2018届高三理科数学复习跟踪强化训练:24含解析
2018届高三理科数学二轮复习跟踪强化训练19 含解析 精
跟踪强化训练(十九)1.(2017·沈阳质检)已知数列{a n }是公差不为0的等差数列,首项a 1=1,且a 1,a 2,a 4成等比数列.(1)求数列{a n }的通项公式; (2)设数列{b n }满足b n =a n +,求数列{b n }的前n 项和T n .[解] (1)设数列{a n }的公差为d ,由已知得,a 22=a 1a 4,即(1+d )2=1+3d ,解得d =0或d =1. 又d ≠0,∴d =1,可得a n =n . (2)由(1)得b n =n +2n ,∴T n =(1+21)+(2+22)+(3+23)+…+(n +2n ) =(1+2+3+…+n )+(2+22+23+…+2n ) =n (n +1)2+2n +1-2.[解](1)由题意得,⎩⎪⎨⎪⎧S 1=a 2-2,a 1+a 2=2a 3-6,a 1+a 2+a 3=9,解得⎩⎪⎨⎪⎧a 1=1,a 2=3,a 3=5,当n ≥2时,S n -1=(n -1)a n -(n -1)n , 所以a n =na n +1-n (n +1)-(n -1)a n +(n -1)n , 即a n +1-a n =2.又a 2-a 1=2,因而数列{a n }是首项为1,公差为2的等差数列,从而a n =2n -1.T n =1×21+3×22+5×23+…+(2n -3)×2n -1+(2n -1)×2n , 2T n =1×22+3×23+5×24+…+(2n -3)×2n +(2n -1)×2n +1. 两式相减得-T n =1×21+2×22+2×23+…+2×2n -(2n -1)×2n +1 =-2+2×(21+22+23+…+2n )-(2n -1)×2n +1 =-2+2×2×(1-2n )1-2-(2n -1)×2n +1=-2+2n +2-4-(2n -1)×2n +1=-6-(2n -3)×2n +1. 所以T n =6+(2n -3)×2n +1.3.数列{a n }的前n 项和为S n ,且首项a 1≠3,a n +1=S n +3n (n ∈N *).(1)求证:{S n -3n }是等比数列;(2)若{a n }为递增数列,求a 1的取值范围. [解] (1)证明:∵a n +1=S n +3n ,(n ∈N *) ∴S n +1=2S n +3n ,∴S n +1-3n +1=2(S n -3n ),∵a 1≠3. ∴S n +1-3n +1S n -3n=2,∴数列{S n -3n }是公比为2,首项为a 1-3的等比数列. (2)由(1)得S n -3n =(a 1-3)×2n -1,∴S n =(a 1-3)×2n -1+3n , ∴当n ≥2时,a n =S n -S n -1=(a 1-3)×2n -2+2×3n -1,∵{a n }为递增数列,∴n ≥2时,(a 1-3)×2n -1+2×3n >(a 1-3)×2n -2+2×3n -1,∴n ≥2时,2n -2⎣⎢⎡⎦⎥⎤12×⎝ ⎛⎭⎪⎫32n -2+a 1-3>0, 可得n ≥2时,a 1>3-12×⎝ ⎛⎭⎪⎫32n -2,又当n =2时,3-12×⎝ ⎛⎭⎪⎫32n -2有最大值为-9,∴a 1>-9,又a 2=a 1+3满足a 2>a 1, ∴a 1的取值范围是(-9,+∞).4.(2017·昆明模拟)设数列{a n }的前n 项和为S n ,a 1=1,当n ≥2时,a n =2a n S n -2S 2n .(1)求数列{a n }的通项公式;(2)是否存在正数k ,使(1+S 1)(1+S 2)…(1+S n )≥k 2n +1对一切正整数n 都成立?若存在,求k 的取值范围;若不存在,请说明理由.[解] (1)∵当n ≥2时,a n =S n -S n -1,a n =2a n S n -2S 2n ,∴S n -S n -1=2(S n -S n -1)S n -2S 2n .∴S n -1-S n =2S n S n -1. ∴1S n-1S n -1=2.∴数列⎩⎨⎧⎭⎬⎫1S n 是首项为1S 1=1a 1=1,公差为2的等差数列, 即1S n=1+(n -1)×2=2n -1.∴S n =12n -1.当n ≥2时,a n =S n -S n -1=12n -1-12(n -1)-1=-2(2n -1)(2n -3).∴数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧1,n =1,-2(2n -1)(2n -3),n ≥2.(2)设b n =(1+S 1)(1+S 2)…(1+S n )2n +1,则b n +1=(1+S 1)(1+S 2)…(1+S n )(1+S n +1)2n +3.由(1)知S n =12n -1,S n +1=12n +1,∴b n +1b n =(1+S n +1)2n +12n +3=2n +2(2n +1)(2n +3)=4n 2+8n +44n 2+8n +3>1.又b n >0,∴数列{b n }是单调递增数列. 由(1+S 1)(1+S 2)…(1+S n )≥k 2n +1,得b n ≥k . ∴k ≤b 1=23=233.∴存在正数k ,使(1+S 1)(1+S 2)…(1+S n )≥k 2n +1对一切正整数n 都成立,且k 的取值范围为⎝ ⎛⎦⎥⎤0,233.。
2018届高三理科数学复习跟踪强化训练:33含解析
(1) 若不等式 f(x) ≤2-|x -1| 有解,求实数 a 的取值范围;
(2) 当 a<2 时,函数 f(x) 的最小值为 3,求实数 a 的值.
a [ 解] (1) 由题意 f(x) ≤2-|x - 1| ,即为 x-2 +|x - 1| ≤1. 而由绝对值
a
a
的几何意义知 x-2 +|x -1| ≥ 2-1 ,
跟踪强化训练 ( 三十三 ) 1.(2017 ·四川乐山一模 ) 已知函数 f(x) = |2x -1| - |x +2|. (1) 求不等式 f(x)>0 的解集; (2) 若存在 x0∈R,使得 f(x 0) + 2a2<4a,求实数 a 的取值范围. [ 解] (1) 函数 f(x) = |2x -1| - |x +2| =
-x+3,x<-2, 1
-3x-1,- 2≤x≤2, 1
x-3,x>2
1 令 f(x) = 0,求得 x=- 3或 x=3,
故不等式 f(x)>0 的解集为 1
x|x< -3或x>3 . (2) 若存在 x0∈R,使得 f(x 0) + 2a2<4a, 即 f(x 0)<4a -2a2 有解,
1
1
由(1) 可得 f(x) 的最小值为 f 2 =- 3× 2-1
由不等式 f(x) ≤2-|x -1| 有解,
a ∴ 2-1 ≤1,即 0≤a≤4.
∴实数 a 的取值范围是 [0,4] .
a
a
(2) 函数 f(x) = |2x -a| + |x -1| 的零点为 2和 1,当 a<2 时知 2<1,
a - 3x+a+1,x<2
∴f(x) =
【高三数学试题精选】2018高三理科数学二轮复习跟踪强化训练24 (附答案和解释)
2018高三理科数学二轮复习跟踪强化训练24 (附答案和解
释)
5 c 跟踪强化训练(二十四)
一、选择题
1.(2018 广西三市第一次联合调研)若抛物线2=2px(p 0)上的点A(x0,2)到其焦点的距离是A到轴距离的3倍,则p等于( ) A12 B.1 c32 D.2
[解析] 由题意3x0=x0+p2,x0=p4,则p22=2,∵p 0,∴p =2故选D
[答案] D
2.(2018 深圳一模)过点(3,2)且与椭圆3x2+82=24有相同焦点的椭圆方程为( )
Ax25+210=1 Bx210+215=1
cx215+210=1 Dx210+25=1
[解析] 椭圆3x2+82=24的焦点为(±5,0),可得c=5,设所求椭圆的方程为x2a2+2b2=1,可得9a2+4b2=1,又a2-b2=5,得b2=10,a2=15,所以所求的椭圆方程为x215+210=1故选c [答案] c
3.(2018 福州模拟)已知双曲线x2a2-2b2=1(a 0,b 0)的右顶点与抛物线2=8x的焦点重合,且其离心率e=32,则该双曲线的方程为( )
Ax24-25=1 Bx25-24=1
c24-x25=1 D25-x24=1
[解析] 易知抛物线2=8x的焦点为(2,0),所以双曲线的右顶点是(2,0),所以a=2又双曲线的离心率e=32,所以c=3,b2=c2-a2=5,所以双曲线的方程为x24-25=1,选A
[答案] A
4.(2018 武汉调研)椭圆cx24+23=1的左、右顶点分别为A1、。
2018届高三理科数学复习跟踪强化训练:10含解析
跟踪强化训练(十)一、选择题1.(2017·东北三校联考)已知a>b,则下列不等式中恒成立的是( )A.lna>lnb B.1a<1bC.a2>ab D.a2+b2>2ab[解析] 只有在a>b>0时,A才有意义,A错;B选项需要a,b同正或同负,B错;C只有a>0时正确;因为a≠b,所以D正确.[答案] D2.(2017·大连一模)设函数f(x)=x2-4x+6,x≥0,x+6,x<0,则不等式f(x)>f(1)的解集是( )A.(-3,1)∪(3,+∞) B.(-3,1)∪(2,+∞)C.(-1,1)∪(3,+∞) D.(-∞,-3)∪(1,3)[解析] 由题意得,f(1)=3,所以f(x)>f(1)=3,即f(x)>3,如果x<0,则x+6>3,可得-3<x<0;如果x≥0,则x2-4x+6>3,可得x>3或0≤x<1.综上,不等式的解集为(-3,1)∪(3,+∞).故选A.[答案] A3.(2017·长春第二次质检)若关于x的不等式ax-b>0的解集是(-∞,-2),则关于x 的不等式ax 2+bx x -1>0的解集为( )A .(-2,0)∪(1,+∞)B .(-∞,0)∪(1,2)C .(-∞,-2)∪(0,1)D .(-∞,1)∪(2,+∞)[解析] 关于x 的不等式ax -b>0的解集是(-∞,-2),∴a<0,b a =-2,∴b =-2a ,∴ax 2+bx x -1=ax 2-2ax x -1.∵a<0,∴x 2-2xx -1<0,解得x<0或1<x<2.故选B.[答案] B4.(2017·江西师大附中摸底)若关于x ,y 的不等式组x ≤0,x +y ≥0,kx -y +1≥0表示的平面区域是等腰直角三角形区域,则其表示的区域面积为( )A.12或14B.12或18C .1或12D .1或14[解析] 由不等式组表示的平面区域是等腰直角三角形区域,得k =0或1,当k =0时,表示区域的面积为12;当k =1时,表示区域的面积为14,故选A.[答案] A5.(2017·甘肃会宁一中月考)对一切实数x ,不等式x 2+a|x|+1≥0恒成立,则实数a 的取值范围是()A.(-∞,-2) B.[-2,+∞)C.[-2,2] D.[0,+∞)[解析] 当x=0时,不等式x2+a|x|+1≥0恒成立,a∈R;当x≠0时,则有a≥-1-|x|2|x|=-|x|+1|x|,故a大于或等于-|x|+1|x|的最大值.由基本不等式可得|x|+1|x|≥2,∴-|x|+1|x|≤-2,即-|x|+1|x|的最大值为-2,故实数a的取值范围是[-2,+∞),故选B.[答案] B6.(2017·浙江卷)若x,y满足约束条件x≥0,x+y-3≥0,x-2y≤0,则z=x+2y的取值范围是( )A.[0,6] B.[0,4]C.[6,+∞) D.[4,+∞)[解析] 不等式组形成的可行域如图所示.。
2018年 高三数学第三次模拟考试题(理科)含答案
2017—2018学年度高三第三次调研测试理科数学本试卷共23小题,共150分,共6页,考试时间120分钟,考试结束后,将答题卡和试题卷一并交回。
注意事项:1.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上,认真核对条 形码、姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。
2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案 的标号;非选择题答案必须使用0.5毫米黑色字迹的签字笔书写,字体工整、 笔迹清楚。
3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案 无效。
4. 作图可先用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5. 保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮 纸刀。
一、选择题:本大题共12题,每小题5分,共60分,在每小题给出的四个选项中,只有一个是符合题目要求。
1. 若集合{|0}B x x =≥,且A B A =,则集合A 可以是A .{1,2}B .{|1}x x ≤C .{1,0,1}-D .R2. 已知复数1z i =+(i 为虚数单位)给出下列命题:①||z =;②1z i =-;③z 的虚部为i . 其中正确命题的个数是A. 0B. 1C. 2D. 33. 若1sin ,3α=且2παπ<<,则sin 2α=A .B .C .D . 4. 已知等差数列{}n a 的公差不为0,11a =,且248,,a a a 成等比数列,设{}n a 的前n 项和为n S ,则n S =A. (1)2n n +B. 2(1)2n +C. 212n + D. (3)4n n +5. 若1()n x x-的展开式中只有第7项的二项式系数最大,则展开式中含2x 项的系数是A . 462-B . 462C . 792D . 792-6. 执行如图所示的程序框图,输出的S 值为 A.12018B. 12019C. 20172018D. 201820197. 10|1|x dx -=⎰A .12B . 1C . 2D . 38. 一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是 (0,0,0),(1,0,1),(0,1,1)1,(,1,0)2,绘制该四面体三视图时,按照如图所示的方向画正视图,则得到左视图可以为 A.B.C.D.9. 设曲线()cos (*)f x m xm R =∈上任一点(,)x y 处切线斜率为()g x ,则函数2()y x g x =的部分图象可以为10.平行四边形ABCD 中,2,1,1,AB AD AB AD ===-点M 在边CD 上,则MA MB 的 最大值为A. 2B. 1C. 5D.111. 等比数列{}n a 的首项为32,公比为12-,前n 项和为n S ,则当*n N ∈时,1n nS S -的最 大值与最小值的比值为A. 125-B. 107- C. 109D.12512.已知函数13,1()22ln ,1x x f x x x ⎧+≤⎪=⎨⎪>⎩(ln x 是以e 为底的自然对数, 2.71828e =),若存在实数,()m n m n <,满足()()f m f n =,则n m -的取值范围为 A. 2(0,3)e +B. 2(4,1]e -C. 2[52ln2,1]e --D. [52ln2,4)-二、填空题:本大题共4个小题,每小题5分。
山东、湖北部分重点中学2018届高三高考冲刺模拟考试理科数学试题(解析版)
齐鲁名校教科研协作体山东、湖北部分重点中学2018年高考冲刺模拟试卷(一)数学(理科)试题一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知全集1=|0,A={1,2,4},5x U x N CuA x +⎧⎫∈≤=⎨⎬-⎩⎭则( ) A. {3}B. {0,3,5}C. {3,5}D. {0,3} 【答案】D【解析】 因为全集1=|05x U x N x +⎧⎫∈≤⎨⎬-⎩⎭{}0,1,2,3,4=,{},A=1,2,4,所以{}0,3U A =,故选D.2. 已知i 为虚数单位,现有下面四个命题p 1:复数z 1=a +bi 与z 2=-a +bi ,(a ,b R ∈)在复平面内对应的点关于实轴对称;p 2:若复数z 满足(1-i )z =1+i ,则z 为纯虚数;p 3:若复数z 1,z 2满意z 1z 2R ∈,则z 2=1z ;p 4:若复数z 满足z 2+1=0,则z =±i .其中的真命题为( )A. p 1,p 4B. p 2,p 4C. p 1,p 3D. p 2,p 3 【答案】B【解析】对于11:p z 与2z 关于虚轴对称,所以1p 错误;对于2:p 由()1i 1i 1i i 1iz z +-=+⇒==-,则z 为纯虚数,所以2p 正确;对于3:p 若122,3z z ==,则126z z =,满足12z z R ∈,而它们实部不相等,不是共轭复数,所以3p 不正确;4p 正确,故选B.3. 已知2:2,:,10p a q x R x ax p q >∀∈++≥是假命题,则是的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件 【答案】A。
2018届高三理科数学二轮复习跟踪强化训练:32 Word版含解析
跟踪强化训练(三十二)1.(2015·全国卷Ⅰ)在直角坐标系xOy 中,直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)求C 1,C 2的极坐标方程;(2)若直线C 3的极坐标方程为θ=π4(ρ∈R ),设C 2与C 3的交点为M ,N ,求△C 2MN 的面积.[解] (1)因为x =ρcos θ,y =ρsin θ,所以C 1的极坐标方程为ρcos θ=-2,C 2的极坐标方程为ρ2-2ρcos θ-4ρsin θ+4=0. (2)将θ=π4代入ρ2-2ρcos θ-4ρsin θ+4=0,得ρ2- 32ρ+4=0,解得ρ1=22,ρ2= 2.故ρ1-ρ2=2,即|MN |= 2. 由于C 2的半径为1,所以△C 2MN 的面积为12.2.已知直线l :⎩⎨⎧x =1+12t ,y =32t(t 为参数),曲线C 1:⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数).(1)设直线l 与曲线C 1相交于A ,B 两点,求|AB |;(2)若把曲线C 1上各点的横坐标缩短为原来的12,纵坐标缩短为原来的32,得到曲线C 2,设点P 是曲线C 2上的一个动点,求点P 到直线l 的距离的最小值.[解] (1)直线l 的普通方程为y =3(x -1),曲线C 1的普通方程为x 2+y 2=1.联立得⎩⎪⎨⎪⎧y =3(x -1),x 2+y 2=1,得直线l 与曲线C 1的交点为(1,0),⎝ ⎛⎭⎪⎫12,-32,则|AB |=1.(2)曲线C 2的参数方程为⎩⎨⎧x =12cos θ,y =32sin θ(θ为参数),设点P 的坐标是⎝ ⎛⎭⎪⎫12cos θ,32sin θ,从而点P 到直线l 的距离为d=⎪⎪⎪⎪⎪⎪32cos θ-32sin θ-32=34⎣⎢⎡⎦⎥⎤2sin ⎝ ⎛⎭⎪⎫θ-π4+2,当sin ⎝ ⎛⎭⎪⎫θ-π4=-1时,d 取得最小值,且最小值为23-64. 3.(2017·沧州二模)在平面直角坐标系中,曲线C 的参数方程为⎩⎨⎧x =55cos α,y =sin α(α为参数).以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρcos ⎝ ⎛⎭⎪⎫θ+π4= 2.l 与C 交于A ,B 两点.(1)求曲线C 的普通方程及直线l 的直角坐标方程; (2)设点P (0,-2),求|P A |+|PB |的值.[解](1)曲线C 的参数方程为⎩⎨⎧x =55cos α,y =sin α(α为参数),普通方程为C :5x 2+y 2=1;直线l 的极坐标方程为ρcos ⎝⎛⎭⎪⎫θ+π4=2,即ρcos θ-ρsin θ=2,l :y =x -2.(2)点P (0,-2)在l 上,l 的参数方程为⎩⎨⎧x =22t ,y =-2+22t(t 为参数),代入5x 2+y 2=1整理得,3t 2-22t +3=0,由题意可得|P A |+|PB |=|t 1|+|t 2|=|t 1+t 2|=223.4.(2017·陕西咸阳一模)已知曲线C 1的参数方程是⎩⎪⎨⎪⎧x =2cos θ,y =2+2sin θ(θ为参数),以直角坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是ρ=-4cos θ.(1)求曲线C 1与C 2的交点的极坐标;(2)A ,B 两点分别为曲线C 1与C 2上,当|AB |最大时,求△OAB 的面积(O 为坐标原点).[解] (1)由⎩⎪⎨⎪⎧x =2cos θ,y =2+2sin θ得⎩⎪⎨⎪⎧x =2cos θ,y -2=2sin θ,两式平方相加,得 x 2+(y -2)2=4,即x 2+y 2-4y =0.① 由ρ=-4cos θ,得ρ2=-4ρcos θ,即x 2+y 2=-4x .②①-②得x +y =0,代入①得交点为(0,0),(-2,2).其极坐标为(0,0),⎝⎛⎭⎪⎫22,3π4.(2)如图.由平面几何知识可知,A ,C 1,C 2,B 依次排列且共线时|AB |最大,此时|AB |=22+4,点O 到AB 的距离为 2.∴△OAB 的面积为S =12×(22+4)×2=2+2 2.。
【高考数学】2018-2019学年高三理科数学二轮复习跟踪强化训练:24 Word版含解析
)
3 3 B.8,4 3 D.4,1
[解析] 椭圆的左顶点为 A1(-2,0)、 右顶点为 A2(2,0), 设点 P(x0, x2 y2 y2 3 y0 y0 0 0 0 y0),则 + =1,得 2 =- .而 kPA = ,kPA1= ,所以 4 3 4 x0-4 x0-2 x0+2
A.1 B. 2 C.2 2 D.4 [解析] 双曲线的两条渐近线方程为 y=± 2x, 抛物线的准线方程
p p p,|AB|=2p,所以 S△OAB 为 x=- ,故 A,B 两点的坐标为-2,± 2
1 p p2 = · 2p· = =1,解得 p= 2,故选 B. 2 2 2 [答案] B
[解析] 易知抛物线 y2=8x 的焦点为(2,0), 所以双曲线的右顶点 3 是(2,0),所以 a=2.又双曲线的离心率 e= ,所以 c=3,b2=c2-a2 2 x 2 y2 =5,所以双曲线的方程为 - =1,选 A. 4 5 [答案] A
x 2 y2 4.(2017· 武汉调研)椭圆 C: + =1 的左、右顶点分别为 A1、 4 3 A2,点 P 在 C 上且直线 PA2 斜率的取值范围是[-2,-1],那么直线 PA1 斜率的取值范围是(
7. (2017· 长沙一模)A 是抛物线 y2=2px(p>0)上一点, F 是抛物线 的焦点,O 为坐标原点,当|AF|=4 时,∠OFA=120° ,则抛物线的 准线方程是( A.x=-1 C.x=-2 ) B.y=-1 D.y=-2
