EH=BD=3,同理可得EF,FG,GH分别是△ABC,△BCD,△ACD的中位线,∴EF=GH=AC=3,FG=BD=3,∴EH=EF=GH=FG=3,∴四边形EFGH为菱形,∴EG⊥HF,且垂足为O,∴EG=2OE,FH=2OH,在Rt△OEH中,根据勾股定理得:OE2+OH2=EH2=9,等式两边同时乘以4得:4OE2+4OH2=9×4=36,∴(2OE)2+(2OH)2=36,即EG2+FH2=36.故答案为:36.17.如图,在平面直角坐标系中,O为坐标原点,矩形OABC中,A(10,0),C (0,4),D为OA的中点,P为BC边上一点.若△POD为等腰三角形,则所有满足条件的点P的坐标为(2.5,4),或(3,4),或(2,4),或(8,4).【解答】解:∵四边形OABC是矩形,∴∠OCB=90°,OC=4,BC=OA=10,∵D为OA的中点,∴OD=AD=5,①当PO=PD时,点P在OD得垂直平分线上,∴点P的坐标为:(2.5,4);②当OP=OD时,如图1所示:则OP=OD=5,PC==3,∴点P的坐标为:(3,4);③当DP=DO时,作PE⊥OA于E,则∠PED=90°,DE==3;分两种情况:当E在D的左侧时,如图2所示:OE=5﹣3=2,∴点P的坐标为:(2,4);当E在D的右侧时,如图3所示:OE=5+3=8,∴点P的坐标为:(8,4);综上所述:点P的坐标为:(2.5,4),或(3,4),或(2,4),或(8,4);故答案为:(2.5,4),或(3,4),或(2,4),或(8,4).18.如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H.若AB=,AG=1,则EB=.【解答】解:连接BD交AC于O,∵四边形ABCD、AGFE是正方形,∴AB=AD,AE=AG,∠DAB=∠EAG,∴∠EAB=∠GAD,在△AEB和△AGD中,,∴△EAB≌△GAD(SAS),∴EB=GD,∵四边形ABCD是正方形,AB=,∴BD⊥AC,AC=BD=AB=2,∴∠DOG=90°,OA=OD=BD=1,∵AG=1,∴OG=OA+AG=2,∴GD==,∴EB=.故答案为:.19.如图,在四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于P.若四边形ABCD的面积是18,则DP的长是3.【解答】解:如图,过点D作DE⊥DP交BC的延长线于E,∵∠ADC=∠ABC=90°,∴四边形DPBE是矩形,∵∠CDE+∠CDP=90°,∠ADC=90°,∴∠ADP+∠CDP=90°,∴∠ADP=∠CDE,∵DP⊥AB,∴∠APD=90°,∴∠APD=∠E=90°,在△ADP和△CDE中,,∴△ADP≌△CDE(AAS),∴DE=DP,四边形ABCD的面积=四边形DPBE的面积=18,∴矩形DPBE是正方形,∴DP==3.故答案为:3.20.如图,边长为1的菱形ABCD中,∠DAB=60°.连结对角线AC,以AC为边作第二个菱形ACEF,使∠FAC=60°.连结AE,再以AE为边作第三个菱形AEGH 使∠HAE=60°…按此规律所作的第n个菱形的边长是()n﹣1.【解答】解:连接DB,∵四边形ABCD是菱形,∴AD=AB.AC⊥DB,∵∠DAB=60°,∴△ADB是等边三角形,∴DB=AD=1,∴BM=,∴AM=,∴AC=,同理可得AE=AC=()2,AG=AE=3=()3,按此规律所作的第n个菱形的边长为()n﹣1,故答案为()n﹣1.21.如图,矩形ABCD中,AB=6,BC=8,E是BC边上的一定点,P是CD边上的一动点(不与点C、D重合),M,N分别是AE、PE的中点,记MN的长度为a,在点P运动过程中,a不断变化,则a的取值范围是4<a<5.【解答】解:∵矩形ABCD中,AB=6,BC=8,∴对角线AC==10,∵P是CD边上的一动点(不与点C、D重合),∴8<AP<10,连接AP,∵M,N分别是AE、PE的中点,∴MN是△AEP的中位线,∴MN=AP,∴4<a<5.故答案为:4<a<5.22.如图所示,以Rt△ABC的斜边BC为一边在△ABC的同侧作正方形BCEF,设正方形的中心为O,连接AO,如果AB=4,AO=6,那么AC=16.【解答】解:在AC上截取CG=AB=4,连接OG,∵四边形BCEF是正方形,∠BAC=90°,∴OB=OC,∠BAC=∠BOC=90°,∴B、A、O、C四点共圆,∴∠ABO=∠ACO,∵在△BAO和△CGO中,∴△BAO≌△CGO,∴OA=OG=6,∠AOB=∠COG,∵∠BOC=∠COG+∠BOG=90°,∴∠AOG=∠AOB+∠BOG=90°,即△AOG是等腰直角三角形,由勾股定理得:AG==12,即AC=12+4=16,故答案为:16.三.解答题(共12小题)23.如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.(1)求证:BD=DF;(2)求证:四边形BDFG为菱形;(3)若AG=13,CF=6,求四边形BDFG的周长.【解答】(1)证明:∵∠ABC=90°,BD为AC的中线,∴BD=AC,∵AG∥BD,BD=FG,∴四边形BGFD是平行四边形,∵CF⊥BD,∴CF⊥AG,又∵点D是AC中点,∴DF=AC,∴BD=DF;(2)证明:∵BD=DF,∴四边形BGFD是菱形,(3)解:设GF=x,则AF=13﹣x,AC=2x,∵在Rt△ACF中,∠CFA=90°,∴AF2+CF2=AC2,即(13﹣x)2+62=(2x)2,解得:x=5,∴四边形BDFG的周长=4GF=20.24.如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN 交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.【解答】(1)证明:∵MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,∴∠2=∠5,∠4=∠6,∵MN∥BC,∴∠1=∠5,∠3=∠6,∴∠1=∠2,∠3=∠4,∴EO=CO,FO=CO,∴OE=OF;(2)解:∵∠2=∠5,∠4=∠6,∴∠2+∠4=∠5+∠6=90°,∵CE=12,CF=5,∴EF==13,∴OC=EF=6.5;(3)解:当点O在边AC上运动到AC中点时,四边形AECF是矩形.证明:当O为AC的中点时,AO=CO,∵EO=FO,∴四边形AECF是平行四边形,∵∠ECF=90°,∴平行四边形AECF是矩形.25.已知:在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B、C重合).以AD为边作正方形ADEF,连接CF.(1)如图1,当点D在线段BC上时,求证:①BD⊥CF.②CF=BC﹣CD.(2)如图2,当点D在线段BC的延长线上时,其它条件不变,请直接写出CF、BC、CD三条线段之间的关系;(3)如图3,当点D在线段BC的反向延长线上时,且点A、F分别在直线BC 的两侧,其它条件不变:①请直接写出CF、BC、CD三条线段之间的关系.②若连接正方形对角线AE、DF,交点为O,连接OC,探究△AOC的形状,并说明理由.【解答】(1)证明:①∵∠BAC=90°,AB=AC,∴∠ABC=∠ACB=45°,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAC=∠BAD+∠DAC=90°,∠DAF=∠CAF+∠DAC=90°,∴∠BAD=∠CAF,在△BAD和△CAF中,,∴△BAD≌△CAF(SAS),∴∠ACF=∠ABD=45°,∴∠ACF+∠ACB=90°,∴BD⊥CF;②由①△BAD≌△CAF可得BD=CF,∵BD=BC﹣CD,∴CF=BC﹣CD;(2)与(1)同理可得BD=CF,所以,CF=BC+CD;(3)①与(1)同理可得,BD=CF,所以,CF=CD﹣BC;②∵∠BAC=90°,AB=AC,∴∠ABC=∠ACB=45°,则∠ABD=180°﹣45°=135°,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAC=∠BAF+∠CAF=90°,∠DAF=∠BAD+∠BAF=90°,∴∠BAD=∠CAF,在△BAD和△CAF中,,∴△BAD≌△CAF(SAS),∴∠ACF=∠ABD=180°﹣45°=135°,∴∠FCD=∠ACF﹣∠ACB=90°,则△FCD为直角三角形,∵正方形ADEF中,O为DF中点,∴OC=DF,∵在正方形ADEF中,OA=AE,AE=DF,∴OC=OA,∴△AOC是等腰三角形.26.已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.(1)如图1,连接AF、CE.求证四边形AFCE为菱形,并求AF的长;(2)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,①已知点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.②若点P、Q的运动路程分别为a、b(单位:cm,ab≠0),已知A、C、P、Q四点为顶点的四边形是平行四边形,求a与b满足的数量关系式.【解答】解:(1)①∵四边形ABCD是矩形,∴AD∥BC,∴∠CAD=∠ACB,∠AEF=∠CFE,∵EF垂直平分AC,垂足为O,∴OA=OC,∴△AOE≌△COF,∴OE=OF,∴四边形AFCE为平行四边形,又∵EF⊥AC,∴四边形AFCE为菱形,②设菱形的边长AF=CF=xcm,则BF=(8﹣x)cm,在Rt△ABF中,AB=4cm,由勾股定理得42+(8﹣x)2=x2,解得x=5,∴AF=5cm.(2)①显然当P点在AF上时,Q点在CD上,此时A、C、P、Q四点不可能构成平行四边形;同理P点在AB上时,Q点在DE或CE上或P在BF,Q在CD时不构成平行四边形,也不能构成平行四边形.因此只有当P点在BF上、Q点在ED上时,才能构成平行四边形,∴以A、C、P、Q四点为顶点的四边形是平行四边形时,PC=QA,∵点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,∴PC=5t,QA=CD+AD﹣4t=12﹣4t,即QA=12﹣4t,∴5t=12﹣4t,解得,∴以A、C、P、Q四点为顶点的四边形是平行四边形时,秒.②由题意得,四边形APCQ是平行四边形时,点P、Q在互相平行的对应边上.分三种情况:i)如图1,当P点在AF上、Q点在CE上时,AP=CQ,即a=12﹣b,得a+b=12;ii)如图2,当P点在BF上、Q点在DE上时,AQ=CP,即12﹣b=a,得a+b=12;iii)如图3,当P点在AB上、Q点在CD上时,AP=CQ,即12﹣a=b,得a+b=12.综上所述,a与b满足的数量关系式是a+b=12(ab≠0).27.已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E,(1)求证:四边形ADCE为矩形;(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.【解答】(1)证明:在△ABC中,AB=AC,AD⊥BC,∴∠BAD=∠DAC,∵AN是△ABC外角∠CAM的平分线,∴∠MAE=∠CAE,∴∠DAE=∠DAC+∠CAE=180°=90°,又∵AD⊥BC,CE⊥AN,∴∠ADC=∠CEA=90°,∴四边形ADCE为矩形.(2)当△ABC满足∠BAC=90°时,四边形ADCE是一个正方形.理由:∵AB=AC,∴∠ACB=∠B=45°,∵AD⊥BC,∴∠CAD=∠ACD=45°,∴DC=AD,∵四边形ADCE为矩形,∴矩形ADCE是正方形.∴当∠BAC=90°时,四边形ADCE是一个正方形.28.如图甲,在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.解答下列问题:(1)如果AB=AC,∠BAC=90°,①当点D在线段BC上时(与点B不重合),如图乙,线段CF、BD之间的位置关系为垂直,数量关系为相等.②当点D在线段BC的延长线上时,如图丙,①中的结论是否仍然成立,为什么?(2)如果AB≠AC,∠BAC≠90°点D在线段BC上运动.试探究:当△ABC满足一个什么条件时,CF⊥BC(点C、F重合除外)?并说明理由.【解答】解:(1)①CF⊥BD,CF=BD …(2分)故答案为:垂直、相等.②成立,理由如下:…(3分)∵∠FAD=∠BAC=90°∴∠BAD=∠CAF在△BAD与△CAF中,∵∴△BAD≌△CAF(SAS)(5分)∴CF=BD,∠ACF=∠ACB=45°,∴∠BCF=90°∴CF⊥BD …(7分)(2)当∠ACB=45°时可得CF⊥BC,理由如下:…(8分)过点A作AC的垂线与CB所在直线交于G …(9分)则∵∠ACB=45°∴AG=AC,∠AGC=∠ACG=45°∵AG=AC,AD=AF,∵∠GAD=∠GAC﹣∠DAC=90°﹣∠DAC,∠FAC=∠FAD﹣∠DAC=90°﹣∠DAC,∴∠GAD=∠FAC,∴△GAD≌△CAF(SAS)…(10分)∴∠ACF=∠AGD=45°∴∠GCF=∠GCA+∠ACF=90°∴CF⊥BC …(12分)29.如图,正方形CGEF的对角线CE在正方形ABCD的边BC的延长线上(CG>BC),M是线段AE的中点,DM的延长线交CE于N.(1)求证:AD=NE(2)求证:①DM=MF;②DM⊥MF.【解答】(1)证明:∵四边形ABCD是正方形,∴AD∥BC,∠BCD=90°,AD=CD,∴∠MAD=∠MEN,又∵M是AE的中点,∴AM=EM在△ADM和△ENM中,∵,∴△ADM≌△ENM(ASA),∴AD=EN;(2)证明:连接FD、FN,∵CE是正方形CGEF的对角线,∴CF=EF,∠1=∠FEN=45°,又∵∠BCD=90°,∴∠DCE=90°,∴∠2=∠1=∠FEN=45°,在△CDF和△ENF中,∵,∴△CDF≌△ENF(SAS)∴∠3=∠4,DF=FN,又∵∠CFN+∠4=90°,∴∠CFN+∠3=90°,∴△DFN是等腰直角三角形,又∵△ADM≌△ENM,∴DM=NM,∴FM=DM,FM⊥DM.30.如图,在矩形ABCD中,AB=24cm,BC=8cm,点P从A开始沿折线A﹣B﹣C ﹣D以4cm/s的速度移动,点Q从C开始沿CD边以2cm/s的速度移动,如果点P、Q分别从A、C同时出发,当其中一点到达D时,另一点也随之停止运动,设运动时间为t(s).当t为何值时,四边形QPBC为矩形?【解答】解:根据题意得:CQ=2t,AP=4t,则BP=24﹣4t,∵四边形ABCD是矩形,∴∠B=∠C=90°,CD∥AB,∴只有CQ=BP时,四边形QPBC是矩形,即2t=24﹣4t,解得:t=4,答:当t=4s时,四边形QPBC是矩形.31.数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点.∠AEF=90°,且EF交正方形外角∠DCG的平分线CF于点F,求证:AE=EF.经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证△AME≌△ECF,所以AE=EF.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.【解答】解:(1)正确.证明:在AB上取一点M,使AM=EC,连接ME.∴BM=BE,∴∠BME=45°,∴∠AME=135°,∵CF是外角平分线,∴∠DCF=45°,∴∠ECF=135°,∴∠AME=∠ECF,∵∠AEB+∠BAE=90°,∠AEB+∠CEF=90°,∴∠BAE=∠CEF,∴△AME≌△ECF(ASA),∴AE=EF.(2)正确.证明:在BA的延长线上取一点N.使AN=CE,连接NE.∴BN=BE,∴∠N=∠NEC=45°,∵CF平分∠DCG,∴∠FCE=45°,∴∠N=∠ECF,∵四边形ABCD是正方形,∴AD∥BE,∴∠DAE=∠BEA,即∠DAE+90°=∠BEA+90°,∴∠NAE=∠CEF,∴△ANE≌△ECF(ASA),∴AE=EF.32.如图.在△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠BAC,分别于BC、CD交于E、F,EH⊥AB于H.连接FH,求证:四边形CFHE是菱形.【解答】证明:∵∠ACB=90°,AE平分∠BAC,EH⊥AB,∴CE=EH,在Rt△ACE和Rt△AHE中,AE=AE,CE=EH,由勾股定理得:AC=AH,∵AE平分∠CAB,∴∠CAF=∠HAF,在△CAF和△HAF中∴△CAF≌△HAF(SAS),∴∠ACD=∠AHF,∵CD⊥AB,∠ACB=90°,∴∠CDA=∠ACB=90°,∴∠B+∠CAB=90°,∠CAB+∠ACD=90°,∴∠ACD=∠B=∠AHF,∴FH∥CE,∵CD⊥AB,EH⊥AB,∴CF∥EH,∴四边形CFHE是平行四边形,∵CE=EH,∴四边形CFHE是菱形.33.如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为F,连接DF.(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.【解答】证明:(1)∵Rt△ABC中,∠BAC=30°,∴AB=2BC,又∵△ABE是等边三角形,EF⊥AB,∴AB=2AF∴AF=BC,在Rt△AFE和Rt△BCA中,,∴△AFE≌△BCA(HL),∴AC=EF;(2)∵△ACD是等边三角形,∴∠DAC=60°,AC=AD,∴∠DAB=∠DAC+∠BAC=90°又∵EF⊥AB,∴EF∥AD,∵AC=EF,AC=AD,∴EF=AD,∴四边形ADFE是平行四边形.34.观察探究,完成证明和填空.如图,四边形ABCD中,点E、F、G、H分别是边AB、BC、CD、DA的中点,顺次连接E、F、G、H,得到的四边形EFGH叫中点四边形.(1)求证:四边形EFGH是平行四边形;(2)如图,当四边形ABCD变成等腰梯形时,它的中点四边形是菱形,请你探究并填空:当四边形ABCD变成平行四边形时,它的中点四边形是平行四边形;当四边形ABCD变成矩形时,它的中点四边形是菱形;当四边形ABCD变成菱形时,它的中点四边形是矩形;当四边形ABCD变成正方形时,它的中点四边形是正方形;(3)根据以上观察探究,请你总结中点四边形的形状由原四边形的什么决定的?【解答】(1)证明:连接BD.∵E、H分别是AB、AD的中点,∴EH是△ABD的中位线.∴EH=BD,EH∥BD.同理得FG=BD,FG∥BD.∴EH=FG,EH∥FG.∴四边形EFGH是平行四边形.(2)填空依次为平行四边形,菱形,矩形,正方形;(3)中点四边形的形状是由原四边形的对角线的关系决定的.故答案为平行四边形、菱形、矩形、正方形.。

