实数计算题专题训练(含答案)(2)

合集下载

专题14-13 《实数》计算题(专项练习)(巩固篇100题)-2021-2022学年八年级数学上册

专题14-13 《实数》计算题(专项练习)(巩固篇100题)-2021-2022学年八年级数学上册

专题14.13 《实数》计算题(专项练习)(巩固篇100题)一、解答题12.计算:(+1|+(5-2π)03.(1);(2)已知()2x 1- =4,求x 的值.4.已知:,x y 为实数,且3y <,化简:3y -5.计算:(1)110101(1)(3)2π-⎛⎫-+-+ ⎪⎝⎭(226213.14+6+2π-⎛⎫-- ⎪⎝⎭()7.计算:()23- 8.计算(1(2(x <2y <0)92 .10.计算:(2)(1+(12. 11.计算:12.计算:(1+(2)+1)213.计算:21-21-2-⎛⎫ ⎪⎝⎭14.计算:+2)2+2﹣215.计算:()202011-+16.计算: 21)3)(3--17.18.计算:(1﹣3|(2)1)2+)2﹣21)) 19.计算下列各式: (1)√6×(√3+√2)-2√3; (2)4√15÷√3−√20+5√15.20.计算:20-11-23+())()21.计算:|−2|+(−1)2012×(π−3)0−√8+(−2)−2222)023.(1)计算:2(1(2)求x 的值:3641)270x +-=(24.计算:(3(2. 25.已知x,y =,求4x yy x +-的值.26.计算:(1(2)2(11)-.27.已知4. (1)求x 、y 的值;28.计算:;(23;(3)(22017×(22016-2-(0(4)(a +b -.29.计算:|1.30(22π-+.31.计算:(13;(2)32.计算:33.已知 x y(1)x yy x+的值;(2)2x 2+6xy +2y 2的值.34.计算(1)0(2)((2 35.化简:(1(2(10+|﹣2|﹣(12)﹣136.计算下列各式(1) (2)371+ 38.计算:(1)()2320181122⎛⎫-+- ⎪⎝⎭(23+39.计算(1)﹣(2)1))﹣(1﹣2.40.计算:41.计算:(1)−√83+√16−|√3−2|;(2)(√12+3√3)×√3; (3)12×(√2+√3)−34×(√2−√27);(4)(−12)2×√(−2)2+12×√1253;42432(2 +44.计算:22 |1|3-⎛⎫-- ⎪⎝⎭45.计算:|3﹣1)2018.46.计算1.47.计算:2(3)21)-+⨯--.482318 49.计算:⎛⎝;12⎛⎫⎪⎝⎭.50.计算:(1)11(251233312713++.52.计算:(1)(2)201811-+53.计算:(1)21(2)--;(2)2(3254.计算:(1;(2)12)﹣12|;(3)2)2;(4)2020•2021. 55.计算(1|1(2)2|(3(4|3562.57.计算题:2--;(2)58.完成下列各题.(1)计算:())0311-+(2)计算:(()201412π1-+-.(3)(041-.(4)计算:())3212523-⎛⎫-+--+ ⎪⎝⎭.(5)计算:122323---.(6)1382+.(7)计算:2112-⎛⎫- ⎪⎝⎭.59.计算:2(71)+--60()0221( 3.14().2π-+---⨯61()()2202021--- 62.计算(12236 (2)220201020.2513163.计算:(1)- (2)(3) (4)64.计算:(1) (2) ()012018π+--6566.计算:4÷672020(1)-.68.计算:1||3+-69. 计算:+2|-2|;(-1)2018. 70.计算:(1)(√8+√3)×√6√10−√15√5; (2)2√12×(3√48−4√18−3√27)(3)√72−√32√8(√5−√2)(√5+√2); (4)(π−1)0+(−12)−1+|5−√27|−2√371.计算:(−3)2−(12)−1+(−2019)0.72.计算:201( 3.14)2π-⎛⎫-- ⎪⎝⎭.73.计算:(1)9×(﹣23)﹣3|(22+74.计算1). 75.计算:(1)(10+|2(﹣1)2018﹣13(2)(x+y )2﹣x (2y ﹣x ) 76.计算:(1(20,0)a b >>(3(477.78.计算:(1)⎛ ⎝;(2|1 79.计算:(1)()20201821--⨯--;(2)()()()221a a a a +--+.80.计算:(1)|﹣3|12+(﹣2)2 . |2.81.(12| (2)求x 的值:(2x ﹣1)2=9.822(317)0x y -+=的值.83.计算:()()20211211π--++.84.计算:(﹣1)2008+π0﹣(13)﹣185.计算:86.计算:3(1)|1-+ 87.计算:(1)217110.5395⎛⎫-÷⨯- ⎪⎝⎭(2)(2212-+88.02018)(1)|1π+-+.89.计算:(1) (2)(÷(3)0,0)a b >> 90.计算:(1321(2)(10)4---⨯- (2)225(24)-⨯--91.解下列方程:(1) 9(3-y )2=4; (2) 2732-3x ⎛⎫ ⎪⎝⎭+125=0.9221)+ 93.计算:(1) (2)01)1)(3) (4)0(3)|1---.94.计算:(1)|-5|+(-2)2-1;95.计算: 96.计算:(1)(22-97 98.计算下列各题(1)⎛÷ ⎝ (2)2- 99.(1);(2)(3);(4)100.计算:(12018(1)- (23参考答案1.-11 4【分析】先将二次根式化简,再根据实数的运算法则求得计算结果.=111 30224 ---++==-11 4.【点拨】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是二次根式、绝对值等考点的运算.2.【分析】按顺序先分别进行二次根据的乘法运算、绝对值的化简、0次幂的计算,然后再按运算顺序进行计算即可.解:(+1|+(5-2π)0=1+1=【点拨】本题考查了二次根式的混合运算,熟练掌握二次根式的混合运算的法则是解题的关键.3.(1)13-;(2) x1=3,x2=-1.【分析】(1)根据平方根和立方根的意义,化简求解即可;(2)根据平方根的意义,把方程化为一元一次方程求解.解:(1-2-13=-13;(2)(x-1)2=4,x-1=±2,x-1=2,x-1=-2.解得:x1=3,x2=-1.【点拨】此题主要考查了平方根和立方根的应用,灵活利用平方根和立方根的概念是解题关键.4.-1.【分析】根据所给的已知式子,由二次根式有意义的条件,可求x 取值范围,得到x ,然后求出y 的取值范围,然后根据二次根式的性质求解即可.解:由题意可知: 10x -≥且10x -≥1x ∴=3<-y x 3∴<y3∴-y34=---y y()()34=-+--+y y34=-++-y y1=-5.(1)3(2)18﹣﹣【分析】(1)先算乘方和开方,然后合并同类二次根式即可;(2)先算乘方、乘法、除法,然后合并同类二次根式即可.解:(1)原式=(﹣1)+1+21)=(﹣1)+1+2=3(2(2+12-=4﹣+12﹣=18﹣﹣【点拨】本题考查了二次根式的混合运算,熟练掌握二次根式的运算法则是解答本题的关键,整式的乘法的运算公式及运算法则对二次根式的运算同样适应.6.11【解析】试题分析:根据二次根式的相关公式,零指数幂的规定,绝对值的意义以及负整数指数幂的相关规则,分别对算式的各个部分进行化简和运算,然后再对所得到的中间结果进行进一步的运算即可.试题解析:()2013.1462π-⎛⎫-+-+ ⎪⎝⎭ =2-1+6+4=117.4.5【分析】先计算平方、开平方和开立方,再计算加减.解:解:原式=9—32-3 =4.5【点拨】本题考查平方、算术平方根、立方根,解题关键是熟练掌握定义.8.(1) 203;(2)-21xy 解:试题分析:(1)根据二次根式的乘法和除法法则计算,(2)根据二次根式的性质进行化简. 试题解析=203,(2x <2y <0) =2122y x y x xy -⨯--, =21xy -. 9.-2.【解析】【分析】根据二次根式、三次根式的化简方法计算,再合并同类项.2,=332,=-2.【点拨】本题考查实数的综合运算能力.解决此类题目的关键是熟练掌握二次根式、三次根式的化简.10.(2) 2+【分析】(1)先利用二次根式的除法法则计算,再把各二次根式化为最简二次根式,然后合并即可;(2)利用平方差公式和完全平方公式化简合并即可.解:(1)原式===(2)原式=1-5+1+5=2+【点拨】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.11.(1) 2(2)-30. 【分析】(1)先算除法,再算减法.(2)先化简,再利用平方差公式计算.解:(1)原式=2(2)原式=((4=-30.【点拨】本题考查根式化简,能够掌握平方差公式是解题关键.12.(1);(2)7-【分析】(1)先分别进行化简,然后再合并同类二次根式即可;(2)先利用平方差公式以及完全平方公式进行展开,然后再进行加减运算即可.解:(1)原式==;(2)原式=5231-+-=7-【点拨】本题考查了二次根式的化简,二次根式的混合运算,熟练掌握相关的运算法则是解题的关键.13.1【解析】【分析】按顺序先分别进行立方根的运算、绝对值的化简、负指数幂的运算,然后再按运算顺序进行计算即可.解:原式=-2×(-3)1-4=1【点拨】本题考查了实数的运算,涉及了立方根、负整数指数幂等,熟练掌握各运算的运算法则是解题的关键.14.29 4【分析】按顺序分别利用完全平方公式展开,化简二次根式,利用负指数幂进行计算,然后再按运算顺序进行计算即可.解:原式﹣14=294. 【点拨】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.1532【分析】首先计算乘方、负整数指数幂、算术平方根、立方根和绝对值,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.解:解:()202011-+)1=1212+-+ 1=1212+- 32【点拨】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.16.3-【分析】先运用完全平方公式、平方差公式进行化简,然后进行计算.解:解:原式=4-[32-2]=4-[32-2]-4=4--4=3-【点拨】本题主要考查了二次根式的化简;特别是灵活运用全平方公式、平方差公式是解答本题的关键.17【分析】根据二次根式的混合运算法则进行计算.解:解:原式143+=(14327+=-==【点拨】本题考查二次根式的运算,解题的关键是掌握二次根式的运算法则.18.(1)﹣6;(2)9.【解析】【分析】(1)先进行二次根式的乘法运算,再把二次根式化为最简二次根式和去绝对值,然后合并即可;(2)先把各二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算.解:(13|3﹣3=﹣6;(2)3﹣﹣2(2)=3﹣﹣6﹣=9.【点拨】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.19.(1) 3√2;(2) 3√5.【解析】【分析】(1)先利用分配律进行计算,然后再合并同类二次根式即可;(2)按顺序进行二次根式的除法运算、化简二次根式,然后再合并同类二次根式即可.解:(1)原式=3√2+2√3-2√3=3√2;(2)原式=4√5-2√5+√5=3√5.【点拨】本题考查了二次根式的混合运算,熟练掌握二次根式混合运算的运算顺序以及运算法则是解题的关键.20.5【分析】按照乘方,算术平方根,零指数幂,负整数指数幂的性质化简,进行计算即可解答解:解:原式4313=-++5=【点拨】此题考查算术平方根,零指数幂,负整数指数幂,解题关键在于掌握运算法则21.解:原式=。

专题6.5实数的运算专项训练(50道)(举一反三)(沪科版)

专题6.5实数的运算专项训练(50道)(举一反三)(沪科版)