[解析] 过 A 向准线作垂线,设垂足为 B,准线与 x 轴的交点为
x 2 y2 6.已知椭圆 + 2=1(0<b<2),左,右焦点分别为 F1,F2,过 4 b F1 的直线 l 交椭圆于 A,B 两点,若|BF2|+|AF2|的最大值为 5,则 b 的值是( )
2018版高考数学(人教A版理科)一轮复习课时跟踪检测24含答案
课时跟踪检测(二十四)1.在△ABC中,AB=错误!,AC=1,B=30°,△ABC的面积为错误!,则C=()A.30°B.45°C.60°D.75°答案:C解析:解法一:∵S△ABC=错误!|AB||AC|sin A=错误!,即错误!×错误!×1×sin A=错误!,∴sin A=1,∴A=90°,∴C=60°,故选C.解法二:由正弦定理,得错误!=错误!,即错误!=错误!,∴C=60°或C=120°。
当C=120°时,A=30°,S△ABC=错误!≠错误!(舍去).而当C=60°时,A=90°,S△ABC=错误!,符合条件,故C=60°.故选C.2.两座灯塔A和B与海岸观察站C的距离相等,灯塔A在观察站南偏西40°,灯塔B在观察站南偏东60°,则灯塔A在灯塔B的( )A.北偏东10°B.北偏西10°C.南偏东80°D.南偏西80°答案:D解析:由条件及题图可知,∠A=∠CBA=40°,又∠BCD=60°,所以∠CBD=30°,所以∠DBA=10°,因此灯塔A在灯塔B南偏西80°.3.在△ABC中,角A,B,C所对的边分别为a,b,c,若b cos A+a cos B=c2,a=b=2,则△ABC的周长为( )A.5 B.6C.7 D.7。
5答案:A解析:由正弦定理得,sin B cos A+sin A cos B=c sin C,即sin(A+B)=sin C=c sin C,又sin C>0,∴c=1,故周长为a+b+c=2+2+1=5,故选A。
4.已知△ABC中,内角A,B,C的对边分别为a,b,c,a2=b2+c2-bc,bc=4,则△ABC的面积为( )A.错误!B.1C.错误!D.2答案:C解析:∵a2=b2+c2-bc,∴cos A=错误!,∴A=错误!,又bc=4,∴△ABC的面积为错误!bc sin A=错误!,故选C。
2018届高考理科数学二轮复习课时跟踪检测试卷及答案(26份)
课时跟踪检测(一)集合、常用逻辑用语1.(2017·全国卷Ⅱ)设集合A={1,2,4},B={x|x2-4x+m=0}.若A∩B={1},则B=( ) A.{1,-3} B.{1,0}C.{1,3} D.{1,5}解析:选C 因为A∩B={1},所以1∈B,所以1是方程x2-4x+m=0的根,所以1-4+m=0,m =3,方程为x2-4x+3=0,解得x=1或x=3,所以B={1,3}.2.(2017·山东高考)设函数y=4-x2的定义域为A,函数y=ln(1-x)的定义域为B,则A∩B=( )A.(1,2) B.(1,2]C.(-2,1) D.[-2,1)解析:选D 由题意可知A={x|-2≤x≤2},B={x|x<1},故A∩B={x|-2≤x<1}.3.(2017·合肥模拟)已知命题q:∀x∈R,x2>0,则( )A.命题綈q:∀x∈R,x2≤0为假命题B.命题綈q:∀x∈R,x2≤0为真命题C.命题綈q:∃x0∈R,x20≤0为假命题D.命题綈q:∃x0∈R,x20≤0为真命题解析:选D 全称命题的否定是将“∀”改为“∃”,然后再否定结论.又当x=0时,x2≤0成立,所以綈q为真命题.4.(2018届高三·郑州四校联考)命题“若a>b,则a+c>b+c”的否命题是( )A.若a≤b,则a+c≤b+c B.若a+c≤b+c,则a≤bC.若a+c>b+c,则a>b D.若a>b,则a+c≤b+c解析:选A 命题的否命题是将原命题的条件和结论均否定,所以题中命题的否命题为“若a≤b,则a+c≤b+c”,故选A.5.(2017·石家庄模拟)“x>1”是“x2+2x>0”的( )A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件解析:选A 由x2+2x>0,得x>0或x<-2,所以“x>1”是“x2+2x>0”的充分不必要条件.6.已知集合A={x|x2≥4},B={m}.若A∪B=A,则m的取值范围是( )A.(-∞,-2) B.[2,+∞)C.[-2,2] D.(-∞,-2]∪[2,+∞)解析:选D 因为A∪B=A,所以B⊆A,即m∈A,得m2≥4,所以m≥2或m≤-2.7.(2017·唐山模拟)已知集合A={x|x2-5x-6<0},B={x|2x<1},则图中阴影部分表示的集合是( )A .{x |2<x <3}B .{x |-1<x ≤0}C .{x |0≤x <6}D .{x |x <-1}解析:选C 由x 2-5x -6<0,解得-1<x <6,所以A ={x |-1<x <6}.由2x<1,解得x <0,所以B ={x |x <0}.又图中阴影部分表示的集合为(∁U B )∩A ,因为∁U B ={x |x ≥0},所以(∁U B )∩A ={x |0≤x <6}.8.(2018届高三·河北五校联考)已知命题p :∃x 0∈(-∞,0),2x 0<3x0;命题q :∀x ∈⎝⎛⎭⎪⎫0,π2,tan x >sin x ,则下列命题为真命题的是( )A .p ∧qB .p ∨(綈q )C .(綈p )∧qD .p ∧(綈q )解析:选C 根据指数函数的图象与性质知命题p 是假命题,綈p 是真命题;∵x ∈⎝⎛⎭⎪⎫0,π2,且tan x =sin xcos x, ∴0<cos x <1,tan x >sin x , ∴q 为真命题,选C.9.(2017·合肥模拟)祖暅原理:“幂势既同,则积不容异”,它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如果在等高处的截面积恒相等,那么体积相等.设A ,B 为两个同高的几何体,p :A ,B 的体积不相等,q :A ,B 在等高处的截面积不恒相等,根据祖暅原理可知,p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 根据祖暅原理,“A ,B 在等高处的截面积恒相等”是“A ,B 的体积相等”的充分不必要条件,即綈q 是綈p 的充分不必要条件,即命题“若綈q ,则綈p ”为真,逆命题为假,故逆否命题“若p ,则q ”为真,否命题“若q ,则p ”为假,即p 是q 的充分不必要条件,选A.10.设P 和Q 是两个集合,定义集合P -Q ={x |x ∈P ,且x ∉Q },若P ={x |log 2x <1},Q ={x ||x -2|<1},则P -Q =( )A .{x |0<x <1}B .{x |0<x ≤1}C .{x |1≤x <2}D .{x |2≤x <3}解析:选B 由log 2x <1,得0<x <2, 所以P ={x |0<x <2}. 由|x -2|<1,得1<x <3, 所以Q ={x |1<x <3}.由题意,得P -Q ={x |0<x ≤1}.11.(2018届高三·广西五校联考)命题p :“∃x 0∈R ,使得x 20+mx 0+2m +5<0”,命题q :“关于x 的方程2x-m =0有正实数解”,若“p 或q ”为真,“p 且q ”为假,则实数m 的取值范围是( )A .[1,10]B .(-∞,-2)∪(1,10]C .[-2,10]D .(-∞,-2]∪(0,10]解析:选B 若命题p :“∃x 0∈R ,使得x 20+mx 0+2m +5<0”为真命题,则Δ=m 2-8m -20>0,∴m <-2或m >10;若命题q 为真命题,则关于x 的方程m =2x有正实数解,因为当x >0时,2x>1,所以m >1.因为“p 或q ”为真,“p 且q ”为假,故p 真q 假或p 假q真,所以⎩⎪⎨⎪⎧m <-2或m >10,m ≤1或⎩⎪⎨⎪⎧-2≤m ≤10,m >1,所以m <-2或1<m ≤10.12.(2017·石家庄模拟)下列选项中,说法正确的是( ) A .若a >b >0,则ln a <ln bB .向量a =(1,m )与b =(m,2m -1)(m ∈R)垂直的充要条件是m =1C .命题“∀n ∈N *,3n>(n +2)·2n -1”的否定是“∀n ∈N *,3n ≥(n +2)·2n -1”D .已知函数f (x )在区间[a ,b ]上的图象是连续不断的,则命题“若f (a )·f (b )<0,则f (x )在区间(a ,b )内至少有一个零点”的逆命题为假命题解析:选D A 中,因为函数y =ln x (x >0)是增函数,所以若a >b >0,则ln a >ln b ,故A 错; B 中,若a ⊥b ,则m +m (2m -1)=0, 解得m =0,故B 错;C 中,命题“∀n ∈N *,3n>(n +2)·2n -1”的否定是“∃n 0∈N *,3n 0≤(n 0+2)·2n 0-1”,故C 错;D 中,原命题的逆命题是“若f (x )在区间(a ,b )内至少有一个零点,则f (a )·f (b )<0”,是假命题,如函数f (x )=x 2-2x -3在区间[-2,4]上的图象是连续不断的,且在区间(-2,4)内有两个零点,但f (-2)·f (4)>0,故D 正确.13.(2018届高三·辽宁师大附中调研)若集合A ={x |(a -1)x 2+3x -2=0}有且仅有两个子集,则实数a 的值为________.解析:由题意知,集合A 有且仅有两个子集,则集合A 中只有一个元素.当a -1=0,即a =1时,A =⎩⎨⎧⎭⎬⎫23,满足题意;当a -1≠0,即a ≠1时,要使集合A 中只有一个元素,需Δ=9+8(a -1)=0,解得a =-18.综上可知,实数a 的值为1或-18.答案:1或-1814.已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12<2x<8,x ∈R,B ={x |-1<x <m +1,x ∈R},若x ∈B 成立的一个充分不必要的条件是x ∈A ,则实数m 的取值范围是________.解析:A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12<2x<8,x ∈R={x |-1<x <3}, ∵x ∈B 成立的一个充分不必要条件是x ∈A , ∴A B ,∴m +1>3,即m >2. 答案:(2,+∞)15.(2017·广东中山一中模拟)已知非空集合A ,B 满足下列四个条件: ①A ∪B ={1,2,3,4,5,6,7}; ②A ∩B =∅;③A 中的元素个数不是A 中的元素; ④B 中的元素个数不是B 中的元素.(1)如果集合A 中只有1个元素,那么A =________; (2)有序集合对(A ,B )的个数是________.解析:(1)若集合A 中只有1个元素,则集合B 中有6个元素,6∉B ,故A ={6}.(2)当集合A 中有1个元素时,A ={6},B ={1,2,3,4,5,7},此时有序集合对(A ,B )有1个; 当集合A 中有2个元素时,5∉B,2∉A ,此时有序集合对(A ,B )有5个; 当集合A 中有3个元素时,4∉B,3∉A ,此时有序集合对(A ,B )有10个; 当集合A 中有4个元素时,3∉B,4∉A ,此时有序集合对(A ,B )有10个; 当集合A 中有5个元素时,2∉B,5∉A ,此时有序集合对(A ,B )有5个;当集合A 中有6个元素时,A ={1,2,3,4,5,7},B ={6},此时有序集合对(A ,B )有1个. 综上可知,有序集合对(A ,B )的个数是1+5+10+10+5+1=32. 答案:(1){6} (2)3216.(2017·张掖模拟)下列说法中不正确的是________.(填序号) ①若a ∈R ,则“1a<1”是“a >1”的必要不充分条件;②“p ∧q 为真命题”是“p ∨q 为真命题”的必要不充分条件; ③若命题p :“∀x ∈R ,sin x +cos x ≤2”,则p 是真命题;④命题“∃x 0∈R ,x 20+2x 0+3<0”的否定是“∀x ∈R ,x 2+2x +3>0”.解析:由1a <1,得a <0或a >1,反之,由a >1,得1a <1,∴“1a<1”是“a >1”的必要不充分条件,故①正确;由p ∧q 为真命题,知p ,q 均为真命题,所以p ∨q 为真命题,反之,由p ∨q 为真命题,得p ,q 至少有一个为真命题,所以p ∧q 不一定为真命题,所以“p ∧q 为真命题”是“p ∨q 为真命题”的充分不必要条件,故②不正确;∵sin x +cos x =2sin ⎝⎛⎭⎪⎫x +π4≤2, ∴命题p 为真命题,③正确;命题“∃x 0∈R ,x 20+2x 0+3<0”的否定是“∀x ∈R ,x 2+2x +3≥0”,故④不正确. 答案:②④课时跟踪检测(二) 平面向量与复数1.(2017·全国卷Ⅲ)复平面内表示复数z =i(-2+i)的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限解析:选C z =i(-2+i)=-2i +i 2=-1-2i ,故复平面内表示复数z =i(-2+i)的点位于第三象限.2.(2017·全国卷Ⅲ)设复数z 满足(1+i)z =2i ,则|z |=( ) A.12 B.22 C. 2 D .2解析:选C 因为z =2i1+i =-+-=i(1-i)=1+i ,所以|z |= 2.3.(2017·沈阳模拟)已知平面向量a =(3,4),b =⎝ ⎛⎭⎪⎫x ,12,若a ∥b ,则实数x 的值为( ) A .-23 B.23 C.38 D .-38解析:选C ∵a ∥b ,∴3×12=4x ,解得x =38.4.(2018届高三·西安摸底)已知非零单位向量a ,b 满足|a +b |=|a -b |,则a 与b -a 的夹角是( )A.π6 B.π3 C.π4 D.3π4解析:选D 由|a +b |=|a -b |可得(a +b )2=(a -b )2,即a ·b =0,而a ·(b -a )=a ·b -a 2=-|a |2<0,即a 与b -a 的夹角为钝角,结合选项知选D.5.(2017·湘中模拟)已知向量a =(x ,3),b =(x ,-3),若(2a +b )⊥b ,则|a |=( ) A .1 B. 2 C. 3 D .2解析:选D 因为(2a +b )⊥b ,所以(2a +b )·b =0,即(3x ,3)·(x ,-3)=3x 2-3=0,解得x =±1,所以a =(±1,3),|a |=2+32=2.6.(2017·广西五校联考)设D 是△ABC 所在平面内一点,AB ―→=2DC ―→,则( ) A .BD ―→=AC ―→-32AB ―→B .BD ―→=32AC ―→-AB ―→C .BD ―→=12AC ―→-AB ―→D .BD ―→=AC ―→-12AB ―→解析:选A BD ―→=BC ―→+CD ―→=BC ―→-DC ―→=AC ―→-AB ―→-12AB ―→=AC ―→-32AB ―→.7.(2018届高三·云南调研)在▱ABCD 中,|AB ―→|=8,|AD ―→|=6,N 为DC 的中点,BM ―→=2MC ―→,则AM ―→·NM ―→=( )A .48B .36C .24D .12解析:选C AM ―→·NM ―→=(AB ―→+BM ―→)·(NC ―→+CM ―→)=⎝ ⎛⎭⎪⎫AB ―→+23 AD ―→ ·⎝ ⎛⎭⎪⎫12 AB ―→-13 AD ―→ =12AB―→2-29AD ―→2=12×82-29×62=24. 8.(2018届高三·广西五校联考)已知a 为实数,若复数z =(a 2-1)+(a +1)i 为纯虚数,则a +i 2 0171-i=( )A .1B .0C .iD .1-i解析:选C 因为z =(a 2-1)+(a +1)i 为纯虚数,所以⎩⎪⎨⎪⎧a 2-1=0,a +1≠0,得a =1,则有1+i 2 0171-i =1+i 1-i=+2+-=i.9.已知点A (-1,1),B (1,2),C (-2,-1),D (3,4),则向量CD ―→ 在BA ―→方向上的投影是( ) A .-3 5 B .-322 C .3 5 D.322解析:选 A 依题意得,BA ―→=(-2,-1),CD ―→=(5,5),BA ―→ ·CD ―→=(-2,-1)·(5,5)=-15,|BA ―→|=5,因此向量CD ―→在BA ―→方向上的投影是BA ―→·CD ―→|BA ―→|=-155=-3 5.10.(2018届高三·湖南五校联考)△ABC 是边长为2的等边三角形,向量a ,b 满足AB ―→=2a ,AC ―→=2a +b ,则向量a ,b 的夹角为( )A .30°B .60°C .120°D .150°解析:选C 法一:设向量a ,b 的夹角为θ,BC ―→=AC ―→-AB ―→=2a +b -2a =b ,∴|BC ―→|=|b |=2,|AB ―→|=2|a |=2,∴|a |=1,AC ―→2=(2a +b )2=4a 2+4a ·b +b 2=8+8cos θ=4,∴cos θ=-12,θ=120°.法二:BC ―→=AC ―→-AB ―→=2a +b -2a =b ,则向量a ,b 的夹角为向量AB ―→与BC ―→的夹角,故向量a ,b 的夹角为120°.11.(2017·长春模拟)在△ABC 中,D 为△ABC 所在平面内一点,且AD ―→=13AB ―→+12AC ―→,则S △BCD S △ABD=( )A.16B.13C.12D.23解析:选B 如图,由已知得,点D 在△ABC 中与AB 平行的中位线上,且在靠⎝ ⎛⎭⎪⎫1-12-13S近BC 边的三等分点处,从而有S △ABD =12S △ABC ,S △ACD =13S △ABC ,S △BCD =△ABC=16S △ABC ,所以S △BCD S △ABD =13. 12.(2017·全国卷Ⅲ)在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP ―→=λAB ―→+μAD ―→,则λ+μ的最大值为( )A .3B .2 2 C. 5 D .2 解析:选A 以A 为坐标原点,AB ,AD 所在直线分别为x 轴,y 轴建立如图所示的平面直角坐标系,则A (0,0),B (1,0),C (1,2),D (0,2),可得直线BD 的方程为2x +y -2=0,点C 到直线BD 的距离为222+12=25,所以圆C :(x -1)2+(y -2)2=45. 因为P 在圆C 上,所以P ⎝ ⎛⎭⎪⎫1+255cos θ,2+255sin θ. 又AB ―→=(1,0),AD ―→=(0,2),AP ―→=λAB ―→+μAD ―→=(λ,2μ), 所以⎩⎪⎨⎪⎧1+255cos θ=λ,2+255sin θ=2μ,λ+μ=2+255cos θ+55sin θ=2+sin(θ+φ)≤3(其中tan φ=2),当且仅当θ=π2+2k π-φ,k ∈Z 时,λ+μ取得最大值3.13.(2017·成都模拟)若复数z =a i1+i (其中a ∈R ,i 为虚数单位)的虚部为-1,则a =________.解析:因为z =a i1+i=a-+-=a 2+a 2i 的虚部为-1,所以a2=-1,解得a =-2. 答案:-214.(2017·兰州诊断)已知向量OA ―→=(3,1),OB ―→=(-1,3),OC ―→=m OA ―→-n OB ―→(m >0,n >0),若m +n =1,则|OC ―→|的最小值为________.解析:由OA ―→=(3,1),OB ―→=(-1,3),得OC ―→=m OA ―→-n OB ―→=(3m +n ,m -3n ),因为m +n =1(m >0,n >0),所以n =1-m 且0<m <1,所以OC ―→=(1+2m,4m -3),则|OC ―→|=+2m2+m -2=20m 2-20m +10=20⎝ ⎛⎭⎪⎫m -122+5(0<m <1),所以当m =12时,|OC ―→|min = 5.答案: 515.(2018届高三·石家庄调研)非零向量m ,n 的夹角为π3,且满足|n |=λ|m |(λ>0),向量组x 1,x 2,x 3由一个m 和两个n 排列而成,向量组y 1,y 2,y 3由两个m 和一个n 排列而成,若x 1·y 1+x 2·y 2+x 3·y 3所有可能值中的最小值为4m 2,则λ=________.解析:由题意:x 1·y 1+x 2·y 2+x 3·y 3的运算结果有以下两种可能:①m 2+m ·n +n 2=m 2+λ|m ||m |cos π3+λ2m 2=⎝ ⎛⎭⎪⎫λ2+λ2+1m 2;②m ·n +m ·n +m ·n =3λ|m ||m |cos π3=3λ2m 2.又λ2+λ2+1-3λ2=λ2-λ+1=⎝ ⎛⎭⎪⎫λ-122+34>0,所以3λ2m 2=4m 2,即3λ2=4,解得λ=83.答案:8316.如图所示,已知正方形ABCD 的边长为1,点E 从点D 出发,按字母顺序D →A →B →C 沿线段DA ,AB ,BC 运动到点C ,在此过程中DE ―→·CD ―→的取值范围为________.解析:以BC ,BA 所在的直线为x 轴,y 轴,建立平面直角坐标系如图所示,可得A (0,1),B (0,0),C (1,0),D (1,1).当E 在DA 上时,设E (x,1),其中0≤x ≤1,∵DE ―→=(x -1,0),CD ―→=(0,1), ∴DE ―→·CD ―→=0;当E 在AB 上时,设E (0,y ), 其中0≤y ≤1,∵DE ―→=(-1,y -1),CD ―→=(0,1),∴DE ―→·CD ―→=y -1(0≤y ≤1),此时DE ―→·CD ―→的取值范围为[-1,0]; 当E 在BC 上时,设E (x,0),其中0≤x ≤1, ∵DE ―→=(x -1,-1),CD ―→=(0,1),∴DE ―→·CD ―→=-1.综上所述,DE ―→·CD ―→的取值范围为[-1,0]. 答案:[-1,0]课时跟踪检测(三) 不等式1.(2018届高三·湖南四校联考)已知不等式mx 2+nx -1m <0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-12或x >2,则m-n =( )A.12 B .-52C.52D .-1解析:选B 由题意得,x =-12和x =2是方程mx 2+nx -1m =0的两根,所以-12+2=-n m 且-12×2=-1m (m <0),解得m =-1,n =32,所以m -n =-52.2.已知直线ax +by =1经过点(1,2),则2a +4b的最小值为( ) A. 2 B .2 2 C .4D .4 2解析:选B ∵直线ax +by =1经过点(1,2),∴a +2b =1,则2a+4b≥22a·22b=22a +2b=22,当且仅当2a =22b,即a =12,b =14时取等号.3.