部编数学八年级下册专题06特殊平行四边形的两种考法全攻略(解析版)含答案

部编数学八年级下册专题06特殊平行四边形的两种考法全攻略(解析版)含答案

专题06 特殊平行四边形的两种考法全攻略类型一、最值问题例1.(将军饮马)如图,在菱形ABCD 中,120ABC Ð=°,E 是AB 边的中点,P 是AC 边上一动点,PB PE +PE 的最小值为( )A .2B C .1D .0.5由菱形的对角线互相垂直平分,可得B 、∴1602ABD ABC Ð=Ð=°,PE PB PE +=即DE 就是PB PE +的最小值,例2.(中点模型)如图,矩形,2,4ABCD AB BC ==,点A 在x 轴正半轴上,点D 在y 轴正半轴上,当点A 在x 轴上运动时,点D 也随之在y 轴上运动,在这个运动过程中,点C 到原点O 的最大距离为( )A .2B .2C 1D .【答案】A 【详解】如图,取AD 的中点H ,连接CH ,OH ,Q 矩形ABCD ,2AB =,4BC =,2CD AB \==,4AD BC ==,例3.(截补模型)如图,在Rt ABC △中,90C =o ∠,2AC BC ==,点D 、E 分别是边BC 、AC 上的动点.且BD CE =,连接AD 、BE ,则AD BE +的最小值为______.∵90ACB Ð=°,AC =∴90FBD ACB Ð=Ð=∵BD CE =,∴(SAS BDF CEB ≌△△AC=,以BC为对角线作正方形BDCE,连例4.(瓜豆模型)如图,平面内三点A,B,C,4AB=,3接AD,则AD的最大值是______.【变式训练1】如图,矩形ABCD 中,84AB AD ==,,E 为AB 的中点,F 为EC 上一动点,P 为DF 中点,连接PB ,则PB 的最小值是___________.当点F 与点C 重合时,点P 在1P 当点F 与点E 重合时,点P 在2P ∴PP EC ∥且1PP CE =.【变式训练2】如图,已知线段12AB =,点C 在线段AB 上,且ACD V 是边长为4的等边三角形,以CD 为边的右侧作矩形CDEF ,连接DF ,点M 是DF 的中点,连接MB ,则线段MB 的最小值为_______________.【答案】6【详解】∵ACD V 为等边三角形,∴AC AD =,60DAC Ð=°,∵四边形DCFE 是矩形,点M 是DF 的中点,∴DM =CM ,【变式训练3】如图,在正方形ABCD 中,边长2AB =,点Q 是边CD 的中点,点P 是线段AC 上的动点,则DP PQ +的最小值为 _____.【变式训练4】如图,在菱形ABCD 中,10AB =,16AC =,点M ,N 在AC 上,且2MN =,连接BM ,DN ,则BM DN +的最小值为 ______【变式训练5】如图,在Rt ABC △中,90BAC Ð=°,且3BA =,4AC =,点D 是斜边BC 上的一个动点,过点D 分别作DM AB ^于点M ,DN AC ^于点N ,连接MN ,则线段MN 的最小值为_____.类型二、动点问题例1.如图,在正方形ABCD中,E为AB的中点,以A为原点,AB、AD所在直线为x轴、y轴,建立平-向点D运动,面直角坐标系.正方形ABCD的边长是方程28160-+=的根.点P从点B出发,沿BC CDx x-向点C运动,点P的速度是每秒2个单位长度,点Q的速度是每秒1个同时点Q从点E出发,沿EB BC△的面积为单位长度.当点P运动到点D时,P、Q两点同时停止运动,设点P运动的时间为t秒,AQPS.(1)求点C的坐标;(2)求S关于t的函数关系式;△是以AP为底边的等腰三角形时,直接写出点P的坐标.(3)当AQP由题意得:EQ t =,2BP t =,∴2AQ AE EQ t =+=+,2BQ t =-,2222222(2)44,(2)(2)AQ t t t PQ BP t t \=+=+++=-+2544t t =-+当AQ PQ =时,22AQ PQ =,∴2244544t t t t ++=-+,解得0=t (舍去)或2,∴4BP =,∴当0t 2££,AQP △是以AP 为底边的等腰三角形时,()44P ,;②24t <£时,如图:由题意得:EB BQ t +=,2BC CP t +=,∴2BQ t BE t =-=-,6CQ BC BE t t =+-=-,224CP t BC t =-=-,282PD BC CD t t =+-=-,22224(2)AQ AB BQ t \=+=+-2420t t =-+2222(6)PQ CQ CP t =+=-22(24)52852t t t +-=-+当AQ PQ =时,22AQ PQ =,∴2242052852t t t t -+=-+,解得2t =(舍去)或4,∴0DP =,∴()04P ,;∴当24t <£,AQP △是以AP 为底边的等腰三角形时,()04P ,,综上所述,当AQP △是以AP 为底边的等腰三角形时,点P 的坐标为()44,或()04,例2.如图,在长方形ABCD 中,4AB =,3BC =,点E 为AD 延长线上一点,且6AE =,点P 从点A 出发,沿A —B —C —D 向终点D 运动.同时点Q 从点B 出发,沿B —C —D —E 向终点E 运动,它们的速度均为每秒1个单位长度.设APQ △的面积为S ,点P 运动的时间为t 秒.(1)当2t =时,S = ;当72t =时,S = .(2)当07t <£时,用含t 的代数式表示S .直接写出结果并化简.(3)当点P 在CD 边上,且APQ △为等腰三角形时,直接写出t 的取值或者范围.【变式训练1】如图,在ABCD Y 中,ABC Ð为锐角,5AB =,9BC =,36ABCD S =Y .动点P 从点A 出发,以每秒2个单位的速度沿A B C D A ®®®®运动.同时,动点Q 从点A 出发,以每秒3个单位的速度沿A D C B A ®®®®运动.当其中一个点到达终点时,另一个点也随之停止运动.设点P 的运动时间为t 秒.(1)点P 在BC 上运动时,CP =_____________;点P 在CD 上运动时,CP =_____________.(用含t 的代数式表示)(2)点P 在CD 上,PQ BC ∥时,求t 的值.(3)当直线PQ 平分ABCD Y 的面积时,求t 的值.(4)若点Q 的运动速度改变为每秒a 个单位.当972t << ,ABCD Y 的某两个顶点与P 、Q 所围成的四边形为菱形时,直接写出a 的值.【变式训练2】如图,长方形ABCD 中,AD BC ∥,90B Ð=°,104AD BC cm AB cm ===,,动点P 从点B 出发,以每秒1cm 的速度沿B A D ®®的方向,向终点D 运动;动点Q 从点B 出发以每秒1cm 的速度沿B C ®的方向向终点C 运动.以PQ 为边向右上方作正方形PQMN ,其中一个动点到达终点时,另一个动点也随之停止运动,设点P Q 、同时出发,运动时间为t 秒0t (>).(1)当04t <<时,AP =______(用含t 的代数式表示);(2)当点N 落在AD 边上时,求t 的值;(3)当正方形PQMN 与长方形ABCD 的重叠部分为四边形时,求重叠部分的面积S (用含t 的代数式表示);(4)请直接写出当t满足什么条件时,正方形PQMN与长方形ABCD的重叠部分为三角形.如图3,当M 点运动到D 点处时,∵10214CQ t CQ PM PM t ===-﹣,,,∴2014t t -=-(1),解得6t =,∴当6t =时,正方形PQMN 与长方形ABCD 的重叠部分为三角形,∴46t ££时,正方形PQMN 与长方形ABCD 的重叠部分为三角形;如图4,当Q 点运动与C 点时,10t =,此时正方形PQMN 与长方形ABCD 的重叠部分为三角形;∴610t <<时,正方形PQMN 与长方形ABCD 的重叠部分为四边形,如图5,【变式训练3】已知在矩形ABCD中,AB=4,AD=9,点M在AD上,且AM=4,动点P从点B出发,以每秒1个单位长度的速度,沿B﹣C﹣D﹣A向终点A运动,运动时间为t秒.(1)当点P在BC边上时,BP=,CP=.(用含t的代数式表示)(2)点P在运动过程中,△ABP是直角三角形时,t的取值范围为.(3)点P在运动过程中,△DMP是等腰三角形时,t的值为.(4)连接CM,当点P在线段CM的垂直平分线上时,t的值为.【答案】(1)t,9﹣t(2)0<t≤9或13≤t<22(3)1或7或6.5当点P 在线段BC 上时,CP =MP =9-t ,PH =t -4,MH =4,∵△MPH 是直角三角形,∴2222MH PH PM CP +==即()()222449t t -=+-,∴t =4.9,当点P 在线段AD 上时,同法可得PM =CPCP =MP =18-t ,DP =t -13,CD =4∵△CDP 是直角三角形,∴2222CD DP PM CP +==即()()22241318t t =+--,∴t =13.9.综上所述,满足条件的t 的值为4.9或13.9.故答案为:4.9或13.9.。

初二数学特殊的平行四边形试题答案及解析

初二数学特殊的平行四边形试题答案及解析

初二数学特殊的平行四边形试题答案及解析1. (2011福建莆田)如图,在△ABC中,D是AB的中点,E是CD的中点,过点C作CF∥AB交AE的延长线于点F,连接BF.(1)求证:DB=CF;(2)如果AC=BC,试判断四边形BDCF的形状,并证明你的结论.【答案】见解析【解析】(1)证明:∵CF∥AB,∴∠DAE=∠CFE.又∵DE=CE,∠AED=∠FEC,∴△ADE≌△FCE,∴AD=CF.∵AD=DB,∴DB=CF.(2)四边形BDCF是矩形.证明:由(1)知DB=CF,又DB∥CF,∴四边形BDCF为平行四边形.∵AC=BC,AD=DB,∴CD⊥AB.∴四边形BDCF是矩形.2.矩形ABCD中,点O是BC的中点,∠AOD=90°,矩形ABCD的周长为20cm,则AB的长为()A.1cmB.2cmC.cmD.cm【答案】D【解析】∵四边形ABCD是矩形,∴∠B=∠C=90°,AB=DC.又∵O是BC的中点,∴BO=CO,∴△ABO≌△DCO,∴AO=DO.∵∠AOD=90°,∴∠OAD=∠ODA=45°,∴∠BAO=∠AOB=45°,∴AB=OB.设AB=xcm,则BC=2xcm,∴2(x+2x)=20,解得,故选D.3. (2014重庆)如图,在矩形ABCD中,对角线AC、BD相交于点O,∠ACB=30°,则∠AOB的大小为()A.30°B.60°C.90°D.120°【答案】B【解析】在矩形ABCD中,OA=OB=OC=OD,所以∠OBC=∠OCB=30°,所以∠AOB=∠OCB+∠OBC=60°.4.(2014四川巴中)如图,在四边形ABCD中,点H是边BC的中点,作射线AH,在线段AH及其延长线上分别取点E,F,连接BE,CF.(1)请你添加一个条件,使得△BEH≌△CFH,你添加的条件是________,并证明;(2)在问题(1)中,当BH与EH满足什么关系时,四边形BFCE是矩形?请说明理由.【答案】见解析【解析】(1)添加条件:BE∥CF(答案不唯一).证明:如图,∵BE∥CF,∴∠1=∠2.∵点H是边BC的中点,∴BH=CH.又∵∠3=∠4,∴△BEH≌△CFH.(2)当BH=EH时,四边形BFCE是矩形,理由如下:连接BF,CE.∵△BEH≌△CFH.∴EH=FH,又BH=CH,∴四边形BFCE是平行四边形.又∵BH=EH,∴EF=BC,∴四边形BFCE是矩形.5.已知在四边形ABCD中,,请添加一个条件,使四边形ABCD成为矩形,添加的条件可以是________.(只填一个即可)【答案】∠A=90°(答案不唯一)【解析】由可知,该四边形是平行四边形,根据矩形的定义,只要加上条件“一个角是直角”即可,故填∠A=90°,或∠B=90°,或∠C=90°,或∠D=90°.6.如图所示,在□ABCD中,点E,F分别为BC边上的点,且BE=CF,AF=DE求证:□ABCD是矩形.【答案】∵四边形ABCD是平行四边形,∴AB=CD.∵BE=CF,∴BF=CE.又∵AF=DE,∴△ABF≌△DCE.∴∠B=∠C.又∵∠B+∠C=180°,∴∠B=∠C=90°.∴□ABCD是矩形.【解析】已知四边形ABCD是平行四边形,欲证它是矩形,只需证一角是直角即可,由题意易知△ABF≌△DCE,而∠B+∠C=180°,因此有∠B=∠C=90°,问题迎刃而解.7.将矩形纸片ABCD按如图所示的方式折叠,使顶点B与顶点D重合,折痕为EF.若,AD=3,则△DEF的周长为________.【答案】6【解析】∵沿EF折叠后,点B与点D重合,点A在点A′的位置,∴A′E=AE,,BF=DF.∵四边形ABCD为矩形,∴,BC=AD=3,∠C=∠A=90°.在Rt△DCF中,设CF=x,则DF=BF=3-x,由勾股定理得,解得x=1,∴DF=3-x=3-1=2.同理,DE=2.连接BD,交EF于点O,则点B与点D关于EF称,∴,BD⊥EF.在Rt△EDO中,,由DE=DF,BD⊥EF,得EO=OF=1,∴EF=2,∴△DEF的周长为DE+DF+EF=2+2+2=6.8.如图,矩形ABCD的对角线相交于点O,过点O的直线交AD、BC于点E、F,AB=2,BC =4,则图中阴影部分的面积为()A.2B.3C.4D.5【答案】C【解析】矩形ABCD的面积=AB·BC=2×4=8,图中阴影部分面积的和等于矩形面积的一半,故选C.9.如图,在矩形ABCD中,DF平分∠ADC交AC于点E,交BC于点F,∠BDF=15°,求∠DOC与∠COF的度数.【答案】75°【解析】解:∵DF平分∠ADC,∴∠FDC=45°.又∵∠BDF=15°,∴∠BDC=45°+15°=60°.又∵四边形ABCD是矩形,∴AC=BD,AO=OC=BO=OD,∴△DOC是等边三角形.∴∠DOC=60°.在Rt△DCF中,∠FDC=45°,∴CF=CD=OC,∴∠COF=∠CFO.又∵∠OCF=90°-∠OCD=90°-60°=30°,∴∠COF=75°.10.(2013湖南邵阳)如图所示,将△ABC绕AC的中点O顺时针旋转180°得到△CDA,添加一个条件________,使四边形ABCD为矩形.【答案】∠B=90°(答案不唯一)【解析】∵△ABC绕AC的中点O顺时针旋转180°得到△CDA,∴AB=CD,∠BAC=∠DCA,∴AB∥CD,∴四边形ABCD为平行四边形.当∠B=90°时,平行四边形ABCD为矩形,∴添加的条件为∠B=90°.11.如图,四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是()A.AB=CDB.AD=BCC.∠AOB=45°D.∠ABC=90°【答案】D【解析】因为四边形ABCD的对角线互相平分,所以四边形ABCD为平行四边形,A、B两选项为平行四边形具有的性质,C选项添加后也不是矩形,根据矩形的定义知D正确.故选D.12.矩形具有而平行四边形不一定具有的性质是()A.对角相等B.对角线互相平分C.一组对边平行另一组对边相等D.对角线相等【答案】D【解析】矩形的对角线相等,而平行四边形的对角线不一定相等.13.如图,已知在Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°至△DBE后,再把△ABC沿射线AB平移至△FEG,DE、FG相交于点H.(1)判断线段DE、FG的位置关系,并说明理由:(2)连接CG,求证:四边形CBEG是正方形.(提示:旋转前后,图形中对应的角和对应的边分别相等)【答案】见解析【解析】(1)DE⊥FG,理由如下:由题意得∠A=∠EDB=∠GFE,∠ABC=∠DBE=90°.∴∠BDE+∠BED=90°.∴∠GFE+∠BED=90°.∴∠FHE=90°.∴DE⊥FG.(2)证明:∵△ABC沿射线AB平移至△FEG,∴CB∥GE,CB=GE,∴四边形CBEG是平行四边形.∵∠ABC=∠GEF=90°.∴四边形CBEG是矩形.∵BC=BE.∴四边形CBEG是正方形.14.如图,正方形ABCD中,对角线AC、BD相交于点O,则图中的等腰三角形有( )A.4个B.6个C.8个D.10个【答案】C【解析】在正方形ABCD中,AB=BC=CD=AD,OA=OB=OC=OD,所以等腰三角形有△ABC,△ADC,△ABD,△CBD,△OAB,△OBC,△OCD,△OAD.15.下列命题错误的是( )A.有一组邻边相等的平行四边形叫做正方形B.有一组邻边相等的矩形是正方形C.有一组邻边相等并且有一个角是直角的平行四边形叫做正方形D .有一个角是直角的菱形是正方形【答案】A【解析】由定义可知,正方形既是有一组邻边相等的矩形,又是有一个角是直角的菱形,A 不正确,故选A .16. 如图,正方形ABCD 的对角线相交于点O ,点O 也是正方形A′B′C′O 的一个顶点,两个正方形的边长都等于1,当正方形A′B′C′O 绕顶点O 转动时,两个正方形重叠部分的面积大小有什么规律?并说明理由.【答案】两个正方形重叠部分的面积保持不变,始终为.理由:∵四边形ABCD 是正方形,∴OB =OC ,∠OBE =∠OCF =45°,∠BOC =90°. ∵四边形A′B′C′O 是正方形, ∴∠EOF =90°,∴∠BOC =∠EOF . ∴∠BOC -∠BOF =∠EOF -∠BOF ,即∠COF =∠BOE .∴△BOE ≌△COF(ASA),∴S △BOE =S △COF .∴重叠部分面积等于S △BOC .∵S 正方形ABCD =1×1=1,∴,即两个正方形重叠部分的面积保持不变,始终为.【解析】正方形的两条对角线分正方形为四个全等的等腰直角三角形.通过证△BOE ≌△COF ,得.17. 如图,将矩形ABCD 中的△AOB 沿着BC 的方向平移线段AD 长的距离.(1)画出△AOB 平移后的图形.(2)设(1)中O 点平移后的对应点为E ,试判断四边形CODE 的形状,并说明理由.(3)当四边形ABCD 是什么四边形时,(2)中的四边形CODE 是正方形?并说明你的理由.【答案】(1)平移后的图形如图.(2)四边形CODE 是菱形.理由如下:∵△AOB 平移后得到△DEC , ∴DE ∥AC ,CE ∥BD . ∵四边形ABCD 是矩形,∴,,且AC=BD,∵OC=OD,∴四边形CODE是菱形.(3)当四边形ABCD是正方形时,(2)中的四边形CODE是正方形,理由如下:∵四边形ABCD是正方形,∴AC⊥BD,∴∠COD=90°.∴菱形CODE是正方形.【解析】在图形移动过程中,图形的大小、形状不变,可得四边形CODE是菱形.当AC⊥BD 时,四边形CODE是正方形,此时四边形ABCD是正方形.18.(2013江苏南京)如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD 上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M、N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.【答案】见解析【解析】证明:(1)∵BD平分∠ABC,∴∠ABD=∠CBD.又∵BA=BC,BD=BD,∴△ABD≌△CBD,∴∠ADB=∠CDB.(2)∵PM⊥AD,PN⊥CD,∴∠PMD=∠PND=90°.又∵∠ADC=90°,∴四边形MPND是矩形.∵∠ADB=∠CDB,PM⊥AD,PN⊥CD,∴PM=PN.∴四边形MPND是正方形.19.(2013济宁)如图中图(1),在正方形ABCD中,E、F分别是边AD、DC上的点,且AF⊥BE.(1)求证:AF=BE.(2)如图中图(2),在正方形ABCD中,M、N、P、Q分别是边AB、BC、CD、DA上的点,且MP⊥NQ.MP与NQ是否相等?并说明理由.【答案】(1)证明:如图(1),在正方形ABCD中,AB=DA,∠BAE=∠D=90°,∴∠DAF+∠BAF=90°,∵AF⊥BE,∴∠ABE+∠BAF=90°,∴∠ABE=∠DAF,∵在△ABE和△DAF中,∴△ABE≌△DAF(ASA),∴BE=AF.(2)解:MP与NQ相等.理由如下:如图(2),过点A作AF∥MP交CD于F,过点B作BE∥NQ交AD于E,则BE=NQ,AF=MP.只需证BE=AF即可.与(1)的情况完全相同.【解析】(1)根据正方形的性质可得AB=DA,∠BAE=∠D=90°,再根据同角的余角相等求∠ABE=∠DAF,然后利用“角边角”证明△ABE和△DAF全等,再根据全等三角形的性质证明即可;(2)过点A作AF∥MP交CD于F,过点B作BE∥NQ交AD于E,然后解法与(1)相同.20.在四边形ABCD中,O是对角线的交点,下面能判断这个四边形是正方形的是()A.AD⊥CD,AC=BDB.AD∥BC,∠A=∠CC.AO=BO=CO=DO,AC⊥BDD.AO=CO,BO=DO,AB=BC【答案】C【解析】对角线相等、互相平分且垂直的四边形是正方形.21.如图,过正方形ABCD的顶点B作直线l,过点A、C作l的垂线,垂足分别为点E、F,若AE=1,CF=3,则AB的长度为________.【答案】【解析】由题意,知△BFC≌△AEB,∴CF=BE,∴.22. 已知,在四边形ABCD 中,∠A =∠B =∠C =90°,如果添加一个条件即可推出该四边形是正方形,那么这个条件可以是( )A .∠D =90°B .AB =CDC .AD =BCD .BC =CD【答案】D【解析】由∠A =∠B =∠C =90°可判定为矩形,根据正方形的定义,再添加条件“一组邻边相等”即可判定为正方形,故选D .23. (2014福建福州)如图,在正方形ABCD 的外侧,作等边三角形ADE ,AC ,BE 相交于点F ,则∠BFC 为( )A .45°B .55°C .60°D .75°【答案】C【解析】由已知得AB =AE ,∠BAE =150°,∴∠ABF =15°,∴∠BFC =∠ABF +∠BAF =15°+45°=60°.24. 如图,边长为2的正方形ABCD 的对角线相交于点O ,过点O 的直线分别交AD 、BC 于E 、F ,则阴影部分的面积是________.【答案】1【解析】由题意可知△DEO ≌△BFO ,∴S △DEO =S △BFO ,∴.25. 如图所示,在菱形ABCD 中,AE 垂直平分BC ,垂足为E ,AB =4cm .那么,菱形ABCD的面积是________,对角线BD的长是________.【答案】cm2;cm【解析】在菱形ABCD中,由AE垂直平分BC可知△ABC是正三角形,故BC=AC=4cm,由勾股定理可知cm,∴菱形ABCD的面积是(cm2),同时菱形的面积还等于两条对角线乘积的一半,∴对角线BD的长为(cm).26.如图,平行四边形ABCD的两条对角线AC和BD相交于点O,并且BD=4,AC=6,.(1)AC与BD有什么位置关系?为什么?(2)四边形ABCD是菱形吗?为什么?【答案】见解析【解析】(1)AC⊥BD,理由如下:∵四边形ABCD为平行四边形,∴,.在△OBC中,OC2+OB2=9+4=13=BC2,∴△OBC为直角三角形,即OC⊥OB,∴AC⊥BD.(2)四边形ABCD是菱形,理由如下:∵AC⊥BD.∴平行四边形ABCD是菱形.27.(2012山西)如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是( )A.cmB.cmC.cmD.cm【答案】D【解析】由菱形的性质知菱形边长为(cm),所以,得cm,故选D.28. (2013山东潍坊)如图,ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件________,使ABCD成为菱形.(只需添加一个即可)【答案】本题答案不唯一,如OA=OC或AD=BC或AD∥BC或AB=BC等【解析】根据对角线互相垂直平分可添加OA=OC;或添加AD=BC或AB=DC或AD∥BC或AB∥DC或AB=BC或AD=DC,由三角形全等得到AO=CO,再由对角线互相垂直平分得到四边形ABCD是菱形.29.如图,□ABCD的对角线AC的垂直平分线与AD、BC、AC分别交于点E、F、O,求证:四边形AFCE是菱形.【答案】∵四边形ABCD是平行四边形,∴AE∥CF,∴∠CAE=∠ACF又∵∠AOE=∠COF,OA=OC,∴△AOE≌△COF.∴OE=OF,∴四边形AFCE是平行四边形.又∵EF⊥AC.∴四边形AFCE是菱形.【解析】要证四边形AFCE是菱形,首先要证四边形AFCE是平行四边形.30.如图,在菱形ABCD中,E是AB的中点,且DE⊥AB,AB=10.(1)求∠ABC的度数;(2)求对角线AC的长度;(3)求菱形ABCD的面积.【答案】(1)连接BD,交AC于点O,如图.∵四边形ABCD是菱形,∴AD=AB.∵E是AB的中点,且DE⊥AB,∴AD=BD.∴△ABD是等边三角形.∴∠ABD=60°.∴∠ABC=60°×2=120°.(2)∵四边形ABCD是菱形,∴AC,BD互相垂直平分.∴.∴在Rt△AOB中,,∴.(3).【解析】(1)连接BD,与AC相交于点O,可证△ABD是等边三角形,所以∠ABD=60°,可得∠ABC的度数;(2)在Rt△OAB中,由勾股定理可求出OA的长,则AC=2OA;(3)根据菱形的面积公式可求其面积.。

