清华《分子动力学模拟入门》ppt(精选)
合集下载
分子动力学模拟方法.ppt

利用此预测误差,对预测出的位置、速度、加速度等量进行校正:
rc (t t) r p (t) c0a(t t) vc (t t) v p (t) c1a(t t) ac (t t) a p (t) c2a(t t) bc (t t) b p (t) c3a(t t)
预测阶段运动方程的变换:
微正则系综分子动力学(NVE MD)
它是分子动力学方法的最基本系综 具有确定的粒子数N,能量E和体积V 算法: ① 规定初始位置和初始速度
② 对运动方程积分若干步 ③ 计算势能和动能 ④ 若能量不等于所需要的值,对速度进行标度 ⑤ 重复②至④,直到系统平衡
微正则系综(NVE)MD模拟算法的流程图:
给定每个分子的初始位置ri(0)和速度vi(0)
计算每个分子的受力Fi和加速度ai
解运动方程并求出每个分子运动一个时间步 长后到达的位置所具有的速度
移动所有分子到新的位置并具有当前时刻的 速度
统计系统的热力学性质及其它物理量
No
Yes
统计性质不变?
打印结果,结束
微正则系综MD模拟程序F3讲解(LJ, NVE):
(t)
1 2
[ai
(t)
ai
(t
t)]t
Verlet三种形式算法的比较:
Verlet
Leapfrog Velocity Verlet
四、预测-校正(Predictor-Corrector)格式算法:
1. 预测(Predictor)阶段:其基本思想是Taylor展开,
r p (t t) r(t) v(t)t 1 a(t)t 2 1 b(t)t 3
9
rc
3
采用对比量:r* r / * 3 E* E /
rc (t t) r p (t) c0a(t t) vc (t t) v p (t) c1a(t t) ac (t t) a p (t) c2a(t t) bc (t t) b p (t) c3a(t t)
预测阶段运动方程的变换:
微正则系综分子动力学(NVE MD)
它是分子动力学方法的最基本系综 具有确定的粒子数N,能量E和体积V 算法: ① 规定初始位置和初始速度
② 对运动方程积分若干步 ③ 计算势能和动能 ④ 若能量不等于所需要的值,对速度进行标度 ⑤ 重复②至④,直到系统平衡
微正则系综(NVE)MD模拟算法的流程图:
给定每个分子的初始位置ri(0)和速度vi(0)
计算每个分子的受力Fi和加速度ai
解运动方程并求出每个分子运动一个时间步 长后到达的位置所具有的速度
移动所有分子到新的位置并具有当前时刻的 速度
统计系统的热力学性质及其它物理量
No
Yes
统计性质不变?
打印结果,结束
微正则系综MD模拟程序F3讲解(LJ, NVE):
(t)
1 2
[ai
(t)
ai
(t
t)]t
Verlet三种形式算法的比较:
Verlet
Leapfrog Velocity Verlet
四、预测-校正(Predictor-Corrector)格式算法:
1. 预测(Predictor)阶段:其基本思想是Taylor展开,
r p (t t) r(t) v(t)t 1 a(t)t 2 1 b(t)t 3
9
rc
3
采用对比量:r* r / * 3 E* E /
第六章 分子动力学模拟ppt课件

2.4 Equations of motion
分子动力学模拟
为了在计算机上解运动方程,必须为微分方程建立一个 有限差分格式,从差分方程中再导出位置和速度的递推关系 式。这些算法是一步一步执行的,先算t 时刻的位置和速度, 然后在此基础上计算t+1时刻的位置和速度。
微分方程最为直接的离散化格式来自泰勒展开: r(th)r(t)n i 1 1hi!ir(i)(t)Rn
1.5
1
间间
0.5
rij 6 2
0
-0.5
-1
0.8
1
1.2 1.4 1.6 1.8 间间
2
2.2 2.4 2.6
对势能的最大贡献来自于粒子的近邻区域,位势截断
常用的方法是球形截断,截断半径一般取2.5σ或3.6 σ,对
截断距离之外分子间相互作用能按平均密度近似的方法进
行校正。
分子动力学模拟
The disk processed after the simulation is finished. It contains at least all the positions and velocities of all particles. This information is sufficient to calculate all the properties of the system. However, it is more economical to calculate properties during the simulation and store them in the than reading the calculating them afterwards.
➢二、分子动力学方法
分子动力学ppt课件

