逆变器的选型
逆变器场效应管型号
逆变器场效应管型号
在选择逆变器场效应管(MOSFET)型号时,需要考虑以下因素。
1.最大工作电压:逆变器工作电压通常高于市电输入电压,因此需要选择最大工作电压高于逆变器工作电压的MO SFET。
2.最大工作电流:MOSFET需要能够承受逆变器工作时产生的最大电流,包括负载电流和开关电流。
3.开关频率:逆变器的开关频率会影响MOSFET的选择,因为不同型号的MOSFET具有不同的开关速度和开关损耗。
4.导通电阻:MOSFET的导通电阻越小,开关损耗越低,效率越高。
因此,在选择MOSFET时需要考虑其导通电阻。
5.封装类型:MOSFET的封装类型会影响其散热性能和应用场合。
例如,功率较大的MOSFET通常采用TO-247或TO-220封装。
6.电压和电流等级:需要选择符合逆变器功率级别的M OSFET,以确保其能够安全地承受电压和电流。
7.价格:成本也是选择MOSFET时需要考虑的因素之一。
在满足性能要求的前提下,可以选择性价比较高的产品。
基于以上因素,您可以根据逆变器的具体应用需求来选择合适的MOSFET型号。
在实际应用中,还需要考虑开关
速度、驱动电路、ESD保护等因素,以确保MOSFET的正常工作和安全。
逆变器选型与布置设计
逆变器选型与布置设计逆变器选型与布置设计:逆变器是将直流电能转换为交流电能的设备,广泛应用于太阳能光伏发电系统、风能发电系统和电动车等领域。
逆变器选型与布置设计是保证系统正常运行和性能优化的关键步骤。
在这里,我将为您详细介绍逆变器选型与布置设计的相关内容。
一、逆变器选型:1. 了解系统要求:在选择逆变器之前,首先需要了解光伏发电系统的总装机容量、输出电压要求、并网条件等系统要求。
根据这些要求,进行逆变器的选型。
2. 功率选择:根据光伏系统的总装机容量和预计发电功率,选择合适的逆变器功率。
一般来说,逆变器的额定功率应略大于光伏阵列的峰值功率,以确保逆变器能够正常运行。
3. 并网要求:了解所在地区电网的并网要求,如并网电压范围、频率范围、功率因数调整等。
选择符合电网要求的逆变器。
4. 品牌和可靠性:选择知名度高、质量可靠的逆变器品牌,能够提供可靠的售后服务和保修。
5. 保护功能:逆变器需要具备多种保护功能,如过温保护、短路保护、过载保护等。
确保选择的逆变器具备完善的保护功能,提高光伏系统的安全性。
6. 成本考虑:除了功能和性能要求,还要考虑逆变器的成本。
根据项目的预算,选择性价比较高的逆变器。
二、逆变器布置设计:1. 环境条件:选定逆变器后,需要考虑逆变器的布置环境条件。
逆变器应该远离高温、潮湿、尘土等环境,以确保其正常运行和寿命。
2. 通风散热:逆变器在工作过程中会产生一定的热量,因此应该选择通风良好的位置进行布置,以方便逆变器的散热,避免过热引起故障。
3. 安装位置选择:逆变器应该离光伏电池板与电网的距离尽量短,减少输电损耗。
同时,布置位置应该便于观察和维护。
4. 接线布置:逆变器的电缆布置应尽量短,减少电缆的损耗和距离带来的问题。
同时,应注意电缆的密封和固定,避免受潮、机械损坏等。
5. 接地设计:逆变器的接地设计要符合电气安全规范,确保系统的接地可靠。
与电池、电网、机壳等部件应合理接地。
6. 避雷保护:逆变器应与系统的避雷装置相连,避免雷击引起的损坏。
分布式逆变器选型及功率因数控制策略
分布式逆变器选型及功率因数控制策略一、引言分布式逆变器作为太阳能发电系统的关键部件之一,具有将直流电能转化为交流电能的作用。
在太阳能发电系统中,逆变器的选型和功率因数控制策略的优化对系统的性能和稳定运行至关重要。
本文将以分布式逆变器选型及功率因数控制策略为主题,探讨该领域的相关知识和技术。
二、分布式逆变器选型1. 根据系统规模选择逆变器容量:根据太阳能发电系统的规模,选择适合的逆变器容量。
通常情况下,大规模系统可以采用集中式逆变器,而小规模系统则可以采用分布式逆变器。
2. 考虑逆变器的效率和可靠性:在选型过程中,需要考虑逆变器的效率和可靠性。
高效率的逆变器可以提高系统的发电效率,同时可靠性也是确保系统正常运行的重要因素。
3. 选择适当的逆变器类型:分布式逆变器的类型有多种,如串联逆变器、并联逆变器和微逆变器等。
根据系统的需求和实际情况选择适合的逆变器类型。
4. 考虑逆变器的通信与监控功能:选择具有通信和监控功能的逆变器可以实现对系统运行状态的实时监测和远程控制,提高系统的可管理性和可维护性。
三、功率因数控制策略1. 什么是功率因数:功率因数是描述有功功率和视在功率之间关系的参数。