专题6.5 实数的运算专项训练(50道)参考答案与试题解析一.解答题(共50小题,满分100分)3+(﹣1)2021.1.(1分)(2021春•陆河县校级期末)计算:√9+|√5−3|+√−64【分析】先求算术平方根、绝对值、立方根运算,再进行计算即可.3+(﹣1)2021【解答】解:√9+|√5−3|+√−64=3+3−√5−4﹣1=1−√5.3+|√3−2|.2.(1分)(2021春•珠海期中)计算:(﹣2)2+√(−3)2−√27【分析】运用负数的平方、二次根式、三次根式,绝对值的定义及性质进行计算.3+2−√3【解答】解:原式=4+√32−√33=4+3﹣3+2−√3=6−√3.3.(1分)(2021•天心区开学)计算:|7−√2|−|√2−π|−√(−7)2.【分析】由去绝对值及算术平方根运算法则计算即可.【解答】解:原式=7−√2−(π−√2)﹣7=7−√2−π+√2−7=﹣π.3+|2−√5|+|3−√5|.4.(1分)(2021春•浏阳市期末)计算:√81+√−27【分析】本题涉及绝对值、二次根式化简、三次根式化简3个知识点.在计算时,需要针对每个知识点分别进行计算,然后根据实数的运算法则求得计算结果.3+|2−√5|+|3−√5|【解答】解:√81+√−27=9﹣3+√5−2+3−√5=7.3+(﹣3)2−√25+|√3−2|+(√3)2.5.(1分)(2021春•淮北期末)√(−5)3【分析】先计算开方、乘方、绝对值的运算,再合并即可得到答案.【解答】解:原式=−5+9−5+2−√3+3=4−√3.6.(1分)(2021春•昆明期末)计算:(﹣1)3+|−√2|+√273−√4. 【分析】直接利用立方根的性质以及绝对值的性质、有理数的乘方运算法则分别化简得出答案.【解答】解:原式=﹣1+√2+3﹣2=√2.7.(1分)(2021春•宁乡市期末)计算:√−13+√49+|3−π|−(−√3)2.【分析】直接利用立方根的性质以及绝对值的性质和二次根式的性质分别化简,再利用实数加减运算法则计算得出答案.【解答】解:原式=﹣1+7+π﹣3﹣3=π.8.(1分)(2021春•临沧期末)计算:√83−(−1)2021+√(−3)2−|1−√3|.【分析】首先计算乘方、开方、开立方和绝对值,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:√83−(−1)2021+√(−3)2−|1−√3|=2﹣(﹣1)+3﹣(√3−1)=6−√3+1=7−√3.9.(1分)(2021春•曲靖期末)计算:﹣22×√14−√83+√9×(﹣1)2021. 【分析】先化简有理数的乘方,算术平方根,立方根,然后先算乘法,再算加减.【解答】解:原式=﹣4×12−2+3×(﹣1)=﹣2﹣2﹣3=﹣7.10.(1分)(2021春•海拉尔区期末)计算:√−83÷√0.04+√14×(−2)2−(−1)2020.【分析】先化简立方根,算术平方根,有理数的乘方,然后先算乘除,再算加减.【解答】解:原式=﹣2÷0.2+12×4﹣1=﹣10+2﹣1=﹣9.11.(1分)(2021春•红塔区期末)计算:(﹣1)2020﹣(﹣2)2+√4+√−273. 【分析】直接利用有理数的乘方运算法则以及立方根的性质、算术平方根分解化简得出答案.【解答】解:原式=1﹣4+2﹣3=﹣4.12.(1分)(2021春•盘龙区期末)计算:(﹣1)2021+|3﹣π|+√16+√−83−π. 【分析】根据﹣1的奇、偶次方,绝对值、算术平方根、立方根的运算法则进行计算即可得出答案.【解答】解:原式=﹣1﹣(3﹣π)+4﹣2﹣π=﹣1﹣3+π+2﹣π=﹣2.13.(1分)(2021春•开福区校级期末)√(−1)2+√273+(−1)2021+|√3−3|.【分析】先计算平方根、乘方和绝对值运算,再合并同类项即可.【解答】解:原式=|﹣1|+3+(﹣1)+3−√3=1+3﹣1+3−√3=6−√3.14.(1分)(2021春•利川市期末)计算|√2−√3|﹣2(14+√22)−√−183. 【分析】根据绝对值的性质、立方根的定义以及实数的加减运算以及乘除运算法则即可求出答案.【解答】解:原式=√3−√2−12−√2+12=√3−2√2.15.(1分)(2021春•永城市期末)计算:√16+√−643−√1−(35)2−|π﹣3.2|. 【分析】直接利用立方根的性质以及二次根式的性质、绝对值的性质分别化简得出答案.【解答】解:原式=4﹣4−45−(3.2﹣π)=4﹣4−45−3.2+π=﹣4+π.16.(1分)(2021春•鹿邑县期末)计算:√(−1)33−√3116+√(1−78)23. 【分析】首先计算开方,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:√(−1)33−√3116+√(1−78)23 =﹣1−74+14=−52.17.(1分)(2021春•恩平市期末)计算:√25+√−83−√49+√8273+(−1)2021.【分析】利用实数的运算法则对所求式子进行求解即可.【解答】解:√25+√−83−√49+√8273+(−1)2021 =5﹣2−23+23−1=2.18.(1分)(2021春•潮阳区期末)计算:−12021+√(−2)2−√−1253+|√2−3|.【分析】直接利用绝对值的性质和立方根的性质和二次根式的性质分别化简得出答案.【解答】解:原式=﹣1+2+5+3−√2=9−√2.19.(1分)(2021春•白云区期末)计算:√−273−√256−√116+√1−63643. 【分析】实数的混合运算,先分别化简立方根,算术平方根,然后再计算.【解答】解:原式=﹣3﹣16−14+√1643=﹣3﹣16−14+14=﹣19.20.(1分)(2021春•杨浦区期中)计算:√−0.0013−(√23−√10003)−√162.【分析】直接利用立方根以及二次根式的性质分别化简得出答案.【解答】解:原式=﹣0.1−√23+10−42=﹣0.1−√23+10﹣2=7.9−√23.21.(2分)(2021春•青川县期末)计算:(1)(﹣3)2+2×(√2−1)﹣|﹣2√2|;(2)√−83−√1−1625+|2−√5|+√(−4)2.【分析】(1)先算乘方,化简绝对值,去括号,然后再算加减;(2)先化简立方根,算术平方根,绝对值,然后再计算.【解答】解:(1)原式=9+2√2−2﹣2√2=7;(2)原式=﹣2−√925+√5−2+4 =﹣2−35+√5−2+4=√5−35.22.(2分)(2021春•西城区校级期中)计算:(1)(−√7)2−√62+√−83;(2)√49−√273+|1−√2|+√(1−54)2. 【分析】(1)先化简,再计算加减法;(2)先算二次根式、三次根式,再计算加减法.【解答】解:(1)原式=7﹣6+(﹣2)=7﹣6﹣2=﹣1;(2)原式=7﹣3+√2−1+54−1=2+54+√2=134+√2.23.(2分)(2021春•抚顺期末)计算:(1)√−83+√36−√49;(2)√254+√−273−|2−√3|+√(−2)2. 【分析】(1)根据立方根,算术平方根的运算法则进行运算,即可得出答案;(2)根据算术平方根,立方根,绝对值的法则进行运算,即可得出答案.【解答】解:(1)解:原式=﹣2+6﹣7=﹣3;(2)原式=52−3﹣2+√3+2=−12+√3.24.(2分)(2021春•乾安县期末)计算:(1)|√3−2|−(√3−1)+√−643;(2)√9+|﹣2|+√273+(﹣1)2021.【分析】(1)直接利用绝对值的性质以及立方根的性质分别化简得出答案;(2)直接利用绝对值的性质以及立方根的性质、有理数的乘方运算法则分别化简得出答案.【解答】解:(1)原式=2−√3−√3+1﹣4=﹣2√3−1;(2)原式=3+2+3﹣1=7.25.(2分)(2021春•曾都区期末)计算下列各式:(1)√(−1)2+√14×(﹣2)2−√−643;(2)|√3−√2|+|√3−2|﹣|√2−1|.【分析】(1)直接利用二次根式的性质以及立方根的性质分别化简得出答案;(2)直接利用绝对值的性质化简,再合并二次根式得出答案.【解答】解:(1)原式=1+12×4+4=1+2+4=7;(2)原式=√3−√2+2−√3−(√2−1)=√3−√2+2−√3−√2+1=3﹣2√2.26.(2分)(2021春•林州市期末)计算:(1)|3−√13|+√−273−√13+√25;(2)−12−(−2)3×18+√−273×|−13|+|1−√3|.【分析】(1)直接利用绝对值的性质、立方根的性质、二次根式的性质分别化简得出答案;(2)直接利用绝对值的性质、立方根的性质、二次根式的性质分别化简得出答案.【解答】解:(1)原式=√13−3﹣3−√13+5=﹣1;(2)原式=﹣1+8×18−3×13+√3−1=﹣1+1﹣1+√3−1=√3−2.27.(2分)(2021春•黄冈期末)计算:(1)(−√2)2+|1−√2|+√−83; (2)﹣22+√(−4)2+√32+42−(﹣1)2021.【分析】(1)首先计算乘方、开立方和绝对值,然后从左向右依次计算,求出算式的值是多少即可.(2)首先计算乘方和开方,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:(1)(−√2)2+|1−√2|+√−83=2+√2−1+(﹣2)=√2−1.(2)﹣22+√(−4)2+√32+42−(﹣1)2021=﹣4+4+5﹣(﹣1)=6.28.(2分)(2021春•越秀区期末)(1)计算:√183+√(−2)2+√14;(2)计算:2(√3−1)﹣|√3−2|−√−643.【分析】(1)根据立方根以及算术平方根的定义解决此题.(2)由|√3−2|=2−√3,√−643=−4,得2(√3−1)−|√3−2|−√−643=3√3.【解答】解:(1)√183+√(−2)2+√14=12+2+12=3.(2)2(√3−1)−|√3−2|−√−643=2√3−2−(2−√3)−(−4)=2√3−2−2+√3+4=3√3.29.(2分)(2021春•西城区校级期末)计算题(1)√83+√0−√14+√−183+|3−√2|;(2)√−273−√0−√14+√0.1253+√1−63643. 【分析】(1)根据立方根,算术平方根,绝对值的性质计算即可;(2)先化简,再求这个数的立方根,化简即可.【解答】解:(1)原式=2+0−12−12+3−√2=4−√2;(2)原式=﹣3﹣0−12+√183+√1643 =﹣3−12+12+14=−114. 30.(2分)(2020春•合川区期末)计算:(1)|﹣2|+(﹣1)2020+√214−√−183; (2)(﹣24)﹣(12−23)÷(−16)×[﹣2−√(−3)2]﹣|14−0.52|. 【分析】(1)直接利用有理数的乘方运算法则以及立方根的性质、算术平方根、绝对值的性质分别化简得出答案;(2)直接利用有理数的混合运算以及二次根式的性质、绝对值的性质分别化简得出答案.【解答】解:(1)原式=2+1+√94+12=2+1+32+12=5;(2)原式=﹣16﹣(36−46)×(﹣6)×(﹣2﹣3)﹣|14−(12)2| =﹣16+16×(﹣6)×(﹣5)﹣0=﹣16+5﹣0=﹣11.31.(2分)(2020春•甘南县期中)计算下列各式:(1)√16−√273+√−183+√94 (2)|1−√2|+√−8273×√14−√2【分析】(1)原式利用平方根、立方根定义计算即可求出值;(2)原式利用绝对值的代数意义,平方根、立方根定义计算即可求出值.【解答】解:(1)原式=4﹣3−12+32=2;(2)原式=√2−1−23×12−√2=−43.32.(2分)(2020春•岳麓区校级月考)计算:(1)√83−√4−√(−3)2+|1−√2|(2)√6×(√6−√6)−√214−|2﹣π| 【分析】(1)首先计算立方根,化简二次根式,计算绝对值,然后再计算加减即可;(2)首先计算乘法、化简二次根式,计算绝对值,然后再计算加减即可.【解答】解:(1)原式=2﹣2﹣3+√2−1=√2−4;(2)原式=1﹣6−32−(π﹣2),=1﹣6−32−π+2,=﹣412−π. 33.(2分)(2020春•蕲春县期中)计算: (1)√−273+√(−3)2+√−13; (2)√16+√−27643×√(−43)2−|2−√5|. 【分析】(1)首先根据二次根式和立方根的性质进行化简,再计算加减即可;(2)首先根据二次根式和立方根和绝对值的性质进行化简,再计算乘法,后算加减即可.【解答】解:(1)原式=﹣3+3﹣1=﹣1;(2)原式=4−34×43−(√5−2)=4﹣1−√5+2 =5−√5.34.