人教版八年级数学下册《特殊平行四边形》专题训练习题(含答案)

人教版八年级数学下册《特殊平行四边形》专题训练习题(含答案)

人教版八年级数学下册《特殊平行四边形》专题训练习题(含答案)一、选择题1.如图,在菱形ABCD中,AB=5,∠BCD=120°,则△ABC的周长等于( )A.20B.15C.10D.5答案 B ∵四边形ABCD是菱形,∴AB=BC,AB∥CD,∴∠B+∠BCD=180°,∴∠B=180°-∠BCD=180°-120°=60°,∴△ABC是等边三角形,故△ABC的周长=3AB=15.2.如图,四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是( )A.AB=CDB.AD=BCC.AC=BDD.AB=BC答案 C 可添加AC=BD,∵四边形ABCD的对角线互相平分,∴四边形ABCD是平行四边形,∵AC=BD,∴平行四边形ABCD是矩形,故选C.3.已知:如图,菱形ABCD中,对角线AC与BD相交于点O,OE∥DC交BC于点E,AD=6cm,则OE 的长为( )12A.6 cmB.4 cmC.3 cmD.2 cm答案 C 因为菱形的四条边相等且对角线互相垂直平分,所以可以由OE ∥DC 证得点E 是BC 的中点,此时利用三角形的中位线或直角三角形斜边上中线的性质都可以求得OE 的长为3 cm.4.如图,在菱形ABCD 中,AB=8,点E 、F 分别在AB 、AD 上,且AE=AF,过点E 作EG ∥AD 交CD 于点G,过点F 作FH ∥AB 交BC 于点H,EG 与FH 交于点O.当四边形AEOF 与四边形CGOH 的周长之差为12时,AE 的值为( )A.6.5B.6C.5.5D.5 答案 C 设AE=x,则EB=8-x,∵四边形ABCD 是菱形,AE=AF,EG ∥AD,FH ∥AB, ∴四边形AEOF 和四边形OHCG 都是菱形. ∵四边形AEOF 与四边形CGOH 的周长之差为12, ∴4x -4(8-x)=12,解得x=5.5.故选C.5.如图,将一个长为10 cm,宽为8 cm 的矩形纸片先按照从左向右对折,再按照从下向上的方向对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下(如图1-4-5①),再打开,得到如图1-4-5②所示的小菱形的面积为( )A.10 cm 2B.20 cm 2C.40 cm 2D.80 cm 2答案 A 由题意可得AC=5 cm, BD=4 cm,故小菱形的面积为×4×5=10(cm 2).故选A. 6.如图,正方形ABCD 中,E 、F 是对角线AC 上两点,连接BE 、BF 、DE 、DF,则添加下列条3件:①∠ABE=∠CBF;②AE=CF;③AB=AF;④BE=BF.可以判定四边形BEDF 是菱形的条件有( )A.1个B.2个C.3个D.4个 答案 C 连接BD,交AC 于点O,在正方形ABCD 中,AB=BC,∠BAC=∠ACB,AC ⊥BD,OB=OD,① 在△ABE 与△CBF 中, ∠ ∠∠ ∠∴△ABE ≌△CBF(ASA),∴AE=CF,∵OA=OC,∴OE=OF,又∵AC⊥BD,∴四边形BEDF 是菱形,故①正确.②正方形ABCD 中,OA=OB=OC=OD,∵AE=CF,∴OE=OF,又EF ⊥BD,BO=OD,∴四边形BEDF 是菱形,故②正确.③由AB=AF 不能推出四边形BEDF 其他边的关系,故不能判定它是菱形,故③错误.④在正方形ABCD 中,OA=OC=OB=OD,AC ⊥BD,∵BE=BF,EF⊥BD,∴OE=OF,∴四边形BEDF 是菱形,故④正确.故选C.7.如图所示,在菱形ABCD 中,BE ⊥AD,BF ⊥CD,E 、F 为垂足,AE=ED,则∠EBF 等于( )A.75°B.60°C.50°D.45°答案 B 连接BD.因为BE ⊥AD,AE=ED,所以AB=BD.又因为AB=AD,所以△ABD 是等边三角形,所以∠A=60°,所以∠ADC=120°.在四边形BEDF中,∠EBF=360°-∠BED-∠BFD-∠ADC=360°-90°-90°-120°=60°,故选B.8.如图所示,矩形纸片ABCD 中,AB=6 cm, BC=8 cm,现将其沿EF 对折,使得点C 与点A 重合,则AF 长为( )A .cm B.cm C.cm D.8cm答案 B 设AF=x cm,则D'F=DF=(8-x)cm,在Rt△AFD'中,(8-x)2+62=x2,解得x=.9.如图所示,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为120°的菱形,剪口与第二次折痕所成角的度数应为( )A.15°或30°B.30°或45°C.45°或60°D.30°或60°答案 D 画出所剪的图形示意图如图.∵四边形ABCD是菱形,∴∠ABD=∠ABC,∠BAC=∠BAD,AD∥BC,∵∠BAD=120°,∴∠ABC=180°-∠BAD=180°-120°=60°,∴∠ABD=30°,∠BAC=60°.∴剪口与第二次折痕所成的角的度数应为30°或60°.故选D.10.如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论:(1)AE=BF;(2)AE⊥BF;(3)AO=OE;(4)S△AOB=S四边形DEOF,其中正确的有( )4A.4个B.3个C.2个D.1个答案 B ∵四边形ABCD为正方形,∴AB=AD=DC,∠D=∠BAD=90°,∵CE=DF,∴DE=AF,∴△DEA≌△AFB,∴AE=BF,∠DEA=∠AFB,又∠DEA+∠DAE=90°,∴∠AFB+∠DAE=90°,∴∠AOF=90°,即AE⊥BF.由△DEA≌△AFB得S△DEA=S△AFB,∴S△DEA-S△AOF=S△AFB-S△AOF,∴S△AOB=S四边形DEOF,所以正确的是(1)(2)(4),共3个,故选B.二、填空题11.如图,菱形ABCD中,对角线AC、BD相交于点O,不添加任何辅助线,请添加一个条件,使四边形ABCD是正方形(填一个即可).答案AC=BD(答案不唯一)12.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=5,AD=12,则四边形ABOM 的周长为.答案20解析在Rt△ABC中,由勾股定理易得AC=13,由矩形的性质得AO=BO=AC=,而OM是△ACD 的中位线,所以OM=CD=,所以四边形ABOM的周长为AB+BO+OM+AM=5+++6=20.513.如图,已知矩形ABCD的对角线AC与BD相交于点O,若AO=1,那么BD= .答案2解析∵在矩形ABCD中,AC与BD相交于点O,AO=1,∴AO=CO=BO=DO=1,∴BD=2.14.如图,在矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为.答案3解析∵AE垂直平分OB,AB=3,∴AB=AO=3,∵四边形ABCD是矩形,∴BO=AO=3,∴BD=2BO=6,∴AD=-=-=3.15.如图,两个完全相同的三角尺ABC和DEF在直线l上滑动.要使四边形CBFE为菱形,还需添加的一个条件是(写出一个即可).答案CB=BF(或BE⊥CF或∠EBF=60°或BD=BF等,答案不唯一)解析由已知得CB∥EF,CB=EF,∴四边形CBFE是平行四边形.因此可以添加CB=BF;BE⊥CF;∠EBF=60°;BD=BF等,都能说明四边形CBFE是菱形.16.如图,正方形ABCO的顶点C,A分别在x轴,y轴上,BC是菱形BDCE的对角线,若∠D=60°,BC=2,则点D的坐标是.67答案 (2+ ,1)解析 过点D 作DF ⊥x 轴,垂足为F,在正方形ABCO 中,∠BCO=90°,所以∠BCF=90°,在菱形BDCE 中,BD=DC,又因为∠D=60°,所以△BCD 是等边三角形,因为BC=2,所以CD=2,又∠BCD=60°,所以∠DCF=30°,在Rt △DCF 中,因为∠DCF=30°,CD=2,所以DF=CD=1,由勾股定理得CF= ,所以OF=OC+CF=2+ ,所以点D 的坐标为(2+ ,1).17.如图,菱形ABCD 的面积为120 cm 2,正方形AECF 的面积为50 cm 2,则菱形的边长为 cm.答案 13解析 连接BE,EF,FD,AC,∵菱形、正方形为轴对称图形,对角线所在直线是其对称轴,∴B,E,F,D 在同一条直线上, ∵S 正方形AECF = AC ·EF=AC 2=50 cm 2, ∴AC=10 cm,∵S 菱形ABCD =AC ·BD=120 cm 2, ∴BD=24 cm. 设AC,BD的交点为O,由菱形的性质可得AC ⊥BD,AO=5 cm,OB=12cm,∴AB= = =13 cm.18.如图,在菱形ABCD 中,∠BAD=120°,点E 、F 分别在边AB 、BC 上,△BEF 与△GEF关于直线EF对称,点B的对称点是点G,且点G在边AD上.若EG⊥AC,AB=6,则FG的长为.答案3解析设AC与EG相交于点O,∵四边形ABCD是菱形,∠BAD=120°,∴∠EAC=∠DAC=60°,∠B=60°,AB=BC.∴△ABC是等边三角形.又∵AB=6,∴△ABC的面积为18.∴菱形ABCD的面积为36,∵EG⊥AC,∴∠AOE=∠AOG=90°.∴∠AGE=90°-60°=30°.∵△BEF与△GEF关于直线EF对称,点B的对称点是点G,∴∠EGF=∠B=60°,∴∠AGF=∠EGF+∠AGE=90°.∴FG⊥AD,∴FG=菱形==3.三、解答题19.如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD的垂线交BA的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.8答案(1)证明:∵四边形ABCD是菱形,∴AB∥CD,AC⊥BD,∴AE∥CD,∠AOB=90°,又∵DE⊥BD,即∠EDB=90°,∴∠AOB=∠EDB.∴DE∥AC.∴四边形ACDE是平行四边形.(2)∵四边形ABCD是菱形,AC=8,BD=6,∴AO=4,DO=3,∴AD=CD==5.又∵四边形ACDE是平行四边形,∴AE=CD=5,DE=AC=8.∴△ADE的周长为AD+AE+DE=5+5+8=18.20.如图,在△ABC中,∠BAC=90°,AD是中线,E是AD的中点,过点A作AF∥BC交BE的延长线于F,连接CF.(1)求证:AD=AF;(2)如果AB=AC,试判断四边形ADCF的形状,并证明你的结论.答案(1)证明:∵AF∥BC,∴∠EAF=∠EDB,∵E是AD的中点,∴AE=DE,在△AEF和△DEB中,9∴△AEF≌△DEB(ASA),∴AF=BD,∵在△ABC中,∠BAC=90°,AD是中线,∴AD=BD=DC=BC,∴AD=AF.(2)四边形ADCF是正方形.∵AF=BD=DC,AF∥BC,∴四边形ADCF是平行四边形,∵AB=AC,AD是中线,∴AD⊥BC,∵AD=AF,∴四边形ADCF是正方形.21.如图,在正方形ABCD中,点E、F分别在边AB、BC上,∠ADE=∠CDF.(1)求证:AE=CF;(2)连接DB交EF于点O,延长OB至点G,使OG=OD,连接EG、FG,判断四边形DEGF是否为菱形,并说明理由.答案(1)证明:在正方形ABCD中,AD=CD,∠A=∠C=90°,在△ADE和△CDF中,∴△ADE≌△CDF(ASA),∴AE=CF.(2)四边形DEGF是菱形.理由如下:在正方形ABCD中,AB=BC,∵AE=CF,10∴AB-AE=BC-CF,即BE=BF,∴BD垂直平分EF,∴OE=OF,又∵OG=OD,∴四边形DEGF为平行四边形,∵△ADE≌△CDF,∴DE=DF,∴四边形DEGF是菱形.22.如图,AB∥CD,点E、F分别在AB、CD上,连接EF.∠AEF、∠CFE的平分线交于点G,∠BEF、∠DFE的平分线交于点H.(1)求证:四边形EGFH是矩形;(2)小明在完成(1)的证明后继续进行了探索.过G作MN∥EF,分别交AB、CD于点M、N,过H 作PQ∥EF,分别交AB、CD于点P、Q,得到四边形MNQP.此时,他猜想四边形MNQP是菱形.请在下列框图中补全他的证明思路.答案(1)证明:∵EH平分∠BEF,∴∠FEH=∠BEF.∵FH平分∠DFE,∴∠EFH=∠DFE.11∵AB∥CD,∴∠BEF+∠DFE=180°,∴∠FEH+∠EFH=(∠BEF+∠DFE)=×180°=90°,又∠FEH+∠EFH+∠EHF=180°,∴∠EHF=180°-(∠FEH+∠EFH)=180°-90°=90°.同理可证,∠EGF=90°.∵EG平分∠AEF,∴∠FEG=∠AEF.∵EH平分∠BEF,∴∠FEH=∠BEF.∵点A、E、B在同一条直线上,∴∠AEB=180°,即∠AEF+∠BEF=180°.∴∠FEG+∠FEH=(∠AEF+∠BEF)=×180°=90°,即∠GEH=90°.∴四边形EGFH是矩形.(2)本题答案不唯一,下面答案供参考.例如,FG平分∠CFE;GE=FH;∠GME=∠FQH;∠GEF=∠EFH.23.已知E,F分别为正方形ABCD的边BC,CD上的点,AF,DE相交于点G,当E,F分别为边BC,CD 的中点时,有:①AF=DE;②AF⊥DE成立.试探究下列问题:(1)如图①,若点E不是边BC的中点,F不是边CD的中点,且CE=DF,上述结论①,②是否仍然成立?(请直接回答“成立”或“不成立”,不需要证明)(2)如图②,若点E,F分别在CB的延长线和DC的延长线上,且CE=DF,此时,上述结论①,②是否仍然成立?若成立,请写出证明过程,若不成立,请说明理由;(3)如图③,在(2)的基础上,连接AE和EF,若点M,N,P,Q分别为AE,EF,FD,AD的中点,请判断四边形MNPQ是“矩形、菱形、正方形”中的哪一种,并证明你的结论.12答案(1)成立.(2)仍然成立.证明:∵四边形ABCD为正方形,∴AD=DC,∠BCD=∠ADC=90°.在△ADF和△DCE中,∴△ADF≌△DCE(SAS),∴AF=DE,∠FAD=∠EDC,∵∠ADG+∠EDC=90°,∴∠ADG+∠DAF=90°,∴∠AGD=90°,即AF⊥DE.(3)四边形MNPQ是正方形.证明:如图,设MQ,DE分别交AF于点G,O,PQ交DE于点H,∵点M,N,P,Q分别为AE,EF,FD,AD的中点,∴MQ=PN=DE,PQ=MN=AF,MQ∥DE,PQ∥AF,13∴四边形OHQG是平行四边形,∵AF=DE,∴MQ=PQ=PN=MN,∴四边形MNPQ是菱形,∵AF⊥DE,∴∠AOD=90°,∴∠HQG=∠AOD=90°,∴四边形MNPQ是正方形.14。

2020-2021年度鲁教版八年级数学下册《第6章特殊的平行四边形》综合培优训练(附答案)

2020-2021年度鲁教版八年级数学下册《第6章特殊的平行四边形》综合培优训练(附答案)