功率因数越接近1,系统的电能利用效率越高。
2. 功率因数控制的目标:通过逆变器的控制策略,调整系统的功率因数,使其接近1,以提高系统的能量利用效率。
同时,合理的功率因数控制还可以减少电网对太阳能发电系统的不利影响。
3. 传统的功率因数控制方法:传统的功率因数控制方法包括电容器补偿、电感器补偿和同步逆变器。
这些方法可以通过调整电网侧的电气参数来实现功率因数的控制。
4. 现代的功率因数控制方法:现代的功率因数控制方法采用电子器件的控制策略来实现。
常见的方法包括调制技术、电流控制技术和谐波抑制技术等。
这些方法可以提高系统的响应速度和精度。
四、分布式逆变器选型及功率因数控制策略的应用1. 太阳能发电系统中的选型和控制:分布式逆变器在太阳能发电系统中发挥着关键作用。
光伏逆变器的简单选型
`光伏逆变器的简单选型一、光伏逆变器工作原理逆变装置的核心,是逆变开关电路,简称为逆变电路。
该电路通过电力电子开关的导通与关断,来完成逆变的功能。
逆变器简单原理图二、光伏逆变器的主要技术指标1、输出电压的稳定度在光伏系统中,太阳电池发出的电能先由蓄电池储存起来,然后经过逆变器逆变成220V 或380V的交流电。
但是蓄电池受自身充放电的影响,其输出电压的变化范围较大,如标称12V的蓄电池,其电压值可在10.8~14.4V之间变动(超出这个范围可能对蓄电池造成损坏)。
对于一个合格的逆变器,输入端电压在这个范围内变化时,其稳态输出电压的变化量应不超过额定值的±5%,同时当负载发生突变时,其输出电压偏差不应超过额定值的±10%。
2、输出电压的波形失真度对正弦波逆变器,应规定允许的最大波形失真度(或谐波含量)。
通常以输出电压的总波形失真度表示,其值应不超过5%(单相输出允许l0%)。
由于逆变器输出的高次谐波电流会在感性负载上产生涡流等附加损耗,如果逆变器波形失真度过大,会导致负载部件严重发热,不利于电气设备的安全,并且严重影响系统的运行效率。
3、额定输出频率对于包含电机之类的负载,如洗衣机、电冰箱等,由于其电机最佳频率工作点为50Hz,频率过高或者过低都会造成设备发热,降低系统运行效率和使用寿命,所以逆变器的输出频率应是一个相对稳定的值,通常为工频50Hz,正常工作条件下其偏差应在±l%以内。
4、负载功率因数表征逆变器带感性负载或容性负载的能力。
正弦波逆变器的负载功率因数为0.7~0.9,额定值为0.9。
在负载功率一定的情况下,如果逆变器的功率因数较低,则所需逆变器的容量就要增大,一方面造成成本增加,同时光伏系统交流回路的视在功率增大,回路电流增大,损耗必然增加,系统效率也会降低。
5、逆变器效率逆变器的效率是指在规定的工作条件下,其输出功率与输入功率之比,以百分数表示,一般情况下,光伏逆变器的标称效率是指纯阻负载,80%负载情况下的效率。
逆变器选型知识手册
逆变器选型知识手册一、逆变器基础知识目前逆变器主要采用 PWM 技术:控制器在单脉冲周期内快速投切直流,保证直流的积分值等于同时刻下交流正弦波的采样值,这样经滤波器输出后,即可得到超过 96%的正弦波输出。
输出电压被脉冲调制的自励逆变器为脉冲逆变器。
这种逆变器通过增加周期内脉冲的切换次数,来降低电压,电流的脉冲次数;只能通过增加逆变器的整流支数来实现。
交流侧的等效电感决定了电流谐波的含量。
因此,为了满足并网接入要求,应保证光伏发电系统的等效电感值小。
逆变器后接低通滤波器和隔离变压器,将滤除 N-1 阶以下的谐波,其中 N 为交流电流周期的触发脉冲数。
增加切换频率,则电力电子设备的功率损耗将增加;但低切换频率下,低通滤波器的损耗将增加。
如果希望并入单相交流电网的电流倍频,则调制光伏发电机直流输出的交流控制信号频率也要加倍。
二、逆变器的概念通常,把将交流电能变换成直流电能的过程称为整流,把完成整流功能的电路称为整流电路,把实现整流过程的装置称为整流设备或整流器。
与之相对应,把将直流电能变换成交流电能的过程称为逆变,把完成逆变功能的电路称为逆变电路,把实现逆变过程的装置称为逆变设备或逆变器。
现代逆变技术是研究逆变电路理论和应用的一门科学技术。
它是建立在工业电子技术、半导体器件技术、现代控制技术、现代电力电子技术、半导体变流技术、脉宽调制(PWM)技术等学科基础之上的一门实用技术。
它主要包括半导体功率集成器件及其应用、逆变电路和逆变控制技术3大部分。
三、逆变器的分类逆变器的种类很多,可按照不同的方法进行分类。
1.按逆变器输出交流电能的频率分,可分为工频逆变器、中频逆器和高频逆变器。
工频逆变器工频逆变器的频率为50~60Hz的逆变器,图1 示出采用工频变压器升压的逆变电路。
