初中几何公理定理 5

合集下载

几何公理体系

几何公理体系

几何公理体系是指一组基本的几何公理,它们是几何学中最基本的规则和假设。

这些公理是几何学中所有其他定理和推论的基础,因此被认为是几何学的基础。

几何公理体系有多种形式,其中最著名的可能是欧几里得几何公理体系。

它包括五个基本的公理,以及一些其他的推论和定理。

这些公理是:
1.结合公理:给定直线上的两点,存在一条且仅存在一条通过这
两点的直线。

2.顺序公理:在同一条直线上,如果两点A和B被另一点C所分
隔,那么A、C两点间的距离小于C、B两点间的距离。

3.合同公理:给定两个三角形,如果它们的两边及夹角相等,则
这两个三角形是全等的。

4.平行公理:通过直线外的一点,有且仅有一条直线与已知直线
平行。

5.连续公理:所有给定的点都在同一直线上。

这些公理是几何学的基础,所有的其他几何定理和推论都可以从这些公理推导出来。

欧几里得几何公理体系是第一个系统地使用公理化方法的科学体系,对后来的数学和其他学科产生了深远的影响。

欧几里得几何直观易懂的五条公理

欧几里得几何直观易懂的五条公理

欧几里得几何直观易懂的五条公理
当我们谈论欧几里得几何时,我们不得不提到欧几里得的五条公理。

这些公理是欧几里得几何的基础,它们为我们提供了一种直观易懂的方法来理解空间和形状之间的关系。

以下是欧几里得几何的五条公理:
1. 第一条公理,任意两点之间有一条直线段。

这条公理表明,任意两个点都可以用一条直线段连接起来。

这是我们对直线的最基本的认识,也是欧几里得几何的基础之一。

2. 第二条公理,有限直线段可以无限延伸。

这条公理表明,一条有限的直线段可以无限延伸。

这意味着直线是无限长的,我们可以一直延伸下去,而不会停止。

3. 第三条公理,任意圆心和半径可以确定一个圆。

这条公理表明,通过给定一个圆心和一个半径,我们可以确定一个唯一的圆。

圆是由所有到圆心距离等于半径的点组成的。

4. 第四条公理,所有直角都相等。

这条公理表明,如果两个直角相等,那么它们的度数相等。

这是我们对直角的性质的一种直观理解。

5. 第五条公理,如果一条直线上的某个点与另外两个点的连线的角相等,则这两条直线互相平行。

这条公理表明了平行线的概念,即如果两条直线上的角相等,那么这两条直线是平行的。

这是欧几里得几何中关于平行线的基本性质之一。

这些公理为我们提供了一种直观易懂的方法来理解空间和形状之间的关系,它们构成了欧几里得几何的基础,也为我们提供了一种直观的几何直观。

(完整版)初中几何公式定理

(完整版)初中几何公式定理

初中几何公式定理:线1、同角或等角的余角相等2、过一点有且只有一条直线和已知直线垂直3、过两点有且只有一条直线4、两点之间线段最短5、同角或等角的补角相等6、直线外一点与直线上各点连接的所有线段中,垂线段最短7、平行公理经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都和第三条直线平行,这两条直线也互相平行9、定理线段垂直平分线上的点和这条线段两个端点的距离相等10、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上11、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合12、定理1关于某条直线对称的两个图形是全等形13、定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线14、定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上15、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称初中几何公式定理:角16、同位角相等,两直线平行17、内错角相等,两直线平行18、同旁内角互补,两直线平行19、两直线平行,同位角相等20、两直线平行,内错角相等21、两直线平行,同旁内角互补22、定理1在角的平分线上的点到这个角的两边的距离相等23、定理2到一个角的两边的距离相同的点,在这个角的平分线上24、角的平分线是到角的两边距离相等的所有点的集合初中几何公式定理:三角形25、定理三角形两边的和大于第三边26、推论三角形两边的差小于第三边27、三角形内角和定理三角形三个内角的和等于180°28、推论1直角三角形的两个锐角互余29、推论2三角形的一个外角等于和它不相邻的两个内角的和30、推论3三角形的一个外角大于任何一个和它不相邻的内角31、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c32、勾股定理的逆定理如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形初中几何公式定理:等腰、直角三角形33、等腰三角形的性质定理等腰三角形的两个底角相等34、推论1等腰三角形顶角的平分线平分底边并且垂直于底边35、等腰三角形的顶角平分线、底边上的中线和高互相重合36、推论3等边三角形的各角都相等,并且每一个角都等于60°37、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)38、推论1三个角都相等的三角形是等边三角形39、推论2有一个角等于60°的等腰三角形是等边三角形40、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半41、直角三角形斜边上的中线等于斜边上的一半初中几何公式定理:相似、全等三角形42、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似43、相似三角形判定定理1两角对应相等,两三角形相似(ASA)44、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似45、判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)46、判定定理3三边对应成比例,两三角形相似(SSS)47、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似48、性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比49、性质定理2相似三角形周长的比等于相似比50、性质定理3相似三角形面积的比等于相似比的平方51、边角边公理有两边和它们的夹角对应相等的两个三角形全等52、角边角公理有两角和它们的夹边对应相等的两个三角形全等53、推论有两角和其中一角的对边对应相等的两个三角形全等54、边边边公理有三边对应相等的两个三角形全等55、斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等56、全等三角形的对应边、对应角相等初中几何公式定理:四边形57、定理四边形的内角和等于360°58、四边形的外角和等于360°59、多边形内角和定理n边形的内角的和等于(n-2)×180°60、推论任意多边的外角和等于360°61、平行四边形性质定理1平行四边形的对角相等62、平行四边形性质定理2平行四边形的对边相等63、推论夹在两条平行线间的平行线段相等64、平行四边形性质定理3平行四边形的对角线互相平分65、平行四边形判定定理1两组对角分别相等的四边形是平行四边形66、平行四边形判定定理2两组对边分别相等的四边形是平行四边形67、平行四边形判定定理3对角线互相平分的四边形是平行四边形68、平行四边形判定定理4一组对边平行相等的四边形是平行四边形初中几何公式定理:矩形69、矩形性质定理1矩形的四个角都是直角70、矩形性质定理2矩形的对角线相等71、矩形判定定理1有三个角是直角的四边形是矩形72、矩形判定定理2对角线相等的平行四边形是矩形初中几何公式:菱形73、菱形性质定理1菱形的四条边都相等74、菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角75、菱形面积=对角线乘积的一半,即S=(a×b)÷276、菱形判定定理1四边都相等的四边形是菱形77、菱形判定定理2对角线互相垂直的平行四边形是菱形初中几何公式定理:正方形78、正方形性质定理1正方形的四个角都是直角,四条边都相等79、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角80、定理1关于中心对称的两个图形是全等的81、定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分82、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称初中几何公式定理:等腰梯形83、等腰梯形性质定理等腰梯形在同一底上的两个角相等84、等腰梯形的两条对角线相等85、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形86、对角线相等的梯形是等腰梯形初中几何公式:等分87、平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等88、推论1经过梯形一腰的中点与底平行的直线,必平分另一腰89、推论2经过三角形一边的中点与另一边平行的直线,必平分第三边90、三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半91、梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L×h92、(1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d93、(2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d94、(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么,(a+c+…+m)/(b+d+…+n)=a/b95、平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例96、推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例97、定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边98、平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值初中几何公式:圆101、圆是定点的距离等于定长的点的集合102、圆的内部可以看作是圆心的距离小于半径的点的集合103、圆的外部可以看作是圆心的距离大于半径的点的集合104、同圆或等圆的半径相等105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107、到已知角的两边距离相等的点的轨迹,是这个角的平分线108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109、定理不在同一直线上的三个点确定一条直线110、垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧111、推论1①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112、推论2圆的两条平行弦所夹的弧相等113、圆是以圆心为对称中心的中心对称图形114、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116、定理一条弧所对的圆周角等于它所对的圆心角的一半117、推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118、推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径119、推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120、定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121、①直线L和⊙O相交d﹤r②直线L和⊙O相切d=r③直线L和⊙O相离d﹥r122、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线123、切线的性质定理圆的切线垂直于经过切点的半径124、推论1经过圆心且垂直于切线的直线必经过切点125、推论2经过切点且垂直于切线的直线必经过圆心126、切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127、圆的外切四边形的两组对边的和相等128、弦切角定理弦切角等于它所夹的弧对的圆周角129、推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130、相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等131、推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132、切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133、推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134、如果两个圆相切,那么切点一定在连心线上135、①两圆外离d﹥R+r②两圆外切d=R+r③两圆相交R-r﹤d﹤R+r(R﹥r)④两圆内切d=R-r(R﹥r)⑤两圆内含d﹤R-r(R﹥r)136定理相交两圆的连心线垂直平分两圆的公共弦137、定理把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形面只是一些小技巧,接下来我们读完题开始找思路。