2020-2021年度鲁教版八年级数学下册《第6章特殊的平行四边形》综合培优训练(附答案)1.如图,在长方形ABCD中,AE平分∠BAD交BC于点E,连接ED,若ED=5,EC=3,则长方形的周长为()A.20B.22C.24D.262.如图,矩形ABCD的对角线AC,BD相交于点O,且∠AOD=120°.过点A作AE⊥BD 于点E,则BE:ED等于()A.1:3B.1:4C.2:3D.2:53.如图,四边形ABCD是平行四边形,下列说法能判定四边形ABCD是菱形的是()A.AC⊥BD B.BA⊥BD C.AB=CD D.AD=BC4.如图,正方形ABCO和正方形DEFO的顶点A,E,O在同一直线l上,且EF=,AB =3,给出下列结论:①∠COD=45°,②AE=5,③CF=BD=,④△COF的面积S△COF=3,其中正确的个数为()A.1个B.2个C.3个D.4个5.如图,菱形ABCD的边AB的垂直平分线交AB于点E,交AC于点F,连接DF.当∠BAD=100°时,则∠CDF=()A.15°B.30°C.40°D.50°6.如图,菱形ABCD中,∠D=135°,BE⊥CD于E,交AC于F,FG⊥BC于G.若△BFG的周长为4,则菱形ABCD的面积为()A.4B.8C.16D.167.如图,正方形ABCD中,点E是对角线AC上的一点,且AE=AB,连接BE,DE,则∠CDE的度数为()A.20°B.22.5°C.25°D.30°8.如图,矩形ABCD中,AD=5,AB=7,正方形MBND′的顶点M,N分别在矩形的边AB,BC上,点E为DC上一个动点,当点D与点D′关于AE对称时,DE的长为.9.把长方形ABCD沿着直线EF对折,折痕为EF,对折后的图形EB′GF的边FG恰好经过点C,若∠AFE=55°,则∠CEB'=.10.如图,在正方形ABCD中,E是对角线AC上的动点,以DE为边作正方形DEFG,H 是CD的中点.连接GH,若GH的最小值是1,则正方形ABCD的边长为.11.如图,正方形ABCD的边长为2,M是BC的中点,N是AM上的动点,过点N作EF ⊥AM分别交AB,CD于点E,F.(1)AM的长为;(2)EM+AF的最小值为.12.如图,以Rt△ABC的斜边AB为一边,在AB的右侧作正方形ABED,正方形对角线交于点O,连接CO,如果AC=4,CO=,那么BC=.13.如图,已知正方形ABCD的边长为2,对角线AC、BD相交于点O,AE平分∠BAC交BD于点E,则BE的长为.14.如图,已知正方形ABCD,E是AD上一点,过BE上一点O作BE的垂线,交AB于点G,交CD于点H.BE=6,则GH=.15.如图,菱形ABCD中,AC,BD相交于O,DE⊥BC于E,连接OE,∠BAD=40°,则∠OED的度数为.16.如图,正方形ABCD边长为2,F为BC上一动点,作DE⊥AF于E,连接CE.当△CDE是以CD为腰的等腰三角形时,DE的长为.17.如图正方形ABCD边长为2,E为CD边中点,P为射线BE上一点(P不与B重合),若△PDC为直角三角形,则BP=.18.如图,正方形ABCD的边长为6,E是边AB边一点,G是AD延长线上一点,BE=DG,连接EG,CF⊥EG交EG于点H,交AD于点F,连接CE,BH,若BH=4,则EG 的长等于.19.如图,在菱形ABCD中,E为对角线BD上一点,且AE=DE,连接CE.(1)求证:CE=DE.(2)当BE=2,CE=1时,求菱形的边长.20.菱形ABCD的边长为6,∠D=60°,点E在边AD上运动.(1)如图1,当点E为AD的中点时,求AO:CO的值;(2)如图2,F是AB上的动点,且满足BF+DE=6,求证:△CEF是等边三角形.21.如图,过△ABC边AC的中点O,作OE⊥AC,交AB于点E,过点A作AD∥BC,与BO的延长线交于点D,连接CD,CE,若CE平分∠ACB,CE⊥BO于点F.(1)求证:①OC=BC;②四边形ABCD是矩形;(2)若BC=3,求DE的长.22.如图,正方形ABCD中,点P是对角线AC上一点,连接PB,边作PE⊥PB交AD边于于点E,且点E不与点A,D重合,作PM⊥AD,PN⊥AB,垂足分别为点M和N.(1)求证:PM=PN;(2)求证:EM=BN.23.如图,在正方形ABCD中,E,F分别是AD,CD的中点,连接BE,AF交于点M,分别延长AF,BC交于点N.(1)求∠BMN的度数;(2)求证:CM=AD.24.如图,矩形ABCD的对角线相交于O,点E是CF的中点,DF∥AC交CE延长线于点F,连接AF.(1)求证:四边形AODF是菱形;(2)若∠AOB=60°,∠AFC=90°,AB=1,求CF的长.25.在正方形ABCD中,点E为CD中点,连接AE并延长交BC延长线于点G,点F在BC上,∠F AE=∠DAE,连接FE并延长交AD延长线于H,连接HG.(1)求证:四边形AFGH为菱形:(2)若DH=1.求四边形AFGH的面积.26.如图,在矩形ABCD中,AB=3cm,BC=6cm.点P从点D出发向点A运动,运动到点A即停止;同时,点Q从点B出发向点C运动,运动到点C即停止,点P、Q的速度都是1cm/s.连接PQ、AQ、CP.设点P、Q运动的时间为ts.(1)当t为何值时,四边形ABQP是矩形;(2)当t为何值时,四边形AQCP是菱形;(3)分别求出(2)中菱形AQCP的周长和面积.参考答案1.解:∵四边形ABCD是长方形,∴∠B=∠C=90°,AB=DC,∵ED=5,EC=3,∴DC===4,则AB=4,∵AE平分∠BAD交BC于点E,∴∠BAE=∠DAE,∵AD∥BC,∴∠DAE=∠AEB,∴∠BAE=∠BEA,∴AB=BE=4,∴长方形的周长为:2×(4+4+3)=22.故选:B.2.解:∵四边形ABCD是矩形,∴OA=OB=OD,∵∠AOD=120°,∴∠AOB=180°﹣120°=60°,∴△AOB为等边三角形,∵AE⊥BD,∴BE=OE=OB,∴ED=3BE,∴=,故选:A.3.解:能判定四边形ABCD是菱形的是AC⊥BD,理由如下:∵四边形ABCD是平行四边形,AC⊥BD,∴平行四边形ABCD是菱形,故选:A.4.解:①∵∠AOC=90°,∠DOE=45°,∴∠COD=180°﹣∠AOC﹣∠DOE=45°,故正确;②∵EF=,∴OE=2,∵AO=AB=3,∴AE=AO+OE=2+3=5,故正确;③作DH⊥AB于H,作FG⊥CO交CO的延长线于G,则FG=1,CF=,BH=3﹣1=2,DH=3+1=4,BD=,故错误;④△COF的面积S△COF=×3×1=,故错误;故选:B.5.解:如图,连接BF,∵四边形ABCD是菱形,∴CD=BC,∠DCF=∠BCF,在△BCF和△DCF中,∵,∴△BCF≌△DCF(SAS)∴∠CBF=∠CDF∵FE垂直平分AB,∠BAF=×100°=50°∴∠ABF=∠BAF=50°∵∠ABC=180°﹣100°=80°,∠CBF=80°﹣50°=30°∴∠CDF=30°.故选:B.6.解:∵菱形ABCD中,∠D=135°,∴∠BCD=45°,∵BE⊥CD于E,FG⊥BC于G,∴△BFG与△BEC是等腰直角三角形,∵∠GCF=∠ECF,∠CGF=∠CEF=90°,CF=CF,∴△CGF≌△CEF(AAS),∴FG=FE,CG=CE,设BG=FG=EF=x,∴BF=x,∵△BFG的周长为4,∴x+x+x=4,∴x=4﹣2,∴BE=2,∴BC=BE=4,∴菱形ABCD的面积=4×2=8,故选:B.7.解:∵四边形ABCD是正方形,∴AB=AD,∠ADC=90°,∠DAC=45°,∵AE=AB,∴AD=AE,∴∠ADE=∠AED=67.5°,∴∠CDE=90°﹣67.5°=22.5°,故选:B.8.解:如图,连接ED′,AD′,延长MD′交DC于点P,∵正方形MBND′的顶点M,N分别在矩形的边AB,BC上,点E为DC上一个动点,点D与点D′关于AE对称,∴设MD′=ND′=BM=x,∴AM=AB﹣BM=7﹣x,又折叠图形可得AD=AD′=5,∴x2+(7﹣x)2=25,解得x=3或4,即MD′=3或4.在Rt△EPD′中,设ED′=a,①当MD′=3时,AM=7﹣3=4,D′P=5﹣3=2,EP=4﹣a,∴a2=22+(4﹣a)2,解得a=,即DE=,②当MD′=4时,AM=7﹣4=3,D′P=5﹣4=1,EP=3﹣a,∴a2=12+(3﹣a)2,解得a=,即DE=.综上所述:DE的长为:或.故答案为:或.9.解:如图,在长方形ABCD中,AD∥BC,则∠FEC=∠AFE=55°.∴∠BEF=180°﹣55°=125°.根据折叠的性质知:∠B′EF=∠BEF=125°.∴∠CEB'=∠B′EF﹣∠FEC=125°﹣55°=70°.故答案是:70°.10.解:连接CG.∵四边形ABCD是正方形,四边形DECG是正方形,∴DA=DC,DE=DG,∠ADC=∠EDG=90°,∠DAC=45°,∴∠ADE=∠CDG,∴△ADE≌△CDG(SAS),∴∠DCG=∠DAE=45°,∴点G的运动轨迹是射线CG,根据垂线段最短可知,当GH⊥CG时,GH的值最小为1,∴CH=.∴CD=2CH=2,故答案为:2.11.解:(1)∵正方形ABCD的边长为2,∴AB=BC=2,∠ABC=90°,∵M是BC的中点,∴BM=,∴,故答案为:;(2)过F作FG⊥AB于G,则FG=BC=AB,∠ABM=∠FGE=90°,∵EF⊥AM,∴∠BAM+∠AEN=∠AEN+∠GFE=90°,∴∠BAM=∠GFE,∴△ABM≌△FGE(SAS),∴AM=EF,将EF沿EM方向平移至MH,连接FH,则EF=MH,∠AMH=90°,EM=FH,当A、F、H三点共线时,EM+AF=FH+AF=AH的值最小,此时EM+AF=AH=,∴EM+AF的最小值为,故答案为:.12.解:如图,延长CB到点G,使BG=AC=4,∵根据题意,四边形ABED为正方形,∴∠4=∠5=45°,∠EBA=90°,∴∠1+∠2=90°,又∵△ABC是直角三角形,AB为斜边,∴∠2+∠3=90°,∴∠1=∠3,∵∠1+∠5=∠3+∠4,∴∠CAO=∠GBO,在△CAO和△GBO中,,∴△CAO≌△GBO(SAS),∴CO=GO=,∠6=∠8,∵∠7+∠8=90°,∴∠6+∠7=90°,∴∠COG=90°,∴=,∴BC=CG﹣BG=12﹣4=8.故答案为:8.13.解:如图,过点E作EH⊥AB于H.∵四边形ABCD是正方形,∴AB=BC=CD=AD=2,BD=AC=2,OD=OB=,∵EA平分∠BAO,EH⊥AB,EO⊥AC,∴EH=EO,设EH=EO=a,则BE=a,∴a+a=,解得a=2﹣,∴BE=a=2﹣2.故答案为:2﹣2.14.解:过点A作GH的平行线,交DC于点H′,交BE于点O',如图所示:∵ABCD是正方形,∴AG∥H′H,BA=AD,∠BAE=∠D=90°,∴∠H′AD+∠AH′D=90°,∵GH⊥BE,AH′∥GH,∴AH′⊥BE,∴∠H′AD+∠BEA=90°,∴∠BEA=∠AH′D,在△BAE和△ADH′中,,∴△BAE≌△ADH′(AAS),∴BE=AH′,∵AG∥H′H,AH′∥GH,∴四边形AH′HG是平行四边形,∴GH=AH′,∴GH=BE=6,故答案为:6.15.解:∵四边形ABCD是菱形,∠BAD=40°,∴∠DAO=BAD=20°,AC⊥BD,DO=BO,AD∥BC,∴∠DOA=90°,∴∠ADO=90°﹣∠DAO=70°,∵AD∥BC,DE⊥BC,∴DE⊥AD,∴∠ADE=90°,∴∠ODE=∠AD∠E﹣∠ADO=20°,∵DE⊥BC,∴∠DEB=90°,∵DO=BO,∴OE=BD=OD,∴∠OED=∠ODE=20°,故答案为:20°.16.解:过C作CG⊥DE于G,∵四边形ABCD是正方形,∴AD=CD,∠ADC=90°,∵DE⊥AF,∴∠AED=90°,∴AD>DE,∴CD>DE,当△CDE是以CD为腰的等腰三角形时,此时只能CD=CE,∵CG⊥DE,∴EG=DG=DE,∵∠ADE+∠CDG=∠ADE+∠DAE=90°,∴∠CDG=∠DAE,∵∠AED=∠CGD=90°,∴△AED≌△DGC(AAS),∴AE=DG=DE,设AE=x,则DE=2x,在Rt△AED中,由勾股定理得:AE2+DE2=AD2,∵AD=2,∴x2+(2x)2=22,解得:x=,∵x>0,∴x=,∴DE=2x=,当F与B重合,则E与A重合,△CDE是以CD为腰的等腰三角形,此时DE=AD=2,故答案为:或2.17.解:分三种情况:①如图1,当∠DPC=90°时,∵E是CD的中点,且CD=2,∴PE=CD=1,∵四边形ABCD是正方形,∴BC=2,∠BCD=90°,∴BE==,∴BP=﹣1;②如图2,当∠DPC=90°时,同理可得BP=+1;③如图3,当∠CDP=90°时,∵∠BCE=∠EDP=90°,DE=CE,∠BEC=∠DEP,∴△BCE≌△PDE(ASA),∴PE=BE=,∴BP=2,综上,BP的长是﹣1或+1或2;故答案为:﹣1或+1或2.18.解:连接CG,∵四边形ABCD是正方形,∴CB=CD,∠CBE=∠ADC=90°,在△CGD与△CEB中,,∴△CGD≌△CEB(SAS),∴CG=CE,∠GCD=∠ECB,∴∠GCE=90°,即△GCE是等腰直角三角形.又∵CH⊥GE,∴CH=EH=GH.过点H作AB、BC的垂线,垂足分别为点M、N,则∠MHN=90°,又∵∠EHC=90°,∴∠1=∠2,在△HEM与△HCN中,,∴△HEM≌△HCN(AAS).∴HM=HN,∵∠HMB=∠ABC=∠BNH=90°,∴四边形MBNH为正方形,∵BH=4,∴BN=HN=4,∵HM∥AG,EH=GH,∴AG=2HM=2HN=8,∴DG=BE=AG﹣AD=8﹣6=2,∴AE=6﹣2=4,在Rt△AEG中,EG===4.故答案为:4.19.(1)证明:∵四边形ABCD是菱形,∴∠ABE=∠CBE,AB=CB,在△ABE和△CBE中,,∴△ABE≌△CBE(SAS),∴AE=CE,∵AE=DE,∴CE=DE;(2)解:如图,连接AC交BD于H,∵四边形ABCD是菱形,∴AH⊥BD,BH=DH,AH=CH,∵CE=DE=AE=1,∴BD=BE+DE=2+1=3,∴BH=BD=,EH=BE﹣BH=2﹣=,在Rt△AHE中,由勾股定理得:AH===,在Rt△AHB中,由勾股定理得:AB===,∴菱形的边长为.20.(1)解:∵四边形ABCD是菱形,∴BC=AD=6,AD∥BC,∵点E为AD的中点,∴AE=AD=3,∵AD∥BC,∴△AOE∽△COB,∴===;(2)证明:∵四边形ABCD是菱形,∴AB=BC,AD∥BC,∠B=∠D=60°,∴∠CAE=∠ACB,△ABC是等边三角形,∴AC=BC,∠ACB=60°,∴∠EAC=60°=∠B,∵AE+DE=AD=6,BF+DE=6,∴AE=BF,在△ACE和△BCF中,,∴△ACE≌△BCF(SAS),∴CE=CF,∠ACE=∠BCF,∴∠ACE+∠ACF=∠BCF+∠ACF=∠ACB=60°,即∠ECF=60°,∴△CEF是等边三角形.21.(1)证明:①∵CE平分∠ACB,∴∠OCE=∠BCE,∵BO⊥CE,∴∠CFO=∠CFB=90°,在△OCF与△BCF中,,∴△OCF≌△BCF(ASA),∴OC=BC;②∵点O是AC的中点,∴OA=OC,∵AD∥BC,∴∠DAO=∠BCO,∠ADO=∠CBO,在△OAD与△OCB中,,∴△OAD≌△OCB(ASA),∴AD=BC,∵AD∥BC,∴四边形ABCD是平行四边形,∵OE⊥AC,∴∠EOC=90°,在△OCE与△BCE中,,∴△OCE≌△BCE(SAS),∴四边形ABCD是矩形;(2)解:∵四边形ABCD是矩形,∴AD=BC=3,∠DAB=90°,AC=BD,∴OB=OC,∵OC=BC,∴OC=OB=BC,∴△OBC是等边三角形,∴∠OCB=60°,∴∠ECB=OCB=30°,∵∠EBC=90°,∴EB=EC,∵BE2+BC2=EC2,BC=3,∴EB=,EC=2,∵OE⊥AC,OA=OC,∴EC=EA=2,在Rt△ADE中,∠DAB=90°,∴DE===.22.证明:(1)∵四边形ABCD为正方形,∴AC平分∠BAD,又∵PM⊥AD,PN⊥AB,∴PM=PN.(2)∵PM⊥AD,PN⊥AB,∠MAN=90°,PM=PN,∴四边形PMAN为正方形,∴∠MPN=90°,即∠MPE+∠EPN=90°.∵PE⊥PB,∴∠EPN+∠NPB=90°,∴∠MPE=∠NPB.∵PM⊥AD,PN⊥AB,在△PME和△PNB中,,∴△PME≌△PNB(ASA),∴EM=BN.23.解:(1)∵四边形ABCD是正方形,∴AD=CD=AB,∠BAD=∠D=90°,∵E、F分别是AD、CD的中点,∴AE=AD,DF=CD,∴AE=DF,在△ABE和△DAF中,,∴△ABE≌△DAF(SAS),∴AF=BE,∠AEB=∠AFD,在直角△ADF中,∠DAF+∠AFD=90°,∴∠DAF+∠AEB=90°,∴∠AME=90°,∴AF⊥BE,∴∠BMN=90°;(2)证明:∵DF=CF,∠D=∠FCN=90°,∠AFD=∠NFC,在△ADF和△NCF中,,∴△ADF≌△NCF(ASA),∴AD=CN=CD=BC,在直角△BMN中,BC=CN,∴CM=BN=BC=AD.24.(1)证明:∵DF∥AC,∴∠DFC=∠OCF,∠EDF=∠EOC,∵点E是CF的中点,FE=CE,∴△DEF≌△OEC(AAS),∴DF=OC,∵四边形ABCD是矩形,∴OA=OC,OB=OD,AC=BD,∴OA=OD,∴DF=OA,且DF∥AO,∴四边形AODF是平行四边形,又∵OA=OD,∴平行四边形AODF是菱形;(2)解:由(1)得:OA=OB,∵∠AOB=60°,∴△AOB是等边三角形,∴OA=AB=1,∵四边形AODF是菱形,∴AF=OA=1,AF∥BD,∴∠F AC=∠AOB=60°,∵∠AFC=90°,∴∠ACF=30°,∴CF=AF=.25.(1)证明:∵四边形ABCD是正方形,∴AD∥BC,∴∠DAE=∠FGA,∵∠F AE=∠DAE,∴∠FGA=∠F AE,∴F A=FG,∵点E为CD中点,∴DE=CE,∵∠ADE=∠GCE=90°,在△ADE和△GCE中,,∴△ADE≌△GCE(AAS),∴AD=CG,同理:△DEH△CEF(AAS),∴DH=CF,∵AH=AD+DH,GF=CG+CF,∴AH∥FG,∵AH∥FG,∴四边形AFGH为平行四边形,∵F A=FG,∴四边形AFGH为菱形;(2)解:FC=DH=1,设AB=AD=x,由(1)知FC=DH=1,∴AF=AH=AD+DH=x+1,BF=BC﹣FC=x﹣1,在Rt△ABF中,根据勾股定理,得AF2=AB2+BF2,∴(x+1)2=x2+(x﹣1)2,解得x=4,x=0(舍去),∴AF=FG=x+1=5,∴菱形AFGH的面积为:FG•DC=5×4=20.26.解:(1)由已知可得,BQ=DP=t,AP=CQ=6﹣t 在矩形ABCD中,∠B=90°,AD∥BC,当BQ=AP时,四边形ABQP为矩形,∴t=6﹣t,得t=3故当t=3s时,四边形ABQP为矩形.(2)由(1)可知,四边形AQCP为平行四边形∴当AQ=CQ时,四边形AQCP为菱形即时,四边形AQCP为菱形,解得t=,故当t=s时,四边形AQCP为菱形.(3)当t=时,AQ=,CQ=,则周长为:4AQ=4×=15cm面积为:。

八年级数学下册《第6章特殊的平行四边形》章末综合提升训练(附答案)

八年级数学下册《第6章特殊的平行四边形》章末综合提升训练(附答案)