它首先把直流电逆变成工频低压交流电;再通过工频变压器升压成220V,50Hz 的交流电供负载使用。
它的优点是结构简单,各种保护功能均可在较低电压下实现。
光伏逆变器的选型原则
光伏逆变器的选型原则主要包括以下几点:
逆变器的功率匹配:逆变器的额定功率应与光伏电池组的总容量相匹配,以确保最大化发电效率。
通常情况下,逆变器的额定功率应略大于光伏电池组的总容量。
逆变器的效率和质量:选择高效率和高质量的逆变器可以提高光伏系统的发电效率和可靠性。
逆变器的效率越高,转换损耗越小,发电效率越高。
逆变器的输入电压范围:逆变器的输入电压范围应与光伏电池组的输出电压范围相匹配。
这样可以确保逆变器能够正常工作,并最大限度地利用光伏电池组的发电能力。
逆变器的可靠性和耐用性:选择具有良好的可靠性和耐用性的逆变器可以减少维护和更换的成本。
一些关键指标,如逆变器的寿命、温度范围、防水防尘等级等,都是评估逆变器可靠性的重要因素。
逆变器的监控和通信功能:选择具有良好的监控和通信功能的逆变器可以实时监测光伏系统的运行状态,及时发现和解决问题。
一些高级功能,如远程监控、数据存储和分析等,可以提升系统的管理和维护效率。
逆变器的成本和性价比:在满足以上要求的前提下,选择价格合理、性价比高的逆变器可以降低系统的总投资成本。
需要综合考虑逆变器的品牌声誉、售后服务等因素。
总之,光伏逆变器的选型原则是根据光伏电池组的容量、效率要求、电压范围、可靠性和耐用性、监控和通信功能、成本和性价比等因素综合考虑,选择合适的逆变器以实现最佳的发电效果和经济效益。
逆变器选型标准
逆变器选型标准
逆变器选型标准主要包括以下几个方面:
1.匹配光伏组件:逆变器的额定电压、电流和功率需要与光伏组件的输出特性匹配,以充分利用光伏组件的发电潜力。
2.适应环境:逆变器需要适应不同的环境条件,包括温度、湿度和海拔等。
在选型时需要考虑当地的环境条件。
3.高效稳定:逆变器需要保持高效和稳定的工作状态,以确保光伏电站的最大发电量和长期可靠性。
4.网络连接:逆变器需要与电网连接,因此需要选择适合当地电网的逆变器。
此外,逆变器需要具有网络监控功能,方便对光伏电站的运行状态进行实时监控。
5.安全可靠:逆变器需要保证安全可靠,以防止意外故障和火灾等安全事故。
因此,逆变器的质量和可靠性是选型时的重要考虑因素。
6.成本效益:逆变器的价格和性能是选型时需要考虑的重要因素。
需要综合考虑逆变器的性能、质量、可靠性和价格等因素,选择最适合的逆变器型号。
7.技术要求:逆变器的转换效率、稳定性和其他技术指标也需要考虑。
转换效率高的逆变器可以减少能量损失,提高系统发电效率。
8.并网光伏逆变器选型时,应注意以下几个方面的指标:具有
实时监测功能、具有最大功率跟踪功能(MPPT)、逆变器输出
效率要高、逆变器的输出波形要符合上网要求。
综上所述,逆变器选型时需要综合考虑以上几个方面的因素,选择适合项目需求的逆变器型号。
逆变器选型与容量计算
逆变器选型与容量计算逆变器选型与容量计算指南逆变器是将直流(DC)电能转换为交流(AC)电能的设备,在太阳能发电系统、风力发电系统和蓄电池系统中起着重要的作用。
逆变器的选型和容量计算对于系统的性能和稳定运行至关重要。
在这篇文章中,我们将讨论逆变器选型和容量计算的关键因素和步骤。
第一步:了解逆变器的类型和规格在选择逆变器之前,您需要了解不同类型的逆变器以及它们的技术规格。
主要有以下几种类型的逆变器:1. 单相逆变器:适用于小型家庭和商业应用,输出功率一般在1kW到10kW之间。
2. 三相逆变器:适用于大型商业和工业应用,输出功率一般在10kW到1MW 之间。
3. 网络逆变器:适用于与公共电网连接的系统,可将多余的电力注入电网,并从电网获取电力。
4. 脉宽调制(PWM)逆变器:具有高效率和较低的谐波失真,适用于高要求的电气设备。
5. 纯正弦波逆变器:输出的交流波形为纯正弦波,适用于对电力质量要求较高的应用。
第二步:根据负载需求计算逆变器容量逆变器容量的计算依赖于系统的负载需求和预计的功率需求。
以下是计算逆变器容量的主要步骤:1. 确定负载需求:首先,明确您想要供电的负载类型和功率需求。
例如,您可能需要为照明、空调、电视、冰箱等提供电力。
2. 计算负载功率总和:将每个负载的功率需求相加,得出总功率需求。
确保将负载的峰值功率需求考虑在内,以确保逆变器可以满足需求。
3. 考虑逆变器的效率和功率因数:逆变器的实际输出功率是其额定容量的一个百分比,这取决于逆变器的效率和功率因数。
根据所选逆变器的技术规格,将负载功率总和除以逆变器的效率和功率因数,以获得所需的逆变器容量。