计算机分子模拟方法 第三章、分子动力学方法
• 算法启动
(1)扰动初始位置; 2 h 1 0 0 0 (2)利用初始位置和速度: r r hv F
i i i
2 m
i
• 原始形式的算法表述:
(1)规定初始位置r0,r1 (2)计算第n步的力Fn (3)计算第n+1步的位置: r (4)计算第n步的速度: (5)重复(2)到(4)
L
计算机分子模拟方法 第三章、分子动力学方法
• 差分格式(采用有限差分法将微分方程变成有限差分方程以便数 值求解 )
哈密顿表述:
牛顿表述:
dr dP i i m p ; F r i ij dt dti j dr dv i i v ; m F r i i ij dt dt j
df f( t h ) f( t h ) dt 2 h
2 d f 1 [ f ( t h ) f ( t h ) 2 f ( t ) 2 2 dt h
F r
i j i ij
d 2 ri 1 1 2 ri t h 2 ri t ri t h F i t 2 dt h m h2 ri t h 2 ri t ri t h F i t m h2 n 1 n n 1 n ri 2 ri ri Fi m n 1 n 1 n ri ri vi 2h
n 1 n1 n1 2 2 n 步 V V V ) ⑤计 算 第 的 速 度 : i ( i i 2
重 复 ③ 到 ⑤
计算机分子模拟方法 速度形式:Velocity form ,可以自启动。稳定、收敛和简便性成为目前最有吸引力的 方法。 第三章、分子动力学方法
分子模拟PPT—第四章 分子动力学模拟原理

2
rb
or
S2
(r
)
1
r b
2
rb
b
模拟中的控制
• 温度控制 简单方法 – 每一步调节动量都使动能逼近期望值
• 更新位置和力 • 迭代方法使得 v v f
f T Tcalc
– 缺点
• “运行方程” 是不可逆的,系统不遵循细致平衡 • 不属于任何有明确定义的系综
复杂要求 (多时间尺度):
当出现多时间尺度 e.g., 不同质量的混合粒子, 溶剂 聚合体, 柔性和刚性的共存分子体系等等, t 的选取 必须依照体系中动力学变化最快的成分或模型。
积分步长的选取
• 积分步长应小于系统中最快运动周期的1/10。 • 以氩原子的分子动力学计算为例:
U (r) d U (r) d [4 (12 12 / r13 6 6 / r7 )] 4 (156 12 / r14 42 6 / r8)
S(r) 0 r b
b
cutoff 方案
2. Switching
1
ra
S(r) 1 y(r)22 y(r) 3 a r b
0
rb
这里
y(r)
r2 b2
a2 a2
ab
3. Shifting
S1(r)
1
r b
2
dr
dr
U (rmin ) 57.14 / 2
k 4 2 2
mAr mAr 19.981.662 1022 (g)
mAr mAr
57.12 0.24 6.9446 1014 erg
分子动力学模拟.pptx