(2分)(2020春•西市区期末)计算:(1)√−13−√83÷√(−6)2;(2)(2−√3)2020×(2+√3)2021﹣2√34.【分析】(1)首先计算乘方、开方,然后计算除法,最后计算减法,求出算式的值是多少即可.(2)首先根据积的乘方计算,然后计算乘法、减法,求出算式的值是多少即可.【解答】解:(1)√−13−√83÷√(−6)2=﹣1﹣2÷6=﹣1−13=−43.(2)(2−√3)2020×(2+√3)2021﹣2√34 =[(2−√3)×(2+√3)]2020×(2+√3)﹣2×√32=2+√3−√3=2.35.(2分)(2020春•渝北区校级月考)计算下列各题.(1)|3−2√3|−√643+(√6)2;(2)√1.44+√1033−√0.04−√83−√−13.【分析】(1)直接利用立方根的性质以及二次根式的性质、绝对值的性质等知识分别化简得出答案;(2)直接利用立方根的性质以及二次根式的性质等知识分别化简得出答案.【解答】解:(1)原式=2√3−3﹣4+6=2√3−1;(2)原式=1.2+10﹣0.2﹣2+1=10.36.(2分)(2020春•牡丹江期中)计算题:(1)√81+√−273+√(−2)2+|√3−2|;(2)√22−√214+√78−13−√−13.【分析】各式利用算术平方根、立方根性质计算即可求出值.【解答】解:(1)原式=9﹣3+2+2−√3=10−√3;(2)原式=2−32−12−(﹣1)=2﹣2+1=1.37.(2分)(2020春•凉州区校级期中)计算:(1)√2549+|﹣5|+√−643−(﹣1)2020; (2)√16+√−273−√3−|√3−2|+√(−5)2.【分析】利用二次根式的性质、绝对值得先年改制、立方根的性质、乘方的意义进行计算,再算加减即可.【解答】解:(1)原式=57+5﹣4﹣1=57;(2)原式=4﹣3−√3−2+√3+5=4.38.(2分)(2020秋•东港市期中)(1)(√6−√7)2019×(√6+√7)2020.(2)√32−√−273−√(−23)2+|1−√2|.【分析】(1)直接利用积的乘方运算法则,将原式变形得出答案;(2)直接利用立方根以及算术平方根的性质、绝对值的性质分别化简得出答案.【解答】解:(1)原式=[(√6−√7)(√6+√7)]2019×(√6+√7)=﹣1×(√6+√7)=−√6−√7;(2)原式=4√2+3−23+√2−1=5√2+43.39.(2分)(2020春•越秀区校级月考)计算:(1)√36−√273+√(−2)2−√214;(2)|√3−2|−√4−(3−√3).【分析】(1)直接利用立方根的定义和算术平方根的定义分别化简得出答案;(2)直接利用绝对值的性质以及算术平方根的定义分别化简得出答案.【解答】解:(1)原式=6﹣3+2−32=3.5;(2)原式=2−√3−2﹣3+√3=﹣3.40.(2分)(2020春•和平区校级月考)计算(1)√273+|3−√5|﹣(√9−√83)2+√5; (2)√16−√83−√13+√1+916+|1−√2|﹣|√3−√2|.【分析】(1)直接利用立方根的性质以及绝对值的性质分别化简得出答案;(2)直接利用立方根的性质以及绝对值的性质分别化简得出答案.【解答】解:(1)原式=3+3−√5−(3﹣2)2+√5=3+3−√5−1+√5=5;(2)原式=4﹣2﹣1+54+√2−1﹣(√3−√2)=4﹣2﹣1+54+√2−1−√3+√2=2√2−√3+54.41.(4分)(2020春•硚口区期中)(1)计算:①√−8273×√14−√(−2)2; ②√3−√25+|√3−3|+√1−63643.(2)求下列式子中的x 的值:①4(x ﹣2)2=49;②(x ﹣1)3=64.【分析】(1)①直接利用立方根以及二次根式的性质分别化简得出答案;②直接利用立方根以及二次根式的性质分别化简得出答案;(2)①直接利用平方根的定义化简得出答案;②直接利用立方根的定义化简得出答案.【解答】解:(1)①原式=−23×12−2=﹣213;②原式=√3−5+3−√3+14=−74;(2)①∵4(x ﹣2)2=49,∴(x −2)2=494, ∴x −2=±72,∴x =2±72,∴x =112或x =−32.②∵(x ﹣1)3=64,∴x ﹣1=4,∴x =5.42.(4分)(2020秋•射洪市月考)(1)计算:√16+√−643−√(−3)2+|√3−1|;(2)解方程:18﹣2x 2=0;(3)解方程:(x +1)3+27=0;(4)(2−√3)2020×(2+√3)2021﹣2√1−(35)2. 【分析】(1)利用平方根与立方根的定义及绝对值的意义,先化简,再利用实数混合运算进行运算即可;(2)对方程进行转化,利用平方根的定义即可解答;(3)对方程进行转化,利用立方根的定义即可解答;(4)先利用幂运算法则和平方差公式进行简便运算,利用算术平方根的定义进行化简,再利用实数混合运算进行运算即可;【解答】解:(1)原式=4﹣4﹣3+√3−1=﹣4+√3;(2)∵18﹣2x 2=0,∴2x 2=18,即x 2=9,∴x =±3;(3)∵(x +1)3+27=0,∴(x +1)3=﹣27,∴x +1=﹣3,∴x =﹣4;(4)(2−√3)2020×(2+√3)2021﹣2√1−(35)2 =[(2−√3)×(2+√3)]2020×(2+√3)﹣2×45=2+√3−85=25+√3.43.(4分)(2021春•南开区期中)(1)化简|1−√2|+|√2−√3|+|√3−2|.(2)计算:√−643+√16×√94÷(−√2)2.(3)解方程(x ﹣1)3=27.(4)解方程2x 2﹣50=0.【分析】(1)去掉绝对值符号,合并同类二次根式即可;(2)利用实数的混合运算法则进行运算即可;(3)利用立方根的意义解答;(4)利用平方根的意义解答.【解答】解:(1)原式=√2−1+√3−√2+2−√3=1;(2)原式=﹣4+4×32÷2=﹣4+3=﹣1;(3)两边开立方得:x ﹣1=3.∴x =4.∴原方程的解为:x =4.(4)原方程变为:2x 2=50.∴x 2=25.两边开平方得:x =±5.∴原方程的解为:x 1=5,x 2=﹣5.44.(4分)(2021春•红桥区期中)计算:(1)3√2+√2−6√2;(2)√5(√5+1√5); (3)√−273+√(−2)2−|1−√3|;(4)√9−√−83+√(−3)2−(√2)2. 【分析】(1)直接利用二次根式的加减运算法则计算得出答案;(2)直接利用二次根式的混合运算法则计算得出答案;(3)直接利用立方根以及二次根式、绝对值的性质分别化简得出答案;(4)直接利用立方根以及二次根式、绝对值的性质分别化简得出答案.【解答】解:(1)原式=﹣2√2;(2)原式=5+1=6;(3)原式=﹣3+2﹣(√3−1)=﹣3+2−√3+1 =−√3;(4)原式=3+2+3﹣2=6.45.(4分)(2021春•硚口区期中)(1)计算:①√16−√273+√214;②√3(√31√3)+|2−√5|.(2)求下列式子中的x 的值:①(x ﹣2)2=9;②3(x +1)3+81=0.【分析】(1)①首先计算开方,然后从左向右依次计算即可.②首先计算绝对值和乘法,然后从左向右依次计算即可.(2)①根据平方根的含义和求法,求出x 的值是多少即可.②根据立方根的含义和求法,求出x 的值是多少即可.【解答】解(1)①√16−√273+√214=4﹣3+32=52.②√3(√3√3)+|2−√5| =3﹣1+√5−2=√5.(2)①∵(x ﹣2)2=9,∴x ﹣2=±3,解得:x =5或﹣1.②∵3(x +1)3+81=0,∴3(x +1)3=﹣81,∴(x +1)3=﹣27,∴x +1=﹣3,解得:x =﹣4.46.(4分)(2021春•岷县月考)计算:(1)√−8×(−0.5). (2)√4+√225−√400. (3)√−13+√(−1)33+√(−1)23.(4)√183−52×√−11253+√−3433−√−273. 【分析】根据算术平方根和立方根的定义,分别计算即可.【解答】解:(1)原式=√4=2;(2)原式=2+15﹣20=﹣3;(3)原式=﹣1+√−13+√13=﹣1+(﹣1)+1=﹣1;(4)原式=12−52×(−15)+(﹣7)﹣(﹣3)=12−(−12)+(﹣7)+3=12+12+(﹣7)+3 =1﹣7+3=﹣3.47.(4分)(2020秋•海曙区期中)计算.(1)−34×(−8+23−13).(2)17﹣8÷(﹣4)+4×(﹣5).(3)√25+(√−1273+13)−6. (4)−32×[−32×(−23)2−2].【分析】(1)利用乘法分配律使得计算简便;(2)先算乘除,然后再算加减;(3)先化简算术平方根,立方根,然后算小括号里面的,再算括号外面的;(4)先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的.【解答】解:(1)原式=34×8−34×23+34×13=6−12+14=512+14=524+14 =534;(2)原式=17+2﹣20=19﹣20=﹣1;(3)原式=5+(−13+13)﹣6=5+0﹣6=5﹣6=﹣1;(4)原式=−32×(﹣9×49−2)=−32×(﹣4﹣2)=−32×(﹣6)=9.48.(4分)(2020秋•嵊州市期中)计算:(1)(+1013)+(﹣11.5)+(﹣1013)﹣4.5; (2)(﹣6)2×(13−12)﹣23; (3)(﹣270)×14+0.25×21.5+(﹣812)×(﹣0.25); (4)−√36+6÷(−23)×√−83.【分析】(1)直接利用有理数的加减运算法则计算得出答案;(2)直接利用乘法分配律以及有理数的混合运算法则计算得出答案;(3)直接提取公因式14,进而计算得出答案; (4)直接利用算术平方根的性质以及立方根的性质分别化简得出答案.【解答】解:(1)原式=﹣11.5﹣4.5+(1013−1013) =﹣16+0=﹣16;(2)(﹣6)2×(13−12)﹣23 =36×13−36×12−8=12﹣18﹣8=﹣14;(3)(﹣270)×14+0.25×21.5+(﹣812)×(﹣0.25) =14×(﹣270+21.5+812) =14×(﹣240)=﹣60;(4)−√36+6÷(−23)×√−83=﹣6﹣9×(﹣2)=﹣6+18=12.49.(4分)(2020秋•北仑区期中)计算:(1)(﹣3)2﹣(112)3×29−6÷|−23|; (2)﹣12020+|﹣3|+√−1273−√(−4)2; (3)3×(√3−√5)+2×(−32×√3+32);(4)|√6−√2|+|√2−1|﹣|3−√6|.【分析】(1)直接利用有理数的混合运算法则计算得出答案;(2)直接利用立方根以及绝对值的性质、算术平方根的性质分别化简得出答案;(3)直接利用二次根式的混合运算法则计算得出答案;(4)直接利用绝对值的性质化简,进而得出答案.【解答】解:(1)(﹣3)2﹣(112)3×29−6÷|−23|=9−278×29−6×32=9−34−9=−34;(2)﹣12020+|﹣3|+√−1273−√(−4)2=﹣1+3−13−4=﹣213;(3)3×(√3−√5)+2×(−32×√3+32)=3√3−3√5−3√3+3=﹣3√5+3;(4)|√6−√2|+|√2−1|﹣|3−√6|=√6−√2+√2−1﹣(3−√6)=√6−√2+√2−1﹣3+√6=2√6−4.50.(4分)(2020秋•下城区校级期中)计算.(1)(+15)﹣(+11)﹣(﹣18)+(﹣15);(2)(﹣72)×(49−38+512−13); (3)﹣12﹣(1﹣0.5)÷15×[2﹣(﹣2)2];(4)|1−√2|+|√2−√3|+|√3−√4|+……+|√2019−√2020|.(结果保留根号形式)【分析】(1)直接利用有理数的加减运算法则计算得出答案;(2)直接利用乘法分配律进而计算得出答案;(3)直接利用有理数的混合运算法则计算得出答案;(4)直接去绝对值进而计算得出答案.【解答】解:(1)(+15)﹣(+11)﹣(﹣18)+(﹣15)=15﹣11+18﹣15=7;(2)(﹣72)×(49−38+512−13) =(﹣72)×49+(﹣72)×(−38)+(﹣72)×512+(﹣72)×(−13) =﹣32+27﹣30+24=﹣11;(3)﹣12﹣(1﹣0.5)÷15×[2﹣(﹣2)2]=﹣1−12×5×(2﹣4)=﹣1−52×(﹣2)=﹣1+5=4; (4)|1−√2|+|√2−√3|+|√3−√4|+……+|√2019−√2020| =√2−1+√3−√2+√4−√3+⋯+√2020−√2019 =√2020−1.。