2021年度鲁教版八年级数学下册《第6章特殊的平行四边形》章末综合提升训练(附答案)1.在四边形ABCD中,对角线AC和BD交于点O,下列条件能判定这个四边形是菱形的是.(填序号)①.AD∥BC,∠A=∠C②.AC=BD,AB∥CD,AB=CD③.AB∥CD,AC=BD,AC⊥BD④.AO=CO,BO=DO,AB=BC2.正方形的边长与它的对角线的长度的比值为.3.如图,已知在矩形ABCD中,点E在边BC的延长线上,且CE=BD,联结AE交BD于点F,如果∠E=15°,那么∠AFB的度数为.4.如图,菱形ABCD的对角线AC与BD相交于点O.已知AB=10cm,AC=12cm.那么这个菱形的面积为cm2.5.我们把两条对角线所成两个角的大小之比是1:2的矩形叫做“和谐矩形”,如果一个“和谐矩形”的对角线长为10cm,则矩形的面积为cm2.6.如图,四边形ABCD为菱形,四边形AOBE为矩形,O,C,D三点的坐标为(0,0),(2,0),(0,1),则点E的坐标为.7.已知正方形ABCD的边长等于4cm,那么边AB的中点E到对角线BD的距离等于cm.8.如图,等边三角形AEF的顶点E,F分别落在矩形ABCD的两邻边BC、CD上,若BE =1,CE=2,则△AEF边长为.9.如图,矩形ABCD的两条对角线相交于点O,∠COB=2∠AOB,AB=8,则BC的长是.10.在矩形ABCD中,∠BAD的角平分线交于BC点E,且将BC分成1:3的两部分,若AB=2,那么BC=11.已知菱形一组对角的和为240°,较短的一条对角线的长度为4厘米,那么这个菱形的面积为平方厘米.12.已知矩形的两条对角线的夹角为60°,如果一条对角线长为6,那么矩形的面积为.13.已知正方形ABCD的边长为6,点E是边BC的中点.联接AC、DE相交于点F,M、N分别是AC、DE的中点,则MN的长是.14.已知四边形ABCD中,AD∥BC,AC=BD,如果添加一个条件,即可判定该四边形是矩形,那么所添加的这个条件可以是.15.如图,在菱形ABCD中,对角线AC、BD相交于点O,DE⊥AB,垂足为E,如果AC =8,BD=6,那么DE的长为.16.如图,在直角坐标平面内,矩形ABCD的对角线AC、BD交于原点O,且点A、C都在x轴上,点D的坐标为(4,3),那么点C的坐标为.17.如图,在正方形ABCD中,等边三角形AEF的顶点E、F分别在边BC和CD上,则∠AEB=度.18.如图,点P在边长为1的正方形ABCD边AD上,连接PB.过点B作一条射线与边DC的延长线交于点Q,使得∠QBE=∠PBC,其中E是边AB延长线上的点,连接PQ.若PQ2=PB2+PD2+1,则△P AB的面积为.19.如图,矩形ABCD中,点E在BC边上,点F在CD边上,AE平分∠BAF,且EF⊥AF 于点F.若AB=5,AD=4,则EF=.20.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=4,H是AF的中点,那么CH的长是.21.已知平行四边形ABCD,对角线AC、BD相交于点O,且CA=CB,延长BC至点E,使CE=BC,连接DE.(1)当AC⊥BD时,求证:BE=2CD;(2)当∠ACB=90°时,求证:四边形ACED是正方形.22.如图,△ABC中,AB=AC,AD平分∠BAC交BC于点D,AE平分∠BAC的外角,且∠AEB=90°.求证:四边形ADBE是矩形.23.如图,已知△ABC中,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE与AC、AE分别交于点O、点E,联结EC.(1)求证:四边形ADCE是平行四边形;(2)当∠BAC=90°时,求证:四边形ADCE是菱形.24.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)求证:BD=CD;(2)如果AB=AC,试判断四边形AFBD的形状,并证明你的结论.25.如图,矩形ABCD中,AB=6,AD=8,P,E分别是线段AC、BC上的点,且四边形PEFD为矩形.(I)若△PCD是等腰三角形时,求AP的长;(Ⅱ)判断CF与AC有怎样的位置关系并说明理由.26.已知:如图,在△ABC中,AB=BC,∠ABC=90°,点D、E分别是边AB、BC的中点,点F、G是边AC的三等分点,DF、EG的延长线相交于点H,连接HA、HC.求证:(1)四边形FBGH是菱形;(2)四边形ABCH是正方形.27.如图,在△ABC中,∠C=90°,D为边BC上一点,E为边AB的中点,过点A作AF ∥BC,交DE的延长线于点F,连接BF.(1)求证:四边形ADBF是平行四边形;(2)当D为边BC的中点,且BC=2AC时,求证:四边形ACDF为正方形.28.已知:如图,在正方形ABCD中,点E在边BC上,点F在边CD的延长线上,且BE =DF.(1)求∠AEF的度数;(2)如果∠AEB=75°,AB=2,求△FEC的面积.29.如图,四边形ABCD中,BD垂直平分AC,垂足为点F,E为四边形ABCD外一点,且∠ADE=∠BAD,AE⊥AC(1)求证:四边形ABDE是平行四边形;(2)如果DA平分∠BDE,AB=5,AD=6,求AC的长.30.如图,已知正方形ABCD的对角线AC、BD交于点O,CE⊥AC与AD边的延长线交于点E.(1)求证:四边形BCED是平行四边形;(2)延长DB至点F,联结CF,若CF=BD,求∠BCF的大小.31.如图,点E是矩形ABCD的边AD的中点,点P是边BC上的动点,PM⊥BE,PN⊥CE,垂足分别是M、N.求:当AB和AD应满足怎样的数量关系时,四边形PMEN是矩形?请说明理由.32.如图,在平行四边形ABCD中,点E、F分别在AB、CD上,且AE=CF.(1)求证:DE=BF;(2)若DF=BF,求证:四边形DEBF为菱形.33.如图,正方形ABCD中,点E、F分别在边BC、CD上,AE=AF,AC和EF交于点O,延长AC至点G,使得AO=OG,连接EG、FG.(1)求证:BE=DF;(2)求证:四边形AEGF是菱形.34.如图所示,在正方形ABCD中,M是CD的中点,E是CD上一点,且∠BAE=2∠DAM.求证:AE=BC+CE.35.已知:如图,在正方形ABCD中,点E为边AB的中点,联结DE,点F在DE上CF =CD,过点F作FG⊥FC交AD于点G.(1)求证:GF=GD;(2)联结AF,求证:AF⊥DE.36.已知:如图,在等边三角形ABC中,过边AB上一点D作DE⊥BC,垂足为点E,过边AC上一点G作GF⊥BC,垂足为点F,BE=CF,联结DG.(1)求证:四边形DEFG是平行四边形;(2)连接AF,当∠BAF=3∠F AC时,求证:四边形DEFG是正方形.37.已知:正方形ABCD的边长为厘米,对角线AC上的两个动点E,F.点E从点A,点F从点C同时出发,沿对角线以1厘米/秒的相同速度运动,过E作EH⊥AC交Rt△ACD的直角边于H,过F作FG⊥AC交Rt△ACD的直角边于G,连接HG,EB.设HE、EF、FG、GH围成的图形面积为S1,AE,EB,BA围成的图形面积为S2(这里规定:线段的面积为0)E到达C,F到达A停止.若E的运动时间为x秒,解答下列问题:(1)如图,判断四边形EFGH是什么四边形,并证明;(2)当0<x<8时,求x为何值时,S1=S2;(3)若y是S1与S2的和,试用x的代数式表示y.(如图为备用图)38.我们知道正方形是四条边相等,四个内角都等于90°的四边形.如图1,已知正方形ABCD,点E是边CD上一点,延长CB到点F,使得BF=DE,作∠EAF的平分线交边BC于点G.求证:BG+DE=EG.参考答案1.解:①A、∵AD∥BC,∴∠BAD+∠ABC=180°,∵∠BAD=∠BCD,∴∠BCD+∠ABC=180°,∴AB∥CD,∴四边形ABCD是平行四边形;选项①不符合题意;②、∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形,又∵AC=BD,∴四边形ABCD是矩形;选项②不符合题意;③、∵AB∥CD,AC=BD,AC⊥BD,∴四边形ABCD不一定是平行四边形,∴四边形ABCD不一定是菱形;选项③不符合题意;④、∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,又∵AB=BC,∴四边形ABCD是菱形;选项④符合题意;故选:④.2.解:∵四边形ABCD是正方形,∴AB=BC=CD=AD,AC=BD,∠ABC=90°,∴AC===AB,∴=;故答案为:.3.解:连接AC交BD于点O,如图所示:∵四边形ABCD是矩形,∴OA=OC=AC,OB=OD=BD,AC=BD,∴OB=OC,∴∠OBC=∠OCB,∵CE=BD,∴AC=CE,∴∠CAE=∠E=15°,∴∠OBC=∠OCB=∠CAE+∠E=30°,∴∠AFB=∠OBC+∠E=30°+15°=45°;故答案为:45°.4.解:∵四边形ABCD为菱形,∴AC⊥BD,OA=OC=AC=6cm,OB=OD,∴OB===8(cm),∴BD=2OB=16cm,S菱形ABCD=AC•BD=×12×16=96(cm2).故答案为:96.5.解:∵四边形ABCD是“和谐矩形”,∴OA=OC,OB=OD,AC=BD=10,∠BAD=90°,∠CAD:∠BAC=1:2,∴OA=OD,∠CAD=30°,∠BAC=60°,∴∠ADB=∠CAD=30°,∴AB=BD=5,AD=AB=5,∴矩形ABCD的面积=AB×AD=5×5=25(cm2);故答案为:25.6.解:∵O,C,D三点的坐标为(0,0),(2,0),(0,1),∴OC=2,OD=1,∵四边形ABCD是菱形,∴OA=OC=2,OB=OD=1,∵四边形AOBE为矩形,∴∠EAO=∠EBO=90°,EB=OA=2,EA=OB=1,∵E在第二象限,∴E点的坐标是(﹣2,﹣1),故答案为:(﹣2,﹣1).7.解:∵四边形ABCD是正方形,∴AB=BC=4cm,∠EBF=45°,∵EF⊥BD,∴△EBF是等腰直角三角形,∵E是AB的中点,∴EB=2cm,∴EF=cm,故答案为:.8.解:设DF=x,CF=y,∵四边形ABCD是矩形,∴∠D=∠C=∠B=90°,DC=AB=x+y,AD=BC=BE+CE=1+2=3,∵△AEF是等边三角形,∴AE=EF=AF,∴12+(x+y)2=22+y2=x2+32,由12+(x+y)2=22+y2得:y=,代入22+y2=x2+32,整理得:3x4+26x2﹣9=0,解得:x2=,∴AF2=x2+32=,∴AF=;故答案为:.9.解:∵四边形ABCD是矩形,∴AO=OC,BO=OD,AC=BD,∴OA=OB,∵∠BOC=2∠AOB,∠BOC+∠AOB=180°∴∠AOB=60°,∴△AOB是等边三角形,∴OA=OB=AB=8,∴AC=BD=2AO=16,则BC==8.故答案是:8.10.解:①如图1中,∵四边形ABCD是矩形,AE平分∠BAD,∴∠BAE=∠AEB=45°,∴AB=BE=2,当EC=3BE时,EC=6,∴BC=8.②如图2中,当BE=3EC时,EC=,∴BC=BE+EC=.故答案为8或11.解:如图,∵四边形ABCD是菱形,∠BAD+∠BCD=240°,∴∠BAD=∠BCD=120°,∠ABC=∠ADC=60°∵AB=BC=AD=DC,∴△ABC,△ADC是等边三角形,∴AB=BC=AC=4,∴S菱形ABCD=2•S△ABC=2××42=8,故答案为8.12.解:矩形的两条对角线的夹角为:∠1=60°,∵矩形对角线相等且互相平分,∴△AOB为等边三角形,∴AB=AO=AC=3,在直角△ABC中,AC=6,AB=3,∴BC=,故矩形的面积为:3×3=9.故答案为:9.13.解:连接BD,∵E是边BC的中点,∴BE=BC=3,∵四边形ABCD是正方形,∴M是BD的中点,又N是DE的中点,∴MN=BE=1.5,故答案为:1.5.14.解:当AD=BC或AB∥CD时,四边形ABCD是矩形.理由:∵AD∥BC,∴当AD=BC或AB∥CD时,四边形ABCD是平行四边形,∵AC=BD,∴四边形ABCD是矩形.15.解:∵四边形ABCD是菱形,AC=8,BD=6,∴AC⊥OD,AO=AC=4,BO=BD=3,∴由勾股定理得到:AB==5.又∵AC•BD=AB•DE.∴DE=4.8.故答案为:4.8.16.解:过点D,作DE⊥OC于点E,∵点D的坐标为(4,3),∴OE=4,DE=3,∴OD==5,∵四边形ABCD是矩形,∴OD=OC=AC=BD,∴点C的坐标为(5,0),故答案为:(5,0).17.解:∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=∠BAD=90°,在Rt△ABE和Rt△ADF中,,∴△ABE≌△ADF,∴∠BAE=∠DAF=(90°﹣60°)÷2=15°,∴∠AEB=75°,故答案为75.18.解:∵∠QBE=∠PBC,∠QBE+∠QBC=90°,∴∠PBQ=∠PBC+∠QBC=90°,∵∠PBC+∠PBA=90°,∴∠PBA=∠QBC,在Rt△P AB和Rt△QCB中,,∴△P AB≌△QCB(ASA),∴QC=P A,设正方形的边长AB=a,P A=x,则QC=x,∴DQ=DC+QC=a+x,PD=AD﹣P A=a﹣x,在Rt△P AB中,PB2=P A2+AB2=x2+a2,∵PQ2=PB2+PD2+1,∴(a﹣x)2+(a+x)2=x2+a2+(a﹣x)2+1,解得:2ax=1,∴ax=,∵△P AB的面积S=P A•PB=ax=×=.故答案为:.19.解:∵AE平分∠BAF,且EF⊥AF,∠B=90°∴EF=EB在Rt△ABE和Rt△AFE中∴Rt△ABE≌Rt△AFE(HL)∴AF=AB=5又∵AD=4,∠D=90°∴Rt△ADE中,DF==3∴CF=5﹣3=2设EF=EB=x,则CE=4﹣x在Rt△CEF中,22+(4﹣x)2=x2解得x=即EF=故答案为:20.解:过H作HM⊥BE于M,则∠HMC=90°,∵正方形ABCD和正方形CEFG,∴AB=BC=1,EF=CE=4,∠B=∠E=90°,∴HM∥AB∥FE,∵H为AF大的中点,∴M为BE的中点,∴HM=(AB+EF)=(1+4)=,∵BC=1,CE=2,∴BM=2.5,∴CM=1.5,在Rt△HMC中,由勾股定理得:CH==,故答案为:.21.(1)证明:∵四边形ABCD是平行四边形,又∵AC⊥BD,∴四边形ABCD是菱形.∴BC=CD.又∵CE=BC,∴BE=2BC,∴BE=2CD;(2)证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BE,又∵CE=BC,∴AD=CE,AD∥CE,∴四边形ACED是平行四边形.∵∠ACB=90°,∴平行四边形ACED是矩形,又∵CA=CB,∴CA=CE,∴矩形ACED是正方形.22.证明:∵AD是∠BAC的平分线,∵AE是∠BAF的平分线,∴∠3=∠4,∵∠1+∠2+∠3+4=180°,∴∠2+∠3=90°,即∠DAE=90°,∵AB=AC,∠1=∠2,∴AD⊥BC,即∠ADB=90°,∵∠AEB=90°,∴四边形ADBE是矩形.23.(1)证明:∵AE∥BC,DE∥AB,∴四边形ABDE是平行四边形,∴AE=BD,∵AD是边BC上的中线,∴BD=DC,∴AE=DC,又∵AE∥BC,∴四边形ADCE是平行四边形,(2)∵∠BAC=90°,AD是边BC上的中线.∴AD=CD,∵四边形ADCE是平行四边形,∴四边形ADCE是菱形,24.证明:(1)∵AF∥BC,∴∠AFE=∠DCE,∵E是AD的中点,∴AE=DE,,∴△AEF≌△DEC(AAS),∵AF=BD,∴BD=CD;(2)四边形AFBD是矩形.理由:∵AB=AC,D是BC的中点,∴AD⊥BC,∴∠ADB=90°∵AF=BD,∵过A点作BC的平行线交CE的延长线于点F,即AF∥BC,∴四边形AFBD是平行四边形,又∵∠ADB=90°,∴四边形AFBD是矩形.25.解:(I)在矩形ABCD中,AB=6,AD=8,∠ADC=90°,∴DC=AB=6,∴AC==10,要使△PCD是等腰三角形,①当CP=CD时,AP=AC﹣CP=10﹣6=4,②当PD=PC时,∠PDC=∠PCD,∵∠PCD+∠P AD=∠PDC+∠PDA=90°,∴∠P AD=∠PDA,∴PD=P A,∴P A=PC,∴AP=AC=5,③当DP=DC时,如图1,过点D作DQ⊥AC于Q,则PQ=CQ,∵S△ADC=AD•DC=AC•DQ,∴DQ==,∴CQ==,∴PC=2CQ=,∴AP=AC﹣PC=10﹣=;所以,若△PCD是等腰三角形时,AP的长为4或5或;(Ⅱ)CF⊥AC,理由如下:如图2,连接PF,DE,记PF与DE的交点为O,连接OC,∵四边形ABCD和PEFD是矩形,∴∠ADC=∠PDF=90°,∴∠ADP+∠PDC=∠PDC+∠CDF,∴∠ADP=∠CDF,∵∠BCD=90°,OE=OD,∴OC=ED,在矩形PEFD中,PF=DE,∴OC=PF,∵OP=OF=PF,∴OC=OP=OF,∴∠OCF=∠OFC,∠OCP=∠OPC,∵∠OPC+∠OFC+∠PCF=180°,∴2∠OCP+2∠OCF=180°,∴∠PCF=90°,∴CF⊥AC.26.证明:(1)∵点F、G是边AC的三等分点,∴AF=FG=GC.又∵点D是边AB的中点,∴DH∥BG.同理:EH∥BF.∴四边形FBGH是平行四边形,连接BH,交AC于点O,∴OF=OG,∴AO=CO,∵AB=BC,∠ABC=90°,∴四边形FBGH是菱形;(2)∵四边形FBGH是平行四边形,∴BO=HO,FO=GO.又∵AF=FG=GC,∴AF+FO=GC+GO,即:AO=CO.∴四边形ABCH是平行四边形.∵AC⊥BH,AB=BC,∴四边形ABCH是正方形.27.(1)证明:∵AF∥BC,∴∠AFE=∠BDE,在△AEF与△BED中,,∴△AEF≌△BED,∴AF=BD,∵AF∥BD,∴四边形ADBF是平行四边形;(2)解:∵CD=DB,AE=BE,∴DE∥AC,∴∠FDB=∠C=90°,∵AF∥BC,∴∠AFD=∠FDB=90°,∴∠C=∠CDF=∠AFD=90°,∴四边形ACDF是矩形,∵BC=2AC,CD=BD,∴CA=CD,∴四边形ACDF是正方形.28.解:(1)由正方形ABCD,得AB=AD,∠B=∠ADF=∠BAD=90°,在△ABE和△ADF中,,∴△ABE≌△ADF,∴∠BAE=∠F AD,AE=AF.∴∠BAD=∠BAE+∠EAD=∠F AD+∠EAD=90°.即得∠EAF=90°,又∵AE=AF,∴∠AEF=∠AFE=45°.(2)∵∠AEB=75°,∠AEF=45°,∴∠BEF=120°.即得∠FEC=60°,由正方形ABCD,得∠C=90°.∴∠EFC=30°.∴EF=2EC,设EC=x.则EF=2x,BE=DF=2﹣x,CF=4﹣x.在Rt△CEF中,由勾股定理,得CE2+CF2=EF2.即得x2+(4﹣x)2=4x2.解得x1=2﹣2,x2=﹣2﹣2(不合题意,舍去).∴EC=2﹣2,CF=6﹣2.∴S△CEF==,∴△FEC的面积为.29.(1)证明:∵∠ADE=∠BAD,∴AB∥DE,∵AE⊥AC,BD⊥AC,AE∥BD,∴四边形ABDE是平行四边形;(2)解:∵DA平分∠BDE,∴∠AED=∠BDA,∴∠BAD=∠BDA,∴BD=AB=5,设BF=x,则DF=5﹣x,∴AD2﹣DF2=AB2﹣BF2,∴62﹣(5﹣x)2=52﹣x2,∴x=,∴AF==,∴AC=2AF=.30.(1)证明:∵四边形ABCD是正方形,∴AC⊥DB,BC∥AD,∵CE⊥AC,∴∠AOD=∠ACE=90°,∴BD∥CE,∴四边形BCED是平行四边形;(2)解:连接AF,∵四边形ABCD是正方形,∴BD⊥AC,BD=AC=2OB=2OC,即OB=OC,∴∠OCB=45°,∵Rt△OCF中,CF=BD=2OC,∴∠OFC=30°,∴∠BCF=60°﹣45°=15°.31.解:当AD=2AB时.四边形PMEN为矩形;理由如下:∵四边形ABCD是矩形,∴∠A=∠D=90°,AB=DC,又∵点E是矩形ABCD的边AD的中点.∴AE=DE,在△ABE和△CDE中,,∴△ABE≌△DCE(SAS),∴∠AEB=∠DEC,∵四边形PMEN为矩形,∴∠BEC=90°,∴∠AEB=∠DEC=45°∴AE=DE=DC,即AD=2AB.∴当AD=2AB时;四边形PMEN为矩形.32.证明:(1)∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C,又∵AE=CF,∴△ADE≌△CBF,∴DE=BF;(2)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD.∵AE=CF,∴BE=DF,BE∥DF,∴四边形DEBF是平行四边形.∵DF=BF,∴平行四边形DEBF是菱形.33.证明:(1)∵四边形ABCD是正方形,∴∠B=∠D=90°,AD=AB,在Rt△ABE和Rt△ADF中,∴Rt△ABE≌Rt△ADF(HL),∴EB=DF;(2)∵四边形ABCD是正方形,∴BC=DC,∵EB=DF,∴EC=FC,∴AC垂直平分EF,∵AO=GO,∴四边形AEGF是菱形.34.证明:取BC的中点F,连接AF,过点F作FH⊥AE于H,连接EF.∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=∠C=90°,∵M是CD的中点,∴BF=DM,在△ABF和△ADM中,,∴△ABF≌△ADM(SAS),∴∠BAF=∠DAM,∵∠BAE=2∠DAM,∴∠BAF=∠HAF,∵∠AHF=∠B=90°,∴∠AFB=∠AFH,BF=FH,∴AB=AH,∴FH=FC,∵∠FHE=∠C=90°,在Rt△CFE和Rt△HFE中,,∴Rt△CFE≌Rt△HFE(HL),∴EH=CE,∴AE=AH+HE=AB+CE=BC+CE.35.证明:(1)∵四边形ABCD是正方形,∴∠ADC=90°,∵FG⊥FC,∴∠GFC=90°,∵CF=CD,∴∠CDF=∠CFD,∴∠GFC﹣∠CFD=∠ADC﹣∠CDE,即∠GFD=∠GDF,∴GF=GD.(2)联结CG.∵CF=CD,GF=GD,∴点G、C在线段FD的中垂线上,∴GC⊥DE,∴∠CDF+∠DCG=90°,∵∠CDF+∠ADE=90°,∴∠DCG=∠ADE.∵四边形ABCD是正方形,∴AD=DC,∠DAE=∠CDG=90°,∴△DAE≌△CDG,∴AE=DG,∵点E是边AB的中点,∴点G是边AD的中点,∴AG=GD=GF,∴∠DAF=∠AFG,∠GDF=∠GFD,∵∠DAF+∠AFG+∠GFD+∠GDF=180°,∴2∠AFG+2∠GFD=180°,∴∠AFD=90°,即AF⊥DE.法2:(1)联结CG交ED于点H.∵四边形ABCD是正方形,∴∠ADC=90°,∵FG⊥FC,∴∠GFC=90°,在Rt△CFG与Rt△CDG中,,∴Rt△CFG≌Rt△CDG,∴GF=GD.(2)∵CF=CD,GF=GD,∴点G、C在线段FD的中垂线上,∴FH=HD,GC⊥DE,∴∠EDC+∠DCH=90°,∵∠ADE+∠EDC=90°,∴∠ADE=∠DCH,∵四边形ABCD是正方形,∴AD=DC=AB,∠DAE=∠CDG=90°,∵∠ADE=∠DCH,AD=DC,∠EAD=∠GDC.∴△ADE≌△DCG,∴AE=DG,∵点E是边AB的中点,∴点G是边AD的中点,∵点H是边FD的中点,∴GH是△AFD的中位线,∴GH∥AF,∴∠AFD=∠GHD,∵GH⊥FD,∴∠GHD=90°,∴∠AFD=90°,即AF⊥DE.36.证明:(1)在等边三角形ABC中,∵DE⊥BC,GF⊥BC,∴∠DEF=∠GFC=90°,∴DE∥GF,∵∠B=∠C=60°,BE=CF,∠DEB=∠GFC=90°,∴△BDE≌△CGF,∴DE=GF,∴四边形DEFG是平行四边形;(2)在平行四边形DEFG中,∵∠DEF=90°,∴平行四边形DEFG是矩形,∵∠BAC=60°,∠BAF=3∠F AC,∴∠GAF=15°,在△CGF中,∵∠C=60°,∠GFC=90°,∴∠CGF=30°,∴∠GF A=15°,∴∠GAF=∠GF A,∴GA=GF,∵DG∥BC,∴∠ADG=∠B=60°,∴△DAG是等边三角形,∴GA=GD,∴GD=GF,∴矩形DEFG是正方形.37.解:(1)四边形EFGH是矩形.理由如下:∵点E从点A,点F从点C同时出发,沿对角线以1厘米/秒的相同速度运动,∴AE=CF.∵EH⊥AC,FG⊥AC,∴EH∥FG.∵ABCD为正方形,∴AD=DC,∠D=90°,∠GCF=∠HAE=45°,又∵EH⊥AC,FG⊥AC,∴∠CGF=∠AHE=45°,∴∠GCF=∠CGF,∠HAE=∠AHE,∴AE=EH,CF=FG,∴EH=FG,∴四边形EFGH是平行四边形,又∵EH⊥AC∴平行四边形EFGH是矩形;(2)∵正方形边长为,∴AC=16.∵AE=x,连接BD交AC于O,则BO⊥AC且BO=8,∴S2=•AE•BO=4x.∵CF=GF=AE=x,∴EF=16﹣2x,∴S1=EF•GF=x(16﹣2x).当S1=S2时,x(16﹣2x)=4x,解得x1=0(舍去),x2=6.∴当x=6时,S1=S2;(3)①当0≤x<8时,y=x(16﹣2x)+4x=﹣2x2+20x.②当8≤x≤16时,AE=x,CE=HE=16﹣x,EF=16﹣2(16﹣x)=2x﹣16.∴S1=(16﹣x)(2x﹣16).∴y=(16﹣x)(2x﹣16)+4x=﹣2x2+52x﹣256.综上,可知y=.38.证明:∵四边形ABCD是正方形,∴AD=AB,∠D=∠ABC=90°,∴∠ABF=∠D=90°,在△ABF与△ADE中,,∴△ABF≌△ADE,∴AE=AF,∵AG平分∠EAF,∴∠F AG=∠EAG,∵AG=AG,∴△EAG≌△F AG,∴EG=FG=BF+BG=DE+BG;。