4. 考虑系统的未来扩展性:根据系统的未来扩展计划,考虑逆变器容量的灵活性。
如果您计划将来增加更多的负载,确保所选的逆变器具有足够的余量。
第三步:考虑逆变器的品质和可靠性在选择逆变器时,品质和可靠性是非常重要的因素。
以下是评估逆变器品质和可靠性的关键要素:1. 厂商信誉和经验:选择具有良好信誉和丰富经验的厂商,可以确保逆变器的质量和性能。
逆变器与电汇流箱的选型与布置设计
逆变器与电汇流箱的选型与布置设计逆变器是太阳能光伏发电系统中必不可少的组件之一,它的作用是将光伏电池发出的直流电转换为交流电以供给家庭或工业用电。
而电汇流箱则是将不同的太阳能板之间的直流电进行串联或并联,并接入逆变器输入端的一个重要设备。
在进行逆变器与电汇流箱的选型与布置设计时,需要考虑以下几个方面的因素:1. 逆变器选型:逆变器的选型需根据所安装的太阳能光伏板的容量及其输出的电压和电流来确定。
首先需要确定光伏板的总容量以及单个光伏板的最大输出功率,在此基础上选择逆变器的额定功率,以确保逆变器能够满足系统的总输出功率需求。
其他要考虑的因素包括逆变器的效率、抗干扰能力、可靠性以及监控功能等。
2. 电汇流箱选型:电汇流箱是将多个太阳能板的直流电汇集到一起,并将其输出给逆变器的设备。
选型时需要考虑电汇流箱的输入电流、输入电压范围和最大功率等参数,以确保其能够满足所连接太阳能板的总功率需求。
3. 布置设计:在布置设计时,需要考虑逆变器和电汇流箱的安装位置、通风散热要求、接线盒的布置以及防雷措施等。
逆变器通常安装在室内或者防水的室外机箱中,应确保通风良好、无阻挡以降低温度;电汇流箱应选择封闭防水的外壳,并且安装位置选择在避免直射阳光暴晒的地方,以保证设备的长期稳定运行。
同时,还需要注意逆变器与电汇流箱之间的连接线路设计。
连接线路的质量将直接影响系统的性能稳定性和发电效率。
应选用合适的导线规格,确保足够的导线截面积,减小线路电阻,降低线路损耗。
此外,还需采取合适的接线方式及连接器,确保接线牢固可靠,并进行防水防腐蚀处理。
除此之外,还需考虑系统的可维护性,例如逆变器和电汇流箱的维护接口是否便利、故障排查和维修的容易程度等。
此外,还可以考虑逆变器和电汇流箱的辅助功能,如智能监控系统、远程控制等,以提高系统的可管理性和实时监测能力。
总结:逆变器与电汇流箱的选型与布置设计是太阳能光伏发电系统中至关重要的环节。
我们需要根据系统的总输出功率需求来选择逆变器和电汇流箱的额定功率,同时考虑其质量、可靠性、散热要求等因素。
新能源光伏发电系统中逆变器的选型与参数配置
新能源光伏发电系统中逆变器的选型与参数配置随着可再生能源的快速发展和广泛应用,光伏发电系统逐渐成为了一种主要的电力供应方式。
在光伏发电系统中,逆变器是一个关键的组件,它将光伏电池板产生的直流电转换成交流电,以满足家庭、工业和商业等用电需求。
逆变器的选型和参数配置对光伏发电系统的效率和可靠性起到了至关重要的作用。
首先,逆变器的选型应考虑系统的容量和工作环境。
光伏发电系统的容量通常由光伏电池板的数量和功率决定。
当确定了系统的容量后,可根据光伏电池板的特性曲线和工作环境的温度、湿度等因素,选择具有相应容量和适应工作环境的逆变器。
逆变器应具备高转换效率、长寿命和良好的可靠性。
其次,逆变器的参数配置应根据具体需求进行调整。
参数配置包括输入电压范围、输出电压、频率和保护功能等。
输入电压范围应考虑光伏电池板的输出电压波动范围,保持逆变器工作在最佳转换效率点。
输出电压和频率应与用电设备相匹配,以确保设备正常工作。
同时,逆变器还应具备过压、欠压、过流、短路等保护功能,以确保系统的安全性和稳定性。
在选型和参数配置时,还应考虑逆变器的交互性和监控功能。
现代逆变器通常具备远程监控和诊断功能,可以实时监测和管理系统运行状态。
通过连接到云平台,用户可以随时随地对光伏发电系统进行监控和管理,提高系统的可控性和可管理性。
此外,逆变器的质量和品牌也是选型的重要因素。
优质的逆变器通常具备更高的转换效率和可靠性,能够提供更长的使用寿命和更好的售后服务。
在选择逆变器时,可参考用户评价和专业的第三方测试数据,选择具有良好口碑和信誉的品牌。
值得一提的是,逆变器的设计和安装应符合标准和规范。
光伏发电系统涉及电气安全和防雷等方面的要求,逆变器的设计和安装应符合相关标准,确保系统的安全和可靠性。
此外,逆变器的维护和保养也是确保系统正常运行的关键。
定期检查和清洁逆变器,及时替换老化或故障的部件,可以延长逆变器的使用寿命和提高系统的效率。