初中数学实数混合运算2含答案

初中数学实数混合运算2含答案

实数混合运算2一.解答题(共30小题)1.计算(1)|(2)+()2﹣(π﹣3)02.计算(1)5﹣﹣7(2).﹣4(3)(3﹣2+)÷23.计算:(1)(3)(2)()+4.计算:(1)(2)(x>0,y>0)5.求下列各式的值.(1)(2)﹣4(3)﹣+(4)3﹣+(5)+(﹣1)0+|1﹣|(6)(7+4)(2﹣)26.计算:(1)﹣3(2)﹣5+7.计算题:(1)﹣2﹣[﹣1﹣()](2)﹣(﹣3)2÷1×(﹣)2﹣4÷23×(﹣)(3)|1﹣|+﹣|;(4)﹣14﹣[1﹣(1﹣0.5×)×6].8.计算题:(1)1+(﹣2)﹣(﹣5)(2)﹣22+3×(﹣2)4+33(3)(﹣+﹣)×(﹣36)(4)(﹣1)4+(1﹣)÷3×[2﹣(﹣3)2](5)++(6)4﹣32×2﹣9.计算题①6﹣(+3)﹣(﹣7)+(﹣2)②(﹣++)÷③﹣22﹣|﹣|×(﹣10)2④﹣12018﹣×[2﹣(﹣3)2]10.计算与化简:(1)(2)(2)(2)11.计算:(1)÷﹣×+(2)(π﹣2012)0+﹣()﹣1+(﹣1)512.计算(1)+18﹣(﹣12)(2)3×2﹣(﹣16)÷4(3)÷﹣(4)﹣32﹣|﹣4|+(﹣5)2×13.计算:(1)﹣5.(2).(3).(4)4x2﹣16=0.14.计算(1)(2)15.计算:(1)(﹣)×3(2)﹣×16.计算下列各题:(1)﹣5﹣(﹣7)+(﹣3)(2)﹣6÷(﹣)×(3)﹣22+﹣×3(4)(﹣36)×(﹣+)17.计算:(1)﹣4×+(1﹣)0(2)(2﹣+)×18.观察下列运算:===…=,利用规律计算(+…+)(1+)19.计算(1).(2).(3).(4).20.计算:(1)(2)(﹣2)2+|﹣|÷×421.计算(1)解方程:3(x﹣1)2=27.(2)解方程:3x3+=0.(3).(4).(5).(6)(1+)()﹣(2)2.22.计算:(1)×+(2)(﹣)÷﹣(﹣3)(+3)23.计算:(2)(3)(4)24.计算题(1)(﹣)×(2)(3)(4)25.计算:(1);(2);(3);(4).26.计算:(1)××(2)(3)27.计算和解方程(1)(3﹣)(3+)+(2﹣)2(2)(﹣)0+|2﹣|﹣×+(﹣1)2019(3)(﹣)÷(4)8(x+2)3=2728.计算:(2)+﹣;(3)(+1)2(3﹣2);(4)﹣(﹣)0+(﹣)﹣1.29.计算下列各题(1)(2)(3)(4)30.计算:(1)(﹣)(﹣)+|﹣1|+(3﹣π)0.(2).(3).(4)(2+3)2019(2﹣3)2020﹣(3﹣2)2.实数混合运算2参考答案与试题解析一.解答题(共30小题)1.计算(1)|(2)+()2﹣(π﹣3)0解:(1)|=5﹣(﹣3)+﹣1=7+(2)+()2﹣(π﹣3)0=3+2﹣1═42.计算(1)5﹣﹣7(2).﹣4(3)(3﹣2+)÷2解:(1)5﹣﹣7=5﹣2﹣21=﹣18;(2).﹣4=﹣4×=;(3)(3﹣2+)÷2=(6﹣+4)÷2=×=.3.计算:(1)(3)(2)()+解:(1)原式=(9+﹣2)÷4=8÷2=4;(2)原式=+1+3﹣3+2=4.4.计算:(1)(2)(x>0,y>0)解:(1)原式=2﹣(3+2+2)﹣(2+)=2﹣5﹣2﹣2﹣=﹣7﹣;(2)原式=2﹣x﹣y=(2﹣x﹣y).5.求下列各式的值.(1)(2)﹣4(3)﹣+(4)3﹣+(5)+(﹣1)0+|1﹣|(6)(7+4)(2﹣)2解:(1)原式=﹣=3﹣2=1;(2)原式=﹣4=10﹣4;(3)原式=6﹣3+5=8;(4)原式=6﹣3+=;(5)原式=﹣+1+﹣1=;(6)原式=(7+4)(7﹣4)=49﹣48=1.6.计算:(1)﹣3(2)﹣5+解:(1)原式=﹣﹣3=3﹣2﹣3=﹣2;(2)原式=2﹣+=.7.计算题:(1)﹣2﹣[﹣1﹣()](2)﹣(﹣3)2÷1×(﹣)2﹣4÷23×(﹣)(3)|1﹣|+﹣|;(4)﹣14﹣[1﹣(1﹣0.5×)×6].解:(1)原式=﹣2+1++4=;(2)原式=﹣9××﹣4××(﹣)=﹣+=﹣2;(3)原式=﹣1+2+2=;(4)原式=﹣1﹣1+5=3.8.计算题:(1)1+(﹣2)﹣(﹣5)(2)﹣22+3×(﹣2)4+33(3)(﹣+﹣)×(﹣36)(4)(﹣1)4+(1﹣)÷3×[2﹣(﹣3)2](5)++(6)4﹣32×2﹣解:(1)1+(﹣2)﹣(﹣5)=1﹣2+5=4;(2)﹣22+3×(﹣2)4+33=﹣4+48+27=71;(3)(﹣+﹣)×(﹣36)=﹣×(﹣36)+×(﹣36)﹣×(﹣36)=21﹣20+8=9;(4)(﹣1)4+(1﹣)÷3×[2﹣(﹣3)2]=1+×(﹣7)=﹣;(5)++=9﹣3+=6;(6)4﹣32×2﹣=4﹣9×2+5=﹣9.9.计算题①6﹣(+3)﹣(﹣7)+(﹣2)②(﹣++)÷③﹣22﹣|﹣|×(﹣10)2④﹣12018﹣×[2﹣(﹣3)2]解:①原式=6﹣3+7﹣2=8;②原式=﹣×60+×60+×60=﹣45+35+50=40;③原式=4﹣4﹣×100=﹣25;④原式=﹣1﹣×(2﹣9)=.10.计算与化简:(1)(2)(2)(2)解:(1)原式=4+(﹣3)++6=+3;(2)(2)(2)=4﹣6﹣=4﹣6﹣1=﹣3.11.计算:(1)÷﹣×+(2)(π﹣2012)0+﹣()﹣1+(﹣1)5解:(1)原式=﹣+2=4﹣+2=4+;(2)原式=1+4﹣2﹣1=2.12.计算(1)+18﹣(﹣12)(2)3×2﹣(﹣16)÷4(3)÷﹣(4)﹣32﹣|﹣4|+(﹣5)2×解:(1)原式=18+12=30;(2)原式=6+4=10;(3)原式=﹣=;(4)原式=﹣9﹣4+10=﹣3.13.计算:(1)﹣5.(2).(3).(4)4x2﹣16=0.解:(1)原式=﹣5=8﹣5=3;(2)原式=+2=3+2×2=7;(3)原式=3﹣5+2=0;(4)x2=4,所以x=±=±2.14.计算(1)(2)解:(1)原式=2﹣(﹣3)×=2+2×=2+2;(2)原式=3+2+1﹣8=4﹣6.15.计算:(1)(﹣)×3(2)﹣×解:(1)原式=(2﹣)×3=×3=9;(2)原式=﹣×3=6﹣.16.计算下列各题:(1)﹣5﹣(﹣7)+(﹣3)(2)﹣6÷(﹣)×(3)﹣22+﹣×3(4)(﹣36)×(﹣+)解:(1)原式=﹣5+7﹣3=2﹣3=﹣1;(2)原式=﹣6×(﹣4)×=13;(3)原式=﹣4+2﹣×3=﹣4+2﹣2=﹣4;(4)原式=﹣36×+36×﹣36×=﹣9+1﹣4=﹣12.17.计算:(1)﹣4×+(1﹣)0(2)(2﹣+)×解:(1)原式=4﹣+1=3+1;(2)原式=(4﹣+3)×=6×=18.18.观察下列运算:===…=,利用规律计算(+…+)(1+)解:原式=(﹣1+﹣+﹣+…+﹣)×(1+)=(﹣1)×(1+)=2020﹣1=2019.19.计算(1).(2).(3).(4).解:(1)=4+2﹣1+3=8;(2)=﹣3﹣3﹣=﹣2﹣4;(3)=+;(4)=11﹣6+﹣﹣6+9=11﹣6+3﹣2﹣6+9=6+3;20.计算:(1)(2)(﹣2)2+|﹣|÷×4解:(1)原式=0.1﹣2﹣+=0.1;(2)原式=4+××4=4+.21.计算(1)解方程:3(x﹣1)2=27.(2)解方程:3x3+=0.(3).(4).(5).(6)(1+)()﹣(2)2.解:(1)3(x﹣1)2=27,(x﹣1)2=9,x﹣1=±3,x=﹣2或x=4.(2)3x3+=0,3x3=﹣,x3=﹣,x=﹣.(3)=﹣﹣+5=+.(4)=+1+3﹣3+2=4.(5)=2+﹣﹣=+.(6)(1+)()﹣(2)2=(1+)(1﹣)﹣12+4﹣1=﹣3﹣12+4﹣1=﹣2+4﹣13.22.计算:(1)×+(2)(﹣)÷﹣(﹣3)(+3)解:(1)原式=+2=+2=3+2=5;(2)原式=﹣﹣(3﹣9)=3﹣+6=﹣+9.23.计算:(1)(2)(3)(4)解:(1)原式=×2+2=10+2;(2)原式=÷==;(3)原式=+12﹣(4﹣)=+12﹣3=12﹣2;(4)原式=(11﹣4)(11+4)﹣(6+6﹣6﹣)=25﹣5.24.计算题(1)(﹣)×(2)(3)(4)解:(1)原式=3﹣1=2;(2)原式=2﹣+=2;(3)原式=9﹣3+=;(4)原式=[(﹣1)(+1)]2017×(+1)﹣1=.25.计算:(1);(2);(3);(4).解:(1)=(6﹣÷4)÷2=(6﹣)÷2=3﹣;(2)=4﹣3÷(3﹣)×=4﹣=﹣;(3)=1﹣3÷(﹣1)÷=1﹣(3+3)×=1﹣9﹣=﹣8﹣;(4))=(﹣1)×(2﹣3)××(﹣1)=10﹣7.26.计算:(1)××(2)(3)解:(1)原式=3×2×5=30;(2)原式=(6﹣+4)÷2=÷2=.27.计算和解方程(1)(3﹣)(3+)+(2﹣)2(2)(﹣)0+|2﹣|﹣×+(﹣1)2019(3)(﹣)÷(4)8(x+2)3=27解:(1)原式=9﹣7+×(6﹣4)=9﹣7+6﹣8=6﹣6;(2)原式=1+﹣2﹣﹣1=﹣2;(3)原式=﹣=2﹣=;(4)方程整理得:(x+2)3=,开立方得:x+2=,解得:x=﹣.28.计算:(1)+|﹣2|;(2)+﹣;(3)(+1)2(3﹣2);(4)﹣(﹣)0+(﹣)﹣1.解:(1)原式=+2﹣=1+2﹣=3﹣;(2)原式=4+3﹣=;(3)原式=(3+2)(3﹣2)=9﹣8=1;(4)原式=2﹣﹣2=﹣2.29.计算下列各题(1)(2)(3)(4)解:(1)原式=﹣1+4﹣2=+1;(2)原式=2﹣3﹣(3﹣2)+3=2﹣;(3)原式=10+3+2=15;(4)原式=3+4+4﹣4+2=9.30.计算:(1)(﹣)(﹣)+|﹣1|+(3﹣π)0.(2).(3).(4)(2+3)2019(2﹣3)2020﹣(3﹣2)2.解:(1)(﹣)(﹣)+|﹣1|+(3﹣π)0=2+﹣1+1=3;(2)=3+6﹣+=+;(3)=﹣=3﹣6=﹣3;(4)(2+3)2019(2﹣3)2020﹣(3﹣2)2=[(2+3)(2﹣3)]2019(2﹣3)﹣(18﹣12+4)=3﹣2+12﹣22=10﹣19.第21页(共21页)。

专题实数的运算计算题(共45小题)

专题实数的运算计算题(共45小题)