平面几何五大公理

平面几何五大公理

平面几何五大公理所谓公理:1)经过人类长期反复的实践检验是真实的,不需要由其他判断加以证明的命题和原理。

2)某个演绎系统的初始命题。

这样的命题在该系统内是不需要其他命题加以证明的,并且它们是推岀该系统内其他命题的基本命题欧几里德的《几何原本》,一开始欧几里德就劈头盖脸地给出了23个定义,5个公设,5个公理。

其实他说的公社就是我们后来所说的公理,他的公理是一些计算和证明用到的方法(如公理1:等于同一个量的量相等,公理5 :整体大于局部等)他给岀的5个公设倒是和几何学非常紧密的,也就是后来我们教科书中的公理。

分别是:1、五大公设:公设1 从任意的一个点到另外一个点作一条直线是可能的。

公设2 把有限的直线不断循直线延长是可能的。

公设3 以任一点为圆心和任一距离为半径作一圆是可能的。

公设4 所有的直角都相等。

公设5 如果一直线与两线相交,且同侧所交两内角之和小于两直角,则两直线无限延长后必相交于该侧的一点。

2、五大公理公理1 与同一件东西相等的一些东西,它们彼此也是相等的。

公理2 等量加等量,总量仍相等。

公理3 等量减等量,余量仍相等。

公理4 彼此重合的东西彼此是相等的。

公理5 整体大于部分。

今天我们常说的平面几何五大公理,就是指五大公设。

在这五个公设(理)里,欧几里德并没有幼稚地假定定义的存在和彼此相容。

亚里士多德就指出,头三个公设说的是可以构造线和圆,所以他是对两件东西顿在性的声明。

事实上欧几里德用这种构造法证明很多命题。

第五个公设非常罗嗦,没有前四个简洁好懂。

声明的也不是存在的东西,而是欧几里德自己想的东西。

这就足以说明他的天才。

从欧几里德提出这个公理到1800年这大约2100年的时间里虽然人们没有怀疑整个体系的正确性,但是对这个第五公设却一直耿耿于怀。

很多数学家想把这个公设从这个体系中去掉,但是几经努力而无果,无法从其他公设中推到处第五公设。

第五公设称为平行公理,引导岀千年来数学上和哲学上最大的难题之一。

初中数学平行几何五大公理

初中数学平行几何五大公理

平面几何五大公理欧几里得的《几何原本》,一开始欧几里得就劈头盖脸地给出了23个定义,5个公设,5个公理.其实他说的公设就是我们后来所说的公理,他的公理是一些计算和证明用到的方法(如公理1:等于同一个量的量相等,公理5:整体大于局部等)他给出的5个公设倒是和几何学非常紧密的,也就是后来我们教科书中的公理.分别是:公设1:任意一点到另外任意一点可以画直线公设2:一条有限线段可以继续延长公设3:以任意点为心及任意的距离可以画圆公设4:凡直角都彼此相等公设5:同平面内一条直线和另外两条直线相交,若在某一侧的两个内角和小于二直角的和,则这二直线经无限延长后在这一侧相交.在这五个公设(理)里,欧几里得并没有幼稚地假定定义的存在和彼此相容.亚里士多德就指出,头三个公设说的是可以构造线和圆,所以他是对两件东西顿在性的声明.事实上欧几里得用这种构造法证明很多命题.第五个公设非常罗嗦,没有前四个简洁好懂.声明的也不是存在的东西,而是欧几里得自己想的东西.这就足以说明他的天才.从欧几里得提出这个公理到1800年这大约2100年的时间里虽然人们没有怀疑整个体系的正确性,但是对这个第五公设却一直耿耿于怀.很多数学家想把这个公设从这个体系中去掉,但是几经努力而无果,无法从其他公设中推到处第五公设.同时数学家们也注意到了这个公设既是对平行概念的论述(故称之为平行公理)也是对三角形内角和的论述(即内角和公理).高斯对这一点是非常明白的,他认为欧几里得几何式物质空间的几何,1799年他说给他的朋友的一封信中表现了他相信平行公里不能从其他的公设中推导出来,他开始认真从事开发一个新的能够应用的几何.1813年,发展了他几何,最初称为反欧氏几何,后称星空几何,最后称非欧几何.在他的几何中三角形内角可以大于180度.当然得到这样的几何不是高斯一人,历史上有三个人.一个是他的搭档,另一个是高斯的朋友的儿子独立发现的.其中一个有趣的问题是,非欧氏几何中过直线外一点的平行线可以无穷.不久之后,俄国的罗巴切夫斯基也发现了一个新的非欧几何,即罗氏几何.他的三角形内角和是小于180度的.而19世纪初非欧式几何的发现,正是后来爱因斯坦发现广义相对论的基础.。