这种系综称巨正则系综。
进行分子动力学模拟的第一步是确定起始构型,一个能量较低的起始构型是进行分子模拟
的 基础,一般分子的其实构型主要是来自实验数据或量子化学计算。在确定起始构型之后 要赋 予构成分子的各个原子速度,这一速度是根据玻尔兹曼分布随机生成,由于速度的分
布符合 玻尔兹曼统计,因此在这个阶段,体系的温度是恒定的。另外,在随机生成各个原
能说关注的切入点不同罢了。常见的有三类力场:全原子力场,联合力场,粗粒化力场;当
然还有所谓的第一代,第二代,第三代力场的说法,这里就不一一列举了。
再次提醒注意:必须选择适合我们所关注体系和我们所感兴趣的性质及现象的力场。 3 通过实验数据或者是某些工具得到体系内的每一个分子的初始结构坐标文件,之后,
乏明确的表达 式,参量很多,模拟收敛速度很慢,给应用带来很大困难,因此在一般应用
中,通过第一性 原理计算结果拟合势函数的 L-J,morse 等势模型的应用仍非常广泛。 分子动力学计算的基本思想是赋予分子体系初始运动状态之后,利用分子的自然运动在相 空 间中抽取样本进行统计计算,时间步长就是抽样的间隔,因而时间步长的选取对动力学
模拟 非常重要。太长的时间步长会造成分子间的激烈碰撞,体系数据溢出;太短的时间步
长会降 低模拟过程搜索相空间的能力,因此一般选取的时间步长为体系各个自由度中最短 运动周期 的十分之一。但是通常情况下,体系各自由度中运动周期最短的是各个化学键的 振动,而这 种运动对计算某些宏观性质并不产生影响5 年:第一原理分子动力学法(→カー・パリネロ法)
1991 年:巨正则系综的分子动力学方法(Cagin and Pettit). 最新的巨正则系综,即为组成系综的系统与一温度为 T、化学势为μ的很大的热源、粒子源 相接触,此时系统不仅同热源有能量交换,而且可以同粒子源有粒子的交换,最后达到平衡,
进行分子动力学模拟的第一步是确定起始构型,一个能量较低的起始构型是进行分子模拟
的 基础,一般分子的其实构型主要是来自实验数据或量子化学计算。在确定起始构型之后 要赋 予构成分子的各个原子速度,这一速度是根据玻尔兹曼分布随机生成,由于速度的分
布符合 玻尔兹曼统计,因此在这个阶段,体系的温度是恒定的。另外,在随机生成各个原
能说关注的切入点不同罢了。常见的有三类力场:全原子力场,联合力场,粗粒化力场;当
然还有所谓的第一代,第二代,第三代力场的说法,这里就不一一列举了。
再次提醒注意:必须选择适合我们所关注体系和我们所感兴趣的性质及现象的力场。 3 通过实验数据或者是某些工具得到体系内的每一个分子的初始结构坐标文件,之后,
乏明确的表达 式,参量很多,模拟收敛速度很慢,给应用带来很大困难,因此在一般应用
中,通过第一性 原理计算结果拟合势函数的 L-J,morse 等势模型的应用仍非常广泛。 分子动力学计算的基本思想是赋予分子体系初始运动状态之后,利用分子的自然运动在相 空 间中抽取样本进行统计计算,时间步长就是抽样的间隔,因而时间步长的选取对动力学
模拟 非常重要。太长的时间步长会造成分子间的激烈碰撞,体系数据溢出;太短的时间步
长会降 低模拟过程搜索相空间的能力,因此一般选取的时间步长为体系各个自由度中最短 运动周期 的十分之一。但是通常情况下,体系各自由度中运动周期最短的是各个化学键的 振动,而这 种运动对计算某些宏观性质并不产生影响5 年:第一原理分子动力学法(→カー・パリネロ法)
1991 年:巨正则系综的分子动力学方法(Cagin and Pettit). 最新的巨正则系综,即为组成系综的系统与一温度为 T、化学势为μ的很大的热源、粒子源 相接触,此时系统不仅同热源有能量交换,而且可以同粒子源有粒子的交换,最后达到平衡,
《分子模拟教程》课件

人工智能与机器学习应用
人工智能和机器学习技术将在分子模拟中发挥越 来越重要的作用,例如用于优化模拟参数、预测 性质等。
多尺度模拟
目前分子模拟主要集中在原子或分子级别,未来 将进一步发展多尺度模拟方法,将微观尺度和宏 观尺度相结合,以更全面地理解物质性质和行为 。
跨学科融合
分子模拟将与生物学、医学、材料科学等更多学 科领域进行交叉融合,为解决实际问题提供更多 可能性。
环境科学
在环境科学领域,分子模拟可用于研究污 染物在环境中的迁移转化机制,为环境保 护提供理论依据。
THANKS.
分子动力学模拟的常见算法
Verlet算法
一种基于离散时间步长的算法,用于计算分子位置和速度。
leapfrog算法
一种常用的分子动力学模拟算法,具有数值稳定性和计算效率高的特 点。
Parrinello-Rahman算法
一种基于分子力场的算法,可以用于模拟大尺度分子体系的运动。
Langevin动力学算法
材料科学
通过模拟材料中分子的运动和相互作 用,可以研究材料的力学、热学和电 学等性质,为材料设计和优化提供依 据。
03
Monte Carlo模拟
Monte Carlo模拟的基本概念
随机抽样
Monte Carlo模拟基于随 机抽样的方法,通过大量 随机样本的统计结果来逼 近真实结果。
概率模型
Monte Carlo模拟建立概 率模型,模拟系统的状态 变化和行为。
通过模拟药物分子与靶点分子的相互作用,预测 药物活性并优化药物设计。
材料科学
研究材料中分子的结构和性质,预测材料的物理 和化学性质。
生物大分子模拟
模拟生物大分子的结构和动力学行为,如蛋白质 、核酸等,有助于理解其功能和性质。
人工智能和机器学习技术将在分子模拟中发挥越 来越重要的作用,例如用于优化模拟参数、预测 性质等。
多尺度模拟
目前分子模拟主要集中在原子或分子级别,未来 将进一步发展多尺度模拟方法,将微观尺度和宏 观尺度相结合,以更全面地理解物质性质和行为 。
跨学科融合
分子模拟将与生物学、医学、材料科学等更多学 科领域进行交叉融合,为解决实际问题提供更多 可能性。
环境科学
在环境科学领域,分子模拟可用于研究污 染物在环境中的迁移转化机制,为环境保 护提供理论依据。
THANKS.
分子动力学模拟的常见算法
Verlet算法
一种基于离散时间步长的算法,用于计算分子位置和速度。
leapfrog算法
一种常用的分子动力学模拟算法,具有数值稳定性和计算效率高的特 点。
Parrinello-Rahman算法
一种基于分子力场的算法,可以用于模拟大尺度分子体系的运动。
Langevin动力学算法
材料科学
通过模拟材料中分子的运动和相互作 用,可以研究材料的力学、热学和电 学等性质,为材料设计和优化提供依 据。
03
Monte Carlo模拟
Monte Carlo模拟的基本概念
随机抽样
Monte Carlo模拟基于随 机抽样的方法,通过大量 随机样本的统计结果来逼 近真实结果。
概率模型
Monte Carlo模拟建立概 率模型,模拟系统的状态 变化和行为。
通过模拟药物分子与靶点分子的相互作用,预测 药物活性并优化药物设计。
材料科学
研究材料中分子的结构和性质,预测材料的物理 和化学性质。
生物大分子模拟
模拟生物大分子的结构和动力学行为,如蛋白质 、核酸等,有助于理解其功能和性质。
生物大分子分子动力学模拟ppt课件