七年级下册数学《第六章 实 数》 专题 实数的运算计算题(共45小题)1.(2022秋•招远市期末)计算: (1)(√5)2+√(−3)2+√−83;(2)(﹣2)3×18−√273×(−√19).【分析】(1)原式利用平方根及立方根定义计算即可求出值; (2)原式利用乘方的意义,算术平方根及立方根定义计算即可求出值. 【解答】解:(1)原式=5+3+(﹣2) =8﹣2 =6;(2)原式=(﹣8)×18−3×(−13) =(﹣1)﹣(﹣1) =﹣1+1 =0.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键. 2.(2022•庐江县二模)计算:√0.04+√−83−√1−925. 【分析】先计算被开方数,再开方,最后加减. 【解答】解:原式=0.2﹣2−√1625 =0.2﹣2−45 =0.2﹣2﹣0.8 =﹣2.6.【点评】本题考查了实数的混合运算,掌握开方运算是解决本题的关键. 3.(2022春•上思县校级月考)计算: (1)−12+√16+|√2−1|+√−83; (2)2√3+|√3−2|−√643+√9.【分析】(1)直接利用算术平方根的性质、绝对值的性质、立方根的性质分别化简,进而计算得出答案;(2)直接利用算术平方根的性质、绝对值的性质、立方根的性质分别化简,进而计算得出答案. 【解答】解:(1)−12+√16+|√2−1|+√−83; =﹣1+4+√2−1﹣2 =√2;(2)原式=2√3+2−√3−4+3 =√3+1.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.4.(2022春•渝中区校级月考)实数的计算: (1)√16+√(−3)2+√273; (2)√−33+|1−√33|﹣(−√3)2.【分析】(1)先计算平方根和立方根,再计算加减; (2)先计算平方根、立方根和绝对值,再计算加减; 【解答】解:(1)√16+√(−3)2+√273=4+3+3 =10;(2)√−33+|1−√33|﹣(−√3)2=−√33+√33−1﹣3 =﹣4.【点评】此题考查了实数的混合运算能力,关键是能准确理解运算顺序,并能进行正确地计算.5.(2022秋•原阳县月考)计算: (1)√−83+√4−(−1)2023;(2)(−√9)2−√643+|−5|−(−2)2.【分析】(1)先化简各式,然后再进行计算即可解答; (2)先化简各式,然后再进行计算即可解答. 【解答】解:(1)√−83+√4−(−1)2023 =﹣2+2﹣(﹣1)=0+1 =1;(2)(−√9)2−√643+|−5|−(−2)2 =9﹣4+5﹣4 =6.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.6.(2022春•牡丹江期中)计算: (1)−12−√0.64+√−273−√125;(2)√3+√(−5)2−√−643−|√3−5|.【分析】(1)先计算平方、平方根和立方根,再进行加减运算; (2)先计算平方根、立方根和绝对值,再进行加减运算. 【解答】解(1)−12−√0.64+√−273−√125=﹣1﹣0.8﹣3﹣0.2 =﹣5;(2)√3+√(−5)2−√−643−|√3−5| =√3+5+4+√3−5 =2√3+4.【点评】此题考查了运用平方根和立方根进行有关运算的能力,关键是能准确理解并运用以上知识.7.(2022秋•南关区校级期末)计算:√16−(−1)2022−√273+|1−√2|.【分析】直接利用有理数的乘方运算法则、绝对值的性质、平方根的性质分别化简,进而得出答案. 【解答】解:原式=4﹣1﹣3+√2−1 =√2−1.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.8.(2022秋•成武县校级期末)计算:﹣12022−√643+|√3−2|.【分析】这里,先算﹣12022=﹣1,√643=4,|√3−2|=2−√3,再进行综合运算.【解答】解:﹣12022−√643+|√3−2|=﹣1﹣4+2−√3 =﹣3−√3.【点评】本题考查了实数的综合运算,计算过程中要细心,注意正负符号,综合性较强.9.(2022春•昌平区校级月考)√1253+√(−3)2−√1−35273.【分析】先化简各式,然后再进行计算即可解答.【解答】解:√1253+√(−3)2−√1−35273=5+3−√−8273=5+3﹣(−23) =5+3+23 =823.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.10.(2022春•舒城县校级月考)计算:√−273+12√16+|−√2|+1.【分析】首先计算开方、开立方和绝对值,然后计算乘法,最后从左向右依次计算,求出算式的值即可. 【解答】解:√−273+12√16+|−√2|+1 =﹣3+12×4+√2+1 =﹣3+2+√2+1 =√2.【点评】此题主要考查了实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用. 11.(2022春•舒城县校级月考)计算:﹣12+|﹣2|+√−83+√(−3)2.【分析】先化简各式,然后再进行计算即可解答. 【解答】解:﹣12+|﹣2|+√−83+√(−3)2=﹣1+2+(﹣2)+3=﹣1+2﹣2+3 =2.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.12.(2021秋•镇巴县期末)计算:(−1)10+|√2−2|+√49+√(−3)33. 【分析】按照实数的运算顺序进行运算即可. 【解答】解:原式=1+2−√2+7−3 =7−√2.【点评】本题考查了实数的运算,掌握对值,立方根以及平方根的运算法则是关键.13.(2022春•阳新县期末)计算:|√3−2|+√−83×12+(−√3)2.【分析】先算开方和乘方,再化简绝对值算乘法,最后加减. 【解答】解:原式=2−√3+(﹣2)×12+3 =2−√3−1+3 =4−√3.【点评】本题考查了实数的运算,掌握乘方、开方及绝对值的意义是解决本题的关键.14.(2022春•十堰期中)计算:﹣12022+√(−4)2+√83+10√925.【分析】先算乘方、开方,再算乘法,最后算加减. 【解答】解:原式=﹣1+4+2+10×35 =﹣1+4+2+6 =11.【点评】本题考查了实数的混合运算,掌握实数的运算法则、实数的运算顺序是解决本题的关键. 15.(2021秋•峨边县期末)计算:|√5−3|+√(−2)2−√−83+√5. 【分析】直接利用绝对值的性质以及立方根的性质分别化简,进而得出答案. 【解答】解:原式=3−√5+2+2+√5 =7.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.16.(2021秋•乳山市期末)计算:√(−3)2−2×√94+52×√−0.0273.【分析】应用实数的运算法则:先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行,进行计算即可得出答案. 【解答】解:原式=3﹣2×32+52×(﹣0.3) =3﹣3−52×310 =0−34 =−34.【点评】本题主要考查了实数的运算,熟练掌握实数的运算进行求解是解决本题的关键.17.(2022秋•横县期中)计算:(﹣1)2022+√9−(2﹣3)÷12.【分析】先计算乘方与开方和小括号里的,再计算除法,最后计算加减即可. 【解答】解:原式=1+3﹣(﹣1)×2 =4+2 =6.【点评】此题考查的实数的运算,掌握其运算法则是解决此题的关键.18.(2022秋•儋州校级月考)计算: (1)√643−√81+√1253+3; (2)|−3|−√16+√83+(−2)2.【分析】(1)直接利用立方根的性质、平方根的性质分别化简,进而计算得出答案; (2)直接利用立方根的性质、平方根的性质、绝对值的性质分别化简,进而计算得出答案. 【解答】解:(1)原式=4﹣9+5+3 =3;(2)原式=3﹣4+2+4 =5.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.19.(2022秋•海曙区校级期中)计算: (1)﹣23+√−273−(﹣2)2+√1681;(2)(﹣3)2×(﹣2)+√643+√9.【分析】(1)先计算乘方、立方根和平方根,再计算加减; (2)先计算乘方、立方根和平方根,再计算乘法,最后计算加减. 【解答】解:(1)﹣23+√−273−(﹣2)2+√1681=﹣8﹣3﹣4+49=﹣1459;(2)(﹣3)2×(﹣2)+√643+√9=﹣9×2+4+3 =﹣18+4+3 =﹣11.【点评】此题考查了实数的混合运算能力,关键是能准确确定运算顺序和方法.20.(2022秋•安岳县校级月考)计算: (1)(√3)2−√16+√−83;(2)(﹣2)3×√1214+(﹣1)2013−√273; (3)√(−4)2+√214+√3383−√32+42.【分析】(1)先化简各式,然后再进行计算即可解答; (2)先化简各式,然后再进行计算即可解答; (3)先化简各式,然后再进行计算即可解答. 【解答】解:(1)(√3)2−√16+√−83=3﹣4+(﹣2) =﹣3;(2)(﹣2)3×√1214+(﹣1)2013−√273=﹣8×112+(﹣1)﹣3=﹣44﹣1﹣3=﹣48;(3)√(−4)2+√214+√3383−√32+42=4+32+32−5=2.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.21.(2022秋•隆昌市校级月考)计算:(1)|−3|−√16+√−83+(−2)2;(2)√−273+|2−√3|−(−√16)+2√3.【分析】(1)首先计算乘方、开平方、开立方和绝对值,然后从左向右依次计算,求出算式的值即可.(2)首先计算开平方、开立方和绝对值,然后从左向右依次计算,求出算式的值即可.【解答】解:(1)|−3|−√16+√−83+(−2)2=3﹣4+(﹣2)+4=1.(2)√−273+|2−√3|−(−√16)+2√3=﹣3+(2−√3)﹣(﹣4)+2√3=﹣3+2−√3+4+2√3=3+√3.【点评】此题主要考查了实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.22.(2021秋•泉州期末)计算:√(−3)2×√−1 83−(12)2+(−1)2022.【分析】先算乘方和开方,再算乘法,最后算加减.【解答】解:原式=3×(−12)−14+1=−32−14+1 =−12−14=−34.【点评】本题主要考查了实数的运算,掌握平方根的性质、乘方运算、开方运算是解决本题的关键.23.(2022秋•新野县期中)计算:√−83+√9−√1916+(−1)2022+|1−√2|. 【分析】利用立方根的定义,算术平方根的定义,乘方运算,绝对值的定义计算即可. 【解答】解:√−83+√9−√1916+(−1)2022+|1−√2|. =﹣2+3−54+1+√2−1 =−14+√2.【点评】本题考查了实数的运算,解题的关键是掌握立方根的定义,算术平方根的定义,乘方运算,绝对值的定义.24.(2021秋•新兴区校级期末)计算下列各题: (1)√1−19273+√(14−1)2; (2)√53−|−√53|+2√3+3√3.【分析】(1)先化简各式,然后再进行计算即可解答; (2)先化简各式,然后再进行计算即可解答. 【解答】解:(1)√1−19273+√(14−1)2=√8273+√(−34)2=23+34 =1712;(2)√53−|−√53|+2√3+3√3 =√53−√53+2√3+3√3 =5√3.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.25.(2022秋•绥德县期中)计算:2(√3−1)−|√3−2|−√643. 【分析】先去括号,化简绝对值,开立方,再计算加减即可. 【解答】解:原式=2√3−2﹣(2−√3)﹣4 =2√3−2﹣2+√3−4 =3√3−8.【点评】本题考查实数的混合运算,平方根加法,熟练掌握实数的混合运算法则是解题的关键.26.(2022秋•义乌市校级期中)计算:﹣22×(﹣112)2−√−643−√169×|﹣3|. 【分析】先算乘方,再算乘法,后算加减,即可解答. 【解答】解:﹣22×(﹣112)2−√−643−√169×|﹣3|=﹣4×94−(﹣4)−43×3 =﹣9+4﹣4 =﹣9.【点评】本题考查了实数的运算,准确熟练地进行计算是解题的关键.27.(2022秋•西湖区校级期中)计算: (1)|7−√2|﹣|√2−π|−√(−7)2;(2)﹣22×√(−4)2+√(−8)33×(−12)−√273.【分析】(1)先化简绝对值和平方根,再计算加减; (2)先算乘方和根式,再计算乘法,最后加减. 【解答】解:(1)|7−√2|﹣|√2−π|−√(−7)2 =7−√2−(π−√2)﹣7 =7−√2−π+√2−7 =﹣π;(2)﹣22×√(−4)2+√(−8)33×(−12)−√273 =﹣4×4+(﹣8)×(−12)﹣3=﹣16+4﹣3=﹣15.【点评】本题考查了实数的混合运算,实数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行实数的混合运算时,注意各个运算律的运用,使运算过程得到简化.28.(2022秋•沈丘县校级月考)计算:√0.01×√121+√−11253−√0.81. 【分析】直接利用平方根的性质、立方根的性质分别化简,进而得出答案.【解答】解:原式=0.1×11−15−0.9=1.1﹣0.2﹣0.9=0.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.29.(2022春•西山区校级期中)计算:5−2×(√7−2)+√−83+|√3−2|.【分析】直接利用立方根的性质、绝对值的性质分别化简,进而计算得出答案.【解答】解:原式=5﹣2√7+4﹣2+2−√3=9﹣2√7−√3.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.30.(2022春•东莞市期中)计算:√(−3)2+(﹣1)2020+√−83+|1−√2| 【分析】先化简各式,然后再进行计算即可解答.【解答】解:√(−3)2+(﹣1)2020+√−83+|1−√2| =3+1+(﹣2)+√2−1=3+1﹣2+√2−1=1+√2.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.31.(2022秋•安溪县月考)计算:√16+√−273−√3−|√3−2|+√(−5)2.【分析】直接利用立方根的性质、绝对值的性质算术平方根的性质分别化简,进而合并得出答案.【解答】解:原式=4﹣3−√3−2+√3+5=4.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.32.(2022秋•仁寿县校级月考)计算:√−8273+√(−4)2×(−12)3−|1−√3|. 【分析】先化简各式,然后再进行计算即可解答.【解答】解:√−8273+√(−4)2×(−12)3−|1−√3|=−23+4×(−18)﹣(√3−1) =−23+(−12)−√3+1=−76−√3+1=−16−√3.【点评】本题考查了实数的运算,准确熟练地进行计算是解题的关键.33.(2022春•海淀区校级期中)计算:√81+√−273−2(√3−3)−|√3−2|.【分析】本题涉及去掉绝对值、根式化简考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=9﹣3﹣2√3+6﹣(2−√3)=6﹣2√3+6﹣2+√3=10−√3.【点评】本题主要考查了实数的综合运算能力,解决此类题目的关键是准确熟练地化简各式是解题的关键.34.(2022春•梁平区期中)计算:√(−1)33+√−273+√(−2)2−|1−√3|.【分析】利用算术平方根,立方根和绝对值的意义化简运算即可.【解答】解:原式=﹣1+(﹣3)+2﹣(√3−1)=﹣1﹣3+2−√3+1=﹣1−√3.【点评】本题主要考查了实数的运算,算术平方根,立方根和绝对值的意义,正确利用上述法则与性质化简运算是解题的关键.35.(2022春•东莞市校级期中)计算:﹣12020+√(−2)2−√643+|√3−2|. 【分析】直接利用有理数的乘方运算法则、平方根的性质、立方根的性质、绝对值的性质分别化简,进而计算得出答案.【解答】解:原式=﹣1+2﹣4+2−√3=﹣1−√3.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.36.计算下列各题:(1)√1+√−273−√14+√0.1253+√1−6364(2)|7−√2|﹣|√2−π|−√(−7)2【分析】(1)原式利用平方根、立方根定义计算即可求出值;(2)原式利用绝对值的代数意义计算即可求出值.【解答】解:(1)原式=1﹣3−12+0.5+18=−178; (2)原式=7−√2−π+√2−7=﹣π.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.37.计算:√0.0083×√1916−√172−82÷√−11253. 【分析】首先计算开方、乘法和除法,然后计算减法,求出算式的值是多少即可.【解答】解:√0.0083×√1916−√172−82÷√−11253=0.2×54−15÷(−15)=14+75 =7514【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.38.计算:3√3−2(1+√3)+√(−2)2+|√3−2|【分析】首先利用去括号法则以及绝对值的性质和算术平方根的定义分别化简得出答案.【解答】解:原式=3√3−2﹣2√3+2+2−√3=2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.39.计算:(1)√(−2)2×√214−23×√(−18)23(2)√9+|1−√2|−√125273×√(−3)2+|4√0.25−√2|【分析】(1)首先计算开方和乘法,然后计算减法,求出算式的值是多少即可.(2)首先计算开方和乘法,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:(1)√16+√32+√−83=4+3﹣2=5(2)√(−2)2×√214−23×√(−18)23 =2×32−8×14=3﹣2=1(3)√9+|1−√2|−√125273×√(−3)2+|4√0.25−√2|=3+√2−1−53×3+2−√2=﹣1【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.40.计算:(﹣2)2×√14+|√−83|+√2×(﹣1)2022 【分析】原式利用平方根、立方根定义,绝对值的代数意义,以及乘方的意义计算即可得到结果;【解答】解:原式=2+2+√2=4+√2;【点评】此题考查了实数的运算,平方根、立方根,熟练掌握各自的性质是解本题的关键.41.计算:﹣22+√16+√83+1014×934. 【分析】原式第一项利用乘方的意义计算,第二项利用算术平方根定义计算,第三项利用立方根定义计算,最后一项利用乘法法则计算即可得到结果.【解答】解:原式=﹣4+4+2+414×394=2+159916=1011516. 【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.42.计算:|﹣5|−√273+(﹣2)2+4÷(−23). 【分析】根据绝对值的性质、立方根的性质以及实数的运算法则化简计算即可;【解答】解:原式=5﹣3+4﹣6=0【点评】本题考查实数的混合运算,解题的关键是:掌握先乘方,再乘除,后加减,有括号的先算括号里面的,在同一级运算中要从左到右依次运算,无论何种运算,都要注意先定符号后运算.43.(2022秋•城关区校级期中)计算:(1)√12+(√3)2+14√48−9√13;(2)√(−3)2+(−1)2022+√83+|1−√2|.【分析】(1)直接利用平方根的性质分别化简,进而计算得出答案;(2)直接利用平方根的性质、有理数的乘方运算法则、立方根的性质、绝对值的性质分别化简,进而计算得出答案.【解答】解:(1)原式=2√3+3+14×4√3−9×√33 =2√3+3+√3−3√3=3;(2)原式=3+1+2+√2−1=5+√2.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.44.(2021春•濉溪县期末)计算:√49−√273+|1−√2|+√(1−43)2.【分析】原式第一项利用算术平方根定义计算,第二项利用立方根定义计算,第三项利用绝对值的代数意义化简,最后一项利用平方根性质化简即可得到结果.【解答】解:原式=7﹣3+√2−1+13=103+√2. 【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.45.(2022秋•岳麓区校级月考)计算−12022+(12)2+|√2−3|−√(−3)2.【分析】根据乘方,绝对值的意义,平方根的性质将原式进行化简,然后根据实数运算法则进行计算即可.【解答】解:原式=−1+14+3−√2−3,=−34−√2.【点评】本题考查了乘方,绝对值的意义,平方根的性质,掌握相关运算法则是关键.。