初二数学特殊的平行四边形试题答案及解析

初二数学特殊的平行四边形试题答案及解析

初二数学特殊的平行四边形试题答案及解析1.如图,在菱形ABCD中,AC、BD是对角线,若∠BAC=50°,则∠ABC等于()A.40° B.50° C.80° D.100°【答案】C【解析】首先根据菱形的菱形的每一条对角线平分一组对角可得∠BAD的度数,再根据菱形的性质可得AD∥BC,根据平行线的性质可得∠ABC+∠BAD=180°,再代入所求的∠BAD的度数即可算出答案.2.如图,菱形ABCD中,AC=8,BD=6,则菱形的周长是()A.20B.24C.28D.40【答案】A【解析】据菱形对角线互相垂直平分的性质,可以求得BO=OD,AO=OC,在Rt△AOD中,根据勾股定理可以求得AB的长,即可求菱形ABCD的周长.3.如图,矩形纸片ABCD中,AB=6cm,BC=8cm,现将其沿AE对折,使得点B落在边AD上的点B1处,折痕与边BC交于点E,则CE的长为()A.6cm B.4cm C.2cm D.1cm【答案】C【解析】由折叠可知,∠BAE=∠B1AE,∴∠BAE=∠B1AE=45°,又∵∠B=45°,∴∠AEB=45°,∴BE=AB=4,∴CE=BC-BE=8-6=2.故选C.4.如图,在矩形ABCD中,若AC=2AB,则∠AOB的大小是()A.30°B.45°C.60°D.90°【答案】C【解析】∵AC=2AB,∴∠BAC=60°,OA=OB,∴△OAB是正三角形,∴∠AOB的大小是60°.故选C.5.如图,长方形ABCD中,E点在BC上,且AE平分∠BAC.若BE=4,AC=15,则△AEC面积为()A.15 B.30 C.45 D.60【答案】B【解析】利用角平分线的性质定理可得AC边上的高.进而求得所求三角形的面积.6.如图,矩形ABCD的周长为20cm,两条对角线相交于O点,过点O作AC的垂线EF,分别交AD,BC于E,F点,连接CE,则△CDE的周长为()A.5cm B.8cm C.9cm D.10cm【答案】D【解析】∵ABCD为矩形,∴AO=OC.∵EF⊥AC,∴AE=EC.∴△CDE的周长=CD+DE+EC=CD+DE+AE=CD+AD=10(cm).7.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=5,则四边形CODE的周长是()A.5 B.7 C.9 D.10【答案】D【解析】根据矩形性质求出OC=OD,根据菱形判定得出四边形DECO是菱形,求出OD=OC=EC=DE=,即可求出答案.8.如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ACED为菱形的是()A.AB=BC B.AC=BC C.∠B=60°D.∠ACB=60°【答案】B【解析】∵将△ABC沿BC方向平移得到△DCE,∴AB∥CD,且AB=CD,∴四边形ABCD为平行四边形,当AC=BC时,平行四边形ACED是菱形.9.如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是()A.BC=AC B.CF⊥BF C.BD=DF D.AC=BF【答案】D【解析】根据中垂线的性质:中垂线上的点到线段两个端点的距离相等,有BE=EC,BF=FC进而得出四边形BECF是菱形;由菱形的性质知,以及菱形与正方形的关系,进而分别分析得出即可.10.如图,P是菱形ABCD对角线BD上一点,PE⊥AB于点E,PE=4cm,则点P到BC的距离是______cm.【答案】4【解析】根据菱形的性质,BD是∠ABC的平分线,再根据角平分线的性质即可得到点P到BC的距离.11.如图,菱形ABCD的对角线的长分别为6和8,点P是对角线AC上的任意一点(点P不与点A,C重合),且PE∥BC交AB于点E,PF∥CD交AD于点F,则阴影部分的面积是______.【答案】12【解析】易知四边形AEPF是平行四边形,设AP与EF相交于O点,则S△POF=S△AOE.所以阴影部分的面积等于菱形面积的一半.12.如图,在△ABC中,∠ACB=90°.D是AC的中点,DE⊥AC,AE∥BD,若BC=4,AE=5,则四边形ACBE的周长是______.【答案】18【解析】求出∠CDB=∠DAE,∠C=∠ADE=90°,AD=DC,证△ADE≌△DCB,推出DE=BC,得出平行四边形DEBC,推出BE=DC,根据勾股定理求出DC,即可得出答案.13.如图,矩形ABCD的两条线段交于点O,过点O作AC的垂线EF,分别交AD、BC于点E、F,连接CE,已知△CDE的周长为24cm,则矩形ABCD的周长是_______cm.【答案】48【解析】∵OA=OC,EF⊥AC,∴AE=CE,∵矩形ABCD的周长=2(AE+DE+CD),∵DE+CD+CE=24,∴矩形ABCD的周长=2(AE+DE+CD)=48cm.14.如图,在四边形ABCD中,AB=BC=CD=DA,对角线AC与BD相交于点O,若不增加任何字母与辅助线,要使四边形ABCD是正方形,则还需增加一个条件是_______.【答案】AC=BD或AB⊥BC【解析】∵在四边形ABCD中,AB=BC=CD=DA,∴四边形ABCD是菱形,∴要使四边形ABCD是正方形,则还需增加一个条件是:AC=BD或AB⊥BC.15.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,过点O作直线EF⊥BD,分别交AD、BC于点E和点F,求证:四边形BEDF是菱形.【答案】证明:∵四边形ABCD是菱形,∴AD∥BC,OB=OD,∴∠EDO=∠FBO,∠OED=∠OFB,∴△OED≌△OFB,∴DE=BF,又∵DE∥BF,∴四边形BEDF是平行四边形,∵EF⊥BD,∴四边形BEDF是菱形.【解析】若要证明四边形BEDF是菱形,只需要证明四边形BEDF是平行四边形即可,而DE∥BF,只需要证明DE=BF即可判定四边形BEDF是平行四边形,证明DE=BF可通过证明△OED≌△OFB.16.如图△ABC中,点O是AC上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠GCA的平分线于点F.(1)说明 EO=FO.(2)当点O运动到何处,四边形AECF是矩形?说明你的结论.(3)当点O运动到何处,AC与BC具有怎样的关系时,四边形AECF是正方形?为什么?【答案】解:(1)∵MN∥BC,∴∠ECB=∠CEO,∠GCF=∠CFO,∵CE,CF分别为∠BOC,∥GOC的角平分线,∴∠ECB=∠ECO,∠GCF=∠OCF,∴∠CEO=∠ECO,∠CFO=∠OCF,∴OC=OE,OC=OF,∴OE=OF,(2)当O点运动到AC的中点时,四边形AECF为矩形,理由:∵O点为AC的中点,∴OA=OC,∵OE=OF,OC=OE=OF,∴OA=OC=OE=OF,∴AC=EF,∴四边形AECF是矩形,(3)当O点运动到AC的中点时,AC⊥BC时,四边形AECF是正方形,理由:∵O点为AC的中点时,四边形AECF是矩形,∴AC=EF,∵AC⊥BC,MN∥BC,∴AC⊥EF,∴四边形AECF是正方形.【解析】(1)由平行线的性质和角平分线的性质,推出∠ECB=∠CEO,∠GCF=∠CFO,∠ECB=∠ECO,∠GCF=∠OCF,通过等量代换即可推出∠CEO=∠ECO,∠CFO=∠OCF,便可确定OC=OE,OC=OF,可得OE=OF;(2)当O点运动到AC的中点时,四边形AECF为矩形,根据矩形的判定定理(对角线相等且互相平分的四边形为矩形),结合(1)所推出的结论,即可推出OA=OC=OE=OF,求出AC=EF后,即可确定四边形AECF为矩形;(3)当O点运动到AC的中点时,AC⊥BC时,四边形AECF是正方形,根据(2)所推出的结论,由AC⊥BC,MN∥BC,确定AC⊥EF,即可推出结论.17.已知矩形BEDG和矩形BNDQ中,BE=BN,DE=DN.(1)将两个矩形叠合成如图10,求证:四边形ABCD是菱形;(2)若菱形ABCD的周长为20,BE=3,求矩形BEDG的面积.【答案】解:(1)答:四边形ABCD是菱形.证明:作AR⊥BC于R,AS⊥CD于S,由题意知:AD∥BC,AB∥CD,∴四边形ABCD是平行四边形,∵矩形BEDG和矩形BNDQ中,BE=BN,DE=DN,∴两个矩形全等,∴AR=AS,∵AR•BC=AS•CD,∴BC=CD,∴平行四边形ABCD是菱形;(2)解:∵菱形ABCD的周长为20,∴AD=AB=BC=CD=5,∵BE=3,∴AE=4,∴DE=5+4=9,∴矩形BEDG的面积为:3×9=27.【解析】(1)作AR⊥BC于R,AS⊥CD于S,根据题意先证出四边形ABCD是平行四边形,再由BC=CD得平行四边形ABCD是菱形;(2)根据菱形的性质得出AD的长,进而得出AE的长,再利用矩形面积公式求出即可.18.如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点,点M是AB边上的一个动点(不与点A重合),延长ME交CD的延长线于点N,连接MD,AN.(1)求证:四边形AMDN是平行四边形.(2)当AM的值为何值时,四边形AMDN是矩形?请说明理由.【答案】(1)证明:∵四边形ABCD为菱形,∴ND∥AM.∴∠NDE=∠MAE,∠DNE=∠AME.又∵点E是AD边的中点,∴DE=AE.∴ΔNDE≌ΔMAE,∴ND=MA,∴四边形AMND是平行四边形(一组对边平行且相等的四边形是平行四边形).(2)当AM的值为1时,四边形AMDN是矩形.理由如下:∵AM=1=AD,∴∠ADM=30°∵∠DAM=60°,∴∠AMD=90°,∴平行四边形AMDN是矩形.【解析】(1)由四边形ABCD为菱形,可以说明ΔNDE≌ΔMAE,得到ND=MA和ND∥AM,推出四边形AMND是平行四边形.(2)若四边形AMDN为矩形,则∠AMD为直角,此时AM=1.19.如图,在平行四边形ABCD中,∠DAB=60°,AB=2AD,点 E、F分别是AB、CD的中点,过点A作AG∥BD,交CB的延长线于点G.(1)求证:四边形DEBF是菱形;(2)请判断四边形AGBD是什么特殊四边形?并加以证明.【答案】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD且AB=CD,AD∥BC且AD=BC.E,F分别为AB,CD的中点,∴BE=AB,DF=CD,∴BE=BF,∴四边形DEBF是平行四边形在△ABD中,E是AB的中点,∴AE=BE=AB=AD,而∠DAB=60°,∴△AED是等边三角形,即DE=AE=AD,故DE=BE.∴平行四边形DEBF是菱形.(2)解:四边形AGBD是矩形,理由如下:∵AD∥BC且AG∥DB,∴四边形AGBD是平行四边形.由(1)的证明知AD=DE=AE=BE,∴∠ADE=∠DEA=60°,∠EDB=∠DBE=30°.故∠ADB=90°.∴平行四边形AGBD是矩形.【解析】(1)利用平行四边形的性质证得△AED是等边三角形,从而证得DE=BE,问题得证;(2)利用平行四边形的性质证得∠ADB=90°,利用有一个角是直角的平行四边形是矩形判定矩形.20.已知:如图,在△ABC中,D是AC的中点,E是线段BC延长线上一点,过点A作BE的平行线与线段ED的延长线交于点F,连接AE,CF.(1)求证:AF=CE;(2)若AC=EF,试判断四边形AFCE是什么样的四边形,并证明你的结论.【答案】(1)证明:在△ADF和△CDE中,∵AF∥BE,∴∠FAD=∠ECD.又∵D是AC的中点,∴AD=CD.∵∠ADF=∠CDE,∴△ADF≌△CDE.∴AF=CE.(2)解:若AC=EF,则四边形AFCE是矩形.证明:由(1)知:AF=CE,AF∥CE,∴四边形AFCE是平行四边形.又∵AC=EF,∴平行四边形AFCE是矩形.【解析】(1)可通过全等三角形来证明简单的线段相等.△ADF和△CDE中,已知了AD=CD,∠ADF=∠CDE,AF∥BE,因此不难得出两三角形全等,进而可得出AF=CE.(2)需先证明四边形AFCE是平行四边形,那么对角线相等的平行四边形是矩形.。