(2017·兰州模拟)设变量x ,y 满足不等式组⎩⎪⎨⎪⎧x +y ≥3,x -y ≥-1,2x -y ≤3,则目标函数z =2x +3y 的最小值是( )A .5B .7C .8D .23解析:选B 作出不等式组所表示的平面区域如图中阴影部分所示,作出直线2x +3y =0,对该直线进行平移,可以发现经过⎩⎪⎨⎪⎧x +y =3,2x -y =3的交点A (2,1)时,目标函数z =2x +3y 取得最小值7.4.(2017·贵阳一模)已知x >0,y >0,x +2y +2xy =8,则x +2y 的最小值是( ) A .3B .4C.92D.112解析:选B 由题意得x +2y =8-x ·2y ≥8-⎝⎛⎭⎪⎫x +2y 22,当且仅当x =2y 时,等号成立,整理得(x+2y )2+4(x +2y )-32≥0,即(x +2y -4)(x +2y +8)≥0,又x +2y >0,所以x +2y ≥4,即x +2y 的最小值为4.5.(2017·云南模拟)已知函数f (x )=⎩⎪⎨⎪⎧2x -1-2,x ≥1,21-x-2,x <1,则不等式f (x -1)≤0的解集为( )A .{x |0≤x ≤2}B .{x |0≤x ≤3}C .{x |1≤x ≤2}D .{x |1≤x ≤3}解析:选D 由题意,得f (x -1)=⎩⎪⎨⎪⎧2x -2-2,x ≥2,22-x-2,x <2.当x ≥2时,由2x -2-2≤0,解得2≤x ≤3; 当x <2时,由22-x-2≤0,解得1≤x <2.综上所述,不等式f (x -1)≤0的解集为{x |1≤x ≤3}.6.(2017·武汉调研)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥a ,x -y ≤-1,且z =x +ay 的最小值为7,则a =( )A .-5B .3C .-5或3D .5或-3解析:选B 根据约束条件画出可行域如图①中阴影部分所示.可知可行域为开口向上的V 字型.在顶点A 处z有最小值,联立方程⎩⎪⎨⎪⎧x +y =a ,x -y =-1,得⎩⎪⎨⎪⎧x =a -12,y =a +12,即A ⎝⎛⎭⎪⎫a -12,a +12,则a -12+a ×a +12=7,解得a =3或a =-5. 当a =-5时,如图②,虚线向上移动时z 减小,故z →-∞,没有最小值,故只有a =3满足题意.7.(2017·合肥二模)若关于x 的不等式x 2+ax -2<0在区间[1,4]上有解,则实数a 的取值范围为( )A .(-∞,1)B .(-∞,1]C .(1,+∞)D .[1,+∞)解析:选A 法一:因为x ∈[1,4],则不等式x 2+ax -2<0可化为a <2-x 2x =2x -x ,设f (x )=2x-x ,x ∈[1,4],由题意得只需a <f (x )max ,因为函数f (x )为区间[1,4]上的减函数,所以f (x )max =f (1)=1,故a <1.法二:设g (x )=x 2+ax -2,函数g (x )的图象是开口向上的抛物线,过定点(0,-2),因为g (x )<0在区间[1,4]上有解,所以g (1)<0,解得a <1.8.(2017·太原一模)已知实数x ,y 满足条件⎩⎪⎨⎪⎧3x +y +3≥0,2x -y +2≤0,x +2y -4≤0,则z =x 2+y 2的取值范围为( )A .[1,13]B .[1,4]C.⎣⎢⎡⎦⎥⎤45,13D.⎣⎢⎡⎦⎥⎤45,4解析:选C 画出不等式组表示的平面区域如图中阴影部分所示,由此得z =x 2+y 2的最小值为点O 到直线BC :2x -y +2=0的距离的平方,所以z min =⎝ ⎛⎭⎪⎫252=45,最大值为点O 与点A (-2,3)的距离的平方,所以z max=|OA |2=13,故选C.9.(2017·衡水二模)若关于x 的不等式x 2-4ax +3a 2<0(a >0)的解集为(x 1,x 2),则x 1+x 2+a x 1x 2的最小值是( )A.63 B.233 C.433D.263解析:选C ∵关于x 的不等式x 2-4ax +3a 2<0(a >0)的解集为(x 1,x 2),∴Δ=16a 2-12a 2=4a2>0,又x 1+x 2=4a ,x 1x 2=3a 2, ∴x 1+x 2+a x 1x 2=4a +a 3a 2=4a +13a ≥24a ·13a =433,当且仅当a =36时取等号. ∴x 1+x 2+a x 1x 2的最小值是433. 10.某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表:(单位:亩)分别为( )A .50,0B .30,20C .20,30D .0,50解析:选B 设黄瓜、韭菜的种植面积分别为x 亩,y 亩,则总利润z =4×0.55x +6×0.3y -1.2x-0.9y =x +0.9y .此时x ,y 满足条件⎩⎪⎨⎪⎧x +y ≤50,1.2x +0.9y ≤54,x ≥0,y ≥0.画出可行域如图,得最优解为A (30,20).故黄瓜和韭菜的种植面积分别为30亩、20亩时,种植总利润最大.11.已知点M 是△ABC 内的一点,且AB ―→·AC ―→=23,∠BAC =π6,若△MBC ,△MCA ,△MAB 的面积分别为23,x ,y ,则4x +yxy的最小值为( )A .16B .18C .20D .27解析:选D 设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c . ∵AB ―→·AC ―→=23,∠BAC =π6,∴|AB ―→|·|AC ―→|cos π6=23,∴bc =4,∴S △ABC =12bc sin π6=14bc =1.∵△MBC ,△MCA ,△MAB 的面积分别为23,x ,y ,∴23+x +y =1,即x +y =13, ∴4x +yxy=1x +4y =3(x +y )⎝ ⎛⎭⎪⎫1x +4y=3⎝ ⎛⎭⎪⎫1+4+y x+4x y ≥3⎝⎛⎭⎪⎫5+2y x ·4x y =27, 当且仅当y =2x =29时取等号,故4x +yxy的最小值为27.12.(2017·安徽二校联考)当x ,y 满足不等式组⎩⎪⎨⎪⎧x +2y ≤2,y -4≤x ,x -7y ≤2时,-2≤kx -y ≤2恒成立,则实数k 的取值范围是( )A .[-1,1]B .[-2,0]C.⎣⎢⎡⎦⎥⎤-15,35D.⎣⎢⎡⎦⎥⎤-15,0解析:选 D 作出不等式组表示的可行域如图中阴影部分所示,设z =kx -y ,由⎩⎪⎨⎪⎧x +2y =2,y -4=x得⎩⎪⎨⎪⎧ x =-2,y =2,即B (-2,2);由⎩⎪⎨⎪⎧x +2y =2,x -7y =2得⎩⎪⎨⎪⎧x =2,y =0,即C (2,0);由⎩⎪⎨⎪⎧y -4=x ,x -7y =2得⎩⎪⎨⎪⎧x =-5,y =-1,即A (-5,-1).要使不等式-2≤kx -y ≤2恒成立,则⎩⎪⎨⎪⎧-2≤-2k -2≤2,-2≤2k ≤2,-2≤-5k +1≤2,即⎩⎪⎨⎪⎧-2≤k ≤0,-1≤k ≤1,-15≤k ≤35,所以-15≤k ≤0.13.(2018届高三·池州摸底)已知a >b >1,且2log a b +3log b a =7,则a +1b 2-1的最小值为________.解析:令log a b =t ,由a >b >1得0<t <1,2log a b +3log b a =2t +3t =7,得t =12,即log a b =12,a=b 2,所以a +1b 2-1=a -1+1a -1+1≥2a -1a -1+1=3,当且仅当a =2时取等号.故a +1b 2-1的最小值为3. 答案:314.(2017·石家庄模拟)若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤0,x -y ≤0,x 2+y 2≤4,则z =y -2x +3的最小值为________.解析:作出不等式组表示的可行域如图中阴影部分所示,因为目标函数z =y -2x +3表示区域内的点与点P (-3,2)连线的斜率.由图知当可行域内的点与点P 的连线与圆相切时斜率最小.设切线方程为y -2=k (x +3),即kx -y +3k +2=0,则有|3k +2|k 2+1=2,解得k =-125或k =0(舍去),所以z min =-125.答案:-12515.(2017·成都二诊)若关于x 的不等式ax 2-|x |+2a <0的解集为空集,则实数a 的取值范围为________.解析:ax 2-|x |+2a <0⇒a <|x |x 2+2,当x ≠0时,|x |x 2+2≤|x |2x 2×2=24(当且仅当x =±2时取等号),当x =0时,|x |x 2+2=0<24,因此要使关于x 的不等式ax 2-|x |+2a <0的解集为空集,只需a ≥24,即实数a 的取值范围为⎣⎢⎡⎭⎪⎫24,+∞. 答案:⎣⎢⎡⎭⎪⎫24,+∞ 16.(2018届高三·福州调研)不等式组⎩⎪⎨⎪⎧2x -y +1≥0,x -2y +2≤0,x +y -4≤0的解集记作D ,实数x ,y 满足如下两个条件:①∀(x ,y )∈D ,y ≥ax ;②∃(x ,y )∈D ,x -y ≤a . 则实数a 的取值范围为________.解析:由题意知,不等式组所表示的可行域D 如图中阴影部分(△ABC 及其内部)所示,由⎩⎪⎨⎪⎧x -2y +2=0,x +y -4=0,得⎩⎪⎨⎪⎧ x =2,y =2,所以点B 的坐标为(2,2).由⎩⎪⎨⎪⎧2x -y +1=0,x +y -4=0,得⎩⎪⎨⎪⎧x =1,y =3,所以点C 的坐标为(1,3).因为∀(x ,y )∈D ,y ≥ax , 由图可知,a ≤k OB ,所以a ≤1.由∃(x ,y )∈D ,x -y ≤a ,设z =x -y ,则a ≥z min .当目标函数z =x -y 过点C (1,3)时,z =x -y 取得最小值,此时z min =1-3=-2,所以a ≥-2. 综上可知,实数a 的取值范围为[-2,1]. 答案:[-2,1]课时跟踪检测(四) 函数的图象与性质[A 级——“12+4”保分小题提速练]1.函数f (x )=⎩⎪⎨⎪⎧ax +b ,x ≤0,log c ⎝ ⎛⎭⎪⎫x +19,x >0的图象如图所示,则a +b +c =( )A.43 B.73 C .4D.133解析:选D 将点(0,2)代入y =log c ⎝ ⎛⎭⎪⎫x +19,得2=log c 19,解得c =13.再将点(0,2)和(-1,0)分别代入y =ax +b ,解得a =2,b =2,∴a +b +c =133.2.(2018届高三·武汉调研)已知函数f (x )的部分图象如图所示,则f (x )的解析式可以是( )A .f (x )=2-x22xB .f (x )=cos xx 2C .f (x )=-cos 2xxD .f (x )=cos xx解析:选D A 中,当x →+∞时,f (x )→-∞,与题图不符,故不成立;B 为偶函数,与题图不符,故不成立;C 中,当x >0,x →0时,f (x )<0,与题图不符,故不成立.选D.3.下列函数中,既是奇函数又是减函数的是( ) A .f (x )=x 3,x ∈(-3,3) B .f (x )=tan x C .f (x )=x |x |D .f (x )=ln 2e e --x x解析:选D 选项A 、B 、C 、D 对应的函数都是奇函数,但选项A 、B 、C 对应的函数在其定义域内都不是减函数,故排除A 、B 、C ;对于选项D ,因为f (x )=ln 2e e --x x,所以f (x )=(e -x -e x)ln 2,由于函数g (x )=e -x与函数h (x )=-e x 都是减函数,又ln 2>0,所以函数f (x )=(e -x-e x)ln 2是减函数,故选D.4.函数f (x )= -x 2+9x +10-2x -的定义域为( )A .[1,10]B .[1,2)∪(2,10]C .(1,10]D .(1,2)∪(2,10]解析:选D 要使原函数有意义,则⎩⎪⎨⎪⎧-x 2+9x +10≥0,x -1>0,x -1≠1,解得1<x ≤10且x ≠2,所以函数f (x )的定义域为(1,2)∪(2,10]. 5.(2017·全国卷Ⅰ)已知函数f (x )=ln x +ln(2-x ),则( ) A .f (x )在(0,2)单调递增 B .f (x )在(0,2)单调递减C .y =f (x )的图象关于直线x =1对称D .y =f (x )的图象关于点(1,0)对称解析:选 C 由题易知,f (x )=ln x +ln(2-x )的定义域为(0,2),f (x )=ln[x (2-x )]=ln[-(x-1)2+1],由复合函数的单调性知,函数f (x )=ln x +ln(2-x )在(0,1)单调递增,在(1,2)单调递减,所以排除A 、B ;又f ⎝ ⎛⎭⎪⎫12=ln 12+ln ⎝ ⎛⎭⎪⎫2-12=ln 34,f ⎝ ⎛⎭⎪⎫32=ln 32+ln ⎝⎛⎭⎪⎫2-32=ln 34,所以f ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭⎪⎫32=ln 34,所以排除D.故选C. 6.函数f (x )=x x2的图象大致是( )解析:选 A 由题意知,函数f (x )的定义域为(-∞,0)∪(0,+∞),f (-x )=-πx-x2=x x2=f (x ),∴f (x )为偶函数,排除C 、D ; 当x =1时,f (1)=cos π1=-1<0,排除B ,故选A. 7.(2018届高三·衡阳八中月考)函数y =f (x )在区间[0,2]上单调递增,且函数f (x +2)是偶函数,则下列结论成立的是( )A .f (1)<f ⎝ ⎛⎭⎪⎫52<f ⎝ ⎛⎭⎪⎫72B .f ⎝ ⎛⎭⎪⎫72<f (1)<f ⎝ ⎛⎭⎪⎫52C .f ⎝ ⎛⎭⎪⎫72<f ⎝ ⎛⎭⎪⎫52<f (1) D .f ⎝ ⎛⎭⎪⎫52<f (1)<f ⎝ ⎛⎭⎪⎫72 解析:选B 因为函数f (x +2)是偶函数,所以f (x +2)=f (-x +2), 即函数f (x )的图象关于x =2对称.又因为函数y =f (x )在[0,2]上单调递增, 所以函数y =f (x )在区间[2,4]上单调递减. 因为f (1)=f (3),72>3>52,所以f ⎝ ⎛⎭⎪⎫72<f (3)<f ⎝ ⎛⎭⎪⎫52,即f ⎝ ⎛⎭⎪⎫72<f (1)<f ⎝ ⎛⎭⎪⎫52. 8.(2017·甘肃会宁一中摸底)已知函数f (x )=⎩⎪⎨⎪⎧-2a x +3a ,x <1,ln x ,x ≥1的值域为R ,则实数a的取值范围是( )A.⎣⎢⎡⎭⎪⎫-1,12B.⎝⎛⎭⎪⎫-1,12C .(-∞,-1]D.⎝ ⎛⎭⎪⎫0,12 解析:选A 法一:当x ≥1时,ln x ≥0,要使函数f (x )=⎩⎪⎨⎪⎧-2a x +3a ,x <1,ln x ,x ≥1的值域为R ,只需⎩⎪⎨⎪⎧1-2a >0,1-2a +3a ≥0,解得-1≤a <12.法二:取a =-1,则函数f (x )的值域为R ,所以a =-1满足题意,排除B 、D ;取a =-2,则函数f (x )的值域为(-∞,-1)∪[0,+∞),所以a =-2不满足题意,排除C ,故选A.9.(2018届高三·辽宁实验中学摸底)已知函数f (x )=(x -a )(x -b )(其中a >b ),若f (x )的图象如图所示,则函数g (x )=a x +b 的图象大致为( )解析:选A 由一元二次方程的解法易得(x -a )(x -b )=0的两根为a ,b ,根据函数零点与方程的根的关系,可得f (x )=(x -a )(x -b )的零点就是a ,b ,即函数f (x )的图象与x 轴交点的横坐标为a ,b .观察f (x )=(x -a )·(x -b )的图象,可得其与x 轴的两个交点分别在区间(-2,-1)与(0,1)上,又由a >b ,可得-2<b <-1,0<a <1.函数g (x )=a x+b ,由0<a <1可知其是减函数,又由-2<b <-1可知其图象与y 轴的交点在x 轴的下方,分析选项可得A 符合这两点,B 、C 、D 均不满足,故选A.10.函数f (x )是周期为4的偶函数,当x ∈[0,2]时,f (x )=x -1,则不等式xf (x )>0在(-1,3)上的解集为( )A .(1,3)B .(-1,1)C .(-1,0)∪(1,3)D .(-1,0)∪(0,1)解析:选C 作出函数f (x )的图象如图所示.当x ∈(-1,0)时,由xf (x )>0得x ∈(-1,0); 当x ∈(0,1)时,由xf (x )>0得x ∈∅; 当x ∈(1,3)时,由xf (x )>0得x ∈(1,3). 故x ∈(-1,0)∪(1,3).11.(2017·安徽六安一中测试)已知函数y =3-|x |3+|x |的定义域为[a ,b ](a ,b ∈Z),值域为[0,1],则满足条件的整数对(a ,b )共有( )A .6个B .7个C .8个D .9个解析:选B 函数y =3-|x |3+|x |=63+|x |-1,易知函数是偶函数,x >0时是减函数,所以函数的图象如图所示,根据图象可知,函数y =3-|x |3+|x |的定义域可能为[-3,0],[-3,1],[-3,2],[-3,3],[-2,3],[-1,3],[0,3],共7种,所以满足条件的整数对(a ,b )共有7个.12.已知函数f (x )=2x -1,g (x )=1-x 2,规定:当|f (x )|≥g (x )时,h (x )=|f (x )|;当|f (x )|<g (x )时,h (x )=-g (x ),则h (x )( )A .有最小值-1,最大值1B .有最大值1,无最小值C .有最小值-1,无最大值D .有最大值-1,无最小值解析:选C 作出函数g (x )=1-x 2和函数|f (x )|=|2x-1|的图象如图①所示,得到函数h (x )的图象如图②所示,由图象得函数h (x )有最小值-1,无最大值.13.若函数f (x )=a -12x+1为奇函数,则a =________. 解析:由题意知f (0)=0,即a -12+1=0,解得a =12.答案:1214.已知f (x )=ax 3+bx +1(ab ≠0),若f (2 017)=k ,则f (-2 017)=________.解析:由f (2 017)=k 可得,a ×2 0173+b ×2 017+1=k ,∴2 0173a +2 017b =k -1,∴f (-2 017)=-a ×2 0173-b ×2 017+1=2-k .答案:2-k15.(2017·安徽二校联考)已知f (x )是定义在R 上的奇函数,且当x <0时,f (x )=2x,则f (log 49)=______.解析:因为log 49=log 23>0,又f (x )是定义在R 上的奇函数,且当x <0时,f (x )=2x ,所以f (log 49)=f (log 23)=-22log 3-=-221log 3-=-13.答案:-1316.已知y =f (x )是偶函数,当x >0时,f (x )=x +4x,且当x ∈[-3,-1]时,n ≤f (x )≤m 恒成立,则m -n 的最小值是________.解析:∵当x ∈[-3,-1]时,n ≤f (x )≤m 恒成立, ∴n ≤f (x )min 且m ≥f (x )max ,∴m -n 的最小值是f (x )max -f (x )min , 由偶函数的图象关于y 轴对称知,当x ∈[-3,-1]时,函数的最值与x ∈[1,3]时的最值相同,又当x >0时,f (x )=x +4x,在[1,2]上递减,在[2,3]上递增,且f (1)>f (3), ∴f (x )max -f (x )min =f (1)-f (2)=5-4=1. 故m -n 的最小值是1. 答案:1[B 级——中档小题强化练]1.函数f (x )=1+ln ⎝ ⎛⎭⎪⎫x 2+2e 的图象大致是( )解析:选D 因为f (0)=ln 2>0,即函数f (x )的图象过点(0,ln 2),所以排除A 、B 、C ,选D. 2.(2018届高三·东北三校联考)已知函数f (x )=ln(|x |+1)+x 2+1,则使得f (x )>f (2x -1)成立的x 的取值范围是 ( )A.⎝ ⎛⎭⎪⎫13,1 B.⎝ ⎛⎭⎪⎫-∞,13∪(1,+∞) C .(1,+∞)D.⎝⎛⎭⎪⎫-∞,13 解析:选A 易知函数f (x )为偶函数,且当x ≥0时,f (x )=ln(x +1)+x 2+1 是增函数, ∴使得f (x )>f (2x -1)成立的x 满足|2x -1|<|x |, 解得13<x <1.3.(2017·潍坊一模)设函数f (x )为偶函数,且∀x ∈R ,f ⎝ ⎛⎭⎪⎫x -32=f ⎝ ⎛⎭⎪⎫x +12,当x ∈[2,3]时,f (x )=x ,则当x ∈[-2,0]时,f (x )=( )A .|x +4|B .|2-x |C .2+|x +1|D .3-|x +1|解析:选D 因为f ⎝ ⎛⎭⎪⎫x -32=f ⎝ ⎛⎭⎪⎫x +12, 所以f (x )=f (x +2),得f (x )的周期为2. 因为当x ∈[2,3]时,f (x )=x , 所以当x ∈[0,1]时,x +2∈[2,3],f (x )=f (x +2)=x +2.又f (x )为偶函数,所以当x ∈[-1,0]时,-x ∈[0,1],f (x )=f (-x )=-x +2,当x ∈[-2,-1]时,x +2∈[0,1],f (x )=f (x +2)=x +4,所以当x ∈[-2,0]时,f (x )=3-|x +1|.4.(2017·安庆二模)如图,已知l 1⊥l 2,圆心在l 1上、半径为1 m 的圆O 沿l 1以1 m/s 的速度匀速竖直向上移动,且在t =0时,圆O 与l 2相切于点A ,圆O 被直线l 2所截得到的两段圆弧中,位于l 2上方的圆弧的长记为x ,令y =cos x ,则y 与时间t (0≤t ≤1,单位:s)的函数y =f (t )的图象大致为( )解析:选B 法一:如图所示,cosx2=设∠MON =α,由弧长公式知x =α,在Rt △AOM 中,|AO |=1-t ,|OA ||OM |=1-t ,∴y =cos x =2cos 2x 2-1=2(t -1)2-1(0≤t ≤1).故其对应的大致图象应为B.法二:由题意可知,当t =1时,圆O 在直线l 2上方的部分为半圆,所对应的弧长为π×1=π,所以cos π=-1,排除A 、D ;当t =12时,如图所示,易知∠BOC =2π3,所以cos 2π3=-12<0,排除C ,故选B.5.设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),则f ⎝ ⎛⎭⎪⎫-52=________.解析:因为f (x )是奇函数,且当0≤x ≤1时,f (x )=2x (1-x ),所以当-1≤x <0时,0<-x ≤1,f (-x )=-2x (1+x )=-f (x ),即f (x )=2x (1+x ).