精选编辑ppt
14
我们的工作
培训会员学校教师课件制作知识: Word,Excel基本使用及高级用法
精选编辑ppt
15
我们的工作
解答老师们有关计算机技术方面所有问题: 工作中遇到的问题 生活中遇到的问题
精选编辑ppt
16
我们的成果
提高了老师的计算机操作水平 吸引了更多的老师参与计划 吸引了更多的当地人民参与计划
3
经济意义
农产品市场化是西部农业急需解决的问题。 西部分散在各地的农产品批发市场互相之
间很少沟通调剂。
精选编辑ppt
4
经济意义
农民生产的大部分农产品都只在当地的市 场上销售。
市场需求有限,农产品无法获得合理的价 格,造成农产品市场低需求、农产品低价 格和农户低收入。义
欢迎各位老师参加培训或加入我们的教学 队伍!
精选编辑ppt
22
What is next?
Survey $$$$ LOVE HONOR
CERTIFICATE
精选编辑ppt
23
谢谢各位!
精选编辑ppt
24
精选编辑ppt
17
我们的成果
一些十三十四岁的偏远山村学童仅接受两 年的互联网科技和英文教育,就能设计网 页,介绍家乡产品,进行网上招商。
精选编辑ppt
18
我们的成果
一个提水也得到数里外的穷乡僻壤,在短 短两年间就由农业社会直接跨进了21世纪 的信息时代。
精选编辑ppt
19
存在的问题
很多老师由于种种原因,无法参加培训 网络存在瓶颈,一定程度上影响网上课室
Linux 操作系统使用
精选编辑ppt
12
我们的工作
第四章 分子动力学模拟方法.ppt

VXI = ( RXNEWI – RXOLD(I) ) / DT2 VYI = ( RYNEWI – RYOLD(I) ) / DT2 VZI = ( RZNEWI – RZOLD(I) ) / DT2
RXOLD(I) = RX(I) RYOLD(I) = RY(I) RZOLD(I) = RZ(I)
给定每个分子的初始位置ri(0)和速度vi(0)
计算每个分子的受力Fi和加速度ai
解运动方程并求出每个分子运动一个时间步 长后到达的位置所具有的速度
移动所有分子到新的位置并具有当前时刻的 速度
统计系统的热力学性质及其它物理量
No
Yes
统计性质不变?
打印结果,结束
微正则系综MD模拟程序F3讲解(LJ, NVE):
第四章 分子动力学模拟方法
分子动力学简史
•1957年:基于刚球势的分子動力学法(Alder and Wainwright) •1964年:利用Lennard-Jone势函数法对液态氩性质的模拟(Rahman) •1971年:模拟具有分子团簇行为的水的性质(Rahman and Stillinger) •1977年:约束动力学方法(Rychaert, Ciccotti & Berendsen; van Gunsteren) •1980年:恒压条件下的动力学方法(Andersen法、Parrinello-Rahman法) •1983年:非平衡态动力学方法(Gillan and Dixon) •1984年: 恒温条件下的动力学方法(Berendsen et al.) •1984年:恒温条件下的动力学方法(Nosé-Hoover法) •1985年:第一原理分子動力学法(→Car-Parrinello法) •1991年:巨正则系综的分子动力学方法(Cagin and Pettit)
RXOLD(I) = RX(I) RYOLD(I) = RY(I) RZOLD(I) = RZ(I)
给定每个分子的初始位置ri(0)和速度vi(0)
计算每个分子的受力Fi和加速度ai
解运动方程并求出每个分子运动一个时间步 长后到达的位置所具有的速度
移动所有分子到新的位置并具有当前时刻的 速度
统计系统的热力学性质及其它物理量
No
Yes
统计性质不变?
打印结果,结束
微正则系综MD模拟程序F3讲解(LJ, NVE):
第四章 分子动力学模拟方法
分子动力学简史
•1957年:基于刚球势的分子動力学法(Alder and Wainwright) •1964年:利用Lennard-Jone势函数法对液态氩性质的模拟(Rahman) •1971年:模拟具有分子团簇行为的水的性质(Rahman and Stillinger) •1977年:约束动力学方法(Rychaert, Ciccotti & Berendsen; van Gunsteren) •1980年:恒压条件下的动力学方法(Andersen法、Parrinello-Rahman法) •1983年:非平衡态动力学方法(Gillan and Dixon) •1984年: 恒温条件下的动力学方法(Berendsen et al.) •1984年:恒温条件下的动力学方法(Nosé-Hoover法) •1985年:第一原理分子動力学法(→Car-Parrinello法) •1991年:巨正则系综的分子动力学方法(Cagin and Pettit)
【精编】分子动力学模拟.PPT课件

