人教版高中数学必修一知识点汇总

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版高中数学必修1知识点

第一章集合与函数概念

1.1集合

1.1.1集合的含义与表示

1.集合的含义

一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合。

2.集合的中元素的三个特性

(1)元素的确定性;(2)元素的互异性;(3)元素的无序性

3.“属于”的概念

我们通常用大写的拉丁字母A,B,C,……表示集合,用小写拉丁字母a,b,c,……表示元素

如:如果a是集合A的元素,就说a属于集合A记作a∈A,如果a不属于集合A记作a A

4.常用数集及其记法

非负整数集(即自然数集)记作:N;正整数集记作:N*或N+;整数集记作:Z;有理数集记作:Q;实数集记作:R

5.集合的表示法

(1)列举法:把集合中的元素一一列举出来,然后用一个大括号括上。

(2)描述法:用集合所含元素的公共特征表示集合的方法称为描述法。

①语言描述法:例:{不是直角三角形的三角形}

②数学式子描述法:例:不等式x-3>2的解集是{x∈R|x-3>2}或{x|x-3>2}

(3)图示法(Venn图)

1.1.2集合间的基本关系

1.“包含”关系——子集

一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集,记作A⊆B

2.“相等”关系

如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B A B B A

⇔⊆⊆

3.真子集

如果A⊆B,且A≠B那就说集合A是集合B的真子集,记作A⊂B(或B⊃A) 4.空集

不含任何元素的集合叫做空集,记为Φ

规定:空集是任何集合的子集,空集是任何非空集合的真子集.

1.1.3集合的基本运算

1.交集的定义

一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A∩B(读作“A交B”),即A∩B={x|x∈A,且x∈B}.

2.并集的定义

一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。记作:A∪B(读作“A并B”),即A∪B={x|x∈A,或x∈B}.

3.交集与并集的性质

A∩A=A,A∩φ=φ,A∩B=B∩A,A∪A=A,A∪φ=A,A∪B=B∪A. 4.全集与补集

(1)全集

如果集合U含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。通常用U来表示。

(2)补集

设U是一个集合,A是U的一个子集(即A⊆U),由U中所有不属于A的元素组成的集合,叫做U中子集A的补集(或余集)。记作:C U A,即C S A={x|x∈U 且x∉A}

(3)性质

C U(C U A)=A,(C U A)∩A=Φ,(C U A)∪A=U;

(C U A)∩(C U B)=C U(A∪B),(C U A)∪(C U B)=C U(A∩B).

1.2函数及其表示

1.2.1函数的概念

1.函数的概念

设A.B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.

其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y 值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.

【注意】

(1)如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;

(2)函数的定义域、值域要写成集合或区间的形式

【定义域补充】

求函数的定义域时列不等式组的主要依据是

(1)分式的分母不等于零;

(2)偶次方根的被开方数不小于零;

(3)对数式的真数必须大于零;

(4)指数、对数式的底数必须大于零且不等于1.

(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.

(6)指数为零底不可以等于零

(7)实际问题中的函数的定义域还要保证实际问题有意义.

(注意:求出不等式组的解集即为函数的定义域.)

2.构成函数的三要素

定义域、对应关系和值域

【注意】

(1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函

数相等(或为同一函数)。

(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。

3.相同函数的判断方法

(1)定义域一致;

(2)表达式相同(两点必须同时具备)

【值域补充】

(1)函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域.

(2)应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解复杂函数值域的基础。

4.区间的概念

(1)区间的分类:开区间、闭区间、

(2)无穷区间;

(3)区间的数轴表示.

1.2.2函数的表示法

1.常用的函数表示法及各自的优点

(1)函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据:作垂直于x轴的直线与曲线最多有一个交点。

(2)函数的表示法

解析法:必须注明函数的定义域;

相关文档
最新文档