人教版八年级数学下册-难点探究专题(选做):特殊四边形中的综合性问题

人教版八年级数学下册-难点探究专题(选做):特殊四边形中的综合性问题

难点探究专题(选做):特殊四边形中的综合性问题◆类型一特殊平行四边形的动态探究问题一、动点问题1.(2016·枣庄中考)如图,把△EFP放置在菱形ABCD中,使得顶点E,F,P分别在线段AB,AD,AC上,已知EP=FP=6,EF=63,∠BAD=60°,且AB>6 3.(1)求∠EPF的大小;(2)若AP=10,求AE+AF的值;(3)若△EFP的三个顶点E,F,P分别在线段AB,AD,AC上运动,请直接写出AP的最大值和最小值.二、图形的变换问题2.如图①,点O是正方形ABCD两条对角线的交点.分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG,OE为邻边作正方形OEFG,连接AG,DE.(1)求证:DE⊥AG;(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图②.①在旋转过程中,当∠OAG′是直角时,求α的度数;②若正方形ABCD的边长为1,在旋转过程中,求AF′的最大值和此时α的度数,直接写出结果不必说明理由.◆类型二四边形间的综合性问题3.(2016·德州中考)我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图①,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;(2)如图②,点P是四边形ABCD内一点,且满足P A=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)参考答案与解析1.解:(1)如图①,过点P 作PG ⊥EF 于点G ,H 为PE 的中点,连接GH ,∴∠PGE=90°,GH =PH =HE =12PE =3.∵PF =PE ,∴∠FPG =∠EPG ,FG =GE =12EF =3 3.在Rt △PGE 中,由勾股定理得PG =PE 2-GE 2=62-(33)2=3.∴PG =GH =PH ,即△GPH 为等边三角形,∴∠GPH =60°,∴∠FPE =∠FPG +∠GPE =2∠GPE =2×60°=120°.(2)如图①,过点P 作PM ⊥AB 于点M ,作PN ⊥AD 于点N ,∴∠ANP =∠AMP =90°.∵AC为菱形ABCD 的对角线,∴∠DAC =∠BAC =12∠DAB =30°,PM =PN .在Rt △PME 和Rt △PNF 中,PM =PN ,PE =PF ,∴Rt △PME ≌Rt △PNF ,∴ME =NF .∵∠P AM =30°,AP=10,∴PM =12AP =5.由勾股定理得AM =P A 2-PM 2=5 3.在△ANP 和△AMP 中,⎩⎪⎨⎪⎧∠NAP =∠MAP ,∠ANP =∠AMP =90°,AP =AP ,∴△ANP ≌△AMP ,∴AN =AM =5 3.∴AE +AF =(AM +ME )+(AN -NF )=AM +AN +ME -NF =10 3.(3)如图②,△EFP 的三个顶点分别在AB ,AD ,AC 上运动,点P 在P 1,P 之间运动.P 1O =PO =12PE =3,AE =EF =63,AO =AE 2-EO 2=9.∴AP 的最大值为AO +OP =12,AP 的最小值为AO -OP 1=6.2.(1)证明:如图,延长ED 交AG 于点H .∵四边形ABCD 与OEFG 均为正方形,∴OA =OD ,OG =OE ,∠AOG =∠DOE =90°,∴Rt △AOG ≌Rt △DOE ,∴∠AGO =∠DEO .∵∠AGO +∠GAO =90°,∴∠DEO +∠GAO =90°,∴∠AHE =90°,即DE ⊥AG ;(2)解:①在旋转过程中,∠OAG ′成为直角有以下两种情况:a .α由0°增大到90°过程中,当∠OAG ′为直角时,∵OA =OD =12OG =12OG ′,∴∠AG ′O =30°,∠AOG ′=60°.∵OA ⊥OD ,∴∠DOG ′=90°-∠AOG ′=30°,即α=30°;b .α由90°增大到180°过程中,当∠OAG ′为直角时,同理可求的∠AOG ′=60°,∴α=90°+∠AOG ′=150°.综上,当∠OAG ′为直角时,α=30°或150°;②AF ′长的最大值是2+22,此时α=315°. 3.(1)证明:如图①中,连接BD .∵点E ,H 分别为边AB ,DA 的中点,∴EH ∥BD ,EH =12BD .∵点F ,G 分别为边BC ,CD 的中点,∴FG ∥BD ,FG =12BD ,∴EH ∥FG ,EH =GF ,∴中点四边形EFGH 是平行四边形.(2)解:四边形EFGH 是菱形.理由如下:如图②中,连接AC ,BD .∵∠APB =∠CPD ,∴∠APB +∠APD =∠CPD +∠APD ,即∠APC =∠BPD .在△APC 和△BPD 中,⎩⎪⎨⎪⎧AP =PB ,∠APC =∠BPD ,PC =PD ,∴△APC ≌△BPD ,∴AC =BD .∵点E ,F ,G 分别为边AB ,BC ,CD 的中点,∴EF =12AC ,FG =12BD ,∴EF =FG .∵四边形EFGH 是平行四边形,∴四边形EFGH 是菱形.(3)解:四边形EFGH 是正方形.理由如下:如图②中,设AC 与BD 交于点O .AC 与PD 交于点M ,AC 与EH 交于点N .∵△APC ≌△BPD ,∴∠ACP =∠BDP .∵∠DMO =∠CMP ,∴∠COD =∠CPD =90°.∵EH ∥BD ,AC ∥HG ,∴∠EHG =∠ENO =∠BOC =∠DOC =90°.∵四边形EFGH 是菱形,∴四边形EFGH 是正方形.19.2.3 一次函数与方程、不等式一.选择题(共8小题)1.一次函数y=kx+b的图象如图所示,则方程kx+b=0的解为()A.x=2B.y=2C.x=﹣1D.y=﹣12.一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x 的方程kx+b=0的解为()A.x=﹣1B.x=2C.x=0D.x=33.一元一次方程ax﹣b=0的解x=3,函数y=ax﹣b的图象与x轴的交点坐标为()A.(3,0)B.(﹣3,0)C.(a,0)D.(﹣b,0)4.已知方程kx+b=0的解是x=3,则函数y=kx+b的图象可能是()A.B.C.D.5.若方程x﹣3=0的解也是直线y=(4k+1)x﹣15与x轴的交点的横坐标,则k的值为()A.﹣1B.0C.1D.±16.如图,直线y1=x+b与y2=kx﹣1相交于点P,点P的横坐标为﹣1,则关于x的不等式x+b>kx﹣1的解集在数轴上表示正确的是()A.B.C.D.7.如图,直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,则关于x的不等式﹣x+m >nx+4n>0的整数解为()A.﹣1B.﹣5 C.﹣4D.﹣38.如图,一次函数y=kx+b的图象经过A、B两点,则不等式kx+b<0的解集是()A.x<0B.0<x<1C.x<1 D.x>1二.填空题(共10小题)9.若直线y=2x+b与x轴交于点(﹣3,0),则方程2x+b=0的解是_________.10.如图是一次函数y=kx+b的图象,则方程kx+b=0的解为_________.11.一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x的方程kx+b=0的解为_________.12.如图,已知直线y=ax﹣b,则关于x的方程ax﹣1=b的解x=_________.13.如图,直线y=kx+b分别交x轴和y轴于点A、B,则关于x的方程kx+b=0的解为_________.14.如图,已知函数y=2x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),根据图象可得方程2x+b=ax﹣3的解是_________.15.如图,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则不等式kx﹣3>2x+b的解集是_________.16.如图,直线y=kx+b过A(﹣1,2)、B(﹣2,0)两点,则0≤kx+b≤﹣2x的解集为_________.17.一次函数y1=kx+b与y2=x+a的图象如图,则kx+b>x+a的解集是_________.18.如图,函数y=kx和的图象相交于A (a,2),则不等式的解集为_________.三.解答题(共4小题)19.如图,根据函数y=kx+b(k,b是常数,且k≠0)的图象,求:(1)方程kx+b=0的解;(2)式子k+b的值;(3)方程kx+b=﹣3的解.20.如图,直线l1:y=2x与直线l2:y=kx+3在同一平面直角坐标系内交于点P.(1)写出不等式2x>kx+3的解集:_________;(2)设直线l2与x轴交于点A,求△OAP的面积.21.在平面直角坐标系x0y中,直线y=kx+b(k≠0)过(1,3)和(3,1)两点,且与x轴、y轴分别交于A、B两点,求不等式kx+b≤0的解.22.在直角坐标系xOy中,直线y=kx+b(k≠0)经过(﹣2,1)和(2,3)两点,且与x 轴、y轴分别交于A、B两点,求不等式kx+b≥0的解集.19.2.3 一次函数与方程、不等式一.选择题(共8小题)1.一次函数y=kx+b的图象如图所示,则方程kx+b=0的解为()A.x=2B.y=2C.x=﹣1D.y=﹣12.一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x 的方程kx+b=0的解为()A.x=﹣1B.x=2C.x=0D.x=33.一元一次方程ax﹣b=0的解x=3,函数y=ax﹣b的图象与x轴的交点坐标为()A.(3,0)B.(﹣3,0)C.(a,0)D.(﹣b,0)4.已知方程kx+b=0的解是x=3,则函数y=kx+b的图象可能是()A.B.C.D.5.若方程x﹣3=0的解也是直线y=(4k+1)x﹣15与x轴的交点的横坐标,则k的值为()A.﹣1B.0C.1D.±16.如图,直线y1=x+b与y2=kx﹣1相交于点P,点P的横坐标为﹣1,则关于x的不等式x+b>kx﹣1的解集在数轴上表示正确的是()A.B.C.D.7.如图,直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,则关于x的不等式﹣x+m >nx+4n>0的整数解为()A.﹣1B.﹣5 C.﹣4D.﹣38.如图,一次函数y=kx+b的图象经过A、B两点,则不等式kx+b<0的解集是()A.x<0B.0<x<1C.x<1 D.x>1二.填空题(共10小题)9.若直线y=2x+b与x轴交于点(﹣3,0),则方程2x+b=0的解是_________.10.如图是一次函数y=kx+b的图象,则方程kx+b=0的解为_________.11.一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x的方程kx+b=0的解为_________.12.如图,已知直线y=ax﹣b,则关于x的方程ax﹣1=b的解x=_________.13.如图,直线y=kx+b分别交x轴和y轴于点A、B,则关于x的方程kx+b=0的解为_________.14.如图,已知函数y=2x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),根据图象可得方程2x+b=ax﹣3的解是_________.15.如图,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则不等式kx﹣3>2x+b的解集是_________.16.如图,直线y=kx+b过A(﹣1,2)、B(﹣2,0)两点,则0≤kx+b≤﹣2x的解集为_________.17.一次函数y1=kx+b与y2=x+a的图象如图,则kx+b>x+a的解集是_________.18.如图,函数y=kx和的图象相交于A (a,2),则不等式的解集为_________.三.解答题(共4小题)19.如图,根据函数y=kx+b(k,b是常数,且k≠0)的图象,求:(1)方程kx+b=0的解;(2)式子k+b的值;(3)方程kx+b=﹣3的解.20.如图,直线l1:y=2x与直线l2:y=kx+3在同一平面直角坐标系内交于点P.(1)写出不等式2x>kx+3的解集:_________;(2)设直线l2与x轴交于点A,求△OAP的面积.21.在平面直角坐标系x0y中,直线y=kx+b(k≠0)过(1,3)和(3,1)两点,且与x轴、y轴分别交于A、B两点,求不等式kx+b≤0的解.22.在直角坐标系xOy中,直线y=kx+b(k≠0)经过(﹣2,1)和(2,3)两点,且与x 轴、y轴分别交于A、B两点,求不等式kx+b≥0的解集.。

2021-2022学年鲁教版八年级数学下册《第6章特殊平行四边形》章末综合知识点分类训练(附答案)

2021-2022学年鲁教版八年级数学下册《第6章特殊平行四边形》章末综合知识点分类训练(附答案)