几何八大定理

几何八大定理

几何八大定理
几何学中的“八大定理”并不是一个标准的术语,但可能指的是古典几何中的几个基本定理,这些定理在欧几里得的《几何原本》中有所描述。

如果我们要提到几何学中一些非常基础和重要的定理,可以考虑以下几个:
1. 欧几里得平行公理:通过直线外一点有且仅有一条直线与已知直线平行。

2. 欧几里得菱形定理:在菱形中,对角线互相垂直平分。

3. 欧几里得矩形定理:在矩形中,对角线相等。

4. 欧几里得正方形定理:在正方形中,对角线互相垂直平分且相等。

5. 相似定理:如果两个多边形的对应角相等,并且对应边的比例相等,则这两个多边形相似。

6. 三角形的内角和定理:三角形的三个内角之和等于180度。

7. 圆的相等定理:圆中,相等的圆心角对应相等的弧。

8. 圆周率定理:圆的周长与其直径的比值是一个常数,这个常数被称为圆周率π。

请注意,这些定理只是几何学中的一小部分,而且几何学中有许多其他的定理和理论。

如果你指的是特定的“八大定理”,请提供更多的上下文信息。

初中几何公理定理 通用版中考绝密复习资料

初中几何公理定理  通用版中考绝密复习资料

初中数学公理和定理一、公理(不需证明)1、两直线被第三条直线所截,如果同位角相等,那么这两条直线平行;2、两条平行线被第三条直线所截,同位角相等;3、两边和夹角对应相等的两个三角形全等; (SAS)4、角及其夹边对应相等的两个三角形全等; (ASA)5、三边对应相等的两个三角形全等; (SSS)6、全等三角形的对应边相等,对应角相等.7、线段公理:两点之间,线段最短。

8、直线公理:过两点有且只有一条直线。

9、平行公理:过直线外一点有且只有一条直线与已知直线平行10、垂直性质:经过直线外或直线上一点,有且只有一条直线与已知直线垂直以下对初中阶段所学的公理、定理进行分类:一、直线与角1、两点之间,线段最短。

2、经过两点有一条直线,并且只有一条直线。

3、同角或等角的补角相等,同角或等角的余角相等。

4、对顶角相等二、平行与垂直5、经过直线外或直线上一点,有且只有一条直线与已知直线垂直。

6、经过已知直线外一点,有且只有一条直线与已知直线平行。

7、连接直线外一点与直线上各点的所有线段中,垂线段最短。

8、夹在两平行线间的平行线段相等9、平行线的判定:(1)同位角相等,两直线平行;(2)内错角相等,两直线平行;(3)同旁内角互补,两直线平行;(4)垂直于同一条直线的两条的直线互相平行.(5)如果两条直线都和第三条直线平行,那么这两条直线也平行10、平行线的性质:(1)两直线平行,同位角相等。

(2)两直线平行,内错角相等。

(3)两直线平行,同旁内角互补。

三、角平分线、垂直平分线、图形的变化(轴对称、平称、旋转)11、角平分线的性质:角平分线上的点到这个角的两边的距离相等.12、角平分线的判定:到一个角的两边距离相等的点在这个角的平分线上.13、线段垂直平分线的性质:线段的垂直平分线上的点到这条线段的两个端点的距离相等.14、线段垂直平分线的判定:到一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上.15、轴对称的性质:(1)如果图形关于某一直线对称,那么连结对应点的线段被对称轴垂直平分. (2)对应线段相等、对应角相等。

(完整版)数学+初中几何公理定理

(完整版)数学+初中几何公理定理

初中数学公理和定理一、公理(不需证明)1、两直线被第三条直线所截,如果同位角相等,那么这两条直线平行;2、两条平行线被第三条直线所截,同位角相等;3、两边和夹角对应相等的两个三角形全等; (SAS)4、角及其夹边对应相等的两个三角形全等; (ASA)5、三边对应相等的两个三角形全等; (SSS)6、全等三角形的对应边相等,对应角相等.7、线段公理:两点之间,线段最短。

8、直线公理:过两点有且只有一条直线。

9、平行公理:过直线外一点有且只有一条直线与已知直线平行10、垂直性质:经过直线外或直线上一点,有且只有一条直线与已知直线垂直以下对初中阶段所学的公理、定理进行分类:一、直线与角1、两点之间,线段最短。

2、经过两点有一条直线,并且只有一条直线。

3、同角或等角的补角相等,同角或等角的余角相等。

4、对顶角相等二、平行与垂直5、经过直线外或直线上一点,有且只有一条直线与已知直线垂直。

6、经过已知直线外一点,有且只有一条直线与已知直线平行。

7、连接直线外一点与直线上各点的所有线段中,垂线段最短。

8、夹在两平行线间的平行线段相等9、平行线的判定:(1)同位角相等,两直线平行;(2)内错角相等,两直线平行;(3)同旁内角互补,两直线平行;(4)垂直于同一条直线的两条的直线互相平行.(5)如果两条直线都和第三条直线平行,那么这两条直线也平行10、平行线的性质:(1)两直线平行,同位角相等。

(2)两直线平行,内错角相等。

(3)两直线平行,同旁内角互补。

三、角平分线、垂直平分线、图形的变化(轴对称、平称、旋转)11、角平分线的性质:角平分线上的点到这个角的两边的距离相等.12、角平分线的判定:到一个角的两边距离相等的点在这个角的平分线上.13、线段垂直平分线的性质:线段的垂直平分线上的点到这条线段的两个端点的距离相等.14、线段垂直平分线的判定:到一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上.15、轴对称的性质:(1)如果图形关于某一直线对称,那么连结对应点的线段被对称轴垂直平分. (2)对应线段相等、对应角相等。