又f (x )的周期为2,所以f ⎝ ⎛⎭⎪⎫-52=f ⎝⎛⎭⎪⎫-2-12=f ⎝ ⎛⎭⎪⎫-12=2×⎝ ⎛⎭⎪⎫-12×12=-12.答案:-126.(2017·张掖模拟)已知定义在R 上的函数f (x ),对任意的实数x ,均有f (x +3)≤f (x )+3,f (x +2)≥f (x )+2且f (1)=2,则f (2 017)的值为________.解析:∵f (x +3)≤f (x )+3,f (x +2)≥f (x )+2, ∴f (x +1)+2≤f (x +3)≤f (x )+3, ∴f (x +1)≤f (x )+1,又f (x )+3+f (x +2)≥f (x +3)+f (x )+2, 即f (x +2)+1≥f (x +3),∴f (x +1)+1≥f (x +2)≥f (x )+2, ∴f (x +1)≥f (x )+1,∴f (x +1)=f (x )+1,利用叠加法,得f (2 017)=2 018.答案:2 018[C 级——压轴小题突破练]1.设m ∈Z ,对于给定的实数x ,若x ∈⎝ ⎛⎦⎥⎤m -12,m +12,则我们就把整数m 叫做距实数x 最近的整数,并把它记为{x },现有关于函数f (x )=x -{x }的四个命题:①f ⎝ ⎛⎭⎪⎫-12=-12;②函数f (x )的值域是⎝ ⎛⎦⎥⎤-12,12;③函数f (x )是奇函数;④函数f (x )是周期函数,其最小正周期为1. 其中,真命题的个数为( ) A .1 B .2 C .3D .4解析:选B ①∵-1-12<-12≤-1+12,∴⎩⎨⎧⎭⎬⎫-12=-1, ∴f ⎝ ⎛⎭⎪⎫-12=-12-⎩⎨⎧⎭⎬⎫-12=-12+1=12, 所以①是假命题;②令x =m +a ,m ∈Z ,a ∈⎝ ⎛⎦⎥⎤-12,12,则f (x )=x -{x }=a ,∴f (x )∈⎝ ⎛⎦⎥⎤-12,12,所以②是真命题; ③∵f ⎝ ⎛⎭⎪⎫12=12-0=12,f ⎝ ⎛⎭⎪⎫-12=12≠-f ⎝ ⎛⎭⎪⎫12, ∴函数f (x )不是奇函数,故③是假命题; ④∵f (x +1)=(x +1)-{x +1}=x -{x }=f (x ), ∴函数f (x )的最小正周期为1,故④是真命题. 综上,真命题的个数为2,故选B.2.如图所示,在△ABC 中,∠B =90°,AB =6 cm ,BC =8 cm ,点P 以 1 cm/s 的速度沿A →B →C 的路径向C 移动,点Q 以2 cm/s 的速度沿B →C →A 的路径向A 移动,当点Q 到达A 点时,P ,Q 两点同时停止移动.记△PCQ 的面积关于移动时间t 的函数为S =f (t ),则f (t )的图象大致为( )解析:选A 当0≤t ≤4时,点P 在AB 上,点Q 在BC 上,此时PB =6-t ,CQ =8-2t ,则S =f (t )=12QC ×BP =12(8-2t )×(6-t )=t 2-10t +24; 当4<t ≤6时,点P 在AB 上,点Q 在CA 上,此时AP =t ,P 到AC 的距离为45t ,CQ =2t -8,则S=f (t )=12QC ×45t =12(2t -8)×45t =45(t 2-4t );当6<t ≤9时,点P 在BC 上,点Q 在CA 上,此时CP =14-t ,QC =2t -8,则S =f (t )=12QC ×CP sin∠ACB =12(2t -8)(14-t )×35=35(t -4)(14-t ).综上,函数f (t )对应的图象是三段抛物线,依据开口方向得图象是A. 3.(2017·河北邯郸一中月考)已知函数f 1(x )=|x -1|,f 2(x )=13x +1,g (x )=f 1x +f 2x2+|f 1x-f 2x2,若a ,b ∈[-1,5],且当x 1,x 2∈[a ,b ]时,g x 1-g x 2x 1-x 2>0恒成立,则b-a 的最大值为________.解析:当f 1(x )≥f 2(x )时,g (x )=f 1x +f 2x2+f 1x -f 2x2=f 1(x );当f 1(x )<f 2(x )时,g (x )=f 1x +f 2x2+f 2x -f 1x2=f 2(x ).综上,g (x )=⎩⎪⎨⎪⎧f 1x ,f 1xf 2x ,f 2x ,f 1x <f 2x ,即g (x )是f 1(x ),f 2(x )两者中的较大者.在同一平面直角坐标系中分别画出函数f 1(x )与f 2(x )的图象,如图所示,则g (x )的图象如图中实线部分所示.由图可知g (x )在[0,+∞)上单调递增,又g (x )在[a ,b ]上单调递增,故a ,b ∈[0,5],所以b -a 的最大值为5.答案:54.(2017·湘中名校联考)定义在R 上的函数f (x )在(-∞,-2)上单调递增,且f (x -2)是偶函数,若对一切实数x ,不等式f (2sin x -2)>f (sin x -1-m )恒成立,则实数m 的取值范围为________.解析:因为f (x -2)是偶函数, 所以函数f (x )的图象关于x =-2对称. 又f (x )在(-∞,-2)上为增函数, 则f (x )在(-2,+∞)上为减函数,所以不等式f (2sin x -2)>f (sin x -1-m )恒成立等价于|2sin x -2+2|<|sin x -1-m +2|, 即|2sin x |<|sin x +1-m |,两边同时平方, 得3sin 2x -2(1-m )sin x -(1-m )2<0, 即(3sin x +1-m )(sin x -1+m )<0,即⎩⎪⎨⎪⎧3sin x +1-m >0,sin x -1+m <0或⎩⎪⎨⎪⎧3sin x +1-m <0,sin x -1+m >0,即⎩⎪⎨⎪⎧3sin x >m -1,sin x <1-m 或⎩⎪⎨⎪⎧3sin x <m -1,sin x >1-m ,即⎩⎪⎨⎪⎧m -1<-3,1-m >1或⎩⎪⎨⎪⎧m -1>3,1-m <-1,即m <-2或m >4,故m 的取值范围为(-∞,-2)∪(4,+∞). 答案:(-∞,-2)∪(4,+∞)课时跟踪检测(五) 基本初等函数、函数与方程[A 级——“12+4”保分小题提速练]1.若f (x )是幂函数,且满足f f=2,则f ⎝ ⎛⎭⎪⎫19=( ) A.12 B.14 C .2D .4解析:选B 设f (x )=x α,由ff=9α3α=3α=2,得α=log 32,∴f ⎝ ⎛⎭⎪⎫19=⎝ ⎛⎭⎪⎫19log 32=14. 2.(2017·云南模拟)设a =60.7,b =log 70.6,c =log 0.60.7,则a ,b ,c 的大小关系为( ) A .c >b >a B .b >c >a C .c >a >bD .a >c >b解析:选D 因为a =60.7>1,b =log 70.6<0,0<c =log 0.60.7<1,所以a >c >b . 3.函数f (x )=|log 2x |+x -2的零点个数为( ) A .1 B .2 C .3D .4解析:选B 函数f (x )=|log 2x |+x -2的零点个数,就是方程|log 2x |+x -2=0的根的个数.令h (x )=|log 2x |,g (x )=2-x ,画出两函数的图象,如图. 由图象得h (x )与g (x )有2个交点,∴方程|log 2x |+x -2=0的解的个数为2.4.(2017·河南适应性测试)函数y =a x-a (a >0,a ≠1)的图象可能是( )解析:选C 由函数y =a x-a (a >0,a ≠1)的图象过点(1,0),得选项A 、B 、D 一定不可能;C 中0<a <1,有可能,故选C.5.已知奇函数y =⎩⎪⎨⎪⎧fx ,x >0,g x ,x <0.若f (x )=a x(a >0,a ≠1)对应的图象如图所示,则g (x )=( )A.⎝ ⎛⎭⎪⎫12-xB .-⎝ ⎛⎭⎪⎫12xC .2-xD .-2x解析:选D 由图象可知,当x >0时,函数f (x )单调递减,则0<a <1,∵f (1)=12,∴a =12,即函数f (x )=⎝ ⎛⎭⎪⎫12x ,当x <0时,-x >0,则f (-x )=⎝ ⎛⎭⎪⎫12-x =-g (x ),即g (x )=-⎝ ⎛⎭⎪⎫12-x =-2x,故g (x )=-2x,x <0,选D.6.已知f (x )=a x和g (x )=b x是指数函数,则“f (2)>g (2)”是“a >b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选C 由题可得,a >0,b >0且a ≠1,b ≠1. 充分性:f (2)=a 2,g (2)=b 2, 由f (2)>g (2)知,a 2>b 2,再结合y =x 2在(0,+∞)上单调递增, 可知a >b ,故充分性成立; 必要性:由题可知a >b >0,构造函数h (x )=f x g x =a x b x =⎝ ⎛⎭⎪⎫a b x ,显然ab>1,所以h (x )单调递增,故h (2)=a 2b2>h (0)=1,所以a 2>b 2,故必要性成立.7.函数f (x )=e x+x -2的零点所在的一个区间是( ) A .(-2,-1) B .(-1,0) C .(0,1)D .(1,2)解析:选C 法一:∵f (0)=e 0+0-2=-1<0,f (1)=e 1+1-2=e -1>0,∴f (0)f (1)<0,故函数f (x )=e x+x -2的零点所在的一个区间是(0,1),选C.法二:函数f (x )=e x+x -2的零点,即函数y =e x的图象与y =-x+2的图象的交点的横坐标,作出函数y =e x与直线y =-x +2的图象如图所示,由图可知选C.8.已知函数f (x )=ln x +3x -8的零点x 0∈[a ,b ],且b -a =1,a ,b ∈N *,则a +b =( ) A .0 B .2 C .5D .7解析:选 C ∵f (2)=ln 2+6-8=ln 2-2<0,f (3)=ln 3+9-8=ln 3+1>0,且函数f (x )=ln x +3x -8在(0,+∞)上为单调递增函数,∴x 0∈[2,3],即a =2,b =3,∴a +b =5.9.(2018届高三·湖南四校联考)设函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,g x ,x <0,若f (x )为奇函数,则g ⎝ ⎛⎭⎪⎫-14的值为( )A .-14B.14 C .-2D .2解析:选D 法一:当x >0时,f (x )=log 2x , ∵f (x )为奇函数,∴当x <0时,f (x )=-log 2(-x ), 即g (x )=-log 2(-x ), ∴g ⎝ ⎛⎭⎪⎫-14=-log 214=2. 法二:g ⎝ ⎛⎭⎪⎫-14=f ⎝ ⎛⎭⎪⎫-14=-f ⎝ ⎛⎭⎪⎫14=-log 214=-log 22-2=2.10.(2017·杭州二模)已知直线x =m (m >1)与函数f (x )=log a x (a >0且a ≠1),g (x )=log b x (b >0且b ≠1)的图象及x 轴分别交于A ,B ,C 三点,若AB ―→=2BC ―→,则( )A .b =a 2B .a =b 2C .b =a 3D .a =b 3。
2018版高考数学人教A版理科一轮复习课时跟踪检测30 含
课时跟踪检测(三十)1.已知点A (-2,0),B (3,0),动点P (x ,y )满足PA →·PB →=x 2,则点P 的轨迹是( ) A .圆 B .椭圆 C .双曲线 D .抛物线答案:D解析:PA →=(-2-x ,-y ),PB →=(3-x ,-y ), ∴PA →·PB →=(-2-x )(3-x )+y 2=x 2,∴y 2=x +6.2.在△ABC 中,(BC →+BA →)·AC →=|AC →|2,则△ABC 的形状一定是( ) A .等边三角形 B .等腰三角形 C .直角三角形 D .等腰直角三角形 答案:C解析:由(BC →+BA →)·AC →=|AC →|2,得 AC →·(BC →+BA →-AC →)=0,即AC →·(BC →+BA →+CA →)=0,即2AC →·BA →=0, ∴AC →⊥BA →,∴A =90°.又根据已知条件不能得到|AB →|=|AC →|, 故△ABC 一定是直角三角形.3.在△ABC 中,AB =AC =2,BC =23,则AB →·AC →=( ) A .2 3 B .2 C .-2 3 D .-2答案:D解析:由余弦定理,得cos A =AB 2+AC 2-BC 22AB ·AC =22+22-322×2×2=-12,所以AB →·AC →=|AB →|·|AC →|cos A =2×2×⎝ ⎛⎭⎪⎫-12=-2,故选D.4.已知|a|=2|b|,|b |≠0,且关于x 的方程x 2+|a |x -a·b =0有两相等实根,则向量a 与b 的夹角是( )A .-π6B .-π3C.π3 D .2π3答案:D解析:由已知,可得Δ=|a |2+4a ·b =0, 即4|b |2+4×2|b |2cos θ=0,∴cos θ=-12.又∵0≤θ≤π,∴θ=2π3.5.设O 是△ABC 的外心(三角形外接圆的圆心),若AO →=13AB →+13AC →,则∠BAC =( )A .30°B .45°C .60°D .90°答案:C解析:取BC 的中点D ,连接AD ,则AB →+AC →=2AD →.由题意,得3AO →=2AD →,∴AD 为BC 的中线且O 为重心.又O 为外心,∴△ABC 为正三角形,∴∠BAC =60°,故选C.6.已知|a|=2|b |≠0,且关于x 的函数f (x )=13x 3+12|a |x 2+a·b x 在R 上有极值,则向量a 与b 的夹角的范围是( )A.⎣⎢⎡⎭⎪⎫0,π6B .⎝ ⎛⎦⎥⎤π6,πC.⎝⎛⎦⎥⎤π3,πD .⎝ ⎛⎭⎪⎫π3,2π3答案:C解析:设a 与b 的夹角为θ. ∵f (x )=13x 3+12|a |x 2+a·b x ,∴f ′(x )=x 2+|a |x +a·b , ∵函数f (x )在R 上有极值,∴方程x 2+|a |x +a·b =0有两个不同的实数根,即Δ=|a|2-4a·b >0,∴a·b <a 24.又∵|a|=2|b |≠0,∴cos θ=a·b |a||b |<a 24a 22=12,即cos θ<12.又∵θ∈,∴θ∈⎝ ⎛⎦⎥⎤π3,π,故选C. 7.若非零向量AB →与AC →满足⎝ ⎛⎭⎪⎪⎫AB →|AB →|+AC →|AC →|·BC →=0且AB →|AB →|·AC →|AC →|=12,则△ABC 为( )A .三边均不相等的三角形B .直角三角形C .等边三角形D .等腰非等边三角形 答案:C解析:由⎝ ⎛⎭⎪⎪⎫AB →|AB →|+AC →|AC →|·BC →=0知,角A 的平分线与BC 垂直,∴|AB →|=|AC →|; 由AB→|AB →|·AC →|AC →|=12知,cos A =12,∴A =60°. ∴△ABC 为等边三角形.8.在Rt △ABC 中,CA =CB =3,M ,N 是斜边AB 上的两个动点,且MN =2,则CM →·CN →的取值范围为( )A.⎣⎢⎡⎦⎥⎤2,52 B . C . D .答案:D解析:设MN 的中点为E ,则有CM →+CN →=2CE →, CM →·CN →=14=CE →2-14NM →2=CE →2-12.又|CE →|的最小值等于点C 到AB 的距离,即322,故CM →·CN →的最小值为⎝ ⎛⎭⎪⎫3222-12=4.当点M 与点A (或B )重合时,|CE →|达到最大,易知|CE →|的最大值为⎝ ⎛⎭⎪⎫3222+22=132,故CM →·CN →的最大值为6, 因此CM →·CN →的取值范围是.9.在△ABC 中,若AB →·AC →=AB →·CB →=2,则边AB 的长等于________. 答案:2解析:由题意知,AB →·AC →+AB →·CB →=4,即AB →·(AC →+CB →)=4,即AB →·AB →=4,∴|AB →|=2. 10.在边长为1的正方形ABCD 中,M 为BC 的中点,点E 在线段AB 上运动,则EC →·EM →的最大值为________.答案:32解析:以点A 为坐标原点,AB ,AD 所在直线分别为x 轴、y 轴建立平面直角坐标系,则C (1,1),M ⎝⎛⎭⎪⎫1,12,设E (x,0),x ∈,则EC →·EM →=(1-x,1)·⎝ ⎛⎭⎪⎫1-x ,12=(1-x )2+12,当x ∈时,(1-x )2+12单调递减,当x =0时,EC →·EM →取得最大值32.11.已知向量a =(cos θ,sin θ),向量b =(3,-1),则|2a -b |的最大值与最小值的和为________.答案:4解析:由题意,可得a·b =3cos θ-sin θ=2cos ⎝ ⎛⎭⎪⎫θ+π6,则|2a -b |=2a -b2=4|a|2+|b|2-4a·b =8-8cos ⎝⎛⎭⎪⎫θ+π6∈,所以|2a -b |的最大值与最小值的和为4.12.在△ABC 中,A =90°,AB =1,AC =2,设点P ,Q 满足AP →=λAB →,AQ →=(1-λ)AC →,λ∈R .若BQ →·CP →=-2,则λ=________.答案:23解析:∵BQ →=AQ →-AB →=(1-λ)AC →-AB →,CP →=AP →-AC →=λAB →-AC →, 由BQ →·CP →=-2,可得 ·(λAB →-AC →)=-2.化简,得(1-λ)λAC →·AB →-(1-λ)AC →2-λAB →2+AB →· AC →=-2,又AC →·AB →=0,AC →2=4,AB →2=1,∴-(1-λ)×4-λ×1=-2,解得λ=23.1.已知点A ,B ,C 在圆x 2+y 2=1上运动,且AB ⊥BC ,若点P 的坐标为(2,0),则|PA →+PB→+PC →|的最大值为( )A .6B .7C .8D .9答案:B解析:因为AB ⊥BC ,点A ,B ,C 在圆x 2+y 2=1上, 故AC 过圆心O ,PA →+PC →=2PO →, |PA →+PB →+PC →|=|2PO →+PB →|=|3PO →+OB →|.当PO →与OB →同向共线时,即B (-1,0)时,|PA →+PB →+PC →|取得最大值7.故选B.2.若函数f (x )=2sin ⎝ ⎛⎭⎪⎫π6x +π3(-2<x <10)的图象与x 轴交于点A ,过点A 的直线l 与函数的图象交于B ,C 两点,则(OB →+OC →)·OA →=( )A .-32B .-16C .16D .32答案:D解析:函数f (x )=2sin ⎝ ⎛⎭⎪⎫π6x +π3(-2<x <10)的图象如图所示.由f (x )=0,解得x =4,即A (4,0),过点A 的直线l 与函数的图象交于B ,C 两点,根据对称性可知,A 是B ,C 的中点,所以OB →+OC →=2OA →,所以(OB →+OC →)·OA →=2OA →·OA →=2|OA →|2=2×42=32.3.在△ABC 中,满足|AC →|=|BC →|,(AB →-3AC →)⊥CB →,则角C 的大小为( ) A.π3 B .π6C.2π3D .5π6答案:C解析:设△ABC 的角A ,B ,C 的对边分别为a ,b ,c , 由(AB →-3AC →)⊥CB →,可得(AB →-3AC →)·CB →=(AB →-3AC →)·(AB →-AC →) =c 2+3b 2-4AB →·AC → =c 2+3b 2-4cb cos A=c 2+3b 2-2(b 2+c 2-a 2)=0, 即b 2-c 2+2a 2=0.又由|BC →|=|AC →|可得a =b ,则c 2=3a 2, 由余弦定理可得,cos C =a 2+b 2-c 22ab =a 2+a 2-3a 22a 2=-12, 所以△ABC 的内角C =2π3.4.已知A ,B ,C 是圆x 2+y 2=1上的三点,且OA →+OB →=OC →,其中O 为坐标原点,则▱OACB 的面积等于________.答案:32解析:如图所示,由|OA →|=|OB →|=|OC →|=1知,▱OACB 是边长为1的菱形,且∠AOB =120°. ∴S ▱OACB =|OA →||OB →|sin 120°=1×1×32=32.5.已知向量m =⎝ ⎛⎭⎪⎫3sin x 4,1,n =⎝⎛⎭⎪⎫cos x 4,cos 2x4.(1)若m·n =1,求cos ⎝⎛⎭⎪⎫2π3-x 的值;(2)记f (x )=m·n ,在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且满足(2a -c )cos B =b cos C ,求函数f (A )的取值范围.解:m·n =3sin x 4cos x4+cos 2x4 =32sin x 2+12cos x 2+12=sin ⎝ ⎛⎭⎪⎫x 2+π6+12. (1)∵m·n =1,∴sin ⎝ ⎛⎭⎪⎫x 2+π6=12,cos ⎝ ⎛⎭⎪⎫x +π3=1-2sin 2⎝ ⎛⎭⎪⎫x 2+π6=12,∴cos ⎝⎛⎭⎪⎫2π3-x =-cos ⎝ ⎛⎭⎪⎫x +π3=-12.(2)∵(2a -c )cos B =b cos C ,由正弦定理,得 (2sin A -sin C )cos B =sin B cos C , ∴2sin A cos B =sin C cos B +sin B cos C , ∴2sin A cos B =sin(B +C ). ∵A +B +C =π,∴sin(B +C )=sin A ,且sin A ≠0, ∴cos B =12,B =π3,∴0<A <2π3,∴π6<A 2+π6<π2,12<sin ⎝ ⎛⎭⎪⎫A 2+π6<1. 又∵f (x )=m·n =sin ⎝ ⎛⎭⎪⎫x 2+π6+12,∴f (A )=sin ⎝ ⎛⎭⎪⎫A 2+π6+12,故1<f (A )<32.故函数f (A )的取值范围是⎝ ⎛⎭⎪⎫1,32.6.在如图所示的平面直角坐标系中,已知点A (1,0)和点B (-1,0),|OC →|=1,且∠AOC =x ,其中O 为坐标原点.(1)若x =3π4,设点D 为线段OA 上的动点,求|OC →+OD →|的最小值;(2)若x ∈⎣⎢⎡⎦⎥⎤0,π2,向量m =BC →,n =(1-cos x ,sin x -2cos x ),求m·n 的最小值及对应的x 值.解:(1)设D (t,0)(0≤t ≤1), 由题意知,C ⎝ ⎛⎭⎪⎫-22,22, 所以OC →+OD →=⎝ ⎛⎭⎪⎫-22+t ,22,所以|OC →+OD →|2=12-2t +t 2+12=t 2-2t +1=⎝ ⎛⎭⎪⎫t -222+12(0≤t ≤1), 所以当t =22时,|OC →+OD →|的最小值为22. (2)由题意得C (cos x ,sin x ),m =BC →=(cos x +1,sin x ), 则m·n =1-cos 2x +sin 2x -2sin x cos x=1-cos 2x -sin 2x =1-2sin ⎝ ⎛⎭⎪⎫2x +π4. 因为x ∈⎣⎢⎡⎦⎥⎤0,π2,所以π4≤2x +π4≤5π4,所以当2x +π4=π2,即x =π8时,sin ⎝⎛⎭⎪⎫2x +π4取得最大值1. 所以m·n 的最小值为1-2,此时x =π8.。