2021-2022学年鲁教版八年级数学下册《第6章特殊平行四边形》章末综合知识点分类训练(附答案)一.菱形的性质1.如图,在菱形ABCD中,∠A=60°,点E、F分别为AD、DC上的动点,∠EBF=60°,点E从点A向点D运动的过程中,AE+CF的长度()A.逐渐增加B.逐渐减小C.保持不变且与EF的长度相等D.保持不变且与AB的长度相等2.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于()A.B.C.5D.43.如图,在菱形ABCD中,∠BCD=110°,AB的垂直平分线交对角线AC于点F,E为垂足,连接DF,则∠CDF的度数为.4.如图,已知菱形ABCD的对角线AC、BD的长分别是6cm、8cm,AE⊥BC,垂足为点E,则AE的长是cm.5.在菱形ABCD中,若AC=6,BD=8,则菱形ABCD的高为.6.如图,在菱形ABCD中,AC、BD相交于点O,DE⊥BC,垂足为E.若AC=8,BD=6,则DE的长为.7.如图,若菱形ABCD的顶点A,B的坐标分别为(3,0),(﹣2,0),点D在y轴上,则点C的坐标是.8.求证:菱形的一条对角线平分这一组对角.已知:如图,AC是菱形ABCD的一条对角线.求证:.证明:二.菱形的判定9.如图,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥BD,AC平分∠BAD.(1)给出下列四个条件:①AB=AD,②OB=OD,③∠ACB=∠ACD,④AD∥BC,上述四个条件中,选择一个合适的条件,使四边形ABCD是菱形,这个条件是(填写序号);(2)根据所选择的条件,证明四边形ABCD是菱形.10.如图,点E、F分别在▱ABCD的边AB、CD的延长线上,且BE=DF,连接AC、EF、AF、CE,AC与EF交于点O.(1)求证:AC、EF互相平分;(2)若EF平分∠AEC,求证:四边形AECF是菱形.三.菱形的判定与性质11.在平行四边形ABCD中,∠BAD的平分线交直线BC于点E,交直线DC的延长线于点F,以EC、CF为邻边作平行四边形ECFG.(1)如图1,证明平行四边形ECFG为菱形;(2)如图2,若∠ABC=90°,M是EF的中点,求∠BDM的度数;(3)如图3,若∠ABC=120°,请直接写出∠BDG的度数.12.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC 交BE的延长线于点F.(1)证明:四边形ADCF是菱形;(2)若AC=3,AB=4,求菱形ADCF的面积.四.矩形的性质13.如图,在矩形ABCD中,E是AB的中点,动点F从点B出发,沿BC运动到点C时停止,以EF为边作▱EFGH,且点G、H分别在CD、AD上.在动点F运动的过程中,▱EFGH 的面积()A.逐渐增大B.逐渐减小C.不变D.先增大,再减小14.如图,在矩形ABCD中,AB=1,对角线AC与BD相交于点O,AE⊥BD,垂足为E,若BE=EO,则AD的长是()A.3B.C.3D.15.如图,在矩形ABCD中,AB=4cm,AD=12cm,点P在AD边上以每秒1cm的速度从点A向点D运动,点Q在BC边上,以每秒4cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q也停止),在这段时间内,线段PQ 平行于AB的次数是()A.2B.3C.4D.516.如图,在矩形ABCD中,P为矩形ABCD的边BC上任一点,PE⊥AC于点E,PF⊥BD 于点F.若AB=5,BC=12,PE+PF=.17.在矩形ABCD中,AC与BD相交于点O,若OA=2,则BD的长是.18.如图,矩形ABCD中,对角线AC的垂直平分线EF分别交BC,AD于点E,F,若BE =,AF=,则AC的长为.19.在矩形ABCD中,AC、BD相交于点O,若∠OAB=65°,则∠BOC=°.20.如图所示,在矩形ABCD中,DE平分∠ADC,且∠EDO等于15°,∠DOE=°.21.如图,矩形ABCD中,点E在AD上,且EC平分∠BED,若AB=5,DE=2,则△BEC 的面积为.22.如图,在▱ABCD中,将对角线BD分别向两个方向延长至点E、F,且BE=DF.连接AF、CF、CE、AE.(1)求证:四边形AECF是平行四边形;(2)若AD=4,BE=3,∠ADB=∠CBD=90°,当四边形AECF是矩形时,则BD的长为.23.在矩形ABCD中,对角线BD的垂直平分线EF分别交AD、BC于E、F,AE=3,BF =5,求BD的长.五.矩形的判定24.如图,在平行四边形ABCD中,E、F分别是AD、BC的中点,连接AF、BE交于点G,连接CE、DF交于点H.(1)求证:四边形EGFH为平行四边形;(2)当AB与BC满足什么条件时,四边形EGFH为矩形?并说明理由.25.如图,在平行四边形ABCD中,对角线AC、BD交于点O.(1)若DE⊥AC于点E,BF⊥AC于点F,求证:AE=CF;(2)若DO=AC,求证:四边形ABCD为矩形.26.如图,在▱ABCD中,DE⊥AB,垂足为E,点F在CD上,且CF=AE.求证:四边形DEBF是矩形.27.如图,在▱ABCD中,点E、F在AD边上,且BF=CE,AE=DF.(1)求证:△ABF≌△DCE;(2)求证:四边形ABCD是矩形.六.矩形的判定与性质28.如图,在菱形ABCD中,AC=24,BD=10,AC、BD相交于点O,若CE∥BD,BE∥AC,连接OE,则OE的长是.29.如图,在菱形ABCD中,点O是对角线AC的中点,过点O的直线EF与边AD、BC 交于点E、F,∠CAE=∠FEA,连接AF、CE.(1)求证:四边形AFCE是矩形;(2)若AB=5,AC=2,直接写出四边形AFCE的面积.七.正方形的性质30.如图,平面内三点A、B、C,AB=4,AC=3,以BC为对角线作正方形BDCE,连接AD,则AD2的最大值是()A.25B.C.36D.31.如图,在正方形ABCD中,E、F分别是BC、CD上的点,若△AEF是边长为的等边三角形,则正方形的边长是.32.如图,两个正方形Ⅰ、Ⅱ和两个矩形Ⅲ、Ⅳ拼成一个大正方形,已知正方形Ⅰ、Ⅱ的面积分别为10和3,那么大正方形的面积是.33.如图,四边形ABCD是正方形,按如下步骤操作:①分别以点A,D为圆心,以AD长为半径画弧,两弧交于点P,连接AP,DP;②连接BP,CP,则∠BPC=.34.如图,在正方形ABCD中,点M、N为边BC和CD上的动点(不含端点),∠MAN=45°,下列四个结论:①当MN=MC时,则∠BAM=22.5°;②2∠AMN﹣∠MNC=90°;③△MNC的周长不变;④∠AMN﹣∠AMB=60°.其中正确结论的序号是.35.如图,点E在正方形ABCD内,且EC=BC,则∠BED=°.36.如图,四边形ABCD为正方形,点E、F分别是CD、AB的中点,DG⊥CF于点G.(1)求证:AE∥CF;(2)求证:∠AGE=90°;(3)若正方形的边长为2,求线段CG的长度.37.已知:如图,在平行四边形ABCD中,点E、F在对角线AC上,且AE=CF.(1)求证:DE∥BF;(2)若四边形ABCD是正方形,且AD=4,AE=,求四边形DEBF的面积.38.如图,在正方形ABCD中,点E、F、G分别在CD、AD、BC上,且FG⊥BE,垂足为O.(1)求证:BE=FG;(2)若O是BE的中点,且BC=8,EC=3,求AF的长.八.正方形的判定39.下列说法正确的是()A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线相等的四边形是矩形C.每一条对角线都平分一组对角的四边形是菱形D.对角线互相垂直且相等的四边形是正方形40.下列说法:①对角线互相垂直且相等的四边形是菱形;②矩形的对角线互相垂直;③一组对边平行且相等的四边形是平行四边形;④对角线垂直的矩形是正方形.其中正确的是.(把所有正确结论的序号都填上)九.正方形的判定与性质41.如图,在四边形ABCD中,∠A=∠B=90°,AB=BC=4,AD=3,E是边AB上一点,且∠DCE=45°,则DE的长度是()A.3.2B.3.4C.3.6D.4参考答案一.菱形的性质1.解:连接BD,∵四边形ABCD是菱形,∴AB=AD=CD,∵∠A=60°,∴△ABD是等边三角形,∴AB=BD,∠ABD=60°,∵DC∥AB,∴∠CDB=∠ABD=60°,∴∠A=∠CDB,∵∠EBF=60°,∴∠ABE+∠EBD=∠EBD+∠DBF,∴∠ABE=∠DBF,在△ABE和△DBF中,,∴△ABE≌△DBF(ASA),∴AE=DF,∴AE+CF=DF+CF=CD=AB,故选:D.2.解:设AC交BD于O,∵四边形ABCD是菱形,∴AO=OC,BO=OD,AC⊥BD,∵AC=8,DB=6,∴AO=4,OB=3,∠AOB=90°,由勾股定理得:AB==5,∵S菱形ABCD=,∴,∴DH=,故选:A.3.解:如图,连接BF,∵四边形ABCD是菱形,∴∠BCD=∠BAD=110°,∠BCA=∠ACD=55°=∠BAC=∠CAD,AB=AD,∠ADC =70°,∵EF垂直平分AB,∴AF=BF,在△ABF和△ADF中,,∴△ABF≌△ADF(SAS),∴BF=DF,∴AF=DF,∴∠F AD=∠ADF=55°,∴∠CDF=∠ADC﹣∠ADF=15°,故答案为:15°.4.解:如图,设AC与BD的交点为O,∵四边形ABCD是菱形,∴CO=AC=3cm,BO=BD=4cm,AC⊥BD,∴BC===5cm,∴S菱形ABCD=AC•BD=×6×8=24(cm2),∵S菱形ABCD=BC×AE,∴BC×AE=24,∴AE=(cm),故答案为:.5.解:如图所示:∵菱形ABCD,∴AC⊥BD,∵AC=6,BD=8,∴OB=BD=×8=4,OC=AC=×6=3,由勾股定理得,BC===5,S菱形ABCD=AC•BD=BC•AH,即×6×8=5•AH,解得:AH=,即菱形ABCD的高为:.故答案为:.6.解:∵四边形ABCD是菱形,∴AD=BC,AC⊥BD,AO=OC,DO=BO,∵AC=8,BD=6,∴AO=4,OD=3,由勾股定理得:AD=5,∴BC=5,∴S菱形ABCD=×AC×BD=BC×DE,∴×6×8=5×DE,解得:DE=,故答案为:.7.解:∵菱形ABCD的顶点A,B的坐标分别为(3,0),(﹣2,0),点D在y轴上,∴AB=5,∴AD=5,∴由勾股定理知:OD===4,∴点C的坐标是:(﹣5,4).故答案为:(﹣5,4).8.解:求证:∠DAC=∠BAC,∠DCA=∠BCA;证明:∵四边形ABCD是菱形,∴DA=DC,DA∥BC.∴∠DAC=∠DCA,∵DA∥BC,∴∠DAC=∠BCA,∴∠DCA=∠BCA,同理∠DAC=∠BAC.故答案为:∠DAC=∠BAC,∠DCA=∠BCA.二.菱形的判定9.解:(1)这个条件是④;故答案为:④;(2)∵AC⊥BD,AC平分∠BAD,∴∠BAO=∠DAO,∠AOB=∠AOD=90°,∵AO=AO,∴△ABO≌△ADO,∴AB=AD,∵AD∥BC,∴∠ACB=∠DAC,∴∠BAC=∠ACB,∴AB=BC,∴AD=BC,∴四边形ABCD是菱形;10.证明:(1)∵四边形ABCD是平行四边形,∴AB=DC,AB∥DC,又∵BE=DF,∴AB+BE=DC+DF,即AE=CF,∵AE=CF,AE∥CF,∴四边形AECF是平行四边形.∴AC、EF互相平分;(2)∵AB∥DC,∴∠AEO=∠CFO,∵EF平分∠AEC,∴∠AEO=∠CEO,∴∠CEO=∠CFO∴CE=CF,由(1)可知,四边形AECF是平行四边形,∴平行四边形AECF是菱形.三.菱形的判定与性质11.解:(1)证明:∵AF平分∠BAD,∴∠BAF=∠DAF,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠DAF=∠CEF,∠BAF=∠CFE,∴∠CEF=∠CFE,∴CE=CF,又∵四边形ECFG是平行四边形,∴四边形ECFG为菱形.(2)如图,连接BM,MC,∵∠ABC=90°,四边形ABCD是平行四边形,∴四边形ABCD是矩形,又由(1)可知四边形ECFG为菱形,∠ECF=90°,∴四边形ECFG为正方形.∵∠BAF=∠DAF,∴BE=AB=DC,∵M为EF中点,∴∠CEM=∠ECM=45°,∴∠BEM=∠DCM=135°,在△BME和△DMC中,∵,∴△BME≌△DMC(SAS),∴MB=MD,∠DMC=∠BME.∴∠BMD=∠BME+∠EMD=∠DMC+∠EMD=90°,∴△BMD是等腰直角三角形,∴∠BDM=45°;(3)∠BDG=60°,延长AB、FG交于H,连接HD.∵AD∥GF,AB∥DF,∴四边形AHFD为平行四边形,∵∠ABC=120°,AF平分∠BAD,∴∠DAF=30°,∠ADC=120°,∠DF A=30°,∴△DAF为等腰三角形,∴AD=DF,∴平行四边形AHFD为菱形,∴△ADH,△DHF为全等的等边三角形,∴DH=DF,∠BHD=∠GFD=60°,∵FG=CE,CE=CF,CF=BH,∴BH=GF,在△BHD与△GFD中,∵,∴△BHD≌△GFD(SAS),∴∠BDH=∠GDF∴∠BDG=∠BDH+∠HDG=∠GDF+∠HDG=60°.12.(1)证明:∵E是AD的中点,∴AE=DE,∵AF∥BC,∴∠AFE=∠DBE,在△AEF和△DEB中,,∴△AEF≌△DEB(AAS);∴AF=DB,又∵AF∥BC,∴四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,∴AD=BC=CD,∴平行四边形ADCF是菱形;(2)解:∵D是BC的中点,∴△ACD的面积=△ABD的面积=△ABC的面积,∵四边形ADCF是菱形,∴菱形ADCF的面积=2△ACD的面积=△ABC的面积=AC×AB=×3×4=6.四.矩形的性质13.解:设AB=a,BC=b,BE=c,BF=x,连接EG,∵四边形EFGH为平行四边形,∴EF=HG,EF∥HG,∴∠FEG=∠HGE,∵四边形ABCD为矩形,∴AB∥CD,∴∠BEG=∠DGE,∴∠BEG﹣∠FEG=∠DGE﹣∠EGH,∴∠BEF=∠HGD∵EF=HG,∠B=∠D,∴Rt△BEF≌Rt△DGH(AAS),同理Rt△AEH≌Rt△CGF,∴S平行四边形EFGH=S矩形ABCD﹣2(S△BEF+S△AEH)=ab﹣2[cx+(a﹣c)(b﹣x)]=ab﹣(cx+ab﹣ax﹣bc+cx)=ab﹣cx﹣ab+ax+bc﹣cx=(a﹣2c)x+bc,∵E是AB的中点,∴a=2c,∴a﹣2c=0,∴S平行四边形EFGH=bc=ab,方法二:连接EG,∵四边形EFGH为平行四边形,∴EF=HG,EF∥HG,∴∠FEG=∠HGE,∵四边形ABCD为矩形,∴AB∥CD,∴∠BEG=∠DGE,∴∠BEG﹣∠FEG=∠DGE﹣∠EGH,∴∠BEF=∠HGD∵EF=HG,∠B=∠D,∴Rt△BEF≌Rt△DGH(AAS),∴DG=BE=CD=AE,∴四边形AEGD为平行四边形,∵∠A=90°,∴▱AEGD为矩形,同理四边形EBCG为矩形,∴S平行四边形EFGH=S△EHG+S△EFG=EG•DG+EG•GC=EG•DG=EG•CD=S矩形ABCD.故选:C.14.解:∵四边形ABCD是矩形,∴∠BAD=90°,OB=OD,OA=OC,AC=BD,∴OA=OB,∵BE=EO,AE⊥BD,∴AB=AO,∴OA=AB=OB=1,∴BD=2,∴AD===,故选:B.15.解:当AP=BQ时,AP∥BQ.∵AP∥BQ,AP=BQ,∴四边形ABQP为平行四边形,∴QP∥AB.∵点P运动的时间=12÷1=12秒,∴点Q运动的路程=4×12=48cm.∴点Q可在BC间往返4次.∴在这段时间内PQ与AB有4次平行.故选:C.16.解:设对角线AC、BD相交于点O,连接PO,∵矩形ABCD的边AB=5,BC=12,∴S矩形ABCD=AB•BC=5×12=60,OA=OC,OB=OD,AC=BD,AC===13,∴S△BOC=S矩形ABCD=15,OB=OC=AC=,∴S△BOC=S△BOP+S△POC=OB•PF+OC•PE=OB(PE+PF)=××(PE+PF)=15,∴PE+PF=,故答案案为:.17.解:因为矩形的对角线相等而且互相平分,所以BD=AC=2OA=4.故答案为:4.18.解:∵EF是AC的垂直平分线,∴AO=CO,∵四边形ABCD是矩形,∴AD∥BC,∴∠OAF=∠OCE,在△AOF和△COE中,,∴△AOF≌△COE(ASA),∴AF=CE=,∵EF是AC的垂直平分线,∴AE=CE=,又∵BE=,∴BC=BE+EC=+=8,在Rt△ABE中,AB====6,在Rt△ABC中,AC===10.故答案为:10.19.解:∵四边形ABCD是矩形,∴OA=OC=AC,OB=OD=BD,AC=BD,∴OA=OB,∴∠OBA=∠OAB=65°,∴∠BOC=∠OAB+∠OBA=65°+65°=130°,故答案为:130.20.解:∵四边形ABCD是矩形,∴∠ADC=∠BAD=90°,AO=CO,BO=DO,AC=BD,∴OA=OD,∵DE平分∠ADC∴∠CDE=∠ADE=45°,∴△ADE是等腰直角三角形,∴AD=AE,又∵∠EDO=15°,∴∠ADO=60°;∴△OAD是等边三角形,∴∠AOD=∠OAD=60°,∴AD=AO=DO,∴AO=AE,∴∠AOE=∠AEO,∵∠OAE=90°﹣∠OAD=30°,∴∠AOE=∠AEO=(180°﹣30°)=75°,∴∠DOE=60°+75°=135°,故答案为:135.21.解:∵四边形ABCD是矩形,∴AD∥BC,∠A=90°,AB=CD=5,∴∠DEC=∠ECB,∵EC平分∠BED,∴∠BEC=∠DEC,∴∠BEC=∠ECB,∴BC=BE,设BC=BE=x,∴AE=x﹣2,∵AB2+AE2=BE2,∴52+(x﹣2)2=x2,∴x=,∴BC=,∴△BEC的面积=×BC×DC=×5=.故答案为:.22.(1)证明:连接AC,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BE=DF,∴OE=OF,∴四边形AECF是平行四边形.(2)解:BE=DF=3,∵∠ADB=∠CBD=90°,∴AF==5,方法1:∵AD=4,∴BC=4,设OB=x,则OE=x+3,∵四边形AECF是矩形,∴OE=OC=x+3,∵∠OBC=90°,在Rt△OBC中,OB2+BC2=OC2,∴x2+42=(x+3)2,解得x=,∴OB=,∴BD=.方法2:∵四边形AECF是矩形,∴∠F AE=90°,∴∠F AE=∠ADF,∵∠AFD=∠EF A,∴FE=,∴BD=﹣3﹣3=.故答案为:.23.解:连接BE,设EF与BD交于点O,如图所示:∵EF垂直平分BD,∴BE=DE,OD=OB,∵四边形ABCD是矩形,∴∠A=90°,AD∥BC,∴∠ODE=∠OBF,在△ODE和△OBF中,,∴△ODE≌△OBF(ASA),∴DE=BF=5,∴BE=DE=5,∴AB===4,∵AD=AE+DE=3+5=8,∴BD===4.五.矩形的判定(24.(1)证明:连接EF,如图所示:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∵点E、F分别是AD、BC的中点∴AE=ED=AD,BF=FC=BC,∴AE∥FC,AE=FC.∴四边形AECF是平行四边形.∴GF∥EH.同理可证:ED∥BF且ED=BF.∴四边形BFDE是平行四边形.∴GE∥FH.∴四边形EGFH是平行四边形.(2)解:当BC=2AB时,平行四边形EGFH是矩形.理由如下:由(1)同理易证四边形ABFE是平行四边形,当BC=2AB时,AB=BF,∴四边形ABFE是菱形,∴AF⊥BE,即∠EGF=90°,∴平行四边形EGFH是矩形.25.证明:(1)∵四边形ABCD是平行四边形,∴AD=CB,AD∥BC,∴∠DAE=∠BCF,∵DE⊥AC,BF⊥AC,∴∠DEA=∠BFC=90°,在△DEA与△BFC中,,∴△DEA≌△BFC(AAS),∴AE=CF;(2)∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∴OA=BD,∴OA=OC=OB=OD,∴AC=BD,∴平行四边形ABCD是矩形.26.证明:∵四边形ABCD是平行四边形,∴AB=DC,AB∥DC,∵AE=CF,∴AB﹣AE=DC﹣CF,即DF=EB,又∵AB∥DC,∴四边形DEBF是平行四边形,∵DE⊥AB,∴∠DEB=90°,∴▱DEBF是矩形.27.证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∵AE=FD,∴AE+EF=FD+EF,即AF=DE,在△ABF和△DCE中,,∴△ABF≌△DCE(SSS);(2)由(1)可知:△ABF≌△DCE,∴∠A=∠D,∵AB∥CD,∴∠A+∠D=180°,∴2∠A=180°,∴∠A=90°,∴▱ABCD为矩形.六.矩形的判定与性质28.解:∵CE∥BD,BE∥AC,∴四边形OBEC是平行四边形,∵四边形ABCD是菱形,∴OC=OA=AC=12,OB=OD=BD=5,AC⊥BD,∴∠BOC=90°,∴BC===13,∵四边形OBEC是平行四边形,∴平行四边形OBEC是矩形,∴OE=BC=13,故答案为:13.29.(1)证明:∵∠OAE=∠OEA,∴OA=OE,∵四边形ABCD是菱形,∴AD∥BC,∴∠OCF=∠OAE,∠OFC=∠OEA,∴∠OFC=∠OCF,∵OF=OC,∵O为AC的中点,∴OA=OC,∴OA=OC=OE=OF,∴四边形AFCE是平行四边形,AC=EF,∴四边形AFCE是矩形;(2)解:设CF=x,∵四边形ABCD是菱形,AB=5,∴BC=AB=5,∴BF=5﹣x,∵四边形AFCE是矩形,∴∠AFC=90°=∠AFB,在Rt△AFB和Rt△AFC中,由勾股定理得:AF2=AB2﹣BF2=AC2﹣CF2,即52﹣(5﹣x)2=(2)2﹣x2,解得:x=2,即CF=2,则AF===4,∴四边形AFCE的面积是AF×CF=2×4=8.七.正方形的性质30.解:如图将△BDA绕点D顺时针旋转90°得到△CDM.由旋转不变性可知:AB=CM=4,DA=DM.∠ADM=90°,∴△ADM是等腰直角三角形,∴AD=AM,∴当AM的值最大时,AD的值最大,∵AM≤AC+CM,∴AM≤7,∴AM的最大值为7,∴AD2的最大值为,故选:B.31.解:∵△AEF是边长为的等边三角形,∴∠EAF=60°,AE=AF,∴∠BAE+∠DAF=30°,∵AB=AD,AE=AF,∴Rt△ABE≌Rt△ADF(HL),∴∠BAE=∠DAF=15°,如图,作∠AEH=∠BAE=15°,交AB于H,∴∠BHE=30°,AH=HE,∴HE=2BE=AH,BH=BE,∴AB=(2+)BE,∵AE2=BE2+AB2,∴6=BE2+(2+)2×BE2,∴BE=,∴AB=(2+)BE=,故答案为:.32.解:∵正方形Ⅰ的面积为10,∴正方形Ⅰ的边长为,∵正方形Ⅱ的面积为3,∴正方形Ⅱ的边长为,∴大正方形的边长为+,∴大正方形的面积为()2=13+2,故答案为:13+2.33.解:根据作图过程可知:AD=AP=PD,∴△ADP是等边三角形,∴∠DAP=∠ADP=∠APD=60°,∵四边形ABCD是正方形,∴AB=AD=DC,∠BAD=∠ADC=∠ABC=∠BCD=90°,∴AB=AP,DP=DC,∴∠ABP=∠APB=∠DPC=∠DCP=75°,∴∠BPC=360°﹣60°﹣75°﹣75°=150°.故答案为:150°.34.解:①:∵正方形ABCD中,AB=AD,∠B=∠ADC=∠C=90°∴MN2=MC2+NC2当MN=MC时,MN2=2MC2,∴MC2=NC2,∴MC=NC,∴BM=DN,∴△ABM≌△ADN(SAS)∴∠BAM=∠DAN,∵∠MAN=45°,∴∠BAM=22.5°,故①正确;②:如图,将△ABM绕点A顺时针旋转90°得△ADE,则∠EAN=∠EAM﹣∠MAN=90°﹣45°=45°,则在△EAN和△MAN中,,∴△EAN≌△MAN(SAS)∴∠AMN=∠AED,∴∠AED+∠EAM+∠ENM+∠AMN=360°,∴2∠AMN+90°+(180°﹣∠MNC)=360°,∴2∠AMN﹣∠MNC=90°,故②正确;③:∵△EAN≌△MAN,∴MN=EN=DE+DN=BM+DN,∴△MNC的周长为:MC+NC+MN=(MC+BM)+(NC+DN)=DC+BC,∵DC和BC均为正方形ABCD的边长,故△MNC的周长不变.故③正确;④如图,将△ADN绕点A逆时针旋转90°得△ABF,∴∠MAF=90°﹣∠MAN=45°,∴∠MAN=∠MAF,在△MAN和△MAF中,,∴△MAN≌△MAF(SAS),∴∠AMN=∠AMB,故④错误.综上①②③正确.故答案为:①②③.35.解:∵四边形ABCD为正方形,∴CB=CD,∠BCD=90°,∵CE=CB,∴CD=CE,∴∠CBE=∠CEB,∠CED=∠CDE,∴∠CEB=(180°﹣∠BCE),∠CED=(180°﹣∠DCE),∴∠CEB+∠CED=180°﹣(∠BCE+∠ECE),即∠BED=180°﹣∠BCD,∴∠BED=180°﹣×90°=135°.故答案为135°.36.(1)∵四边形ABCD为正方形,∴AB∥CD,AB=CD,∵点E、F分别是AB、CD的中点,∴AF=AB,CE=CD,∴AF=CE,∴四边形AFCE是平行四边形,∴AE∥CF;(2)证明:如图,取AE和DG交于H,∵CF∥AE,DG⊥CF,∴DG⊥AE于H,∵E是CD的中点,∴EG=ED,∴△DGE是等腰三角形,∴H是DG的中点,∴AG=AD,在△ADE和△AGE中,,∴△ADE≌△AGE(SSS),∴∠AGE=∠ADE=90°;(3)解:∵AG=AD=2,DE=1,∴AE=,又∵GH⊥AE,∴,解得HG=,∴DG=,∴,故答案为.37.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠DAE=∠BCF,在△ADE和△CBF中,,∴△ADE≌△CBF(SAS),∴∠AED=∠CFB,∵∠AED+∠DEF=180°,∠CFD+∠BFE=180°,∴∠DEF=∠BFE,∴DE∥BF;(2)解:连接BD,交AC于点O,∵四边形ABCD是正方形,∴OA=OD,OA⊥OD,AE=,∴OD=OE+AE=OE+,在正方形ABCD中,OB=OD,OA=OC,∵AE=CF,∴OA﹣AE=OC﹣CF,∴OE=OF,∴四边形DEBF是平行四边形,∵OA⊥OD,∴四边形DEBF是菱形,∵AD=4,∴AC=BD==4,∴EF=AC﹣AE﹣CF=4﹣﹣=2,∴四边形DEBF的面积=•BD•EF=×4×2=8,故答案为:8.38.(1)证明:作AM∥FG交BE于N,BC于M.在正方形ABCD中,∴AD∥BC,AB=BC,∠ABC=∠C=90°.∵FG⊥BE,∴∠FOB=90°.∵AM∥FG,∴∠ANB=∠FOB=90°.∴∠ABN+∠EBC=90°∵∠C=90°.∴∠BEC+∠EBC=90°.∴∠ABN=∠BEC.在△ABE和△CDF中,,∴△ABM≌△BCE(AAS),∴AM=BE.∵AD∥BC,∴AF∥MG.∵AM∥FG,∴四边形AMGF为平行四边形.∴AM=FG.∵AM=BE,∴BE=FG.(2)如图,连接BF、EF,∵FG⊥BE,O是BE的中点,∴BF=FE.在正方形ABCD中,∴AD=AB=DC=BC=8.∵EC=3,∴DE=5.设AF=x,则DF=8﹣x,在Rt△ABF中,由勾股定理得:BF2=AB2+AF2=82+x2.在Rt△DEF中,由勾股定理得:EF2=DF2+DE2=52+(8﹣x)2.∵BF=FE,∴BF2=EF2.即82+x2=52+(8﹣x)2,解得:x=.∴AF=.八.正方形的判定39.解:A、一组对边平行,另一组对边相等四边形可能是等腰梯形,故本选项不符合题意;B、对角线相等的平行四边形是矩形,故本选项不符合题意;C、∵在△ADB和△CDB中,∴△ADB≌△CDB(ASA),∴AD=CD,AB=CB,同理△ACD≌△ACB,∴AB=AD,BC=DC,即AB=BC=CD=AD,∴四边形ABCD是菱形,故本选项符合题意;D、对角线相等且垂直的平行四边形是正方形,故本选项不符合题意;故选:C.40.解:①对角线互相垂直且相等的四边形不一定是菱形,说法错误;②矩形的对角线互相垂直,说法错误;③一组对边平行且相等的四边形是平行四边形,说法正确;④对角线垂直的矩形是正方形,说法正确.故答案为:③④.九.正方形的判定与性质41.解:如图,过C作CG⊥AD于G,并延长DG至F,使GF=BE,∵∠A=∠B=∠CGA=90°,AB=BC,∴四边形ABCG为正方形,∴AG=BC=4,∠BCG=90°,BC=CG,∵AD=3,∴DG=4﹣3=1,∵BC=CG,∠B=∠CGF,BE=FG,∴△EBC≌△FGC(SAS),∴CE=CF,∠ECB=∠FCG,∵∠DCE=45°,∴∠BCE+∠DCG=∠DCG+∠FCG=45°,∴∠DCE=∠DCF,∵CE=CF,∠DCF=∠DCE,DC=DC,∴△ECD≌△FCD(SAS),∴ED=DF,设ED=x,则EB=FG=x﹣1,∴AE=4﹣(x﹣1)=5﹣x,Rt△AED中,AE2+AD2=DE2,∴(5﹣x)2+32=x2,解得:x=3.4,∴DE=3.4.故选:B.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学——特殊平行四边形综合题型
1.已知正方形ABCD如图所示,连接其对角线AC,∠BCA的平分线CF交AB于点F,过点B作BM ⊥CF于点N,交AC于点M,过点C作CP⊥CF,交AD延长线于点P.
(1)若正方形ABCD的边长为4,求△ACP的面积;(2)求证:CP=BM+2FN.
2.如图,正方形ABCD的对角线相交于点O.点E是线段DO上一点,连接CE.点F是∠OCE的平分线上一点,且BF⊥CF与CO相交于点M.点G是线段CE上一点,且CO=CG.
(1)若OF=4,求FG的长;(2)求证:BF=OG+CF.
3.在▱ABCD中,∠ADC的平分线交直线BC于点E、交AB的延长线于点F,连接AC.(1)如图1,若∠ADC=90°,G是EF的中点,连接AG、CG.①求证:BE=BF.②请判断△AGC的形状,并说明理由;(2)如图2,若∠ADC=60°,将线段FB绕点F顺时针旋转60°至FG,连接AG、CG.那么△AGC又是怎样的形状.(直接写出结论不必证明)
4.如图,正方形ABCD中,对角线AC与BD相交于O,∠ADE=15°,过D作DG⊥ED于D,且AG=AD,过G作GF∥AC交ED的延长线于F.(1)若ED=,求AG;(2)求证:2DF+ED=BD.
5.如图①,在正方形ABCD中,E为CD上一动点,连接AE交对角线BD于点F,过点F作FG⊥AE 交BC于点G.(1)求证:AF=FG;(2)如图②,连接EG,当BG=3,DE=2时,求EG的长.
6.在平行四边形ABCD中,∠BAD的平分线交直线BC于点E,交直线DC的延长线于点F,以EC、CF为邻边作平行四边形ECFG.(1)如图1,证明平行四边形ECFG为菱形;(2)如图2,若∠ABC=90°,M是EF的中点,求∠BDM的度数;(3)如图3,若∠ABC=120°,请直接写出∠BDG的度数.
7.如图,已知四边形ABCD是正方形,点E、F、G、H分别在AB、BC、CD、和DA上,连接EG和FH 小明和小亮对这个图形进行探索,发现了很多有趣的东西,同时他俩又进一步猜想.小明说:如果EG 和HF互相垂直,那么EG和HF一定相等;小亮说:如果EG和HF相等,那么EG和HF一定互相垂直;请你对小明和小亮的猜想进行判断,并说明理由.
8.(1)如图1,已知矩形ABCD中,点E是BC上的一动点,过点E作EF⊥BD于点F,EG⊥AC于点G,CH⊥BD于点H,试证明CH=EF+EG;
(2)若点E在BC的延长线上,如图2,过点E作EF⊥BD于点F,EG⊥AC的延长线于点G,CH⊥BD 于点H,则EF、EG、CH三者之间具有怎样的数量关系,直接写出你的猜想;
(3)如图3,BD是正方形ABCD的对角线,L在BD上,且BL=BC,连接CL,点E是CL上任一点,EF⊥BD于点F,EG⊥BC于点G,猜想EF、EG、BD之间具有怎样的数量关系,直接写出你的猜想;(4)观察图1、图2、图3的特性,请你根据这一特性构造一个图形,使它仍然具有EF、EG、CH这样的线段的关系,并满足(1)或(2)的结论,写出相关题设的条件和结论.
9.在正方形ABCD中,点E是BC边的中点,过B点作BG⊥AE于点G,交AC于H,交CD于点F.
(1)求证:点F为边DC的中点;
(2)如果正方形的边长为4,求CH的长度;
(3)如果点M是BC上的一点,且AM=MC+CD,探究∠MAD与∠BAE有怎样的数量关系,说明理由.
10.如图,在梯形ABCD中,AD∥BC,∠B=90°,AD=16cm,AB=12cm,BC=21cm,动点P从点B出发,沿射线BC的方向以每秒2cm的速度运动到C点返回,动点Q从点A出发,在线段AD上以每秒1cm 的速度向点D运动,点P,Q分别从点B,A同时出发,当点Q运动到点D时,点P随之停止运动,设运动的时间为t(秒).(1)当t为何值时,四边形PQDC是平行四边形;(2)当t为何值时,以C,D,Q,P为顶点的梯形面积等于60cm2(3)是否存在点P,使△PQD是等腰三角形?若存在,请求出所有满足要求的t的值;若不存在,请说明理由.。

相关文档
最新文档