几何原本5大公理

几何原本5大公理

几何原本5大公理
几何学是一门关于空间和形状的数学学科。

在几何学中,五大公理是非常重要的概念。

它们被用来推导所有几何学的理论。

以下是几何原本五大公理的简短介绍以及它们的重要性。

一、东西两点之间只有一条直线
这个公理是几何学的基础。

它表明在一个平面上,任意两个不同的点之间有且仅有一条直线通过。

如果这个公理不成立,整个几何学的理论都将失效。

二、有限直线可以无限延伸
这个公理表明一条直线可以从两个点开始无限延伸下去。

这个公理非常重要,因为它使得我们能够定义直线的长度和角度等概念。

三、任意角都能够被分成两个角
这个公理表明,对于任意一个角,我们都可以找到一条直线把它分成两个角相等的部分。

这个公理是几何学中构造图形的基础。

四、所有直角都相等
这个公理表明任何一个直角都等于另一个直角。

这个公理是建立几何
学中三角形和多边形的基础。

五、平行的直线永远不会相交
这个公理表明,如果有两条直线在一个平面内,且它们的一端点不重合,那么这两条直线要么在这个点的一侧相交,要么在这个点的另一
侧永不相交。

这个公理是几何学中研究平行线和角度等概念的重要基础。

总的来说,几何原本五大公理为几何学的发展提供了非常重要的基础。

这些公理被用来推导几何学的许多理论和定理。

同时,这些公理也为
几何学提供了一些重要的概念和定义。

对于几何学的研究来说,这些
公理是至关重要的。

欧几里得的公理与公设

欧几里得的公理与公设

欧几里得的公理与公设在初中同学们已经学过平面几何了.但你知道它的来源吗?平面几何最早来源于古希腊数学家欧几里得的《几何原本》.在这本书中,欧几里得提出了5个公理和5个公设(现在看来,公设与公理无本质区别).欧几里得把众所周知,适用于一切科学的真理叫做公理.他用公理作为几何学的基础,以公理作为出发点,把定理有序地排列起来.每一个定理的成立,都是用公理和已证明的定理给予严格的推证.《几何原本》是用公理法建立起演绎的数学体系的最早典范,统驭几何学有2000年之久,对后世的数学研究影响很大.几何定理的基础是公理,如果没有公理,就会出现循环论证.所谓循环论证是指:由甲定理推出乙定理;由乙定理推出丙定理;而又由丙定理推出甲定理,如图5-30.这种转圈式的循环论证在数学上是不允许的.欧几里得把只应用于几何学的真理叫做公设.这五条公设是:1.从任一点到任一点作直线是可能的.2.把有限直线不断沿直线延长是可能的.3.以任一点为中心和任一距离为半径作一圆是可能的.4.所有直角彼此相等.5.若一直线与两直线相交,且若同侧所交两内角之和小于两直角,则两直线无限延长后必相交于该侧的一点.其中第5条实际上就是大家学过的平行公理:过已知直线外的一个已知点只能作一条直线平行于已知直线.但是,许多数学家认为第5公设不易被人们接受,反对把它作为公理.如果不把它作为公理,就可以用其他公理推证出来.但是2000多年来,证明第5公设的工作都失败了.高斯在证明这一公设的同时,发现了一种前人所不了解的新几何学.但是由于担心把这种新几何学发表出去会遭到嘲讽,高斯放弃了发表这种新几何学.1826年,俄国年轻的数学家罗巴切夫斯基,提出了与第5公设截然不同的一条公设:在平面内过直线外一点,至少可以引两条直线与已知直线平行.现今,我们称它为“罗氏公理”.新的几何学产生了,它就是非欧几何.。

初中几何定理大全:初中数学几何121个定理总结

初中几何定理大全:初中数学几何121个定理总结

初中几何定理大全:初中数学几何121个定理总结 今天小编为大家整理了一篇有关初中几何定理大全:初中数学几何121个定理总结的相关内容,以供大家阅读!1过两点有且只有一条直线2两点之间线段最短3同角或等角的补角相等4同角或等角的余角相等5过一点有且只有一条直线和直线垂直6直线外一点与直线上各点连接的所有线段中,垂线段最短7平行公理经过直线外一点,有且只有一条直线与这条直线平行8如果两条直线都和第三条直线平行,这两条直线也互相平行9同位角相等,两直线平行10内错角相等,两直线平行11同旁内角互补,两直线平行12两直线平行,同位角相等13两直线平行,内错角相等14两直线平行,同旁内角互补15定理三角形两边的和大于第三边16推论三角形两边的差小于第三边17三角形内角和定理三角形三个内角的和等于18018推论1直角三角形的两个锐角互余19推论2三角形的一个外角等于和它不相邻的两个内角的和20推论3三角形的一个外角大于任何一个和它不相邻的内角21全等三角形的对应边、对应角相等22边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等23角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等24推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等25边边边公理(SSS)有三边对应相等的两个三角形全等26斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等27定理1在角的平分线上的点到这个角的两边的距离相等28定理2到一个角的两边的距离相同的点,在这个角的平分线上29角的平分线是到角的两边距离相等的所有点的集合30等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角〕31推论1等腰三角形顶角的平分线平分底边并且垂直于底边32等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33推论3等边三角形的各角都相等,并且每一个角都等于60 34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等〔等角对等边〕35推论1三个角都相等的三角形是等边三角形36推论2有一个角等于60的等腰三角形是等边三角形37在直角三角形中,如果一个锐角等于30那么它所对的直角边等于斜边的一半38直角三角形斜边上的中线等于斜边上的一半39定理线段垂直平分线上的点和这条线段两个端点的距离相等? 40逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42定理1关于某条直线对称的两个图形是全等形43定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形48定理四边形的内角和等于36049四边形的外角和等于36050多边形内角和定理n边形的内角的和等于〔n-2〕18051推论任意多边的外角和等于36052平行四边形性质定理1平行四边形的对角相等53平行四边形性质定理2平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3平行四边形的对角线互相平分56平行四边形判定定理1两组对角分别相等的四边形是平行四边形57平行四边形判定定理2两组对边分别相等的四边形是平行四边形58平行四边形判定定理3对角线互相平分的四边形是平行四边形59平行四边形判定定理4一组对边平行相等的四边形是平行四边形60矩形性质定理1矩形的四个角都是直角61矩形性质定理2矩形的对角线相等62矩形判定定理1有三个角是直角的四边形是矩形63矩形判定定理2对角线相等的平行四边形是矩形64菱形性质定理1菱形的四条边都相等65菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=〔ab〕267菱形判定定理1四边都相等的四边形是菱形68菱形判定定理2对角线互相垂直的平行四边形是菱形69正方形性质定理1正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1关于中心对称的两个图形是全等的72定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79推论1经过梯形一腰的中点与底平行的直线,必平分另一腰80推论2经过三角形一边的中点与另一边平行的直线,必平分第三边81三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=〔a+b〕2 S=Lh83(1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84(2)合比性质如果a/b=c/d,那么(ab)/b=(cd)/d85(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n0),那么(a+c+…+m)/(b+d+…+n)=a/b86平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87推论平行于三角形一边的直线截其他两边〔或两边的延长线〕,所得的对应线段成比例88定理如果一条直线截三角形的两边〔或两边的延长线〕所得的对应线段成比例,那么这条直线平行于三角形的第三边89平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90定理平行于三角形一边的直线和其他两边〔或两边的延长线〕相交,所构成的三角形与原三角形相似91相似三角形判定定理1两角对应相等,两三角形相似〔ASA〕92直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93判定定理2两边对应成比例且夹角相等,两三角形相似〔SAS〕94判定定理3三边对应成比例,两三角形相似〔SSS〕95定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97性质定理2相似三角形周长的比等于相似比98性质定理3相似三角形面积的比等于相似比的平方99任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。