总结而言,新能源光伏发电系统中逆变器的选型和参数配置对系统的性能和可靠性至关重要。
逆变器的选型
逆变器主要技术指标有:额定容量;输出功率因数;额定输入电压、电流电压调整率;负载调整率;谐波因数;总谐波畸变率;畸变因数;峰值子数等通过对逆变器产品的考察,现对250kW、500kW逆变器产品及1000kW逆变器做技术参数比较:本工程装机容量,10MWp,若选用单台容量大的逆变器,逆变器发生故障时,发电系统损失发电量较大;选用单台容量小的逆变设备,则设备数量较多,会增加投资后期的维护工作量;在投资相同的条件下,应尽量选用容量大的逆变设备,可在一定程度上降低投资,并提高系统可靠性,因此,从工程运行及维护考虑,本工程拟采用高效率、大功率逆变器,选用容量为 500kW,逆变器参数暂按如下参数进行设计集中型逆变器主要特点是单机功率大、最大功率跟踪(MPPT)数量少、每瓦成本低。
目前国内的主流机型以 500kW、630kW 为主,欧洲及北美等地区主流机型单机功率 800kW 甚至更高,功率等级和集成度还在不断提高,德国 SMA 公司今年推出了单机功率 2.5MW 的逆变器。
按照逆变器主电路结构,集中型逆变器又可以分为以下 2 种类型集中型逆变器是目前大部分中大型光伏电站的首选,在全球 5MW 以上的光伏电站中,其选用比例超过 98%通过对比集中型和组串型主流机型方案在 100MW 电站的运维数据(见表 5),发电量损失二者相当;由于组串型设备是整机维护,而集中型设备是器件维护,设备维护成本上,集中型优势非常明显。
同时,在占地几千亩的百 MW 级大规模电站中,对完全分散布置的组串逆变器进行更换,维护人员花在路途上的时间将远高于进行设备更换的时间,这也是组串型的大型电站应用不利因素之一集中型方案更加符合电网接入要求高压输电网对并网的光伏发电,在调度响应、故障穿越、限发、超发、平滑、谐波限制、功率变化率、紧急启停等方面都有严格要求。
故障穿越是指电网出现短路、浪涌、缺相情况下,逆变器必须能够在 625ms 到几 s 的时间内,依然输出一定容量的有功功率和无功功率,确保电力系统继电保护能够正常动作,由于集中型逆变器在电站中台数少 , 单机功能强大,通讯控制简单,故障期间能够穿越故障的概率远大于组串逆变器。
欧美逆变器的选型标准
欧美逆变器的选型标准
欧美逆变器的选型标准如下:
1. 输入电压范围:逆变器的输入电压范围应该与您的直流电源(如电池)的电压范围相匹配。
通常,逆变器的输入电压范围应该在您的直流电源标称电压的90%到110%之间。
2. 输出电压和频率:逆变器的输出电压和频率应该与您要使用的设备相匹配。
大多数电子设备需要220伏特交流电(AC)供电,频率为50或60赫兹(Hz)。
3. 功率:逆变器的功率应该足够大,以驱动您的设备。
您需要了解您的设备所需的功率,并选择一个能够提供足够功率的逆变器。
4. 效率:逆变器的效率决定了它转换直流电到交流电的效率。
高效的逆变器可以减少能源损失,提高能源利用效率。
5. 安全性:逆变器应该符合相关的安全标准,例如UL和CE认证。
此外,
逆变器应该具有过载保护和短路保护等功能,以保障设备和人身安全。
6. 品牌和质量:选择知名品牌和优质的产品可以保证更好的质量和售后服务。
7. 环境条件:考虑您的使用环境条件,如温度、湿度、海拔高度等,以确保逆变器能够正常工作。
8. 接口和连接方式:逆变器的接口和连接方式应该方便您连接设备,并易于维护和升级。
9. 成本:在满足性能和安全性的前提下,选择性价比高的产品。
请注意,使用逆变器时应遵守当地的电气安全法规和标准,以确保安全使用。
光伏逆变器选型计算
光伏逆变器选型计算光伏逆变器是将太阳能光伏发电装置产生的直流电转换为交流电的设备。
在进行光伏逆变器选型时,需要考虑多个因素,包括功率需求、电压等级、效率要求和环境适应性等。
本文将介绍光伏逆变器选型计算的方法和注意事项。
进行光伏逆变器选型时,需要确定所需的功率。
功率需求是选型的关键因素之一,它取决于光伏发电系统的总装机容量。
一般来说,逆变器的额定功率应略大于光伏发电系统的总装机容量,以确保系统正常运行。
例如,如果光伏发电系统的总装机容量为10kW,那么逆变器的额定功率应该选择在10kW以上。
需要考虑逆变器的电压等级。
逆变器的电压等级应与光伏发电系统的电压等级匹配。
一般来说,逆变器的额定直流输入电压应与光伏发电系统的最大直流电压相匹配。
同时,逆变器的输出电压应与所接入的电网电压相匹配。
例如,如果光伏发电系统的最大直流电压为600V,而接入的电网电压为220V,那么逆变器的额定直流输入电压应选择在600V以上,输出电压应为220V。