(完整版)十实数计算题专题训练(含答案)

(完整版)十实数计算题专题训练(含答案)

一.计算题1.计算题:|﹣2|﹣(1+)0+.2.计算题:﹣12009+4×(﹣3)2+(﹣6)÷(﹣2)3.4 . ||﹣.5.计算题:.6.计算题:(1);7 .8. (精确到).9.计算题:.10.(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣3)2÷(﹣2);11.| ﹣|+﹣12. ﹣12+×﹣213. .14. 求x的值:9x2=121.15. 已知,求x y的值.16. 比较大小:﹣2,﹣(要求写过程说明)17.求x的值:(x+10)2=1618. .19. 已知m<n,求+的值;20.已知a<0,求+的值.专题一计算题训练参考答案与试题解析一.解答题(共13小题)1.计算题:|﹣2|﹣(1+)0+.解答:解:原式=2﹣1+2,=3.2.计算题:﹣12009+4×(﹣3)2+(﹣6)÷(﹣2)解答:解:﹣12009+4×(﹣3)2+(﹣6)÷(﹣2),=﹣1+4×9+3,=38.3.4. ||﹣.原式=14﹣11+2=5;(2)原式==﹣1.点评:此题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握二次根式、绝对值等考点的运算.5.计算题:.考点:有理数的混合运算。

分析:首先进行乘方运算、然后根据乘法分配原则进行乘法运算、同时进行除法运算,最后进行加减法运算即可.解答:解:原式=﹣4+8÷(﹣8)﹣(﹣1)=﹣4﹣1﹣(﹣)=﹣5+=﹣.点评:本题主要考查有理数的混合运算,乘方运算,关键在于正确的去括号,认真的进行计算即可.6.;7..考点:实数的运算;立方根;零指数幂;二次根式的性质与化简。

分析:(1)注意:|﹣|=﹣;(2)注意:(π﹣2)0=1.解答:解:(1)(==;(2)=1﹣+2=.点评:保证一个数的绝对值是非负数,任何不等于0的数的0次幂是1,注意区分是求二次方根还是三次方根.8.(精确到).考点:实数的运算。

实数计算题专题训练(含答案)汇编

实数计算题专题训练(含答案)汇编

x+10= ±4,然后解一次方程即可;
( 2)先进行乘方和开方运算得到原式 =﹣8×4+(﹣ 4) × ﹣ 3,再进行乘法运算,然后进行加法运算即可.
解答: 解:(1)∵ x+10= ±4, ∴ x= ﹣ 6 或﹣ 14;
( 2)原式 =﹣8×4+ (﹣ 4) × ﹣ 3
=﹣ 4﹣ 1﹣(﹣ )
=﹣ 5+
=﹣ . 点评: 本题主要考查有理数の混合运算,乘方运算,关键在于正确の去括号,认真の进行计算即可.
6.

7.

考点 : 实数の运算;立方根;零指数幂;二次根式の性质与化简。
分析: ( 1)注意: | ﹣ |= ﹣ ;

2)注意:(
π﹣
2)
0
=1

解答: 解:(1)(
3)
2
+
(﹣
6)
÷(﹣
2),
=﹣ 1+4×9+3 ,
=38.
3.
4. |
|﹣ .
原式 =14﹣ 11+2=5;
( 2)原式 =
=﹣ 1.
点评: 此题主要考查了实数の综合运算能力,是各地中考题中常见の计算题型.解决此类题目の关键是熟练掌握
二次根式、绝对值等考点の运算.
5.计算题:

考点 : 有理数の混合运算。 分析: 首先进行乘方运算、然后根据乘法分配原则进行乘法运算、同时进行除法运算,最后进行加减法运算即可. 解答: 解:原式 =﹣ 4+8÷(﹣ 8)﹣( ﹣ 1)
∴ x= ﹣ 2, y=3;

xy=(﹣
3
2) =﹣ 8;
④∵ < ,

七年级数学实数计算题练习(含答案)

七年级数学实数计算题练习(含答案)

七年级数学实数计算题练习(含答案)1.求下列各式中x的值.(1)4x2﹣9=0;(2)64(x﹣2)3﹣1=0.2.求下列各式中的x.(1)(x﹣1)2﹣8=1.(2)27+(1﹣2x)3=0.3.计算:(1);(2).4.(1);(2).5.(1)计算:;(2)已知8(x﹣1)2=16,求x的值.6.已知=x,,z是﹣8的立方根,求2x+y﹣z的平方根.7.求下列式子中x的值.(1);(2)3x3=﹣81.8.求等式中x的值:3(x+1)2=12.9.计算:.10.(1)若(x﹣1)3=8求x的值;(3)计算.11.计算:﹣12+﹣.12.计算:(1).(2)﹣|﹣2|+(﹣).13.计算:(1);(3).14.已知:实数a、b、c在数轴上的位置如图:且|a|=|b|,化简:|a|﹣|a+b|﹣|c﹣a|+|c+b|﹣|﹣b|.15.计算:(1)(﹣1)2021+﹣+|﹣2|;(2)﹣﹣++.16.计算题:(1);(2).17.计算:(1);(2).答案:1.求下列各式中x的值.(1)4x2﹣9=0;(2)64(x﹣2)3﹣1=0.【解答】解:(1)4x2﹣9=0,移项得:4x2=9,系数化为1得:,∴;(2)64(x﹣2)3﹣1=0,移项得:64(x﹣2)3=1,系数化为1得:,∴,∴.2.求下列各式中的x.(1)(x﹣1)2﹣8=1.(2)27+(1﹣2x)3=0.【解答】解:(1)(x﹣1)2﹣8=1,(x﹣1)2=9,x﹣1=3或x﹣1=﹣3,x=4或x=﹣2;(2)27+(1﹣2x)3=0,(1﹣2x)3=﹣27,1﹣2x=﹣3,x=2.3.计算:(1);(2).【解答】解:(1)===;(2)===9+5=14.4.(1);(2).【解答】解:(1)=﹣27+2﹣﹣3+4=﹣24;(2)=2﹣﹣=.5.(1)计算:;(2)已知8(x﹣1)2=16,求x的值.【解答】解:(1)=+3;(2)8(x﹣1)2=16,(x﹣1)2=2,x﹣1=±,x﹣1=或x﹣1=﹣,x=1+或x=1﹣.6.已知=x,,z是﹣8的立方根,求2x+y﹣z的平方根.【解答】解:∵=x,,z是﹣8的立方根,∴x=5,y=4,z=﹣2,∴2x+y﹣z=10+4+2=16,∴2x+y﹣z的平方根是±4.7.求下列式子中x的值.(1);(2)3x3=﹣81.【解答】解:(1)∵,∴,解得:,;(2)∵3x3=﹣81,∴x3=﹣27,解得:x=﹣3.8.求等式中x的值:3(x+1)2=12.【解答】解:∵3(x+1)2=12,∴(x+1)2=4,∴x+4=±2,∴x+4=2或x+4=﹣2,解得:x=﹣3或x=1.9.计算:.【解答】解:=1+×4﹣(﹣4)=1+2+4=7.10.(1)若(x﹣1)3=8求x的值;(2)计算.【解答】解:(1)∵(x﹣1)3=8,∴x﹣1=2,∴x=3.(2)原式=4﹣(﹣3)+6﹣(4﹣)=4+3+6﹣4+=9+.11.计算:﹣12+﹣.【解答】解:原式=﹣1+3﹣2=0.12.计算:(1).(2)﹣|﹣2|+(﹣).【解答】解:(1)=﹣1+2+8×=﹣1+2+4=5;(2)﹣|﹣2|+(﹣)=4+﹣2+3﹣1=4+.13.计算:(1);(2).【解答】解:(1)原式=1+﹣1+3=3+;(2)原式=3﹣2+=1+.14.已知:实数a、b、c在数轴上的位置如图:且|a|=|b|,化简:|a|﹣|a+b|﹣|c﹣a|+|c+b|﹣|﹣b|.【解答】解:根据图示,可得:a<c<0<b,且|c|<|b|,∴c﹣a>0,c+b>0,﹣b<0,∵a<0<b,且|a|=|b|,∴a+b=0,∴|a|﹣|a+b|﹣|c﹣a|+|c+b|﹣|﹣b|=﹣a﹣0﹣(c﹣a)+(c+b)﹣b=﹣a﹣0﹣c+a+c+b﹣b=0.15.计算:(1)(﹣1)2021+﹣+|﹣2|;(2)﹣﹣++.【解答】解:(1)(﹣1)2021+﹣+|﹣2|=﹣1+2﹣4+2﹣=﹣1﹣;(2)﹣﹣++=3﹣0﹣++=3.16.计算题:(1);(2).【解答】解:(1)=﹣1+4﹣3=0;(2)=﹣1+3+2﹣2=3.17.计算:(1);(2).【解答】解:(1)原式=5+1=6;(2)原式=5+﹣=5.。