2018届高三理科数学二轮复习跟踪强化训练:18 Word版含解析
跟踪强化训练(十八)一、选择题1.在数列{a n }中,a 1=1,对于所有的n ≥2,n ∈N 都有a 1·a 2·a 3·…·a n =n 2,则a 3+a 5=( )A.6116B.259C.2516D.3115[解析] 解法一:令n =2,3,4,5,分别求出a 3=94,a 5=2516,∴a 3+a 5=6116,故选A.解法二:当n ≥2时,a 1·a 2·a 3·…·a n =n 2.当n ≥3时,a 1·a 2·a 3·…·a n-1=(n -1)2.两式相除得a n =⎝ ⎛⎭⎪⎫n n -12,∴a 3=94,a 5=2516,∴a 3+a 5=6116,故选A.[答案] A2.已知a 1=1,a n =n (a n +1-a n )(n ∈N *),则数列{a n }的通项公式是a n =( )A .n B.⎝ ⎛⎭⎪⎫n +1n n -1C .n 2D .2n -1[解析] 由a n =n (a n +1-a n ),得a n +1n +1=a n n ,所以数列⎩⎨⎧⎭⎬⎫a n n 为常数列,所以a n n =a n -1n -1=…=a 11=1,所以a n =n ,故选A.[答案] A3.已知数列{a n }满足a 1=2,a n +1=1+a n1-a n(n ∈N *),则a1·a2·a3·…·a2017=()A.-6 B.6 C.-2 D.2[解析]∵a1=2,a n+1=1+a n1-a n,∴a2=1+21-2=-3,同理,a3=-12,a4=13,a5=2,…,∴a n+4=a n,a1a2a3a4=1,∴a1·a2·a3·…·a2017=(a1a2a3a4)504×a1=1×2=2.故选D.[答案] D4.(2017·衡水中学二调)已知S n是数列{a n}的前n项和,a1=1,a2=2,a3=3,数列{a n+a n+1+a n+2}是公差为2的等差数列,则S25=()A.232 B.233 C.234 D.235[解析]∵数列{a n+a n+1+a n+2}是公差为2的等差数列,∴a n+3-a n=(a n+1+a n+2+a n+3)-(a n+a n+1+a n+2)=2,∴a1,a4,a7,…是首项为1,公差为2的等差数列,a2,a5,a8,…是首项为2,公差为2的等差数列,a3,a6,a9,…是首项为3,公差为2的等差数列,∴S25=(a1+a4+a7+…+a25)+(a2+a5+a8+…+a23)+(a3+a6+a9+…+a24)=9×1+9×8×22+8×2+8×7×22+8×3+8×7×22=233,故选B.[答案] B5.(2017·郑州模拟)已知等比数列{a n}的前n项和为S n,则下列一定成立的是()A.若a3>0,则a2013<0B.若a4>0,则a2014<0C.若a3>0,则S2013>0D.若a4>0,则S2014>0[解析] 根据等比数列的通项公式得a 2013=a 1·q 2012=a 3q 2010,a 2014=a 1q 2013=a 4q 2010,易知A ,B 错误.对于选项C ,因为a 3=a 1q 2>0,所以a 1>0,当q >0时,任意a n >0,故有S 2013>0;当q <0时,仍然有S 2013=a 1(1-q 2013)1-q >0,C 正确.对于选项D ,可列举公比q =-1的等比数列-1,1,-1,1,…,显然满足a 4>0,但S 2014=0,故D 错误.故选C.[答案] C6.(2017·山西大同模拟)已知数列{a n }的通项公式为a n =(-1)n (2n -1)·cos n π2+1(n ∈N *),其前n 项和为S n ,则S 60=( )A .-30B .-60C .90D .120[解析] 由题意可得,当n =4k -3(k ∈N *)时,a n =a 4k -3=1;当n =4k -2(k ∈N *)时,a n =a 4k -2=6-8k ;当n =4k -1(k ∈N *)时,a n =a 4k-1=1;当n =4k (k ∈N *)时,a n =a 4k =8k .∴a 4k -3+a 4k -2+a 4k -1+a 4k =8, ∴S 60=8×15=120. [答案] D 二、填空题7.已知数列{a n }的前n 项和为S n ,且满足log 2(S n +1)=n +1(n∈N *),则a n =________.[解析] 由已知可得S n +1=2n +1,则S n =2n +1-1.当n =1时,a 1=S 1=3,当n ≥2时,a n =S n -S n -1=2n +1-1-2n +1=2n ,因为n =1时不满足a n =2n,故a n =⎩⎪⎨⎪⎧3,n =1,2n ,n ≥2.[答案] ⎩⎪⎨⎪⎧3,n =1,2n ,n ≥28.(2017·河南新乡三模)若数列{a n +1-a n }是等比数列,且a 1=1,a 2=2,a 3=5,则a n =________.[解析] ∵a 2-a 1=1,a 3-a 2=3,∴q =3,∴a n +1-a n =3n -1,∴a n -a 1=a 2-a 1+a 3-a 2+…+a n -1-a n -2+a n -a n -1=1+3+…+3n -2=1-3n -11-3,∵a 1=1,∴a n =3n -1+12. [答案] 3n -1+129.(2017·安徽省淮北一中高三最后一卷改编)若数列{a n }满足1a n +1-1a n=d (n ∈N *,d 为常数),则称数列{a n }为“调和数列”,已知正项数列⎩⎨⎧⎭⎬⎫1b n 为“调和数列”,且b 1+b 2+…+b 2019=20190,则b 2b 2018的最大值是________.[解析] 因为数列⎩⎨⎧⎭⎬⎫1b n 是“调和数列”,所以b n +1-b n =d ,即数列{b n }是等差数列,所以b 1+b 2+…+b 2019=2019(b 1+b 2019)2=2019(b 2+b 2018)2=20190,所以b 2+b 2018=20.又1b n >0,所以b 2>0,b 2018>0,所以b 2+b 2018=20≥2b 2b 2018,即b 2b 2018≤100(当且仅当b 2=b 2018时等号成立),因此b 2b 2018的最大值为100.[答案] 100 三、解答题10.(2017·郑州质检)已知数列{a n }的首项a 1=1,前n 项和S n ,且数列⎩⎨⎧⎭⎬⎫S n n 是公差为2的等差数列.(1)求数列{a n }的通项公式;(2)若b n =(-1)n a n ,求数列{b n }的前n 项和T n . [解] (1)由已知条件得S nn =1+(n -1)×2=2n -1, ∴S n =2n 2-n .当n ≥2时,a n =S n -S n -1=2n 2-n -[2(n -1)2-(n -1)]=4n -3. 当n =1时,a 1=S 1=1,而4×1-3=1,∴a n =4n -3. (2)由(1)可得b n =(-1)n a n =(-1)n (4n -3), 当n 为偶数时,T n =-1+5-9+13-17+…+(4n -3)=4×n2=2n , 当n 为奇数时,n +1为偶数,T n =T n +1-b n +1=2(n +1)-(4n +1)=-2n +1.综上,T n =⎩⎪⎨⎪⎧2n ,(n =2k ,k ∈N *)-2n +1,(n =2k -1,k ∈N *).11.(2017·北京海淀模拟)数列{a n }的前n 项和S n 满足S n =2a n -a 1,且a 1,a 2+1,a 3成等差数列.(1)求数列{a n }的通项公式;(2)设b n =a n +1S n S n +1,求数列{b n }的前n 项和T n .[解] (1)∵S n =2a n -a 1, ∴当n ≥2时,S n -1=2a n -1-a 1,∴a n =2a n -2a n -1,化为a n =2a n -1.由a 1,a 2+1,a 3成等差数列得,2(a 2+1)=a 1+a 3, ∴2(2a 1+1)=a 1+4a 1,解得a 1=2.∴数列{a n }是等比数列,首项为2,公比为2. ∴a n =2n .(2)∵a n +1=2n +1,∴S n =2(2n -1)2-1=2n +1-2,S n +1=2n +2-2.∴b n =a n +1S n S n +1=2n +1(2n +1-2)(2n +2-2)=12⎝ ⎛⎭⎪⎫12n -1-12n +1-1. ∴数列{b n }的前n 项和T n =12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫12-1-122-1+⎝ ⎛⎭⎪⎫122-1-123-1+…+⎝ ⎛⎭⎪⎫12n -1-12n +1-1=12⎝ ⎛⎭⎪⎫1-12n +1-1. 12.(2017·山东卷)已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3-x 2=2.(1)求数列{x n }的通项公式;(2)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1,1),P 2(x 2,2),…,P n +1(x n +1,n +1)得到折线P 1P 2…P n +1,求由该折线与直线y =0,x =x 1,x =x n +1所围成的区域的面积T n .[解] (1)设数列{x n }的公比为q ,由已知知q >0.由题意得⎩⎪⎨⎪⎧x 1+x 1q =3,x 1q 2-x 1q =2.所以3q 2-5q -2=0. 因为q >0,所以q =2,x 1=1. 因此数列{x n }的通项公式为x n =2n -1.(2)过P 1,P 2,…,P n +1向x 轴作垂线,垂足分别为Q 1,Q 2,…,Q n +1.由(1)得x n +1-x n =2n -2n -1=2n -1, 记梯形P n P n +1Q n +1Q n 的面积为b n ,由题意b n =(n +n +1)2×2n -1=(2n +1)×2n -2, 所以T n =b 1+b 2+…+b n=3×2-1+5×20+7×21+…+(2n -1)×2n -3+(2n +1)×2n -2,① 2T n =3×20+5×21+7×22+…+(2n -1)×2n -2+(2n +1)×2n -1.②①-②得-T n =3×2-1+(2+22+…+2n -1)-(2n +1)×2n -1=32+2(1-2n -1)1-2-(2n +1)×2n -1.所以T n =(2n -1)×2n +12.。
2018版高考数学(人教A版理科)一轮复习课时跟踪检测30含答案
课时跟踪检测(三十)1.已知点A(-2,0),B(3,0),动点P(x,y)满足错误!·错误!=x2,则点P的轨迹是()A.圆B.椭圆C.双曲线D.抛物线答案:D解析:错误!=(-2-x,-y),错误!=(3-x,-y),∴错误!·错误!=(-2-x)(3-x)+y2=x2,∴y2=x+6.2.在△ABC中,(BC→+错误!)·错误!=|错误!|2,则△ABC的形状一定是()A.等边三角形B.等腰三角形C.直角三角形D.等腰直角三角形答案:C解析:由(错误!+错误!)·错误!=|错误!|2,得错误!·(错误!+错误!-错误!)=0,即错误!·(错误!+错误!+错误!)=0,即2错误!·错误!=0,∴错误!⊥错误!,∴A=90°.又根据已知条件不能得到|错误!|=|错误!|,故△ABC一定是直角三角形.3.在△ABC中,AB=AC=2,BC=2错误!,则错误!·错误!=() A.2错误!B.2C.-2错误!D.-2答案:D解析:由余弦定理,得cos A=错误!=错误!=-错误!,所以错误!·错误!=|错误!|·|错误!|cos A=2×2×错误!=-2,故选D. 4.已知|a|=2|b|,|b|≠0,且关于x的方程x2+|a|x-a·b =0有两相等实根,则向量a与b的夹角是()A.-错误!B.-错误!C。
错误!D.错误!答案:D解析:由已知,可得Δ=|a|2+4a·b=0,即4|b|2+4×2|b|2cos θ=0,∴cos θ=-错误!.又∵0≤θ≤π,∴θ=错误!.5.设O是△ABC的外心(三角形外接圆的圆心),若错误!=错误!错误!+错误!错误!,则∠BAC=( )A.30°B.45°C.60°D.90°答案:C解析:取BC的中点D,连接AD,则错误!+错误!=2错误!.由题意,得3错误!=2错误!,∴AD为BC的中线且O为重心.又O为外心,∴△ABC为正三角形,∴∠BAC=60°,故选C.6.已知|a|=2|b|≠0,且关于x的函数f(x)=错误!x3+错误!|a|x2+a·b x在R上有极值,则向量a与b的夹角的范围是( )A.错误!B.错误!C。
2018届高三理科数学复习跟踪强化:6含解析
跟踪强化训练(六)1.[直接法]对于锐角α,若sin ⎝ ⎛⎭⎪⎫α-π12=35,则cos ⎝ ⎛⎭⎪⎫2α+π3=________. [解析] 由α为锐角,且sin ⎝ ⎛⎭⎪⎫α-π12=35,可得cos ⎝ ⎛⎭⎪⎫α-π12=45,则cos ⎝ ⎛⎭⎪⎫α+π6=cos ⎣⎢⎢⎡⎦⎥⎥⎤⎝ ⎛⎭⎪⎫α-π12+π4=cos ⎝ ⎛⎭⎪⎫α-π12cos π4-sin ⎝ ⎛⎭⎪⎫α-π12sin π4=45×22-35×22=210,于是cos ⎝ ⎛⎭⎪⎫2α+π3=2cos 2⎝ ⎛⎭⎪⎫α+π6-1=2×⎝ ⎛⎭⎪⎪⎫2102-1=-2425. [答案] -24252.[直接法]已知(1-2x)5(1+ax)4的展开式中x 的系数为2,则实数a 的值为________.[解析] 因为(1-2x)5的展开式中的常数项为1,x 的系数为C 15×(-2)=-10;(1+ax)4的展开式中的常数项为1,x 的系数为C 14a =4a ,所以(1-2x)5(1+ax)4的展开式中x 的系数为1×4a +1×(-10)=2,所以a =3.[答案] 33.[特例法]已知等差数列{a n }的公差d ≠0,且a 1,a 3,a 9成等比数列,则a 1+a 3+a 9a 2+a 4+a 10的值是________.[解析] 令a n =n ,则a 1+a 3+a 9a 2+a 4+a 10=1+3+92+4+10=1316. [答案] 13164.[特例法]如图,在三棱锥O-ABC中,三条棱OA,OB,OC两两垂直,且OA>OB>OC,分别经过三条棱OA,OB,OC作一个截面平分三棱锥的体积,截面面积依次为S1,S2,S3,则S1,S2,S3的大小关系为________.[解析] 要满足各个截面使分得的两个三棱锥体积相等,则需满足与截面对应的交点E,F,G分别为中点即可.故可以将三条棱长分别取为OA=6,OB =4,OC=2,如图,则可计算S1=35,S2=210,S3=13,故S3<S2<S1.[答案] S3<S2<S15.[图解法]设方程1x+1=|lgx|的两个根为x1,x2,则x1·x2的取值范围________.[解析] 分别作出函数y=1x+1和y=|lgx|的图象如图,不妨设0<x 1<1<x 2,则|lgx 1|>|lgx 2|,∴-lgx 1>lgx 2,即lgx 1+lgx 2<0,∴0<x 1x 2<1.[答案] (0,1)6.[图解法]不等式4-x 2-kx +1≤0的解集非空,则k 的取值范围为________.[解析] 由4-x 2-kx +1≤0,得4-x 2≤kx -1,设f(x)=4-x 2,g(x)=kx -1,其中-2≤x ≤2.如图,作出函数f(x),g(x)的图象,不等式的解集非空,即直线l 和半圆有公共点.由图可知k AC =0-(-1)-2-0=-12,。
2018届高三理科数学二轮复习跟踪强化训练全集及答案(共33份)
跟踪强化训练(一)一、选择题1.(2017·银川模拟)已知非零向量m ,n 满足4|m |=3|n |,cos 〈m ,n 〉=13,若n ⊥(t m +n ),则实数t 的值为( ) A .4 B .-4 C.94 D .-94[解析] ∵n ⊥(t m +n ),∴n ·(t m +n )=0, 即t m ·n +|n |2=0,∴t |m ||n |cos 〈m ,n 〉+|n |2=0. 又4|m |=3|n |,∴t ×34|n |2×13+|n |2=0,解得t =-4.故选B. [答案] B2.(2017·沈阳模拟)等差数列{a n }的前n 项和为S n ,已知a 1=13,S 3=S 11,当S n 最大时,n 的值是( )A .5B .6C .7D .8[解析] 解法一:由S 3=S 11,得a 4+a 5+…+a 11=0,根据等差数列的性质,可得a 7+a 8=0,根据首项a 1=13可推知数列{a n }递减,从而得到a 7>0,a 8<0,故n =7时,S n 最大.故选C.解法二:设{a n }的公差为d ,由S 3=S 11,可得3a 1+3d =11a 1+55d ,把a 1=13代入,得d =-2,故S n =13n -n (n -1)=-n 2+14n ,根据二次函数的性质,知当n =7时,S n 最大.故选C.解法三:根据a 1=13,S 3=S 11,知这个数列的公差不等于零,且这个数列的和先是单调递增然后单调递减,根据公差不为零的等差数列的前n 项和是关于n的二次函数,以及二次函数图象的对称性,得只有当n=3+112=7时,S n取得最大值.故选C.[答案] C3.(2017·武汉市武昌区高三调研考试)已知函数f(x)=2ax-a+3,若∃x0∈(-1,1),使得f(x0)=0,则实数a的取值范围是( ) A.(-∞,-3)∪(1,+∞) B.(-∞,-3)C.(-3,1) D.(1,+∞)[解析] 依题意可得f(-1)·f(1)<0,即(-2a-a+3)(2a-a+3)<0,解得a<-3或a>1,故选A.[答案] A4.(2017·济南一模)方程m+1-x=x有解,则m的最大值为( ) A.1 B.0 C.-1 D.-2[解析] 由原式得m=x-1-x,设1-x=t(t≥0),则m=1-t2-t=54-⎝⎛⎭⎪⎫t+122,∵m=54-⎝⎛⎭⎪⎫t+122在[0,+∞)上是减函数.∴t=0时,m的最大值为1,故选A.[答案] A5.(2017·辽宁省沈阳市高三教学质量监测)已知定义域为{x|x≠0}的偶函数f(x),其导函数为f′(x),对任意正实数x满足xf′(x)>-2f(x),若g(x)=x2f(x),则不等式g(x)<g(1)的解集是( )A.(-∞,1) B.(-∞,0)∪(0,1)C.(-1,1) D.(-1,0)∪(0,1)[解析] 因为g(x)=x2f(x),所以g′(x)=x2f′(x)+2xf(x)=x[xf′(x)+2f (x )],由题意知,当x >0时,xf ′(x )+2f (x )>0,所以g ′(x )>0,所以g (x )在(0,+∞)上单调递增,又f (x )为偶函数,则g (x )也是偶函数,所以g (x )=g (|x |),由g (x )<g (1)得g (|x |)<g (1),所以⎩⎪⎨⎪⎧|x |<1,x ≠0,则x ∈(-1,0)∪(0,1).故选D.[答案] D6.(2017·杭州质检)设O 为坐标原点,P 是以F 为焦点的抛物线y 2=2px (p >0)上任意一点,M 是线段PF 上的点,且|PM |=2|MF |,则直线OM 的斜率的最大值为( )A.33B.23C.22D .1 [解析] 如图所示,设P (x 0,y 0)(y 0>0),则y 20=2px 0,即x 0=y 22p.设M (x ′,y ′),由PM →=2MF →,得⎩⎪⎨⎪⎧x ′-x 0=2⎝ ⎛⎭⎪⎫p 2-x ′,y ′-y 0=-y ,化简可得⎩⎪⎨⎪⎧x ′=p +x 03,y ′=y3.∴直线OM 的斜率为k =y 03p +x 03=y 0p +y 202p =2p 2p 2y 0+y 0≤2p 22p2=22(当且仅当y 0=2p 时取等号).[答案] C 二、填空题7.(2017·厦门一中月考)设曲线y =x +1x -1在点(3,2)处的切线与直线ax +y +3=0垂直,则a 等于________.[解析] y ′=x --x +x -2=-2x -2,将x =3代入,得曲线y=x +1x -1在点(3,2)处的切线斜率k =-12,故与切线垂直的直线的斜率为2,即-a =2,得a =-2.[答案] -28.(2017·南昌模拟)已知双曲线E :x 2a 2-y 2b2=1(a >0,b >0),矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2|AB |=3|BC |,则E 的离心率是________.[解析] 利用双曲线的性质建立关于a ,b ,c 的等式求解.如图,由题意知|AB |=2b 2a,|BC |=2c .又2|AB |=3|BC |,∴2×2b 2a=3×2c ,即2b 2=3ac ,∴2(c 2-a 2)=3ac ,两边同除以a 2并整理,得2e 2-3e -2=0,解得e =2(负值舍去).[答案] 29.(2017·衡水中学检测)已知正四棱锥的体积为323,则正四棱锥的侧棱长的最小值为________.[解析] 如图所示,设正四棱锥的底面边长为a ,高为h .则该正四棱锥的体积V =13a 2h =323,故a 2h =32,即a 2=32h .则其侧棱长为l =⎝ ⎛⎭⎪⎪⎫2a 22+h 2=16h+h 2.令f (h )=16h+h 2,则f ′(h )=-16h 2+2h =2h 3-16h2, 令f ′(h )=0,解得h =2.显然当h ∈(0,2)时,f ′(h )<0,f (h )单调递减; 当h ∈(2,+∞)时,f ′(h )>0,f (h )单调递增. 所以当h =2时,f (h )取得最小值f (2)=162+22=12, 故其侧棱长的最小值l =12=2 3. [答案] 2 3 三、解答题10.(2017·湖南湘中联考)设锐角三角形ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a =2b sin A .(1)求B 的大小;(2)求cos A +sin C 的取值范围. [解] (1)∵a =2b sin A ,根据正弦定理得sin A =2sin B sin A ,∵sin A ≠0, ∴sin B =12,又△ABC 为锐角三角形,∴B =π6.(2)∵B =π6,∴cos A +sin C =cos A +sin ⎝ ⎛⎭⎪⎫π-π6-A=cos A +sin ⎝ ⎛⎭⎪⎫π6+A=cos A +12cos A +32sin A =3sin ⎝⎛⎭⎪⎫A +π3.由△ABC 为锐角三角形知,A +B >π2,∴π3<A <π2,∴2π3<A +π3<5π6, ∴12<sin ⎝ ⎛⎭⎪⎫A +π3<32,∴32<3sin ⎝⎛⎭⎪⎫A +π3<32,∴cos A +sin C 的取值范围为⎝ ⎛⎭⎪⎪⎫32,32. 