初中9个基本公理有哪些

初中9个基本公理有哪些

初中9个基本公理1. 点和直线的公理在几何学中,点和直线是最基本的概念。

点被认为是没有大小和形状的,而直线则被认为是一条无限延伸的路径。

这个公理表明,通过两个不同的点可以画出唯一一条直线。

2. 线段的度量公理线段是两个点之间的部分,度量公理规定了如何测量线段的长度。

根据这个公理,可以通过任意单位来测量线段,并且相同长度的线段应该被认为是等长的。

3. 平行线公理平行线是在同一个平面上永远不会相交的直线。

平行线公理规定了如何判断两条直线是否平行。

根据这个公理,如果在两条直线上分别取一点,并且通过这两个点可以作出与原来两条直线都垂直的直线,那么这两条直线就是平行的。

4. 角度度量公理角度是由两条射线共享一个端点而形成的图形。

角度度量公理规定了如何测量角度大小。

根据这个公理,可以使用任意单位来测量角度,并且相同大小的角度应该被认为是等角的。

5. 角的平分线公理角的平分线是将一个角分成两个相等角的直线。

这个公理规定了如何作出一个角的平分线。

根据这个公理,可以通过在一个角内任取一点,然后以这个点为中心,作出一条与原来两条射线相等的射线,从而将原来的角平分成两个相等的部分。

6. 垂直角公理垂直角是指两条互相垂直的直线所形成的角。

垂直角公理规定了垂直角之间的关系。

根据这个公理,如果两条直线互相垂直,那么它们所形成的四个相邻角中,任意两对都是互相垂直的。

7. 副交错角公理副交错角是指当一条直线与另外两条平行线相交时所形成的一对内部和外部对应角。

副交错角公理规定了副交错角之间的关系。

根据这个公理,如果一条直线与另外两条平行线相交,则副交错角是相等的。

8. 同位角公理同位角是指当一条直线与另外两条平行线相交时所形成的一对内部和外部对应角。

同位角公理规定了同位角之间的关系。

根据这个公理,如果一条直线与另外两条平行线相交,则同位角之和为180度。

9. 基础平行公理基础平行公理是欧几里得几何学中最重要的公理之一。

它规定了如果一条直线与另外两条直线相交,使得内部和外部对应角之和小于180度,则这两条直线必定会在某个方向上无限延伸而不会相交。

初中几何公理定理

初中几何公理定理

初中几何公理、定理一、线与角1、两点之间,线段最短2、经过两点有一条直线,并且只有一条直线3、对顶角相等;同角的余角(或补角)相等;等角的余角(或补角)相等4、经过直线外或直线上一点,有且只有一条直线与已知直线垂直5、直线外一点与直线上各点连接的所有线段中,垂线段最短(简称“垂线段最短”)6、平行线的判定:①同位角相等,两直线平行②内错角相等,两直线平行③同旁内角互补,两直线平行④平行于同一直线的两直线平行⑤垂直于同一直线的两直线平行7、平行线的性质:①经过已知直线外一点,有且只有一条直线与已知直线平行②如果两条直线都和第三条直线平行,那么这两条直线也平行③两直线平行,同位角相等④两直线平行,内错角相等⑤两直线平行,同旁内角互补⑥平行线间的距离处处相等9、角平分线的性质:角平分线上的点到这个角的两边的距离相等角平分线的判定:到一个角的两边距离相等的点在这个角的平分线上10、垂直平分线的性质:线段的垂直平分线上的点到这条线段的两个端点的距离相等垂直平分线的判定:到一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上二、三角形、多边形11、三角形中的有关公理、定理:(1)三角形外角的性质:①三角形的一个外角等于与它不相邻的两个内角的和②三角形的外角和等于360 °(2)三角形内角和定理:三角形的内角和等于180°(3)三角形的任何两边的和大于第三边、两边的差小于第三边(4)三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半12、多边形中的有关公理、定理:(1)多边形的内角和定理:n边形的内角和等于(n-2)X180°(2)多边形的外角和定理:任意多边形的外角和都为360°(3)欧拉公式:顶点数+ 面数-棱数=213、等腰三角形中的有关公理、定理:(1)等腰三角形的两个底角相等.(简写成“等边对等角”)(2)等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合,简称“三线合一”(3)如果一个三角形有两个角相等,那么这两个角所对的边也相等.(简写成“等角对等边”)(4)等边三角形的各个内角都相等,并且每一个内角都等于60°(5)等边三角形判定:①三边都相等的三角形叫做等边三角形;②有一个角等于600的等腰三角形是等边三角形;③三个角都相等的三角形是等边三角形14、直角三角形的有关公理、定理:(1)直角三角形的两个锐角互余(2)勾股定理:直角三角形两直角边的平方和等于斜边的平方(3)勾股定理逆定理:如果一个三角形的一条边的平方等于另外两条边的平方和,那么这个三角形是直角三角形(4)直角三角形斜边上的中线等于斜边的一半(5)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半三、特殊四边形15、平行四边形的性质:①平行四边形的对边平行且相等②平行四边形的对角相等③平行四边形的对角线互相平分.16、平行四边形的判定:①两组对边分别平行的四边形是平行四边形②一组对边平行且相等的四边形是平行四边形③两组对边分别相等的四边形是平行四边形④对角线互相平分的四边形是平行四边形17、矩形的性质:①矩形的四个角都是直角②矩形的对角线相等且互相平分18、矩形的判定:①有一个角是直角的平行四边形是矩形②有三个角是直角的四边形是矩形③对角线相等的平行四边形是矩形19、菱形的性质:①菱形的四条边都相等②菱形的对角线互相垂直平分,并且每一条对角线平分一组对角20、菱形的判定:①有一组邻边相等的平行四边形是菱形②四条边相等的四边形是菱形③对角线互相垂直的平行四边形是菱形21、正方形的性质:①正方形的四个角都是直角②正方形的四条边都相等③正方形的两条对角线相等,且互相垂直平分,每一条对角线平分一组对角22、正方形的判定:①有一组邻边相等的矩形是正方形②两条对角线垂直的矩形是正方形③有一个角是直角的菱形是正方形④两条对角线相等的菱形是正方形23、梯形定义:一组对边平行而另一组对边不平行的四边形是梯形24、等腰梯形的判定:①同一条底边上的两个内角相