rij f ij
2 K 3 Nk b T
PV 2 K 1 33
rij
f ij
2 3
K
2 3
P 2 [K ] 3V
1 2
rij fij
x new υ x old
V new υ 3V old
P 1 V 1 [υ 3 1 ]
TV
T
t P τ [ P0 P ]
P
υ {1
广义朗之万方程
miv•i(t)Fi(t)Ri(t)mi 0ti(tt')vi(t)d't
Ri(0)Rj(t) mik0 T ijij(t)
16、第六章、带传动(带传 动的张紧、使用和维护)资
料
复习旧课
1、带传动的失效形式和设计准则是什么? 失效形式是:1)打滑;2)带的疲劳破坏。 设计准则是保证带在不打滑的前提下,具有足
Verlet 算法
r n 1 r n v n t 1 2 (m fn) t2 3 1 !d d 3 r 3 n tO ( t4 )
+ r n 1 r n v n t 1 2 (m fn ) t2 3 1 !d d 3 r 3 n tO ( t4 )
r n 1 2 r n r n 1 (m fn) t2 O ( t4)
d d i(t)v tfm i(it) k c b τ v dTT f0 T (T t)(t)v i(t)fm i(it) 1 2 T 0 T (T t)(t)v i(t)
c
df v
不能精确知道,假设
c
df v
= 1/2kb
压强
维里:作用在第 i个粒子上的力 Fi与坐标 ri乘积加和的期望值 维里定理:
n=0 中心盒
分子模拟PPT—第五章 分子动力学模拟运用

1 −E Pj E = ∑ E 2 e j ∑ j Q J j
2 j
k BT
kB ∂ −E =− E je j ∑ Q ∂ (1 T ) j
k BT
=−
kB ∂ ∂E ∂ ln Q ( EQ) = − k B − kB E Q ∂ (1 T ) ∂ (1 T ) ∂ (1 T )
2
∂E = k BT + E2 ∂T
ˆ′ ˆ ˆ ˆ C A (ν ) = A∗ (ν ) A(ν ) = A(ν ) ′ C A (τ ) = 1 2τ run
2τ run −1
2
(v = 0,1,L 2τ run − 1)
∑ ν
=0
ˆ A(ν ) exp(i 2πντ / 2τ run )
2
自相关函数的计算
傅里叶变换计算相关函数的步骤:
第五章
分子动力学模拟 计算的应用
本章内容
运动轨迹分析 热力学特性的计算 径向分布函数 相关函数的计算
运动轨迹分析
结构图像 (可视化图形软件) 几何参量的时间关系曲线 (grace,origin,excel)
键长: rab
= ( xa − xb )2 + ( ya − yb )2 + ( za − zb )2
∞
时间相关函数
物理意义:物理量随时间改变后与其起始的相关性 自相关函数
C A (t ) = A(t ) ⋅ A(0) = A(T + t ) ⋅ A(T ) CB (t ) = B(t ) ⋅ B(0) = B (T + t ) ⋅ B (T )
A ( t ) ⋅ A (0) C A (t ) C A (t ) = = C A (0) A (0) ⋅ A (0)