11.(2017·合肥模拟)设等差数列{a n }的前n 项和为S n ,已知a 1=9,a 2为整数,且S n ≤S 5.(1)求{a n }的通项公式;(2)设数列⎩⎨⎧⎭⎬⎫1a n a n +1的前n 项和为T n ,求证:T n ≤49. [解] (1)由a 1=9,a 2为整数可知,等差数列{a n }的公差d 为整数. 又S n ≤S 5,∴a 5≥0,a 6≤0, 于是9+4d ≥0,9+5d ≤0, 解得-94≤d ≤-95.∵d 为整数,∴d =-2. 故{a n }的通项公式为a n =11-2n . (2)证明:由(1),得1a n a n +1=1-2n-2n=12⎝⎛⎭⎪⎫19-2n -111-2n ,∴T n =12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫17-19+⎝ ⎛⎭⎪⎫15-17+…+⎝⎛⎭⎪⎫19-2n -111-2n =12⎝⎛⎭⎪⎫19-2n -19. 令b n =19-2n ,由函数f (x )=19-2x 的图象关于点(4.5,0)对称及其单调性,知0<b 1<b 2<b 3<b 4,b 5<b 6<b 7<…<0,∴b n ≤b 4=1.∴T n ≤12×⎝⎛⎭⎪⎫1-19=49.12.(2017·长沙模拟)已知椭圆E 的中心在原点,焦点F 1,F 2在y 轴上,离心率等于223,P 是椭圆E 上的点.以线段PF 1为直径的圆经过F 2,且9PF 1→·PF 2→=1.(1)求椭圆E 的方程;(2)作直线l 与椭圆E 交于两个不同的点M ,N .如果线段MN 被直线2x +1=0平分,求直线l 的倾斜角的取值范围.[解] (1)依题意,设椭圆E 的方程为y 2a 2+x 2b2=1(a >b >0),半焦距为c .∵椭圆E 的离心率等于223,∴c =223a ,b 2=a 2-c 2=a 29.∵以线段PF 1为直径的圆经过F 2, ∴PF 2⊥F 1F 2.∴|PF 2|=b 2a.∵9PF 1→·PF 2→=1,∴9|PF 2→|2=9b4a2=1.由⎩⎪⎨⎪⎧b 2=a 29,9b 4a 2=1得⎩⎪⎨⎪⎧a 2=9,b 2=1,∴椭圆E 的方程为y 29+x 2=1. (2)∵直线2x +1=0与x 轴垂直,且由已知得直线l 与直线x =-12相交,∴直线l 不可能与x 轴垂直,∴设直线l 的方程为y =kx +m .由⎩⎪⎨⎪⎧y =kx +m ,9x 2+y 2=9,得(k 2+9)x 2+2kmx +(m 2-9)=0.∵直线l 与椭圆E 交于两个不同的点M ,N , ∴Δ=4k 2m 2-4(k 2+9)(m 2-9)>0,即m 2-k 2-9<0. 设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-2km k 2+9.∵线段MN 被直线2x +1=0平分, ∴2×x 1+x 22+1=0,即-2kmk 2+9+1=0. 即⎩⎪⎨⎪⎧m 2-k 2-9<0,-2kmk 2+9+1=0,得⎝⎛⎭⎪⎫k 2+92k 2-(k 2+9)<0. ∵k 2+9>0,∴k 2+94k2-1<0,∴k 2>3,解得k >3或k <- 3.∴直线l 的倾斜角的取值范围为⎝ ⎛⎭⎪⎫π3,π2∪⎝ ⎛⎭⎪⎫π2,2π3.跟踪强化训练(二)一、选择题1.(2017·沈阳质检)方程sinπx =x4的解的个数是( )A .5B .6C .7D .8[解析] 在同一平面直角坐标系中画出y 1=sinπx 和y 2=x4的图象,如右图:观察图象可知y 1=sinπx 和y 2=x4的图象在第一象限有3个交点,根据对称性可知,在第三象限也有3个交点,再加上原点,共7个交点,所以方程sinπx =x4有7个解,故选C.[答案] C2.(2017·郑州模拟)若实数x ,y 满足等式x 2+y 2=1,那么yx -2的最大值为( )A.12B.33C.32D. 3[解析] 设k =yx -2,如图所示,k PB =tan ∠OPB =122-12=33,k PA =-tan ∠OPA =-33,且k PA ≤k ≤k PB ,∴k max =33,故选B.[答案] B3.(2017·宝鸡质检)若方程x +k =1-x 2有且只有一个解,则k 的取值范围是( )A .[-1,1)B .k =± 2C .[-1,1]D .k =2或k ∈[-1,1)[解析] 令y 1=x +k ,y 2=1-x 2,则x 2+y 2=1(y ≥0).作出图象如图:而y 1=x +k 中,k 是直线的纵截距,由图知:方程有一个解⇔直线与上述半圆只有一个公共点⇔k =2或-1≤k <1,故选D.[答案] D4.(2016·广州检测)已知函数f (x )=|x -2|+1,g (x )=kx .若方程f (x )=g (x )有两个不相等的实根,则实数k 的取值范围是( )A.⎝⎛⎭⎪⎫0,12B.⎝ ⎛⎭⎪⎫12,1 C .(1,2) D .(2,+∞)[解析] 先作出函数f (x )=|x -2|+1的图象,如图所示,当直线g (x )=kx 与直线AB 平行时斜率为1,当直线g (x )=kx 过A 点时斜率为12,故f (x )=g (x )有两个不相等的实根时,k 的范围为⎝ ⎛⎭⎪⎫12,1,故选B.[答案] B5.(2017·西安二模)若方程x 2+(1+a )x +1+a +b =0的两根分别为椭圆、双曲线的离心率,则ba的取值范围是( )A .(-2,-1)B .(-∞,-2)∪(-1,+∞)C.⎝⎛⎭⎪⎫-2,-12D .(-∞,-2)∪⎝ ⎛⎭⎪⎫-12,+∞[解析] 由题意可知,方程的一个根位于(0,1)之间,另一个根大于1.设f (x )=x 2+(1+a )x +1+a +b ,则⎩⎪⎨⎪⎧f,f,即⎩⎪⎨⎪⎧1+a +b >0,2a +b +3<0.作出可行域如图中阴影部分所示.ba可以看作可行域内的点(a ,b )与原点O (0,0)连线的斜率,由⎩⎪⎨⎪⎧2a +b +3=0,a +b +1=0可解得A (-2,1),过点A 、O 作l 1,过点O 作平行于直线2a +b +3=0的直线l 2,易知kl 2<b a <kl 1,又kl 1=-12,kl 2=-2,∴-2<b a<-12.故选C. [答案] C6.(2017·南宁一模)在平面直角坐标系中,O 为原点,A (-1,0),B (0,3),C (3,0),动点D 满足|CD →|=1,则|OA →+OB →+OD →|的取值范围是( )A .[4,6]B .[19-1,19+1]C .[23,27]D .[7-1,7+1][解析] 设D (x ,y ),则由|CD →|=1,C (3,0),得(x -3)2+y 2=1. 又∵OA →+OB →+OD →=(x -1,y +3), ∴|OA →+OB →+OD →| =x -2+y +32.∴|OA →+OB →+OD →|的几何意义是点P (1,-3)与圆(x -3)2+y 2=1上点之间的距离(如图),由|PC |=7知,|OA →+OB →+OD →|的最大值是1+7,最小值是7-1,故选D.[答案] D 二、填空题7.(2017·青岛二模)已知奇函数f (x )的定义域是{x |x ≠0,x ∈R },且在(0,+∞)上单调递增,若f (1)=0,则满足x ·f (x )<0的x 的取值范围是________.[解析] 作出符合条件的一个函数图象草图即可,由图可知x ·f (x )<0的x 的取值范围是(-1,0)∪(0,1).[答案] (-1,0)∪(0,1)8.(2017·合肥质检)已知函数f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12x +34,x ≥2,log 2x ,0<x <2.若函数g (x )=f (x )-k 有两个不同的零点,则实数k 的取值范围是________.[解析] 画出函数f (x )的图象如图.要使函数g (x )=f (x )-k 有两个不同零点,只需y =f (x )与y =k 的图象有两个不同的交点,由图象易知k ∈⎝ ⎛⎭⎪⎫34,1.[答案] ⎝ ⎛⎭⎪⎫34,19.(2017·山西四校模拟)设等差数列{a n }的前n 项和为S n ,若S 4≥10,S 5≤15,则a 4的最大值为________.[解析]由题意可得⎩⎪⎨⎪⎧4a 1+4×32d ≥10,5a 1+5×42d ≤15,即⎩⎪⎨⎪⎧2a 1+3d ≥5,a 1+2d ≤3.又a 4=a 1+3d ,故此题可转化为线性规划问题.画出可行域如图所示.作出直线a 1+3d =0,经平移可知当直线a 4=a 1+3d 过可行域内点A (1,1)时,截距最大,此时a 4取最大值4.[答案] 4 三、解答题10.(2017·海口模拟)设关于θ的方程3cos θ+sin θ+a =0在区间(0,2π)内有相异的两个实数α、β.(1)求实数a 的取值范围; (2)求α+β的值.[解] (1)原方程可化为sin ⎝ ⎛⎭⎪⎫θ+π3=-a2,作出函数y =sin ⎝⎛⎭⎪⎫x +π3(x ∈(0,2π))的图象.由图知,方程在(0,2π)内有相异实根α,β的充要条件是⎩⎪⎨⎪⎧-1<-a2<1,-a 2≠32,即-2<a <-3或-3<a <2.(2)由图知:当-3<a <2,即-a 2∈⎝⎛⎭⎪⎪⎫-1,32时,直线y =-a 2与三角函数y =sin ⎝ ⎛⎭⎪⎫x +π3的图象交于C 、D 两点,它们中点的横坐标为7π6,所以α+β2=7π6, 所以α+β=7π3.当-2<a <-3,即-a 2∈⎝ ⎛⎭⎪⎪⎫32,1时,直线y =-a 2与三角函数y =sin ⎝ ⎛⎭⎪⎫x +π3的图象有两交点A 、B ,由对称性知,α+β2=π6,所以α+β=π3, 综上所述,α+β=π3或7π3.11.(2017·福州质检)已知圆C 的方程为(x -2)2+y 2=4,圆M 的方程为(x -2-5cos θ)2+(y -5sin θ)2=1(θ∈R ).过圆M 上任意一点P 作圆C 的两条切线PE 、PF ,切点分别为E 、F ,求PE →·PF →的最小值.[解] 由题意,可知圆心M 的坐标为(2+5cos θ,5sin θ),由此可知圆心M 的轨迹方程为(x -2)2+y 2=25,如图,经分析可知,只有当P 在线段MC 上时,才能够使PE →·PF →最小,此时PC =4,又Rt △PEC 中,EC =2,则PE =23,∠EPC =30°,∴PF =PE =23,∠EPF =2∠EPC =2×30°=60°,故(PE →·PF →)min =(23)2×cos60°=6.12.右面的图形无限向内延续,最外面的正方形的边长是2,从外到内,第n 个正方形与其内切圆之间的深色图形面积记为S n (n ∈N *).(1)证明:S n =2S n +1(n ∈N *); (2)证明:S 1+S 2+…+S n <8-2π.[证明] (1)设第n (n ∈N *)个正方形的边长为a n ,则其内切圆半径为a n2,第n +1个正方形的边长为22a n ,其内切圆半径为24a n ,所以S n =a 2n -π⎝ ⎛⎭⎪⎫a n 22=a 2n ⎝⎛⎭⎪⎫1-π4(n ∈N *),S n +1=⎝ ⎛⎭⎪⎪⎫22a n 2-π⎝ ⎛⎭⎪⎪⎫24a n 2=a 2n ⎝ ⎛⎭⎪⎫12-π8=12S n(n ∈N *).所以S n =2S n +1(n ∈N *).(2)由(1)可知,S 1=22×⎝ ⎛⎭⎪⎫1-π4=4-π,S 2=2-π2,…,S n =(4-π)⎝ ⎛⎭⎪⎫12n -1,所以T n =S 1+S 2+…+S n =(4-π)×⎝ ⎛⎭⎪⎫1+12+122+…+12n -1=(4-π)×1-⎝ ⎛⎭⎪⎫12n1-12=(8-2π)⎝⎛⎭⎪⎫1-12n<8-2π.跟踪强化训练(三)一、选择题1.(2017·武汉二模)设函数f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12x -7,x <0,x ,x ≥0,若f (a )<1,则实数a 的取值范围是( )A .(-∞,-3)B .(1,+∞)C .(-3,1)D .(-∞,-3)∪(1,+∞)[解析] 解法一:当a <0时,不等式f (a )<1为⎝ ⎛⎭⎪⎫12a -7<1,即⎝ ⎛⎭⎪⎫12a <8,即⎝ ⎛⎭⎪⎫12a<⎝ ⎛⎭⎪⎫12-3,因为0<12<1,所以a >-3,此时-3<a <0;当a ≥0时,不等式f (a )<1为a <1,所以0≤a <1.故a 的取值范围是(-3,1),故选C.解法二:取a =0, f (0)=0<1,符合题意,排除A ,B ,D. [答案] C2.(2017·大同二模)已知函数f (x )=mx 2+mx +1的定义域是实数集R ,则实数m 的取值范围是( )A .(0,4)B .[0,4]C .(0,4]D .[0,4)[解析] 因为函数f (x )=mx 2+mx +1的定义域是实数集R ,所以m ≥0,当m =0时,函数f (x )=1,其定义域是实数集R ;当m >0时,则Δ=m 2-4m ≤0,解得0<m ≤4.综上所述,实数m 的取值范围是0≤m ≤4.[答案] B3.(2017·太原模拟)4名大学生到三家企业应聘,每名大学生至多被一家企业录用,则每家企业至少录用1名大学生的情况有( )A .24种B .36种C .48种D .60种[解析] 每家企业至少录用一名大学生的情况有两类:一类是每家企业都录用一名,有C 34A 33=24(种);一类是其中一家企业录用了2名,有C 24A 33=36(种),所以一共有24+36=60(种),故选D.[答案] D4.以坐标原点为对称中心,两坐标轴为对称轴的双曲线的一条渐近线的倾斜角为π3,则该双曲线的离心率为( )A .2或 3B .2或233C.233D .2[解析] 当双曲线的焦点在x 轴上时,双曲线的标准方程为x 2a 2-y 2b 2=1(a >0,b >0),渐近线方程为y =±b a x ,所以b a =tan π3=3,故双曲线的离心率e =ca=1+b 2a2=1+3=2;当双曲线的焦点在y 轴上时,双曲线的标准方程为y 2a 2-x 2b 2=1(a >0,b >0),渐近线方程为y =±a b x ,所以a b =tan π3=3,则b a =33,所以双曲线的离心率e =ca= 1+b 2a2= 1+⎝ ⎛⎭⎪⎪⎫332=233.故选B. [答案] B5.(2016·浙江卷)已知a ,b >0且a ≠1,b ≠1,若log a b >1,则( ) A .(a -1)(b -1)<0 B .(a -1)(a -b )>0 C .(b -1)(b -a )<0D .(b -1)(b -a )>0[解析] ∵a ,b >0且a ≠1,b ≠1,∴当a >1,即a -1>0时,不等式log a b >1可化为a log a b >a 1,即b >a >1,∴(a -1)(a -b )<0,(b -1)(a -1)>0,(b -1)(b -a )>0.当0<a <1,即a -1<0时,不等式log a b >1可化为a log a b <a 1,即0<b <a <1, ∴(a -1)(a -b )<0,(b -1)(a -1)>0,(b -1)(b -a )>0. 综上可知,选D. [答案] D6.如图,过正方体ABCD -A 1B 1C 1D 1任意两条棱的中点作直线,其中与平面CB 1D 1平行的直线有( )A .18条B .20条C.21条D.22条[解析] 设各边的中点如图所示,其中与直线D1B1平行的有F1G1,E1H1,FG,EH,NL,共5条;与直线CD1平行的有G1M,GN,LE1,KE,H1F,共5条;与直线CB1平行的有F1M,FL,HK,NH1,GE1,共5条.分别取CB1,B1D1,CD1的中点如图,连接CO,D1P,B1T,与直线CO平行的有GH1,FE1,共2条;与直线D1P 平行的有H1L,NF,共2条;与直线B1T平行的有E1N,GL,共2条.故与平面CB1D1平行的直线共有5+5+5+2+2+2=21条.[答案] C二、填空题7.(2017·郑州模拟)过点P(3,4)与圆x2-2x+y2-3=0相切的直线方程为______________.[解析] 圆的标准方程为(x-1)2+y2=4.当直线的斜率不存在时,直线x=3适合;当直线的斜率存在时,不妨设直线的方程为y-4=k(x-3),即kx-y+4-3k=0.由|k-0+4-3k|k2+1=2,得k=34.此时直线方程为y-4=34(x-3),即3x-4y+7=0.综上所述,所求切线的方程为x =3或3x -4y +7=0. [答案] x =3或3x -4y +7=08.正三棱柱的侧面展开图是边长分别为6和4的矩形,则它的体积为________.[解析] 当矩形长、宽分别为6和4时,体积V =2×3×12×4=43;当长、宽分别为4和6时,体积V =43×233×12×6=833.综上所述,所求体积为43或833.[答案] 43或8339.(2017·深圳模拟)若函数f (x )=mx 2-x +ln x 存在单调递减区间,则实数m 的取值范围是________.[解析] f ′(x )=2mx -1+1x =2mx 2-x +1x,即2mx 2-x +1<0在(0,+∞)上有解. 当m ≤0时显然成立;当m >0时,由于函数y =2mx 2-x +1的图象的对称轴x =14m>0,故需且只需Δ>0,即1-8m >0,故0<m <18.综上所述,m <18,故实数m 的取值范围为⎝ ⎛⎭⎪⎫-∞,18.[答案] ⎝⎛⎭⎪⎫-∞,18三、解答题10.已知等差数列{a n }满足:a 1=2,且a 1,a 2,a 5成等比数列.(1)求数列{a n}的通项公式;(2)记S n为数列{a n}的前n项和,是否存在正整数n,使得S n>60n+800?若存在,求n的最小值;若不存在,说明理由.[解] (1)设数列{a n}的公差为d,依题意,2,2+d,2+4d成等比数列,故有(2+d)2=2(2+4d),化简得d2-4d=0,解得d=0或d=4.当d=0时,a n=2;当d=4时,a n=2+(n-1)·4=4n-2,从而得数列{a n}的通项公式为a n=2或a n=4n-2.(2)当a n=2时,S n=2n.显然2n<60n+800,此时不存在正整数n,使得S n>60n+800成立.当a n=4n-2时,S n=n[2+n-2=2n2.令2n2>60n+800,即n2-30n-400>0,解得n>40或n<-10(舍去),此时存在正整数n,使得S n>60n+800成立,n的最小值为41.综上,当a n=2时,不存在满足题意的n;当a n=4n-2时,存在满足题意的n,其最小值为41.11.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知b+c=2a cos B.(1)证明:A=2B;(2)若△ABC的面积S=a24,求角A的大小.[解] (1)证明:由正弦定理得sin B+sin C=2sin A cos B,故2sin A cos B =sin B +sin(A +B )=sin B +sin A cos B +cos A sin B ,于是sin B =sin(A -B ).又A ,B ∈(0,π),故-π<A -B <π,所以,B =π-(A -B )或B =A -B ,因此A =π(舍去)或A =2B , 所以A =2B .(2)由S =a 24得12ab sin C =a 24,故有sin B sin C =12sin2B =sin B cos B ,因为sin B ≠0,所以sin C =cos B . 又B ,C ∈(0,π),所以C =π2±B .当B +C =π2时,A =π2;当C -B =π2时,A =π4.综上,A =π2或A =π4.12.(2017·唐山模拟)已知函数f (x )=ax+ln x -2,a ∈R .(1)若曲线y =f (x )在点P (2,m )处的切线平行于直线y =-32x +1,求函数f (x )的单调区间;(2)是否存在实数a ,使函数f (x )在(0,e 2]上有最小值2?若存在,求出a 的值,若不存在,请说明理由.[解] (1)∵f (x )=a x+ln x -2(x >0),∴f ′(x )=-a x 2+1x(x >0),又曲线y =f (x )在点P (2,m )处的切线平行于直线 y =-32x +1,∴f ′(2)=-14a +12=-32⇒a =8.∴f ′(x )=-8x 2+1x =x -8x2(x >0),令f ′(x )>0,得x >8,f (x )在(8,+∞)上单调递增; 令f ′(x )<0,得0<x <8, f (x )在(0,8)上单调递减.∴f (x )的单调递增区间为(8,+∞),单调递减区间为(0,8). (2)由(1)知f ′(x )=-a x 2+1x =x -a x2(x >0).(ⅰ)当a ≤0时, f ′(x )>0恒成立,即f (x )在(0,e 2]上单调递增,无最小值,不满足题意.(ⅱ)当a >0时,令f ′(x )=0,得x =a ,所以当f ′(x )>0时,x >a ,当f ′(x )<0时,0<x <a ,此时函数f (x )在(a ,+∞)上单调递增,在(0,a )上单调递减. 若a >e 2,则函数f (x )在(0,e 2]上的最小值f (x )min =f (e 2)=ae2+lne 2-2=a e 2,由ae2=2,得a =2e 2,满足a >e 2,符合题意; 若a ≤e 2,则函数f (x )在(0,e 2]上的最小值f (x )min =f (a )=aa+ln a -2=ln a -1,由ln a -1=2,得a =e 3,不满足a ≤e 2,不符合题意,舍去.综上可知,存在实数a =2e 2,使函数f (x )在(0,e 2]上有最小值2.跟踪强化训练(四)一、选择题1.函数y =cos 2x -2sin x 的最大值与最小值分别为( ) A .3,-1 B .3,-2 C .2,-1D .2,-2[解析] y =cos 2x -2sin x =1-sin 2x -2sin x =-sin 2x -2sin x +1,令t =sin x ,则t ∈[-1,1],y =-t 2-2t +1=-(t +1)2+2,所以最大值为2,最小值为-2.[答案] D2.(2017·沈阳质监)在△ABC 中,三边长a ,b ,c 满足a +c =3b ,则tanA2tan C2的值为( ) A.15 B.14 C.12 D.23[解析] 令a =4,c =5,b =3,则符合题意. 则由∠C =90°,得tan C2=1,由tan A =43,得tan A 2=12.∴tan A 2·tan C 2=12·1=12,选C.[答案] C3.(2017·山西四校联考)P 为双曲线x 29-y 216=1的右支上一点,M 、N 分别是圆(x +5)2+y 2=4和圆(x -5)2+y 2=1上的点,则|PM |-|PN |的最大值为( )A .6B .7C .8D .9[解析] 设双曲线的左、右焦点分别为F 1、F 2,则其分别为已知两圆的圆心,由已知|PF1|-|PF2|=2×3=6.