等的梯形是等腰梯形②两条对角线相等的梯形是等腰梯形25、等腰梯形的性质:①等腰梯形的同一条底边上的两个内角相等②等腰梯形的两条对角线相等26、梯形的中位线平行于梯形的两底边,并且等于两底和的一半四、图形的全等27、全等多边形的对应边、对应角分别相等28、全等三角形的判定:①如果两个三角形的三条边分别对应相等,那么这两个三角形全等(SSS)②如果两个三角形有两边及其夹角分别对应相等,那么这两个三角形全等(SAS)③如果两个三角形的两个角及其夹边分别对应相等,那么这两个三角形全等^5人)④有两个角及其中一个角的对边分别对应相等的两个三角形全等(AAS)⑤如果两个直角三角形的斜边及一条直角边分别对应相等,那么这两个直角三角形全等(HL)29、轴对称:(1)关于某条直线对称的两个图形是全等形;如果两个图形关于某条直线对称,那么对称轴是对称点连线的垂直平分线;(2)两个图形关于某直线对称,如果它们的对应线段(或延长线)相交,交点一定在对称轴上;(3)如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称30、平移:(1)平移不改变图形的形状和大小(即平移前后的两个图形全等);(2)对应线段平行且相等(或在同一直线上), 对应角相等;(3)经过平移,两个对应点所连的线段平行(或在同一直线上)且相等.31、旋转:(1)旋转不改变图形的形状和大小(即旋转前后的两个图形全等)(2)任意一对对应点与旋转中心的连线所成的角彼此相等(都是旋转角)(3)经过旋转,对应点到旋转中心的距离相等32、中心对称:(1)关于中心对称的两个图形是全等形;(2)关于中心对称的两个图形,对称点连线都经过对称中心且被对称中心平分;(3)如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点成中心对称五、图形的相似33、(1)相似多边形的性质:①相似多边形的对应边成比例②相似多边形的对应角相等③相似多边形周长的比等于相似比④相似多边形的面积比等于相似比的平方(2)相似三角形性质:①相似三角形的对应角相等,对应边成比例;②相似三角形对应高的比,对应中线的比,都等于相似比;③相似三角形周长的比等于相似比;④相似三角形的面积比等于相似比的平方34、平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例35、相似三角形的判定:①平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似②如果一个三角形的两角分别与另一个三角形的两角对应相等,那么这两个三角形相似③如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似④如果一个三角形的三条边和另一个三角形的三条边对应成比例,那么这两个三角形相似⑤如果两个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似36、射影定理:在直角三角形中,斜边上的高是两条直角边在斜边上的射影的比例中项;每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。

初中数学几何题必考公式定理汇总(共146条)(直接打印每生一份熟记)

初中数学几何题必考公式定理汇总(共146条)(直接打印每生一份熟记)

初中数学几何题必考公式定理汇总(共146条)(直接打印每生一份熟记) 以下是初中数学几何题必考的公式和定理汇总:线:1.同角或等角的余角相等。

2.通过一点有且仅有一条与已知直线垂直的直线。

3.通过两点有且仅有一条直线。

4.两点之间的线段最短。

5.同角或等角的补角相等。

6.直线外一点与直线上各点连接的所有线段中,垂线段最短。

7.平行公理:经过直线外一点,有且仅有一条直线与这条直线平行。

8.如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

9.定理:线段垂直平分线上的点和这条线段的两个端点的距离相等。

10.逆定理:如果一条线段的两个端点距离相等,那么在这条线段的垂直平分线上有一个点。

11.线段的垂直平分线可以看作和线段两端点距离相等的所有点的集合。

12.定理1:关于某条直线对称的两个图形是全等形。

13.定理2:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线。

14.定理3:如果两个图形关于某直线对称,那么如果它们的对应线段或延长线相交,那么交点在对称轴上。

15.逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。

角:16.同位角相等,两直线平行。

17.内错角相等,两直线平行。

18.同旁内角互补,两直线平行。

19.如果两条直线平行,那么同位角相等。

20.如果两条直线平行,那么内错角相等。

21.如果两条直线平行,那么同旁内角互补。

22.定理1:在角的平分线上的点到这个角的两边的距离相等。

23.定理2:到一个角的两边的距离相同的点在这个角的平分线上。

24.角的平分线是到角的两边距离相等的所有点的集合。

三角形:25.定理:三角形两边的和大于第三边。

26.推论:三角形两边的差小于第三边。

27.定理:三角形三个内角的和等于180°。

28.推论1:直角三角形的两个锐角互余。

29.推论2:三角形的一个外角等于和它不相邻的两个内角的和。

30.推论3:三角形的一个外角大于任何一个和它不相邻的内角。

平面几何五大公理

平面几何五大公理

平面几何五大‎公理所谓公理:1) 经过人类长期‎反复的实践检‎验是真实的,不需要由其他‎判断加以证明‎的命题和原理‎。

2) 某个演绎系统‎的初始命题。

这样的命题在‎该系统内是不‎需要其他命题‎加以证明的,并且它们是推‎出该系统内其‎他命题的基本‎命题欧几里德的《几何原本》,一开始欧几里德就劈头盖脸地‎给出了23个‎定义,5个公设,5个公理。

其实他说的公‎社就是我们后‎来所说的公理‎,他的公理是一‎些计算和证明‎用到的方法(如公理1:等于同一个量‎的量相等,公理5:整体大于局部‎等)他给出的5个‎公设倒是和几‎何学非常紧密‎的,也就是后来我‎们教科书中的‎公理。