效率要求也是光伏逆变器选型的重要考虑因素之一。
光伏逆变器的效率直接影响其转换效率和能源利用率。
一般来说,逆变器的效率应尽可能高,以提高光伏发电系统的发电效率。
例如,如果光伏发电系统的效率为15%,那么逆变器的效率应选择在90%以上。
还需要考虑光伏逆变器的环境适应性。
光伏发电系统通常会在不同的环境条件下运行,包括温度、湿度和海拔等。
因此,逆变器应具有良好的环境适应性,能够在不同的环境条件下正常运行。
例如,逆变器应具有防水、防尘、耐高温和耐寒等特性,以适应各种恶劣的环境条件。
在进行光伏逆变器选型计算时,可以借助一些在线工具或软件来帮助选择合适的逆变器型号。
这些工具通常会根据用户输入的参数进行计算和匹配,快速给出符合要求的逆变器型号。
但是在使用这些工具时,需要确保输入的参数准确无误,以获得准确的选型结果。
总结起来,光伏逆变器选型计算需要考虑功率需求、电压等级、效率要求和环境适应性等因素。
光伏项目逆变器选型要点全总结
光伏项目逆变器选型要点全总结43逆变器选型4.3.1逆变器技术指标逆变器选型主要对以下指标进行比较:逆变器输入直流电压的范围:由于太阳电池组串的输出电压随日照强度、天气条件及负载影响,其变化范围比较大。
要求逆变器能够在较大的直流输入电压范围内正常工作,并保证交流输出电压稳定。
逆变器输出效率:大功率逆变器在满载时,效率必须在95%~98%以上。
中小功率的逆变器在满载时效率必须在90%以上。
即使在逆变器额定功率10%的情况下也要保证90%(大功率逆变器)以上的转换效率。
逆变器输出波形:为使光伏阵列所产生的直流电经逆变后向公共电网并网供电,就要求逆变器的输出电压波形、幅值、相位及频率等与公共电网一致,以实现向电网无扰动平滑供电。
所选逆变器应输出电流波形良好,波形畸变以及频率波动低于国家标准要求值。
最大功率点跟踪:逆变器的输入终端阻抗应适应于光伏发电系统的实际运行特性。
保证光伏发电系统运行在最大功率点。
可靠性和可恢复性:逆变器应具有一定的抗干扰能力、环境适应能力、瞬时过载能力及各种保护功能,如:过电压情况下,光伏发电系统应正常运行;过负荷情况下,逆变器需自动向光伏电池特性曲线中的开路电压方向调整运行点,限定输入功率在给定范围内;故障情况下,逆变器必须自动从主网解列。
监控和数据采集:逆变器应有多种通讯接口进行数据采集并发送到集控室,监控设备还应有模拟输入端口与外部传感器相连,测量日照和温度等甥g。
逆变器主要技术指标还有:额定容量,输出功率因数,额定输入电压,电流,电压调整率,总谐波畸变率等。
4.3.2逆变器选型并网逆变器主要分为:集中式光伏逆变器、组串式光伏逆变器和集散式光伏逆变器,现将三类逆变器比较分析如下。
(1)逆变器方案比较集中式光伏逆变器:设备功率在500kW到3150kW之间,功率器件采用大电流IGBT,系统拓扑结构采用DC-AC一级电力电子器件变换全桥逆变,工频隔离变压器的方式,防护等级一般为IP20β体积较大,室内立式安装或加外壳室外安装。
逆变器的选型
集中式逆变器和组串式逆变器选型的比较国家电网对分布式光伏电站要求如下:单个并网点小于6MW,年自发自用电量大于50%;8KW以下可接入220V;8KW-400KW可接入380V;400KW-6MW可接入10KV。
根据逆变器的特点,光伏电站逆变器选型方法:220V项目选用单相组串式逆变器,8KW-30KW选用三相组串式逆变器,50KW以上的项目,可以根据实际情况选用组串式逆变器和集中式逆变器。
对于MW级别的电站亦可选择380V或10KV方式并网。
逆变器方案对比:集中式逆变器:设备功率在50KW到630KW之间,功率器件采用大电流IGBT,系统拓扑结构采用DC-AC一级电力电子器件变换全桥逆变,工频隔离变压器的方式,防护等级一般为IP20。
体积较大,室内立式安装。
组串式逆变器:功率小于30KW,功率开关管采用小电流的MOSFET,拓扑结构采用DC-DC-BOOST升压和DC-AC全桥逆变两级电力电子器件变换,防护等级一般为IP65。
体积较小,可室外臂挂式安装。
系统主要器件对比:集中式逆变器:光伏组件,直流电缆,汇流箱,直流电缆,直流汇流配电,直流电缆,逆变器,隔离变压器,交流配电,电网。
组串式逆变器:组件,直流电缆,逆变器,交流配电,电网。
主要优缺点和适应场合:1、集中式逆变器一般用于日照均匀的大型厂房,荒漠电站,地面电站等大型发电系统中,系统总功率大,一般是兆瓦级以上。