要使|PM|-|PN|最大,需PM,PN分别过F1、F2点即可.∴(|PM|-|PN|)max=(|PF1|+2)-(|PF2|-1)=|PF1|-|PF2|+3=9.故选D.[答案] D4.(2017·保定模拟)函数f′(x)是奇函数f(x)(x∈R)的导函数,f(1)=0,当x<0时,xf′(x)+f(x)>0,则使得f(x)<0成立的x的取值范围是( ) A.(-∞,-1)∪(0,1) B.(-1,0)∪(1,+∞)C.(-∞,-1)∪(1,+∞) D.(-1,0)∪(0,1)[解析] 设g(x)=xf(x),则g′(x)=xf′(x)+f(x).∵当x<0时,xf′(x)+f(x)>0,∴当x<0时,g′(x)>0,∴函数g(x)=xf(x)在(-∞,0)上为增函数,∵函数f(x)是奇函数,∴g(-x)=(-x)f(-x)=(-x)·[-f(x)]=xf(x)=g(x)(x∈R),∴函数g(x)在R上为偶函数,由f(1)=0,得g(1)=0,函数g(x)的图象大致如图所示,∵f(x)<0,∴x≠0,g xx<0,∴⎩⎪⎨⎪⎧x <0,g x 或⎩⎪⎨⎪⎧x >0,g x ,由函数图象知,-1<x <0或x >1.∴使得f (x )<0成立的x 的取值范围为(-1,0)∪(1,+∞).故选B. [答案] B5.(2017·南昌调研)某重点中学在一次高三诊断考试中要安排8位老师监考某一考场的语文、数学、理综、英语考试,要求每堂安排两位老师且每位老师仅监考一堂,则其中甲、乙老师不监考同一堂的概率是( )A.314B.67C.37D.17[解析] 利用间接法,安排8位老师监考某一考场的方法共有C 28C 26C 24C 22种,而安排甲、乙两位老师监考同一堂的方法有C 14C 26C 24C 22,所以甲、乙两位老师不监考同一堂的概率为1-C 14C 26C 24C 22C 28C 26C 24C 22=1-17=67,故选B.[答案] B6.(2017·江南十校联考)若α、β∈⎣⎢⎡⎦⎥⎤-π2,π2,且αsin α-βsin β>0,则下面结论正确的是( )A .α>βB .α+β>0C .α<βD .α2>β2[解析] 令f (x )=x sin x ,则f ′(x )=sin x +x ·cos x .∵x ∈⎣⎢⎡⎦⎥⎤-π2,π2,f (x )为偶函数,且当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f ′(x )≥0,∴f (x )在⎣⎢⎡⎦⎥⎤0,π2上为增函数,在⎣⎢⎡⎦⎥⎤-π2,0上为减函数.∴αsin α-βsin β>0⇔f (|α|)>f (|β|)⇒|α|>|β|⇒α2>β2,故选D.[答案] D二、填空题7.(2017·安徽省合肥市高三二检)已知集合A =[1,+∞),B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈R ⎪⎪⎪12a ≤x ≤2a -1,若A ∩B ≠∅,则实数a 的取值范围是________. [解析]因为A ∩B ≠∅,所以⎩⎪⎨⎪⎧2a -1≥1,2a -1≥12a ,解得a ≥1.[答案] [1,+∞)8.如图,已知在△ABC 中,∠BAC =120°,且|AB →|=2,|AC →|=3,若AP →=λAB →+AC →,且AP →⊥BC →,则实数λ的值为________.[解析] 因为AP →·BC →=(λAB →+AC →)·(AC →-AB →)=(λ-1)×AB →·AC →-4λ+9=0,AB →·AC →=2×3×⎝ ⎛⎭⎪⎫-12=-3,所以-3(λ-1)-4λ+9=0,得λ=127.[答案]1279.(2017·赣中南五校联考)如图,在直三棱柱ABC -A 1B 1C 1中,底面为直角三角形,∠ACB =90°,AC =6,BC =CC 1=2,P 是BC 1上一动点,则CP +PA 1的最小值为________.[解析] 连接A 1B ,沿BC 1将△CBC 1展开,使与△A 1BC 1在同一个平面内,如图所示,连接A 1C .则A 1C 的长度就是所求的最小值.易知∠A 1C 1B =90°,∠BC 1C =45°,所以∠A 1C 1C =135°,在△A 1C 1C 中,由余弦定理可得A 1C =5 2.故CP +PA 1的最小值为5 2. [答案] 5 2 三、解答题10.(2017·广西南宁月考)已知函数f (x )=ax 2+bx +c (a >0,b ,c ∈R ). (1)若函数f (x )的最小值是f (-1)=0,且c =1,F (x )=⎩⎪⎨⎪⎧f x ,x >0,-fx ,x <0,求F (2)+F (-2)的值;(2)若a =1,c =0,且|f (x )|≤1的区间(0,1]上恒成立,试求b 的取值范围.[解] (1)由已知c =1,a -b +c =0,且-b2a=-1,解得a =1,b =2,∴f (x )=(x +1)2.∴F (x )=⎩⎪⎨⎪⎧x +2,x >0,-x +2,x <0.∴F (2)+F (-2)=(2+1)2+[-(-2+1)2]=8. (2)由a =1,c =0,得f (x )=x 2+bx ,从而|f (x )|≤1在区间(0,1]上恒成立等价于-1≤x 2+bx ≤1在区间(0,1]上恒成立,即b ≤1x -x 且b ≥-1x-x 在(0,1]上恒成立.又1x -x 的最小值为0,-1x-x 的最大值为-2.∴-2≤b ≤0.故b 的取值范围是[-2,0].11.已知直线l :4x +3y +10=0,半径为2的圆C 与l 相切,圆心C 在x 轴上且在直线l 的右上方.(1)求圆C 的方程;(2)如图,过点M (1,0)的直线与圆C 交于A ,B 两点(A 在x 轴上方),问在x 轴正半轴上是否存在定点N ,使得x 轴平分∠ANB ?若存在,请求出点N 的坐标;若不存在,请说明理由.[解] (1)设圆心C (a,0)⎝ ⎛⎭⎪⎫a >-52,则|4a +10|5=2⇒a =0或a =-5(舍去).所以圆C 的方程为x 2+y 2=4.(2)当直线AB ⊥x 轴时,x 轴平分∠ANB .当直线AB 的斜率存在时,设直线AB 的方程为y =k (x -1),N (t,0),A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x 2+y 2=4,y =k x -,得(k 2+1)x 2-2k 2x +k 2-4=0,所以x 1+x 2=2k 2k 2+1,x 1x 2=k 2-4k 2+1.若x 轴平分∠ANB ,则k AN =-k BN ⇒y 1x 1-t +y 2x 2-t =0⇒k x 1-x 1-t +k x 2-x 2-t=0⇒2x 1x 2-(t +1)(x 1+x 2)+2t =0⇒k 2-k 2+1-2k 2t +k 2+1+2t =0⇒t =4,所以当点N 为(4,0)时,能使得∠ANM =∠BNM 总成立.12.已知函数f (x )=ln x -(x +1). (1)求函数f (x )的极大值;(2)求证:1+12+13+…+1n >ln(n +1)(n ∈N *).[解] (1)∵f (x )=ln x -(x +1), ∴f ′(x )=1x-1(x >0).令f ′(x )>0,解得0<x <1; 令f ′(x )<0,解得x >1.∴函数f (x )在(0,1)上单调递增,在(1,+∞)上单调递减, ∴f (x )极大值=f (1)=-2.(2)证明:由(1)知x =1是函数f (x )的极大值点,也是最大值点, ∴f (x )≤f (1)=-2,即ln x -(x +1)≤-2⇒ln x ≤x -1(当且仅当x =1时等号成立),令t =x -1,得t ≥ln(t +1)(t >-1),取t =1n(n ∈N *)时,则1n>ln ⎝⎛⎭⎪⎫1+1n =ln ⎝⎛⎭⎪⎫n +1n , ∴1>ln2,12>ln 32,13>ln 43,…,1n >ln ⎝⎛⎭⎪⎫n +1n , 叠加得1+12+13+…+1n>ln ⎝ ⎛⎭⎪⎫2·32·43·…·n +1n =ln(n +1). 即1+12+13+…+1n>ln(n +1).跟踪强化训练(五)1.[直接法](2017·济南二模)某班有6位学生与班主任老师毕业前夕留影,要求班主任站在正中间且女生甲、乙不相邻,则排法的种数为( )A .96B .432C .480D .528[解析] 当甲、乙在班主任两侧时,甲、乙两人有3×3×2种排法,共有3×3×2×24种排法;当甲乙在班主任同侧时,有4×24种排法,因此共有排法3×3×2×24+4×24=528(种).[答案] D2.[直接法](原创题)数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.这条直线被后人称为三角形的“欧拉线”.在△ABC 中,AB =AC =5,点B (-1,3),C (3,-1),且其“欧拉线”与圆x 2+(y -2)2=r 2相切,则该圆的面积为( )A .π B.2π C.4π D.5π[解析] 依题意,△ABC 的外心、重心、垂心均在边BC 的垂直平分线上,BC 的中点为M (1,1),直线BC 的斜率为-1,因此△ABC 的“欧拉线”方程是y-1=x -1,即x -y =0.圆心(0,2)到直线x -y =0的距离d =r =22=2,则该圆的面积为πr 2=2π.[答案] B3.[特例法]计算tan ⎝ ⎛⎭⎪⎫π4+αcos2α2cos 2⎝ ⎛⎭⎪⎫π4-α=( )A .-2B .2C .-1D .1[解析] 取α=π12,则原式=tan ⎝ ⎛⎭⎪⎫π4+π12cosπ62cos2⎝ ⎛⎭⎪⎫π4-π12=3×322×34=1.故选D.[答案] D4.[特例法]已知O 是锐角△ABC 的外接圆圆心,∠A =60°,cos B sin C ·AB →+cos C sin B·AC →=2m ·AO →,则m 的值为( ) A.32 B. 2 C .1 D.12[解析] 如图,当△ABC 为正三角形时,A =B =C =60°,取D 为BC 的中点,AO →=23AD →,则有13AB →+13AC →=2m ·AO →,∴13(AB →+AC →)=2m ×23AD →,∴13·2AD →=43mAD →,∴m =32.故选A. [答案] A5.[排除法](2017·重庆一诊)若过点P (1-a,1+a )和Q (3,2a )的直线的倾斜角为钝角,则实数a 的取值范围是( )A .(-2,1)B .(-1,2)C .(-∞,0)D .(-∞,-2)∪(1,+∞)[解析] 当a =0时,P (1,1),Q (3,0),因为k PQ =0-13-1=-12<0,此时过点P (1,1),Q (3,0)的直线的倾斜角为钝角,排除C ,D ;当a =1时,P (0,2),Q (3,2),因为k PQ =0,不符合题意,排除B ,选A.[答案] A6.[排除法](2017·武汉汉中二检)函数f (x )=sin2x +e ln|x |图象的大致形状是( )[解析] 因为f (x )=sin2x +e ln|x |,所以f (-x )=-sin2x +e ln|x |. 显然f (-x )≠f (x )且f (-x )≠-f (x ),所以函数f (x )为非奇非偶函数,可排除A ,C.由f ⎝ ⎛⎭⎪⎫-π4=-1+π4<0,可排除D.选B.[答案] B7.[图解法]已知非零向量a ,b ,c 满足a +b +c =0,向量a ,b 的夹角为120°,且|b |=2|a |,则向量a 与c 的夹角为( )A .60°B .90°C .120°D .150°[解析] 如图,因为〈a ,b 〉=120°,|b |=2|a |,a +b +c =0,所以在△OBC 中,BC 与CO 的夹角为90°,即a 与c 的夹角为90°.[答案] B8.[图解法](2017·东北三校联考)函数f (x )=⎝ ⎛⎭⎪⎫12|x -1|+2cosπx (-2≤x ≤4)的所有零点之和等于( )A .2B .4C .6D .8[解析] 由f (x )=⎝ ⎛⎭⎪⎫12|x -1|+2cosπx =0,得⎝ ⎛⎭⎪⎫12|x -1|=-2cosπx ,令g (x )=⎝ ⎛⎭⎪⎫12|x -1|(-2≤x ≤4),h (x )=-2cosπx (-2≤x ≤4),又因为g (x )=⎝ ⎛⎭⎪⎫12|x -1|=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12x -1,1≤x ≤4,2x -1,-2≤x <1.在同一坐标系中分别作出函数g (x )=⎝ ⎛⎭⎪⎫12|x -1|(-2≤x ≤4)和h (x )=-2cosπx (-2≤x ≤4)的图象(如图),由图象可知,函数g (x )=⎝ ⎛⎭⎪⎫12|x -1|关于x =1对称,又x =1也是函数h (x )=-2cosπx (-2≤x ≤4)的对称轴,所以函数g (x )=⎝ ⎛⎭⎪⎫12|x -1|(-2≤x ≤4)和h (x )=-2cosπx (-2≤x ≤4)的交点也关于x =1对称,且两函数共有6个交点,所以所有零点之和为6.[答案] C9.[估算法]图中阴影部分的面积S 是h 的函数(0≤h ≤H ),则该函数的大致图象是( )[解析] 由题图知,随着h 的增大,阴影部分的面积S 逐渐减小,且减小得越来越慢,结合选项可知选B.[答案] B10.[估算法]已知三棱锥S -ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC =2,则此棱锥的体积是( )A.36B.26C.23D.22 [解析] 容易得到△ABC 的面积为34,而三棱锥的高一定小于球的直径2,所以V <13×34×2=36,立即排除A 、C 、D ,答案选B.[答案] B11.[概念辨析法](2017·南昌一模)已知α,β均为第一象限角,那么“α>β”是“sin α>sin β”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件[解析] 若α=2π+π6,β=π6,α>β,但sin α=sin β,若α=π3,β=2π+π6,sin α>sin β,但此时α>β不成立,因而“α>β”是“sin α>sin β”的既不充分也不必要条件.[答案] D12.[概念辨析法](2017·襄阳调研)非空集合A 中的元素个数用(A )表示,定义(A -B )=⎩⎪⎨⎪⎧A -B ,A B ,B -A ,AB若A ={-1,0},B ={x ||x 2-2x -3|=a },且(A -B )≤1,则实数a 的所有可能取值为( )A .{a |a ≥4}B .{a |a >4或a =0}C .{a |0≤a ≤4}D .{a |a ≥4或a =0}[解析] 因为A ={-1,0},所以集合A 中有2个元素,即(A )=2.因为B ={x ||x 2-2x -3|=a },所以(B )就是函数f (x )=|x 2-2x -3|的图象与直线y =a 的交点个数,作出函数f (x )的图象如图所示.由图可知,(B )=0或(B )=2或(B )=3或(B )=4.①当(A )≥(B )时,又(A -B )≤1,则(B )≥(A )-1,所以(B )≥1,又(A )≥(B ),所以1≤(B )≤2,所以(B )=2,由图可知,a =0或a >4;②当(A )<(B )时,又(A -B )≤1,则(B )≤(A )+1,即(B )≤3,又(A )<(B ),所以2<(B )≤3,所以(B )=3,由图可知,a =4.综上所述,a =0或a ≥4,故选D. [答案] D跟踪强化训练(六)1.[直接法]对于锐角α,若sin ⎝ ⎛⎭⎪⎫α-π12=35,则cos ⎝⎛⎭⎪⎫2α+π3=________.[解析] 由α为锐角,且sin ⎝ ⎛⎭⎪⎫α-π12=35,可得cos ⎝⎛⎭⎪⎫α-π12=45,则cos ⎝ ⎛⎭⎪⎫α+π6=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α-π12+π4=cos ⎝ ⎛⎭⎪⎫α-π12cos π4-sin ⎝ ⎛⎭⎪⎫α-π12sin π4=45×22-35×22=210,于是cos ⎝ ⎛⎭⎪⎫2α+π3=2cos 2⎝ ⎛⎭⎪⎫α+π6-1=2×⎝ ⎛⎭⎪⎪⎫2102-1=-2425. [答案] -24252.[直接法]已知(1-2x )5(1+ax )4的展开式中x 的系数为2,则实数a 的值为________.[解析] 因为(1-2x )5的展开式中的常数项为1,x 的系数为C 15×(-2)=-10;(1+ax )4的展开式中的常数项为1,x 的系数为C 14a =4a ,所以(1-2x )5(1+ax )4的展开式中x 的系数为1×4a +1×(-10)=2,所以a =3.[答案] 33.[特例法]已知等差数列{a n }的公差d ≠0,且a 1,a 3,a 9成等比数列,则a 1+a 3+a 9a 2+a 4+a 10的值是________.[解析] 令a n=n,则a1+a3+a9a2+a4+a10=1+3+92+4+10=1316.[答案] 13 164.[特例法]如图,在三棱锥O-ABC中,三条棱OA,OB,OC两两垂直,且OA>OB>OC,分别经过三条棱OA,OB,OC作一个截面平分三棱锥的体积,截面面积依次为S1,S2,S3,则S1,S2,S3的大小关系为________.[解析] 要满足各个截面使分得的两个三棱锥体积相等,则需满足与截面对应的交点E,F,G分别为中点即可.故可以将三条棱长分别取为OA=6,OB =4,OC=2,如图,则可计算S1=35,S2=210,S3=13,故S3<S2<S1.[答案] S3<S2<S15.[图解法]设方程1x+1=|lg x|的两个根为x1,x2,则x1·x2的取值范围________.[解析] 分别作出函数y=1x+1和y=|lg x|的图象如图,不妨设0<x 1<1<x 2,则|lg x 1|>|lg x 2|, ∴-lg x 1>lg x 2,即lg x 1+lg x 2<0,∴0<x 1x 2<1. [答案] (0,1)6.[图解法]不等式4-x 2-kx +1≤0的解集非空,则k 的取值范围为________.[解析] 由4-x 2-kx +1≤0,得4-x 2≤kx -1,设f (x )=4-x 2,g (x )=kx -1,其中-2≤x ≤2.如图,作出函数f (x ),g (x )的图象,不等式的解集非空,即直线l 和半圆有公共点.由图可知k AC =0---2-0=-12,k BC =0--2-0=12. 所以k 的取值范围为⎝ ⎛⎦⎥⎤-∞,-12∪⎣⎢⎡⎭⎪⎫12,+∞.[答案] ⎝ ⎛⎦⎥⎤-∞,-12∪⎣⎢⎡⎭⎪⎫12,+∞7.[构造法]如图,已知球O 的球面上有四点A ,B ,C ,D ,DA ⊥平面ABC ,AB ⊥BC ,DA =AB =BC =2,则球O 的体积等于________.[解析] 如图,以DA ,AB ,BC 为棱长构造正方体,设正方体的外接球球O 的半径为R ,则正方体的体对角线长即为球O 的直径,所以CD =22+22+22=2R ,所以R =62,故球O 的体积V =4πR 33=6π.[答案]6π8.[构造法]已知数列{a n }满足a 1=1,a n +1=3a n +1,则{a n }的通项公式为________.[解析] 由a n +1=3a n +1,得a n +1+12=3⎝ ⎛⎭⎪⎫a n +12,所以数列⎩⎨⎧⎭⎬⎫a n +12是以32为首项,3为公比的等比数列,所以a n +12=32·3n -1,故a n =3n-12.[答案] a n =3n -129.[归纳推理法](2017·辽宁丹东联考)已知“整数对”按如下规律排列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第70个“整数对”为________.[解析] 因为1+2+…+11=66,所以第67个“整数对”是(1,12),第68个“整数对”是(2,11),第69个“整数对”是(3,10),第70个“整数对”是(4,9).[答案] (4,9)10.[归纳推理法]若直角三角形的两直角边为a 、b ,斜边c 上的高为h ,则1h 2=1a 2+1b2.类比以上结论,如图,在正方体的一角上截取三棱锥P -ABC ,PO为该棱锥的高,记M =1PO 2,N =1PA 2+1PB 2+1PC 2,那么M ,N 的大小关系是M ________N .(填>,<或=)[解析] 由题意得⎩⎪⎨⎪⎧S 2△ABC =S 2△ABP +S 2△PBC +S 2△APC ,S △ABC ·PO =12·PA ·PB ·PC ,所以M =1PO 2=S 2△ABCS 2△ABCPO 2=S 2△ABP +S 2△PBC +S 2△APC14PA 2·PB 2·PC 2=1PA 2+1PB 2+1PC 2=N .即M =N .[答案] =11.[正反互推法]给出以下命题:①双曲线y 22-x 2=1的渐近线方程为y =±2x ;②命题p :“∀x ∈R +,sin x +1sin x≥2”是真命题;③已知线性回归方程为y ^=3+2x ,当变量x 增加2个单位,其预报值平均增加4个单位;④设随机变量ξ服从正态分布N (0,1),若P (ξ>1)=0.2,则p (-1<ξ<0)=0.6.则正确命题的序号为________(写出所有正确命题的序号).[解析] ①由y 22-x 2=0可以解得双曲线的渐近线方程为y =±2x ,正确.②命题不能保证sin x ,1sin x 为正,故错误;③根据线性回归方程的含义正确; ④P (ξ>1)=0.2, 可得P (ξ<-1)=0.2,所以P (-1<ξ<0)=12P (-1<ξ<1)=0.3,故错误.。
2018届高三理科数学二轮复习跟踪强化训练:30Word版含解析
两人说的是真话, 另外两人说的是假话, 且这四人中只有一人是罪犯,
由此可判断罪犯是 ( )
A .甲
B.乙
C.丙
D.丁
[ 解析 ] 由题可知,乙、丁两人的观点一致,即同真同假,假设
乙、丁说的是真话,那么甲、丙两人说的是假话,由乙说的是真话, 推出丙是罪犯,由甲说假话,推出乙、丙、丁三人不是罪犯,显然两 个结论相互矛盾,所以乙、丁两人说的是假话,而甲、丙两人说的是 真话,由甲、丙供述可得,乙是罪犯.
推断 f(x)=ccosx 为奇函数
B .由 a1=1, an= 3n- 1,求出 S1,S2, S3,猜出数列 { an} 的前 n
项和的表达式
C.由圆
x2+ y2= 1 的面积
S=πr 2,推断:椭圆
x2 y2 a2+b2= 1 的面积
S= πab
D .由平面三角形的性质推测空间四面体的性质
[ 解析 ] 由特殊到一般的推理过程,符合归纳推理的定义;由特
m+2i
3+2i |3+2i|
-m=0 且 3m+ 1≠0,得 m=3,故复数 1-i 的模为 1-i = |1- i|
32+22
26
= 12+ - 1 2= 2 ,故选 D.