分别是:1、五大公设:公设1从任意的一个‎点到另外一个‎点作一条直线‎是可能的。

公设2把有限的直线‎不断循直线延‎长是可能的。

公设3以任一点为圆‎心和任一距离‎为半径作一圆‎是可能的。

公设4所有的直角都‎相等。

公设5如果一直线与‎两线相交,且同侧所交两‎内角之和小于‎两直角,则两直线无限延长后必‎相交于该侧的‎一点。

2、五大公理公理1与同一件东西‎相等的一些东‎西,它们彼此也是‎相等的。

公理2等量加等量,总量仍相等。

公理3等量减等量,余量仍相等。

公理4彼此重合的东‎西彼此是相等‎的。

公理5整体大于部分‎。

今天我们常说‎的平面几何五‎大公理,就是指五大公‎设。

在这五个公设‎(理)里,欧几里德并没有幼稚地‎假定定义的存‎在和彼此相容‎。

亚里士多德就‎指出,头三个公设说‎的是可以构造‎线和圆,所以他是对两‎件东西顿在性‎的声明。

事实上欧几里‎德用这种构造‎法证明很多命‎题。

第五个公设非‎常罗嗦,没有前四个简‎洁好懂。

声明的也不是‎存在的东西,而是欧几里德‎自己想的东西‎。

这就足以说明‎他的天才。

从欧几里德提‎出这个公理到‎1800年这‎大约2100‎年的时间里虽‎然人们没有怀‎疑整个体系的‎正确性,但是对这个第‎五公设却一直‎耿耿于怀。

很多数学家想‎把这个公设从‎这个体系中去‎掉,但是几经努力‎而无果,无法从其他公‎设中推到处第‎五公设。

八年级数学复习必背几何定理定义公式

八年级数学复习必背几何定理定义公式

八年级数学复习必背几何定理定义公式班级姓名第一部分相交线、平行线1、直线公理:经过两点有且只有一条直线两点确定一直线;2 、线段公理:两点之间线段最短;3、同角或等角的补角相等,同角或等角的余角相等;4、对顶角相等;5、垂线的性质:①经过一点..有且只有一条直线和已知直线垂直;②直线外一点与直线上各点连接的所有线段中,垂线段最短;简写为:垂线段最短;6、平行线的定义:在同一平面内不相交的两条直线叫作平行线;7、在同一平面中两条直线的位置关系有两种,相交和平行;在空间几何中两条直线的位置关系有三种,相交、平行和异面;8、平行公理:经过直线外一点.....,有且只有一条直线与这条直线平行;7、平行公理的推论:如果两条直线都和第三条直线平行,这两条直线也互相平行;9、平行线的判定:①同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行;10、平行线的性质:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补;第二部分三角形1、三角形的定义:由不在同一直线上的三条线段首尾顺次相接组成的图形,叫作三角形;2、三角形的中线:连接三角形的一个顶点和对边中点的线段叫作三角形的中线;3、三角形的角平分线:三角形的一个内角的平分线与对边相交,顶点和交点之间的线段叫作三角形的角平分线;4、三角形的高:经过三角形的一个顶点向对边所在直线作垂线,顶点和垂足之间的线段叫作三角形的高;5、三角形三边关系定理:三角形两边的和大于第三边,三角形两边的差小于第三边;6、三角形内角和定理:三角形三个内角的和等于180°7、推论:三角形的一个外角等于和它不相邻的两个内角的和;8、真命题:三角形的一个外角大于任何一个和它不相邻的内角;9、多边形的内角和公式:n-2180°10、任意多边的外角和等于360°;11、连接多边形的不相邻顶点的直线叫作对角线;从n 边形n ≥3的一个顶点可以引n-3条对角线,n 边形n ≥3一共有)3(21 n n 条对角线;12、能够完全重合的两个图形叫作全等形;13、能够完全重合的两个三角形叫作全等三角形;全等三角形的对应边、对应角相等 ;14、全等三角形的判定:①边角边SAS :有两边和它们的夹角对应相等的两个三角形全等;②角边角ASA :有两角和它们的夹边对应相等的两个三角形全等 ;③角角边AAS :有两角和其中一角的对边对应相等的两个三角形全等; ④边边边SSS :有三边对应相等的两个三角形全等;⑤斜边、直角边HL :有斜边和一条直角边对应相等的两个直角三角形全等 第三部分 轴对称图形 1、轴对称:如果把一个图形沿着一条直线折叠后能够与另一个图形完全重合,那么这两个图形关于直线成轴对称;2、轴对称图形:如果把一个图形沿着一条直线折叠后,直线两旁的部分能够完全重合,那么这个图形是轴对称图形;3、轴对称的性质:①关于某条直线对称的两个图形是全等形;②如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线;③两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上;④真命题:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称;①线段的垂直平分线上的点到线段两端的距离相等;②到线段两端距离相等的点在这条线段的垂直平分线上;③线段的垂直平分线是到线段两端距离相等的所有点的集合;6、角的轴对称性:①角平分线上的点到这个角的两边的距离相等;②在角的内部到一个角的两边的距离相同的点,在这个角的平分线上;③角的平分线是角的内部到角的两边距离相等的所有点的集合;7、等腰三角形的定义:有两条边相等的三角形叫作等腰三角形;8、等腰三角形的性质:①等腰三角形的两个底角相等即等边对等角②三线合一:等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合;9、等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等等角对等边10、等边三角形的定义:三边都相等的三角形叫作等边三角形;11、等边三角形的性质:等边三角形的各角都相等,并且每个角都等于60° ;12、等边三角形的判定:①三个角都相等的三角形是等边三角形;②有一个角等于60°的等腰三角形是等边三角形;13、直角三角形的性质:①直角三角形的两个锐角互余;②直角三角形斜边上的中线等于斜边上的一半③勾股定理:直角三角形的两条直角边的平方和等于斜边的平方;④在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半;⑤在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的锐角等于3014、直角三角形的判定:①两个锐角互余的三角形是直角三角形;②真命题:如果三角形的一边上的中线等于这边长的一半,那么这个三角形是直角三角形;③勾股定理逆定理:如果一个三角形的两条边的平方和等于第三条边的平方,那么这个三角形是直角三角形;第四部分中心对称图形1、中心对称:如果把一个图形绕一个点旋转180°后能够与另一个图形完全重合,那么这两个图形关于这点成中心对称;2、中心对称图形:把一个图形绕一个点旋转180°后能够与自身完全重合,那么这个图形是中心对称图形;3、中心对称的性质:①关于中心对称的两个图形是全等的;②关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分;4、真命题:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点成中心对称;5、平行四边形的定义:两组对边分别平行的四边形叫作平行四边形;6、平行四边形性质:①平行四边形的对角相等;②平行四边形的对边相等;③平行四边形的对角线互相平分;7、平行四边形判定:①两组对边分别相等的四边形是平行四边形;②对角线互相平分的四边形是平行四边形;③一组对边平行且相等的四边形是平行四边形;④真命题:两组对角分别相等的四边形是平行四边形;⑤真命题:一组对边平行,一组对角相等的四边形是平行四边形;注意:假命题...:一组对边相等,一组对角相等的四边形是平行四边形;×8、矩形的定义:有一个角是直角的平行四边形叫作矩形;9、矩形的性质:①矩形的四个角都是直角;②矩形的对角线相等;10、矩形的判定:①有三个角是直角的四边形是矩形;②对角线相等的平行四边形是矩形;11、菱形的定义:有一组邻边相等的平行四边形叫作菱形;12、菱形的性质:①菱形的四条边都相等;②菱形的对角线互相垂直,并且每一条对角线平分一组对角;13、菱形面积等于对角线乘积的一半;推而广之:真命题对角线互相垂直的四边形的面积等于对角线乘积的一半;14、菱形的判定:①四边都相等的四边形是菱形;②对角线互相垂直的平行四边形是菱形;③真命题:一条对角线平分一个内角的平行四边形是菱形;15、正方形的定义:有一个角是直角,并且有一组邻边相等的平行四边形叫作正方形;16、正方形性质:正方形的四个角都是直角,四条边都相等,正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;17、正方形的判定:既是矩形,又是菱形的四边形是正方形;18、梯形的定义:有一组对边平行,另一组对边不平行的四边形叫作梯形;19、等腰梯形的定义:两腰相等的梯形叫作等腰梯形;20、等腰梯形性质:①等腰梯形在同一底上的两个角相等;②等腰梯形的两条对角线相等;21、等腰梯形判定:①在同一底上的两个角相等的梯形是等腰梯形;②真命题对角线相等的梯形是等腰梯形;22、三角形的中位线的定义:连接三角形的两边中点的线段叫作三角形的中位线;23、三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半;24、梯形的中位线:连接梯形的两腰中点的线段叫作梯形的中位线;25、真命题:梯形的中位线平行于两底,并且等于两底之和的一半;26、真命题:梯形的两条对角线的中点的连线平行于两底,并且等于两底之差的一半;27、梯形的面积等于中位线与高的乘积;28、真命题:①连接任意四边形的各边中点所得的四边形是平行四边形;真命题:②连接对角线相等.....的四边形的各边中点所得四边形是矩形;真命题:③连接对角线互相垂直.......的四边形的各边中点所得的四边形是菱形;。