初一实数计算-二元一次方程组专题训练题两组四十道

初一实数计算-二元一次方程组专题训练题两组四十道

专题计算题训练(一)(1)计算题:|﹣2|﹣(1+)0+(2)﹣12009+4×(﹣3)2+(﹣6)÷(﹣2)(3)(4)||﹣(5)解方程组:(6)66x+17y=3967(7) 18x+23y=230325x+y=120074x-y=1998(8) 44x+90y=7796(9) 76x-66y=408244x+y=347630x-y=2940(10) 67x+54y=8546 (11) 42x-95y=-141071x-y=5680 21x-y=1575(12) 47x-40y=853(13) 19x-32y=-178634x-y=200675x+y=4950(14) 97x+24y=7202 (15) 42x+85y=636258x-y=290063x-y=1638(16)2X+3>0 (17)2X<-1 (18)5X+6<3X -3X+5>0 X+2>0 8-7X>4-5X (19)2(1+X)>3(X-7)(20)2X<44(2X-3)>5(X+2)X+3>0专题计算题训练(二)(1);(2).(3)(4).(5)(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣3)2÷(﹣2);(6) 85x-92y=-2518(7) 79x+40y=241927x-y=48656x-y=1176(8) 80x-87y=2156(9) 32x+62y=513422x-y=88057x+y=2850(10) 83x-49y=82(11) 91x+70y=584559x+y=218395x-y=4275(12) 29x+44y=5281 (13) 25x-95y=-435588x-y=360840x-y=2000(14) 54x+68y=3284(15) 70x+13y=352078x+y=140452x+y=2132(16)1-X>0 (17)5+2X>3 (18)2X+4<0 X+2<0 X+2<8 1/2(X+8)-2>0 (19)5X-2≥3(X+1)(20)1+1/2X>21/2X+1>3/2X-3 2(X-3)≤4(21) 48x-54y=-3186 24x+y=1080答案:x=45 y=99 (22) 36x+77y=7619 47x-y=799答案:x=17 y=91 (23) 13x-42y=-2717 31x-y=1333答案:x=43 y=78 (24) 28x+28y=3332 52x-y=4628答案:x=89 y=30 (25) 62x-98y=-2564 46x-y=2024答案:x=44 y=54 (26) 79x-76y=-4388 26x-y=832答案:x=32 y=91 (27) 63x-40y=-821 42x-y=546答案:x=13 y=41 (28) 69x-96y=-1209 42x+y=3822答案:x=91 y=78 (29) 85x+67y=7338 11x+y=308答案:x=28 y=74 (30) 78x+74y=12928 14x+y=1218答案:x=87 y=83 (31) 39x+42y=5331 59x-y=5841答案:x=99 y=35 (32) 29x+18y=1916 58x+y=2320答案:x=40 y=42 (33) 40x+31y=6043 45x-y=3555答案:x=79 y=93(34) 47x+50y=8598 45x+y=3780答案:x=84 y=93 (35) 45x-30y=-1455 29x-y=725答案:x=25 y=86 (36) 11x-43y=-1361 47x+y=799答案:x=17 y=36 (37) 33x+59y=3254 94x+y=1034答案:x=11 y=49 (38) 89x-74y=-2735 68x+y=1020答案:x=15 y=55 (39) 94x+71y=7517 78x+y=3822答案:x=49 y=41 (40) 28x-62y=-4934 46x+y=552答案:x=12 y=85 (41) 75x+43y=8472 17x-y=1394答案:x=82 y=54 (42) 41x-38y=-118029x+y=1450答案:x=50 y=85 (43) 22x-59y=824 63x+y=4725答案:x=75 y=14 (44) 95x-56y=-401 90x+y=1530答案:x=17 y=36 (45) 93x-52y=-852 29x+y=464答案:x=16 y=45 (46) 93x+12y=8823 54x+y=4914答案:x=91 y=30 (47) 21x-63y=84 20x+y=1880答案:x=94 y=30 (48) 48x+93y=9756 38x-y=950答案:x=25 y=92 (49) 99x-67y=4011 75x-y=5475答案:x=73 y=48 (50) 83x+64y=9291 90x-y=3690答案:x=41 y=92 (51) 17x+62y=3216 75x-y=7350答案:x=98 y=25 (52) 77x+67y=2739 14x-y=364答案:x=26 y=11 (53) 20x-68y=-4596 14x-y=924答案:x=66 y=87 (54) 23x+87y=4110 83x-y=5727答案:x=69 y=29 (55) 22x-38y=804 86x+y=6708答案:x=78 y=24 (56) 20x-45y=-3520 56x+y=728答案:x=13 y=84 (57) 46x+37y=7085 61x-y=4636答案:x=76 y=97 (58) 17x+61y=4088 71x+y=5609答案:x=79 y=45(59) 51x-61y=-1907 89x-y=2314答案:x=26 y=53 (60) 69x-98y=-2404 21x+y=1386答案:x=66 y=71 (61) 15x-41y=754 74x-y=6956答案:x=94 y=16 (62) 78x-55y=656 89x+y=5518答案:x=62 y=76 (63) 29x+21y=1633 31x-y=713答案:x=23 y=46 (64) 58x-28y=2724 35x+y=3080答案:x=88 y=85 (65) 28x-63y=-2254 88x-y=2024答案:x=23 y=46 (66) 43x+50y=7064 85x+y=8330答案:x=98 y=57 (67) 58x-77y=117038x-y=2280答案:x=60 y=30 (68) 92x+83y=11586 43x+y=3010答案:x=70 y=62 (69) 99x+82y=6055 52x-y=1716答案:x=33 y=34 (70) 15x+26y=1729 94x+y=8554答案:x=91 y=14 (71) 64x+32y=3552 56x-y=2296答案:x=41 y=29 (72) 94x+66y=10524 84x-y=7812答案:x=93 y=27 (73) 65x-79y=-5815 89x+y=2314答案:x=26 y=95 (74) 96x+54y=6216 63x-y=1953答案:x=31 y=60 (75) 60x-44y=-352答案:x=44 y=68 (76) 79x-45y=510 14x-y=840答案:x=60 y=94 (77) 29x-35y=-218 59x-y=4897答案:x=83 y=75 (78) 33x-24y=1905 30x+y=2670答案:x=89 y=43 (79) 61x+94y=11800 93x+y=5952答案:x=64 y=84 (80) 61x+90y=5001 48x+y=2448答案:x=51 y=21 (81) 93x-19y=286x-y=1548答案:x=18 y=88 (82) 19x-96y=-5910 30x-y=2340答案:x=78 y=77 (83) 80x+74y=8088 96x-y=8640(84) 53x-94y=1946 45x+y=2610答案:x=58 y=12 (85) 93x+12y=9117 28x-y=2492答案:x=89 y=70 (86) 66x-71y=-1673 99x-y=7821答案:x=79 y=97 (87) 43x-52y=-1742 76x+y=1976答案:x=26 y=55 (88) 70x+35y=8295 40x+y=2920答案:x=73 y=91 (89) 43x+82y=4757 11x+y=231答案:x=21 y=47 (90) 12x-19y=236 95x-y=7885答案:x=83 y=40 (91) 51x+99y=8031 71x-y=2911答案:x=41 y=6069x-y=6003答案:x=87 y=16 (93) 46x+34y=4820 71x-y=5183答案:x=73 y=43 (94) 47x+98y=5861 55x-y=4565答案:x=83 y=20 (95) 30x-17y=239 28x+y=1064答案:x=38 y=53 (96) 55x-12y=4112 79x-y=7268答案:x=92 y=79 (97) 27x-24y=-450 67x-y=3886答案:x=58 y=84 (98) 97x+23y=8119 14x+y=966答案:x=69 y=62 (99) 84x+53y=11275 70x+y=6790答案:x=97 y=59 (100) 51x-97y=297(6)答案:x=48 y=47 (7) 18x+23y=230374x-y=1998答案:x=27 y=79 (3) 44x+90y=779644x+y=3476答案:x=79 y=48 (4) 76x-66y=408230x-y=2940答案:x=98 y=51 (5) 67x+54y=854671x-y=5680答案:x=80 y=59 (6) 42x-95y=-141021x-y=1575答案:x=75 y=48 (7) 47x-40y=853(8) 19x-32y=-1786 75x+y=4950答案:x=66 y=95 (9) 97x+24y=7202 58x-y=2900答案:x=50 y=98 (10) 42x+85y=6362 63x-y=1638答案:x=26 y=62 (11) 85x-92y=-2518 27x-y=486答案:x=18 y=44 (12) 79x+40y=2419 56x-y=1176答案:x=21 y=19 (13) 80x-87y=2156 22x-y=880答案:x=40 y=12 (14) 32x+62y=5134 57x+y=2850答案:x=50 y=57 (15) 83x-49y=82 59x+y=2183(16) 91x+70y=5845 95x-y=4275答案:x=45 y=25 (17) 29x+44y=5281 88x-y=3608答案:x=41 y=93 (18) 25x-95y=-4355 40x-y=2000答案:x=50 y=59 (19) 54x+68y=3284 78x+y=1404答案:x=18 y=34 (20) 70x+13y=3520 52x+y=2132答案:x=41 y=50 (21) 48x-54y=-3186 24x+y=1080答案:x=45 y=99 (22) 36x+77y=7619 47x-y=799答案:x=17 y=91 (23) 13x-42y=-2717 31x-y=1333答案:x=43 y=7852x-y=4628答案:x=89 y=30 (25) 62x-98y=-2564 46x-y=2024答案:x=44 y=54 (26) 79x-76y=-4388 26x-y=832答案:x=32 y=91 (27) 63x-40y=-821 42x-y=546答案:x=13 y=41 (28) 69x-96y=-1209 42x+y=3822答案:x=91 y=78 (29) 85x+67y=7338 11x+y=308答案:x=28 y=74 (30) 78x+74y=12928 14x+y=1218答案:x=87 y=83 (31) 39x+42y=5331 59x-y=5841答案:x=99 y=35 (32) 29x+18y=1916答案:x=40 y=42 (33) 40x+31y=6043 45x-y=3555答案:x=79 y=93 (34) 47x+50y=8598 45x+y=3780答案:x=84 y=93 (35) 45x-30y=-1455 29x-y=725答案:x=25 y=86 (36) 11x-43y=-1361 47x+y=799答案:x=17 y=36 (37) 33x+59y=3254 94x+y=1034答案:x=11 y=49 (38) 89x-74y=-2735 68x+y=1020答案:x=15 y=55 (39) 94x+71y=7517 78x+y=3822答案:x=49 y=41 (40) 28x-62y=-4934 46x+y=552(41) 75x+43y=8472 17x-y=1394答案:x=82 y=54 (42) 41x-38y=-1180 29x+y=1450答案:x=50 y=85 (43) 22x-59y=824 63x+y=4725答案:x=75 y=14 (44) 95x-56y=-401 90x+y=1530答案:x=17 y=36 (45) 93x-52y=-852 29x+y=464答案:x=16 y=45 (46) 93x+12y=8823 54x+y=4914答案:x=91 y=30 (47) 21x-63y=84 20x+y=1880答案:x=94 y=30 (48) 48x+93y=9756 38x-y=950答案:x=25 y=9275x-y=5475答案:x=73 y=48 (50) 83x+64y=9291 90x-y=3690答案:x=41 y=92 (51) 17x+62y=3216 75x-y=7350答案:x=98 y=25 (52) 77x+67y=2739 14x-y=364答案:x=26 y=11 (53) 20x-68y=-4596 14x-y=924答案:x=66 y=87 (54) 23x+87y=4110 83x-y=5727答案:x=69 y=29 (55) 22x-38y=804 86x+y=6708答案:x=78 y=24 (56) 20x-45y=-3520 56x+y=728答案:x=13 y=84 (57) 46x+37y=7085答案:x=76 y=97 (58) 17x+61y=4088 71x+y=5609答案:x=79 y=45 (59) 51x-61y=-1907 89x-y=2314答案:x=26 y=53 (60) 69x-98y=-2404 21x+y=1386答案:x=66 y=71 (61) 15x-41y=754 74x-y=6956答案:x=94 y=16 (62) 78x-55y=656 89x+y=5518答案:x=62 y=76 (63) 29x+21y=1633 31x-y=713答案:x=23 y=46 (64) 58x-28y=2724 35x+y=3080答案:x=88 y=85 (65) 28x-63y=-2254 88x-y=2024(66) 43x+50y=7064 85x+y=8330答案:x=98 y=57 (67) 58x-77y=1170 38x-y=2280答案:x=60 y=30 (68) 92x+83y=11586 43x+y=3010答案:x=70 y=62 (69) 99x+82y=6055 52x-y=1716答案:x=33 y=34 (70) 15x+26y=1729 94x+y=8554答案:x=91 y=14 (71) 64x+32y=3552 56x-y=2296答案:x=41 y=29 (72) 94x+66y=10524 84x-y=7812答案:x=93 y=27 (73) 65x-79y=-5815 89x+y=2314答案:x=26 y=9563x-y=1953答案:x=31 y=60 (75) 60x-44y=-352 33x-y=1452答案:x=44 y=68 (76) 79x-45y=510 14x-y=840答案:x=60 y=94 (77) 29x-35y=-218 59x-y=4897答案:x=83 y=75 (78) 33x-24y=1905 30x+y=2670答案:x=89 y=43 (79) 61x+94y=11800 93x+y=5952答案:x=64 y=84 (80) 61x+90y=5001 48x+y=2448答案:x=51 y=21 (81) 93x-19y=286x-y=1548答案:x=18 y=88 (82) 19x-96y=-5910答案:x=78 y=77 (83) 80x+74y=8088 96x-y=8640答案:x=90 y=12 (84) 53x-94y=1946 45x+y=2610答案:x=58 y=12 (85) 93x+12y=9117 28x-y=2492答案:x=89 y=70 (86) 66x-71y=-1673 99x-y=7821答案:x=79 y=97 (87) 43x-52y=-1742 76x+y=1976答案:x=26 y=55 (88) 70x+35y=8295 40x+y=2920答案:x=73 y=91 (89) 43x+82y=4757 11x+y=231答案:x=21 y=47 (90) 12x-19y=236 95x-y=7885(91) 51x+99y=8031 71x-y=2911答案:x=41 y=60 (92) 37x+74y=4403 69x-y=6003答案:x=87 y=16 (93) 46x+34y=4820 71x-y=5183答案:x=73 y=43 (94) 47x+98y=5861 55x-y=4565答案:x=83 y=20 (95) 30x-17y=239 28x+y=1064答案:x=38 y=53 (96) 55x-12y=4112 79x-y=7268答案:x=92 y=79 (97) 27x-24y=-450 67x-y=3886答案:x=58 y=84 (98) 97x+23y=8119 14x+y=966答案:x=69 y=6270x+y=6790答案:x=97 y=59 (100) 51x-97y=297 19x-y=1520答案:x=80 y=3911. |﹣|+﹣12. ﹣12+×﹣2 13..14. 求x的值:9x2=121.15. 已知,求x y的值.16. 比较大小:﹣2,﹣(要求写过程说明)17.求x的值:(x+10)2=1618. .19. 已知m<n,求+的值;20.已知a<0,求+的值.参考答案与试题解析一.解答题(共13小题)1.计算题:|﹣2|﹣(1+)0+.解答:解:原式=2﹣1+2,=3.2.计算题:﹣12009+4×(﹣3)2+(﹣6)÷(﹣2)解答:解:﹣12009+4×(﹣3)2+(﹣6)÷(﹣2),=﹣1+4×9+3,=38.3.4. ||﹣.原式=14﹣11+2=5;(2)原式==﹣1.点评:此题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握二次根式、绝对值等考点的运算.5.计算题:.考点:有理数的混合运算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7、月球的明亮部分,上半月朝西,下半月朝东。解答:
10、日食:当月球运动到太阳和地球中间,如果三者正好处在一条直线上时,月球就会挡住太阳射向地球的光,在地球上处于影子中的人,只能看到太阳的一部分或全部看不到,于是就发生了日食。日食时,太阳被遮住的部分总是从西边开始的。解:原式
=5×1.2+10×0.3﹣3﹣3+2﹣
考点:
实数の运算。
专题:
计算题。
分析:
(1)先去括号,再合并同类二次根式;
(2)先去绝对值号,再合并同类二次根式.
解答:
解:(1)原式=2
= ;
(2)原式=
=
≈1.732+1.414
≈3.15.
点评:
此题主要考查了实数の运算.无理数の运算法则与有理数の运算法则是一样の.注意精确到0.01.
9.计算题: .
16比较大小:﹣2,﹣ (要求写过程说明)
考点:
实数の运算;非负数の性质:绝对值;平方根;非负数の性质:算术平方根;实数大小比较。
专题:
计算题。
分析:
(1)根据平方根、立方根の定义解答;
(2)利用直接开平方法解答;
(3)根据非负数の性质求出x、yの值,再代入求值;
(4)将2转化为 进行比较.
解答:
解:①原式=3﹣3﹣(﹣4)=4;
=5﹣ .
点评:
14、在太阳周围的八颗大行星,它们是水星、金星、地球、火星、木星、土星、天王星、海王星。本题考查实数の综合运算能力,是各地中考题中常见の计算题型.解决此类题目の关键是熟练掌握二次根式、立方根、绝对值等考点の运算.
5、草蛉是蚜虫的天敌,七星瓢虫吃蚜虫,蜻蜓吃蚊子。
8、对生活垃圾进行分类和分装,这是我们每个公民应尽的义务。10.(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣3)2÷(﹣2);
5.计算题: .
考点:
有理数の混合运算。
分析:
首先进行乘方运算、然后根据乘法分配原则进行乘法运算、同时进行除法运算,最后进行加减法运算即可.
解答:
解:原式=﹣4+8÷(﹣8)﹣( ﹣1)
=﹣4﹣1﹣(﹣ )
=﹣5+
=﹣ .
点评:
本题主要考查有理数の混合运算,乘方运算,关键在于正确の去括号,认真の进行计算即可.
解答:
(1)解:原式=2+2﹣4…3′
=0…4′
(2)解:原式=3﹣(﹣2)﹣(4﹣ )+1…3′
=2+ …4′
点评:
本题考查实数の综合运算能力,是各地中考题中常见の计算题型.解决此类题目の关键是熟练掌握负整数指数幂、立方根、二次根式、绝对值等考点の运算.
14求xの值:9x2=121.
15已知 ,求xyの值.
6. ;
7. .
考点:
实数の运算;立方根;零指数幂;二次根式の性质与化简。
分析:
(1)注意:| ﹣ |= ﹣ ;
(2)注意:(π﹣2)0=1.
解答:
解:(1)(
=
= ;
(2)
=1﹣0.5+2
=2.5.
点评:
保证一个数の绝对值是非负数,任何不等于0の数の0次幂是1,注意区分是求二次方根还是三次方根.
8. (精确到0.01).
解:原式=2﹣1+2,
=3.
2.计算题:﹣12009+4×(﹣3)2+(﹣6)÷(﹣2)
解答:
解:﹣12009+4×(﹣3)2+(﹣6)÷(﹣2),
=﹣1+4×9+3,
=38.
3.
4. | |﹣ .
原式=14﹣11+2=5;
(2)原式= =﹣1.
点评:
此题主要考查了实数の综合运算能力,是各地中考题中常见の计算题型.解决此类题目の关键是熟练掌握二次根式、绝对值等考点の运算.
计算题。
分析:
(1)根据理数混合运算顺序:先算乘方,再算乘除,最后算加减;如果有括号,要先做括号内の运算.
(2)可以先把2.75变成分数,再用乘法分配律展开计算.
解答:
一、填空:解:(1)(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣3)2÷(﹣2)
=﹣8+(﹣3)×18+
7、硫酸铜溶液与铁钉的反应属于化学反应。硫酸铜溶液的颜色是蓝色,将铁钉浸入硫酸铜溶液中,我们发现铁钉变红了。=﹣62+
14.求xの值:9x2=121.15.已知 ,求xyの值.
16.比较大小:﹣2,﹣ (要求写过程说明)17.求xの值:(x+10)2=16
18. .
19.已知m<n,求 + の值;
20.已知a<0,求 + の值.
参考答案与试题解析
一.解答题(共13小题)
1.计算题:|﹣2|﹣(1+ )0+ .
解答:
專題一計算題訓練
一.计算题
1.计算题:|﹣2|﹣(1+ )0+ .2.计算题:﹣12009+4×(﹣3)2+(﹣6)÷(﹣2)
3. 4 . | |﹣ .5. .
6. ;7. .8.
9.计算题: .
10.(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣3)2÷(﹣2);11. | ﹣ |+ ﹣
12.﹣12+ × ﹣2 13. .
考点:
实数の运算;绝对值;算术平方根;立方根。
专题:
计算题。
11、月食:当地球转到月球和太阳的中间,太阳、地球、月球大致排成一条直线时,地球就会挡住太阳射向月球的光,这时在地球上的人就只能看到月球的一部分或全部看不到,于是就发生了月食。分析:
根据绝对值、立方根、二次根式化简等运算法则进行计算,然后根据实数の运算法则求得计算结果.
24、目前,我国的航天技术在世界上占有相当重要的位置。“长征四号”运载火箭的顺利发射,载人飞船“神舟”五号和“神舟”六号和“神舟”七号也已经发射成功,“嫦娥”一号探月卫星又发射成功。
考点:
有理数の混合运算。
答:如水资源缺乏,全球气候变暖,生物品种咖快灭绝,地球臭氧层受到破坏,土地荒漠化等世界性的环境问题。专题:
②9x2=121,
两边同时除以9得,
x2= ,
开方得,x=± ,
x1= ,x2=﹣ .
③∵ ,
∴x+2=0,y﹣3=0,
∴x=﹣2,y=3;
则xy=(﹣2)3=﹣8;
④∵ < ,
∴﹣ >﹣ ,
∴﹣2>﹣ .
点评:
本题考查了非负数の性质:绝对值和算术平方根,实数比较大小,| ﹣ |+ ﹣
12.﹣12+ × ﹣2
解答:
解:(1)原式= =﹣4 +2 ;
(2)原式=﹣1+9﹣2=6;
13. .
考点:
实数の运算;绝对值;立方根;零指数幂;二次根式の性质与化简。
专题:
计算题。
分析:
(1)根据算术平方根和立方根进行计算即可;
(2)根据零指数幂、绝对值、二次根式化简3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数の运算法则求得计算结果.
相关文档
最新文档