[ 答案 ] D
3.(2017 ·大连模拟 )下列推理是演绎推理的是 ( )
A .由于 f(x)=ccosx 满足 f(-x)=- f(x)对任意的 x∈R 都成立,
跟踪强化训练 (三十 )
一、选择题
1.若复数 z 满足 z(2-i) =11+7i(i 为虚数单位 ),则 z 的共轭复
- 数 z =( )
A .3+5i
B.3-5i
C.- 3+5i
D.- 3-5i
2018届高3理科数学二轮复习跟踪强化训练:4 Word版含解析
跟踪强化训练(四)一、选择题1.函数y =cos 2x -2sin x 的最大值与最小值分别为( ) A .3,-1 B .3,-2 C .2,-1D .2,-2[解析] y =cos 2x -2sin x =1-sin 2x -2sin x =-sin 2x -2sin x +1,令t =sin x ,则t ∈[-1,1],y =-t 2-2t +1=-(t +1)2+2,所以最大值为2,最小值为-2.[答案] D2.(2019·沈阳质监)在△ABC 中,三边长a ,b ,c 满足a +c =3b ,则tan A 2tan C2的值为( )A.15B.14C.12D.23[解析] 令a =4,c =5,b =3,则符合题意. 则由∠C =90°,得tan C 2=1,由tan A =43,得tan A 2=12. ∴tan A 2·tan C 2=12·1=12,选C. [答案] C3.(2019·山西四校联考)P 为双曲线x 29-y 216=1的右支上一点,M 、N 分别是圆(x +5)2+y 2=4和圆(x -5)2+y 2=1上的点,则|PM |-|PN |的最大值为()A.6 B.7 C.8 D.9[解析]设双曲线的左、右焦点分别为F1、F2,则其分别为已知两圆的圆心,由已知|PF1|-|PF2|=2×3=6.要使|PM|-|PN|最大,需PM,PN分别过F1、F2点即可.∴(|PM|-|PN|)max=(|PF1|+2)-(|PF2|-1)=|PF1|-|PF2|+3=9.故选D.[答案] D4.(2019·保定模拟)函数f′(x)是奇函数f(x)(x∈R)的导函数,f(1)=0,当x<0时,xf′(x)+f(x)>0,则使得f(x)<0成立的x的取值范围是()A.(-∞,-1)∪(0,1) B.(-1,0)∪(1,+∞)C.(-∞,-1)∪(1,+∞) D.(-1,0)∪(0,1)[解析]设g(x)=xf(x),则g′(x)=xf′(x)+f(x).∵当x<0时,xf′(x)+f(x)>0,∴当x<0时,g′(x)>0,∴函数g(x)=xf(x)在(-∞,0)上为增函数,∵函数f(x)是奇函数,∴g(-x)=(-x)f(-x)=(-x)·[-f(x)]=xf(x)=g(x)(x∈R),∴函数g(x)在R上为偶函数,由f (1)=0,得g (1)=0, 函数g (x )的图象大致如图所示, ∵f (x )<0,∴x ≠0,g (x )x <0,∴⎩⎪⎨⎪⎧ x <0,g (x )>0或⎩⎪⎨⎪⎧x >0,g (x )<0,由函数图象知,-1<x <0或x >1. ∴使得f (x )<0成立的x 的取值范围为(-1,0)∪(1,+∞).故选B.[答案] B5.(2019·南昌调研)某重点中学在一次高三诊断考试中要安排8位老师监考某一考场的语文、数学、理综、英语考试,要求每堂安排两位老师且每位老师仅监考一堂,则其中甲、乙老师不监考同一堂的概率是( )A.314B.67C.37D.17[解析] 利用间接法,安排8位老师监考某一考场的方法共有C 28C 26C 24C 22种,而安排甲、乙两位老师监考同一堂的方法有C 14C 26C 24C 22,所以甲、乙两位老师不监考同一堂的概率为1-C 14C 26C 24C 22C 28C 26C 24C 22=1-17=67,故选B.[答案] B6.(2019·江南十校联考)若α、β∈⎣⎢⎡⎦⎥⎤-π2,π2,且αsin α-βsin β>0,则下面结论正确的是( )A .α>βB .α+β>0C .α<βD .α2>β2[解析] 令f (x )=x sin x ,则f ′(x )=sin x +x ·cos x .∵x ∈⎣⎢⎡⎦⎥⎤-π2,π2,f (x )为偶函数,且当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f ′(x )≥0, ∴f (x )在⎣⎢⎡⎦⎥⎤0,π2上为增函数,在⎣⎢⎡⎦⎥⎤-π2,0上为减函数. ∴αsin α-βsin β>0⇔f (|α|)>f (|β|)⇒|α|>|β|⇒ α2>β2,故选D. [答案] D 二、填空题7.(2019·安徽省合肥市高三二检)已知集合A =[1,+∞),B =⎩⎨⎧⎭⎬⎫x ∈R ⎪⎪⎪12a ≤x ≤2a -1,若A ∩B ≠∅,则实数a 的取值范围是________.[解析]因为A ∩B ≠∅,所以⎩⎨⎧2a -1≥1,2a -1≥12a ,解得a ≥1.[答案] [1,+∞)8.如图,已知在△ABC 中,∠BAC =120°,且|AB →|=2,|AC →|=3,若AP →=λAB →+AC →,且AP →⊥BC →,则实数λ的值为________.[解析] 因为AP →·BC →=(λAB →+AC →)·(AC →-AB →)=(λ-1)×AB →·AC →-4λ+9=0,AB →·AC →=2×3×⎝⎛⎭⎪⎫-12=-3,所以-3(λ-1)-4λ+9=0,得λ=127.[答案] 1279.(2019·赣中南五校联考)如图,在直三棱柱ABC -A 1B 1C 1中,底面为直角三角形,∠ACB =90°,AC =6,BC =CC 1=2,P 是BC 1上一动点,则CP +P A 1的最小值为________.[解析] 连接A 1B ,沿BC 1将△CBC 1展开,使与△A 1BC 1在同一个平面内,如图所示,连接A 1C .则A 1C 的长度就是所求的最小值.易知∠A 1C 1B =90°,∠BC 1C =45°,所以∠A 1C 1C =135°, 在△A 1C 1C 中,由余弦定理可得A 1C =5 2.故CP +P A 1的最小值为5 2.[答案] 5 2 三、解答题10.(2019·广西南宁月考)已知函数f (x )=ax 2+bx +c (a >0,b ,c ∈R ).(1)若函数f (x )的最小值是f (-1)=0,且c =1,F (x )=⎩⎪⎨⎪⎧f (x ),x >0,-f (x ),x <0,求F (2)+F (-2)的值;(2)若a =1,c =0,且|f (x )|≤1的区间(0,1]上恒成立,试求b 的取值范围.[解] (1)由已知c =1,a -b +c =0,且-b2a =-1, 解得a =1,b =2,∴f (x )=(x +1)2.∴F (x )=⎩⎪⎨⎪⎧(x +1)2,x >0,-(x +1)2,x <0. ∴F (2)+F (-2)=(2+1)2+[-(-2+1)2]=8. (2)由a =1,c =0,得f (x )=x 2+bx ,从而|f (x )|≤1在区间(0,1]上恒成立等价于-1≤x 2+bx ≤1在区间(0,1]上恒成立,即b ≤1x -x 且b ≥-1x -x 在(0,1]上恒成立. 又1x -x 的最小值为0,-1x -x 的最大值为-2. ∴-2≤b ≤0.故b 的取值范围是[-2,0].11.已知直线l :4x +3y +10=0,半径为2的圆C 与l 相切,圆心C 在x 轴上且在直线l 的右上方.(1)求圆C 的方程;(2)如图,过点M (1,0)的直线与圆C 交于A ,B 两点(A 在x 轴上方),问在x 轴正半轴上是否存在定点N ,使得x 轴平分∠ANB ?若存在,请求出点N 的坐标;若不存在,请说明理由.[解] (1)设圆心C (a,0)⎝ ⎛⎭⎪⎫a >-52,则|4a +10|5=2⇒a =0或a =-5(舍去).所以圆C 的方程为x 2+y 2=4.(2)当直线AB ⊥x 轴时,x 轴平分∠ANB .当直线AB 的斜率存在时,设直线AB 的方程为y =k (x -1),N (t,0),A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x 2+y 2=4,y =k (x -1),得(k 2+1)x 2-2k 2x +k 2-4=0, 所以x 1+x 2=2k 2k 2+1,x 1x 2=k 2-4k 2+1.若x 轴平分∠ANB ,则k AN =-k BN ⇒y 1x 1-t +y 2x 2-t =0⇒k (x 1-1)x 1-t +k (x 2-1)x 2-t =0⇒2x 1x 2-(t +1)(x 1+x 2)+2t =0⇒2(k 2-4)k 2+1-2k 2(t +1)k 2+1+2t =0⇒t =4,所以当点N 为(4,0)时,能使得∠ANM =∠BNM 总成立.12.已知函数f (x )=ln x -(x +1).(1)求函数f (x )的极大值;(2)求证:1+12+13+…+1n >ln(n +1)(n ∈N *). [解] (1)∵f (x )=ln x -(x +1), ∴f ′(x )=1x -1(x >0). 令f ′(x )>0,解得0<x <1; 令f ′(x )<0,解得x >1.∴函数f (x )在(0,1)上单调递增,在(1,+∞)上单调递减, ∴f (x )极大值=f (1)=-2.(2)证明:由(1)知x =1是函数f (x )的极大值点,也是最大值点, ∴f (x )≤f (1)=-2,即ln x -(x +1)≤-2⇒ln x ≤x -1(当且仅当x =1时等号成立),令t =x -1,得t ≥ln(t +1)(t >-1), 取t =1n (n ∈N *)时,则1n >ln ⎝ ⎛⎭⎪⎫1+1n =ln ⎝⎛⎭⎪⎫n +1n , ∴1>ln2,12>ln 32,13>ln 43,…,1n >ln ⎝⎛⎭⎪⎫n +1n , 叠加得1+12+13+…+1n>ln ⎝ ⎛⎭⎪⎫2·32·43·…·n +1n =ln(n +1). 即1+12+13+…+1n >ln(n +1).。
2018届高三理科数学二轮复习跟踪强化训练:3Word版含解析
4.以坐标原点为对称中心,两坐标轴为对称轴的双曲线的一条
渐近线的倾斜角为 π3,则该双曲线的离心率为 (
)
A.2 或 3
23 B.2 或 3
23 C. 3 [ 解析 ]
D.2 x2 y2
当双曲线的焦点在 x 轴上时,双曲线的标准方程为 a2-b2
=1(a>0,b>0),渐近线方程为 y=±bax,所以 ba=tanπ3= 3,故双曲线
[ 答案 ] x=3 或 3x-4y+7=0
8.正三棱柱的侧面展开图是边长分别为 6 和 4 的矩形,则它的
体积为 ________.
[ 解析 ] 当矩形长、宽分别为 6 和 4 时,体积 V=2× 3×21×4
=4 3;
当长、宽分别为
4和
6 时,体积
V=
43×
2
3
3×12×6=
8 3
3 .
综上所述,所求体积为
等式 logab>1 可化为 alogab>a1,即 b>a>1,∴(a-1)(a-b)<0,(b-1)(a - 1)>0, (b-1)(b-a)>0.
当 0<a<1,即 a-1<0 时,不等式 logab>1 可化为 alogab<a1,即 0<b<a<1,
∴ (a-1)(a-b)<0,(b-1)(a-1)>0,(b-1)(b-a)>0. 综上可知,选 D. [ 答案 ] D 6.如图, 过正方体 ABCD-A1B1C1D1 任意两条棱的中点作直线, 其中与平面 CB1D1 平行的直线有 ( )
A .(0,4) B.[0,4] C.(0,4] D .[0,4) [ 解析 ] 因为函数 f(x)= mx2+mx+1的定义域是实数集 R,所
2018年高考数学二轮复习专题(通用版)课时跟踪检测二十四理科数学(含答案)
课时跟踪检测(二十四)A 组——12+4提速练一、选择题1.设f (x )=x ln x ,f ′(x 0)=2,则x 0=( ) A .e 2B .e C.ln 22D .ln 2解析:选B ∵f ′(x )=1+ln x ,∴f ′(x 0)=1+ln x 0=2,∴x 0=e ,故选B. 2.函数f (x )=e xcos x 的图象在点(0,f (0))处的切线方程是( ) A .x +y +1=0 B .x +y -1=0 C .x -y +1=0D .x -y -1=0解析:选C 依题意,f (0)=e 0cos 0=1,因为f ′(x )=e xcos x -e xsin x ,所以f ′(0)=1,所以切线方程为y -1=x -0,即x -y +1=0,故选C.3.已知直线y =kx +1与曲线y =x 3+mx +n 相切于点A (1,3),则n =( ) A .-1B .1C .3D .4解析:选C 对于y =x 3+mx +n ,y ′=3x 2+m ,而直线y =kx +1与曲线y =x 3+mx +n 相切于点A (1,3),则有⎩⎪⎨⎪⎧3+m =k ,k +1=3,1+m +n =3,可解得n =3.4.若下列图象中,有一个是函数f (x )=13x 3+ax 2+(a 2-1)x +1(a ∈R ,a ≠0)的导函数f ′(x )的图象,则f (1)=( )A.13B .-13 C.73 D .-53解析:选A 由题意知,f ′(x )=x 2+2ax +a 2-1,∵a ≠0,∴其图象为最右侧的一个.由f ′(0)=a 2-1=0,得a =±1.由导函数f ′(x )的图象可知,a <0,故a =-1,∴f (x )=13x 3-x 2+1,f (1)=13-1+1=13.5.已知函数f (x )=x 2-5x +2ln x ,则函数f (x )的单调递增区间是( )A.⎝ ⎛⎭⎪⎫0,12和(1,+∞) B .(0,1)和(2,+∞)C.⎝ ⎛⎭⎪⎫0,12和(2,+∞) D .(1,2)解析:选C 函数f (x )=x 2-5x +2ln x 的定义域是(0,+∞),令f ′(x )=2x -5+2x=2x 2-5x +2x = x -2 2x -1 x >0,解得0<x <12或x >2,故函数f (x )的单调递增区间是⎝ ⎛⎭⎪⎫0,12和(2,+∞).6.已知函数f (x )=x 3+bx 2+cx +d 的图象如图所示,则函数y =log 2⎝⎛⎭⎪⎫x 2+23bx +c 3的单调递减区间为( )A.⎣⎢⎡⎭⎪⎫12,+∞ B .[3,+∞) C .[-2,3]D .(-∞,-2)解析:选D 因为f (x )=x 3+bx 2+cx +d ,所以f ′(x )=3x 2+2bx +c ,由图可知f ′(-2)=f ′(3)=0,所以⎩⎪⎨⎪⎧12-4b +c =0,27+6b +c =0,解得⎩⎪⎨⎪⎧b =-32,c =-18.令g (x )=x 2+23bx +c 3,则g (x )=x 2-x -6,g ′(x )=2x -1,由g (x )=x 2-x -6>0,解得x <-2或x >3.当x <12时,g ′(x )<0,所以g (x )=x 2-x -6在(-∞,-2)上为减函数,所以函数y =log 2⎝⎛⎭⎪⎫x 2+23bx +c 3的单调递减区间为(-∞,-2).7.已知函数f (x )=x 3-px 2-qx 的图象与x 轴切于点(1,0),则f (x )的极大值、极小值分别为( )A .-427,0B .0,-427C.427,0 D .0,427解析:选C 由题意知,f ′(x )=3x 2-2px -q ,由f ′(1)=0,f (1)=0,得⎩⎪⎨⎪⎧3-2p -q =0,1-p -q =0,解得⎩⎪⎨⎪⎧p =2,q =-1,∴f (x )=x 3-2x 2+x ,由f ′(x )=3x 2-4x +1=0,得x =13或x =1,易得当x =13时,f (x )取极大值427,当x =1时,f (x )取极小值0.8.已知f (x )的定义域为(0,+∞),f ′(x )为f (x )的导函数,且满足f (x )<-xf ′(x ),则不等式f (x +1)>(x -1)·f (x 2-1)的解集是( )A .(0,1)B .(1,+∞)C .(1,2)D .(2,+∞)解析:选D 因为f (x )+xf ′(x )<0,所以[xf (x )]′<0,故xf (x )在(0,+∞)上为单调递减函数,又(x +1)f (x +1)>(x 2-1)·f (x 2-1),所以0<x +1<x 2-1,解得x >2.9.已知函数f (x )的定义域为R ,f ′(x )为其导函数,函数y =f ′(x )的图象如图所示,且f (-2)=1,f (3)=1,则不等式f (x 2-6)>1的解集为( )A .(-3,-2)∪(2,3)B .(-2,2)C .(2,3)D .(-∞,-2)∪(2,+∞)解析:选A 由y =f ′(x )的图象知,f (x )在(-∞,0]上单调递增,在(0,+∞)上单调递减,又f (-2)=1,f (3)=1,∴f (x 2-6)>1可化为-2<x 2-6<3,解得2<x <3或-3<x <-2.10.设函数f (x )=13x -ln x (x >0),则f (x )( )A .在区间⎝ ⎛⎭⎪⎫1e ,1,(1,e)上均有零点B .在区间⎝ ⎛⎭⎪⎫1e ,1,(1,e)上均无零点 C .在区间⎝ ⎛⎭⎪⎫1e ,1上有零点,在区间(1,e)上无零点 D .在区间⎝ ⎛⎭⎪⎫1e ,1上无零点,在区间(1,e)上有零点 解析:选D 因为f ′(x )=13-1x ,所以当x ∈(0,3)时,f ′(x )<0,f (x )单调递减,而0<1e <1<e<3,又f ⎝ ⎛⎭⎪⎫1e =13e +1>0,f (1)=13>0,f (e)=e 3-1<0,所以f (x )在区间⎝ ⎛⎭⎪⎫1e ,1上无零点,在区间(1,e)上有零点.11.(2017·成都模拟)已知曲线C 1:y 2=tx (y >0,t >0)在点M ⎝⎛⎭⎪⎫4t,2处的切线与曲线C 2:y =ex +1-1也相切,则t ln 4e2t的值为( )A .4e 2B .8eC .2D .8解析:选D 由y =tx ,得y ′=12t ·x -12,则曲线C 1在x =4t 时的切线斜率为k =t4,所以切线方程为y -2=t 4⎝ ⎛⎭⎪⎫x -4t ,即y =t 4x +1.设切线与曲线y =e x +1-1的切点为(x 0,y 0).由y =e x +1-1,得y ′=e x +1,则由e x 0+1=t 4,得切点⎝ ⎛⎭⎪⎫ln t4-1,t 4-1,故切线方程又可表示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
跟踪强化训练(二十四)
一、选择题
1.(2017·广西三市第一次联合调研)若抛物线y 2=2px(p>0)上的点A(x 0,2)到其焦点的距离是A 到y 轴距离的3倍,则p 等于( )
A.12 B .1 C.3
2
D .2 [解析] 由题意3x 0=x 0+p 2,x 0=p 4,则p 2
2=2,∵p>0,∴p =2.故选D.
[答案] D
2.(2017·深圳一模)过点(3,2)且与椭圆3x 2+8y 2=24有相同焦点的椭圆方程为( )
A.x 25+y 2
10=1 B.x 210+y 2
15=1 C.x 215+y 2
10
=1 D.x 210+y 2
5
=1 [解析] 椭圆3x 2+8y 2=24的焦点为(±5,0),可得c =5,设所求椭圆的方程为x 2
a 2+y 2
b 2=1,可得9a 2+4
b 2=1,又a 2-b 2=5,得b 2=10,a 2=15,所以所求
的椭圆方程为x 215+y 2
10
=1.故选C.
[答案] C
3.(2017·福州模拟)已知双曲线x 2a 2-y 2
b 2=1(a>0,b>0)的右顶点与抛物线y 2
=8x 的焦点重合,且其离心率e =3
2
,则该双曲线的方程为( )
A.x 24-y 2
5=1 B.x 25-y 2
4=1 C.y 24-x 2
5
=1 D.y 25-x 2
4
=1 [解析] 易知抛物线y 2=8x 的焦点为(2,0),所以双曲线的右顶点是(2,0),所以a =2.又双曲线的离心率e =3
2
,所以c =3,b 2=c 2-a 2=5,所以双曲线的方
程为x 24-y 2
5
=1,选A.
[答案] A
4.(2017·武汉调研)椭圆C :x 24+y 2
3=1的左、右顶点分别为A 1、A 2,点P 在
C 上且直线PA 2斜率的取值范围是[-2,-1],那么直线PA 1斜率的取值范围是( )
A.⎣⎢⎡⎦⎥⎤12,34
B.⎣⎢⎡⎦⎥⎤38,34
C.⎣⎢⎡⎦
⎥⎤12,1 D.⎣⎢⎡⎦
⎥⎤34,1 [解析] 椭圆的左顶点为A 1(-2,0)、右顶点为A 2(2,0),设点P(x 0,y 0),则x 204+y 203=1,得y 20x 20-4=-34.而kPA 2=y 0x 0-2,kPA 1=y 0x 0+2,所以kPA 2·kPA 1=y 20x 2
0-4=-34.又kPA 2∈[-2,-1],所以kPA 1∈⎣⎢⎡⎦
⎥⎤
38,34.故选B.
[答案] B
5.(2017·合肥质检)已知双曲线y 24-x 2=1的两条渐近线分别与抛物线y 2=
2px(p>0)的准线交于A ,B 两点.O 为坐标原点.若△OAB 的面积为1,则p 的值为( )
A .1 B. 2 C .2 2 D .4
[解析] 双曲线的两条渐近线方程为y =±2x ,抛物线的准线方程为x =-p
2,
故A ,B 两点的坐标为⎝ ⎛⎭⎪⎫
-p 2,±p ,|AB|=2p ,所以S △OAB =12·2p ·p 2=p 22=1,解得p
=2,故选B.
[答案] B
6.已知椭圆x 24+y 2
b
2=1(0<b<2),左,右焦点分别为F 1,F 2,过F 1的直线l 交
椭圆于A ,B 两点,若|BF 2|+|AF 2|的最大值为5,则b 的值是( )
A .1 B. 2 C.3
2
D. 3
[解析] 由椭圆的方程,可知长半轴长a =2;由椭圆的定义,可知|AF 2|+|BF 2|+|AB|=4a =8,所以|AB|=8-(|AF 2|+|BF 2|)≥3.由椭圆的性质,可知过椭圆焦点的弦中,通径最短,即2b 2
a
=3,可求得b 2=3,即b =3,故选D.
[答案] D
7.(2017·长沙一模)A 是抛物线y 2=2px(p>0)上一点,F 是抛物线的焦点,O 为坐标原点,当|AF|=4时,∠OFA =120°,则抛物线的准线方程是( )
A .x =-1
B .y =-1
C .x =-2
D .y =-2
[解析] 过A 向准线作垂线,设垂足为B ,准线与x 轴的交点为D.因为∠OFA =120°,所以△ABF 为等边三角形,∠DBF =30°,从而p =|DF|=2,因此抛物线的准线方程为x =-1.选A.
[答案] A
8.(2017·广州综合测试)已知F 1,F 2分别是椭圆C :x 2a 2+y 2b 2=1(a>b>0)的左、
右焦点,若椭圆C 上存在点P 使∠F 1PF 2为钝角,则椭圆C 的离心率的取值范围是( )
A.⎝ ⎛⎭⎪⎫22,1
B.⎝ ⎛⎭⎪⎫
12,1 C.⎝
⎛⎭⎪⎫0,22
D.⎝
⎛
⎭⎪⎫0,12
[解析] 解法一:设P(x 0,y 0),由题易知|x 0|<a ,因为∠F 1PF 2为钝角,所以PF 1→·PF 2→<0有解,即c 2>x 20+y 20有解,即c 2>(x 20+y 20)min ,又y 20=b 2-b 2
a
2x 20,x 20<a 2
,故
x 20+y 20=b 2+c 2a
2x 20∈[b 2,a 2),所以(x 20+y 20)min =b 2,故c 2>b 2,又b 2=a 2-c 2
,所以
e 2
=c 2a 2>12,解得e>2
2,又0<e<1,故椭圆C 的离心率的取值范围是⎝ ⎛⎭
⎪⎫22,1,选
A.。