欧氏几何与第五公理

欧氏几何与第五公理

欧氏几何与‎第五公理一、欧氏几何的‎建立欧氏几何是‎欧几里德几‎何学的简称‎,其创始人是‎公元前三世‎纪的古希腊‎伟大数学家‎欧几里德。

在他以前,古希腊人已‎经积累了大‎量的几何知‎识,并开始用逻‎辑推理的方‎法去证明一‎些几何命题‎的结论。

欧几里德这‎位伟大的几‎何建筑师在‎前人准备的‎“木石砖瓦”材料的基础‎上,天才般地按‎照逻辑系统‎把几何命题‎整理起来,建成了一座‎巍峨的几何‎大厦,完成了数学‎史上的光辉‎著作《几何原本》。

这本书的问‎世,标志着欧氏‎几何学的建‎立。

这部科学著‎作是发行最‎广而且使用‎时间最长的‎书。

后又被译成‎多种文字,共有二千多‎种版本。

它的问世是‎整个数学发‎展史上意义‎极其深远的‎大事,也是整个人‎类文明史上‎的里程碑。

两千多年来‎,这部著作在‎几何教学中‎一直占据着‎统治地位,至今其地位‎也没有被动‎摇,包括我国在‎内的许多国‎家仍以它为‎基础作为几‎何教材。

二、一座不朽的‎丰碑欧几里德将‎早期许多没‎有联系和未‎予严谨证明‎的定理加以‎整理,写下《几何原本》一书,使几何学变‎成为一座建‎立在逻辑推‎理基础上的‎不朽丰碑。

这部划时代‎的著作共分‎13卷,465个命‎题。

其中有八卷‎讲述几何学‎,包含了现在‎中学所学的‎平面几何和‎立体几何的‎内容。

但《几何原本》的意义却绝‎不限于其内‎容的重要,或者其对定‎理出色的证‎明。

真正重要的‎是欧几里德‎在书中创造‎的一种被称‎为公理化的‎方法。

在证明几何‎命题时,每一个命题‎总是从再前‎一个命题推‎导出来的,而前一个命‎题又是从再‎前一个命题‎推导出来的‎。

我们不能这‎样无限地推‎导下去,应有一些命‎题作为起点‎。

这些作为论‎证起点,具有自明性‎并被公认下来‎的命题称为‎公理,如同学们所‎学的“两点确定一‎条直线”等即是。

同样对于概‎念来讲也有‎些不加定义‎的原始概念‎,如点、线等。

在一个数学‎理论系统中‎,我们尽可能‎少地先取原‎始概念和不‎加证明的若‎干公理,以此为出发‎点,利用纯逻辑‎推理的方法‎,把该系统建‎立成一个演‎绎系统,这样的方法‎就是公理化‎方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

29、平行四边形的判定:
(1)两组对边分别平行的四边形是平行四边形;
(2)一组对边平行且相等的四边形是平行四边形;(3)两组对边分别相等的四边形是平行四边形;
(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形.
30、矩形的性质:
(1)具有平行四边形的所有性质
(2)矩形的四个角都是直角;
(3)矩形的对角线相等且互相平分.
31、矩形的判定:
(1)有一个角是直角的平行四边形是矩形。

(2)有三个角是直角的四边形是矩形.
(3)对角线相等的平行四边形是矩形。

32、菱形的性质:
(1)具有平行四边形的所有性质
(2)菱形的四条边都相等;
(3)菱形的对角线互相垂直平分,并且每一条对角线平分一组对角.
33、菱形的判定:
(1)四条边相等的四边形是菱形.
(2)一组邻边相等的平行四边形是菱形。

(3)对角线互相垂直的平行四边形是菱形。

34、正方形的性质:。

相关文档
最新文档