主要优势有:(1)逆变器数量少,便于管理;(2)逆变器元器件数量少,可靠性高;(3)谐波含量少,直流分量少电能质量高;(4)逆变器集成度高,功率密度大,成本低;(5)逆变器各种保护功能齐全,电站安全性高;(6)有功率因素调节功能和低电压穿越功能,电网调节性好。
主要缺点有:(1)直流汇流箱故障率较高,影响整个系统。
(2)集中式逆变器MPPT电压范围窄,一般为450-820V,组件配置不灵活。
在阴雨天,雾气多的部区,发电时间短。
(3)逆变器机房安装部署困难、需要专用的机房和设备。
逆变器的选型
集中式逆变器和组串式逆变器选型的比较国家电网对分布式光伏电站要求如下:单个并网点小于6MW,年自发自用电量大于50%;8KW以下可接入220V;8KW-400KW可接入380V;400KW-6MW可接入10KV。
根据逆变器的特点,光伏电站逆变器选型方法:220V项目选用单相组串式逆变器,8KW-30KW选用三相组串式逆变器,50KW以上的项目,可以根据实际情况选用组串式逆变器和集中式逆变器。
对于MW级别的电站亦可选择380V或10KV方式并网。
逆变器方案对比:集中式逆变器:设备功率在50KW到630KW之间,功率器件采用大电流IGBT,系统拓扑结构采用DC-AC一级电力电子器件变换全桥逆变,工频隔离变压器的方式,防护等级一般为IP20。
体积较大,室内立式安装。
组串式逆变器:功率小于30KW,功率开关管采用小电流的MOSFET,拓扑结构采用DC-DC-BOOST升压和DC-AC全桥逆变两级电力电子器件变换,防护等级一般为IP65。
体积较小,可室外臂挂式安装。
系统主要器件对比:集中式逆变器:光伏组件,直流电缆,汇流箱,直流电缆,直流汇流配电,直流电缆,逆变器,隔离变压器,交流配电,电网。
组串式逆变器:组件,直流电缆,逆变器,交流配电,电网。
主要优缺点和适应场合:1、集中式逆变器一般用于日照均匀的大型厂房,荒漠电站,地面电站等大型发电系统中,系统总功率大,一般是兆瓦级以上。
主要优势有:(1)逆变器数量少,便于管理;(2)逆变器元器件数量少,可靠性高;(3)谐波含量少,直流分量少电能质量高;(4)逆变器集成度高,功率密度大,成本低;(5)逆变器各种保护功能齐全,电站安全性高;(6)有功率因素调节功能和低电压穿越功能,电网调节性好。
主要缺点有:(1)直流汇流箱故障率较高,影响整个系统。
(2)集中式逆变器MPPT电压范围窄,一般为450-820V,组件配置不灵活。
在阴雨天,雾气多的部区,发电时间短。
(3)逆变器机房安装部署困难、需要专用的机房和设备。
逆变器的选型
集中式逆变器和组串式逆变器选型的比较国家电网对分布式光伏电站要求如下:单个并网点小于6MW,年自发自用电量大于50%;8KW 以下可接入220V;8KW-400KW可接入380V;400KW-6MW可接入10KV。
根据逆变器的特点,光伏电站逆变器选型方法:220V项目选用单相组串式逆变器,8KW-30KW选用三相组串式逆变器,50KW 以上的项目,可以根据实际情况选用组串式逆变器和集中式逆变器。
对于MW级别的电站亦可选择380V或10KV方式并网。
逆变器方案对比:集中式逆变器:设备功率在50KW到630KW之间,功率器件采用大电流IGBT,系统拓扑结构采用DC-AC一级电力电子器件变换全桥逆变,工频隔离变压器的方式,防护等级一般为IP20。
体积较大,室内立式安装。
组串式逆变器:功率小于30KW,功率开关管采用小电流的MOSFET,拓扑结构采用DC-DC-BOOST升压和DC-AC全桥逆变两级电力电子器件变换,防护等级一般为IP65。
体积较小,可室外臂挂式安装。
系统主要器件对比:集中式逆变器:光伏组件,直流电缆,汇流箱,直流电缆,直流汇流配电,直流电缆,逆变器,隔离变压器,交流配电,电网。
组串式逆变器:组件,直流电缆,逆变器,交流配电,电网。
主要优缺点和适应场合:1、集中式逆变器一般用于日照均匀的大型厂房,荒漠电站,地面电站等大型发电系统中,系统总功率大,一般是兆瓦级以上。
主要优势有:(1)逆变器数量少,便于管理;(2)逆变器元器件数量少,可靠性高;(3)谐波含量少,直流分量少电能质量高;(4)逆变器集成度高,功率密度大,成本低;(5)逆变器各种保护功能齐全,电站安全性高;(6)有功率因素调节功能和低电压穿越功能,电网调节性好。
主要缺点有:(1)直流汇流箱故障率较高,影响整个系统。
(2)集中式逆变器MPPT电压范围窄,一般为450-820V,组件配置不灵活。
在阴雨天,雾气多的部区,发电时间短。
(3)逆变器机房安装部署困难、需要专用的机房和设备。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
集中式逆变器和组串式逆变器选型的比较
国家电网对分布式光伏电站要求如下:单个并网点小于6MW,年自发自用电量大于50%;8KW 以下可接入220V;8KW-400KW可接入380V;400KW-6MW可接入10KV。
根据逆变器的特点,光伏
电站逆变器选型方法:220V项目选用单相组串式逆变器,8KW-30KW选用三相组串式逆变器,50KW 以上的项目,可以根据实际情况选用组串式逆变器和集中式逆变器。
对于MW级别的电站亦可选择380V或10KV方式并网。
逆变器方案对比:
集中式逆变器:设备功率在50KW到630KW之间,功率器件采用大电流IGBT,系统拓扑结
构采用DC-AC一级电力电子器件变换全桥逆变,工频隔离变压器的方式,防护等级一般为IP20。
体积较大,室内立式安装。
组串式逆变器:功率小于30KW,功率开关管采用小电流的MOSFET,拓扑结构采用
DC-DC-BOOST升压和DC-AC全桥逆变两级电力电子器件变换,防护等级一般为IP65。
体积较小,可室外臂挂式安装。
系统主要器件对比:
集中式逆变器:光伏组件,直流电缆,汇流箱,直流电缆,直流汇流配电,直流电缆,逆变器,隔离变压器,交流配电,电网。
组串式逆变器:组件,直流电缆,逆变器,交流配电,电网。
主要优缺点和适应场合:
1、集中式逆变器一般用于日照均匀的大型厂房,荒漠电站,地面电站等大型发电系统中,系统总功率大,一般是兆瓦级以上。
主要优势有:
(1)逆变器数量少,便于管理;
(2)逆变器元器件数量少,可靠性高;
(3)谐波含量少,直流分量少电能质量高;
(4)逆变器集成度高,功率密度大,成本低;
(5)逆变器各种保护功能齐全,电站安全性高;
(6)有功率因素调节功能和低电压穿越功能,电网调节性好。
主要缺点有:
(1)直流汇流箱故障率较高,影响整个系统。
(2)集中式逆变器MPPT电压范围窄,一般为450-820V,组件配置不灵活。
在阴雨天,雾气多
的部区,发电时间短。
(3)逆变器机房安装部署困难、需要专用的机房和设备。
(4)逆变器自身耗电以及机房通风散热耗电,系统维护相对复杂。
(5)集中式并网逆变系统中,组件方阵经过两次汇流到达逆变器,逆变器最大功率跟踪功能(MPPT)不能监控到每一路组件的运行情况,因此不可能使每一路组件都处于最佳工作点,当有一块组件发生故障或者被阴影遮挡,会影响整个系统的发电效率。
(6)集中式并网逆变系统中无冗余能力,如有发生故障停机,整个系统将停止发电。
精选资料,欢迎下载。
2、组串式逆变器适用于中小型屋顶光伏发电系统,小型地面电站。
主要优势有:
(1)组串式逆变器采用模块化设计,每个光伏串对应一个逆变器,直流端具有最大功率跟踪功能,交流端并联并网,其优点是不受组串间模块差异,和阴影遮挡的影响,同时减少光伏电池组件最佳工作点与逆变器不匹配的情况,最大程度增加了发电量。
(2)组串式逆变器MPPT电压范围宽,一般为250-800V,组件配置更为灵活。
在阴雨天,雾气多的部区,发电时间长。
(3)组串式并网逆变器的体积小、重量轻,搬运和安装都非常方便,不需要专业工具和设备,也不需要专门的配电室,在各种应用中都能够简化施工、减少占地,直流线路连接也不需要直流汇流箱和直流配电柜等。
组串式还具有自耗电低、故障影响小、更换维护方便等优势。
主要缺点有:
(1)电子元器件较多,功率器件和信号电路在同一块板上,设计和制造的难度大,可靠性稍差。
(2)功率器件电气间隙小,不适合高海拔地区。
户外型安装,风吹日晒很容易导致外壳和散热片老化。
(3)不带隔离变压器设计,电气安全性稍差,不适合薄膜组件负极接地系统,直流分量大,对电网影响大。
(4)多个逆变器并联时,总谐波高,单台逆变器THDI可以控制到2%以上,但如果超过40台逆变器并联时,总谐波会迭加。
而且较难抑制。
(5)逆变器数量多,总故障率会升高,系统监控难度大。
(6)没有直流断路器和交流断路器,没有直流熔断器,当系统发生故障时,不容易断开。
(7)单台逆变器可以实现零电压穿越功能,但多机并联时,零电压穿越功能、无功调节、有功调节等功能实现较难。
精选资料,欢迎下载。
精选资料,欢迎下载。
综上所述,对于400KW-2MW的光伏发电系统,虽然采用组串式逆变器的总体成本要比采用集中式逆变器总体成本高5%,但前者发电系统的总发电量要比后者高5%-10%。
因此从公司项目质量,从客户自身利益,从整体系统发电效率等三方面考虑,在该容量范围内采用组串式逆变器具有更大的价值和意义。
精选资料,欢迎下载。
Welcome !!!
欢迎您的下载,资料仅供参考!
精选资料,欢迎下载。