2022届中考数学总复习:一次函数的应用
2022年中考数学专题复习:一次函数的实际应用(行程问题)
2022年中考数学专题复习:一次函数的实际应用(行程问题)1.甲、乙两车从A地出发,沿同一路线驶向B地,甲车先出发匀速驶向B地.甲车出发40min后乙车出发,乙车匀速行驶一段时间后,在途中的货站装货耗时半小时,由于满载货物,为了行驶安全,速度减少了50km/h,结果乙车与甲车同时到达B地,甲、乙两车离A地的距离y(km)与乙车行驶时间x(h)之间的函数图象如图所示.请根据相关信息,解答下列问题:a______;(1)图中(2)①A、B两地的距离为______km;甲车行驶全程所用的时间为______h;甲的速度是______km/h;点C的坐标为______;①直接写出线段CF对应的函数表达式;①当乙刚到达货站时,甲距离B地还有______km.(3)乙车出发______小时在途中追上甲车;(4)乙出发______小时,甲乙两车相距50km.2.一列快车、一列慢车同时从相距300km的两地出发,相向而行,如图,分别表示两车到目的地的距离s(km)与行驶时间t(h)的关系.(1)快车的速度为km/h,慢车的速度为km/h;(2)经过多久两车第一次相遇?(3)当快车到达目的地时,慢车距离目的地多远?3.已知一辆快车与一辆慢车同时由A 地沿一条笔直的公路向B 地匀速行驶,慢车的速度为80 千米/时.两车之间的距离y(千米)与慢车行驶时间x/小时之间的函数关系如图所示.请根据图象回答下列问题:(1)快车的速度为___千米/时,,A B两地之间的距离____千米.(2)求当快车到达B 地后,y 与x 之间的函数关系式(写出自变量x 的取值范围).(3)若快车到达B 地休息15 分钟后,以原路原速返回A 地.直接写出慢车在行驶过程中,与快车相距20 千米时行驶的时间.4.李老师每天驾车去离家15km远的学校需要半个小时,如图,线段OB表示李老师驾车离家的距离y1(km)与时间x(h)的函数关系、一天李老师驾车行驶6分钟在M路口堵车,只好将车停在旁边的停车场,4分钟后改共享单车,比原计划驾车仅晚到10分钟.线段CD表示李老师改共享单车时离家的距离y2(km)与时间x(h)之间的函数关系式,线段DE表示李老师骑共享单车后离家的距离y(km)与时间x(h)之间的函数关系式.(1)求DE所在直线的解析式;(2)李老师发现骑共享单车经过N 路口比驾车晚6分钟,N 路口离李老师家多远?5.小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的新华书店,买到书后继续去学校.以下是他本次上学所用的时间与路程的关系图,根据图中提供的信息回答下列问题:(1)小明家到学校的路程是 米,他在书店停留了 分钟;(2)本次上学途中,小明一共骑行了 米,一共用了 分钟;(3)我们认为骑单车的速度超过300米/分就超过了安全限度.请求出整个上学途中各个时间段小明的骑车速度,哪个时间段的速度不在安全限度内?6.在一条直线上的甲、乙两地相距240km ,快、慢两车同时出发,快车从甲地驶向乙地,到达乙地后立即按原路原速返回甲地;慢车从乙地驶向甲地,中途因故停车1小时后,继续按原路原速驶向甲地.在两车行驶过程中,两车距甲地的距离()km y 与两车行驶时间()h x 之间的函数图象如图所示,结合图象解答下列问题:(1)直接写出快、慢两车的速度;(2)求慢车停车之后再次行驶时,与甲地的距离()km y 与行驶时间()h x 之间的函数关系式,并写出自变量取值范围;(3)直接写出两车出发多长时间后,相距60km?7.甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,轿车比货车晚出发1.5小时,如图,线段OA表示货车离甲地的距离y(千米)与时间x(小时)之间的函数关系;折线BCD表示轿车离甲地的距离y (千米)与时间x(时)之间的函数关系,请根据图象解答下列问题:(1)轿车到达乙地时,求货车与甲地的距离;(2)轿车出发多长时间追上货车;(3)在轿车行进过程,轿车行驶多少时间,两车相距15千米.8.如图,lA、lB分别表示A步行与B骑车在同一公路上同时出发,距甲地的路程S(千米)与B出发的时间t (小时)的关系,己知B骑车一段路后,自行车发生故障,进行修理.(1)B出发时与A相距______千米,B出发后_____小时与A相遇;(2)求出A距甲地的路程SA(千米)与时间t(小时)的关系式:(3)根据图中所给的信息:若B的自行车不发生故障,保持出发时的速度前进,在途中何时与A相距2km?9.甲、乙两人同时从相距90千米的A 地前往B 地,甲乘汽车,乙骑电动车,甲到达B 地停留半个小时后返回A 地,如图是他们离A 地的距离y (千米)与经过时间x (小时)之间的函数关系图象.(1)甲从B 地返回A 地的过程中,直接写出y 与x 之间的函数关系式及自变量x 的取值范围;(2)若乙出发后108分钟和甲相遇,求乙从A 地到B 地用了多少分钟?(3)甲与乙同时出发后,直接写出经过多长时间他们相距20千米?10.甲、地相距300km ,一辆货车和一辆轿车先后从甲地匀速开往乙如图地,轿车晚出发1h .货车和轿车各自与甲地的距离y (单位:km )与货车行驶的时间x (单位:小时)之间的关系如图所示.(1)求出图中的m 和n 的值;(2)求出货车行驶过程中2y 关于x 的函数解析式,并写出自变量x 的取值范围;(3)当轿车到达乙地时,求货车与乙地的距离.11.2021年12月,西安发生疫情,各地纷纷支援.宝鸡迅速组织500名医护人员和抗疫物资星夜出征行驶280km 驰援西安同心抗疫.如图,运输防疫物资的货车和载有医护人员的客车先后从宝鸡出发驶向西安,线段OA 表示货车离出发地宝鸡的距离()km y 与时间()h x 之间的函数关系,折线BCDE 表示客车离出发地宝鸡的距离()km y 与时间()hx之间的函数关系.(1)载有医护人员的客车中途在高速服务站休息了一段时间,休息时间为______h.(2)求线段DE对应的函数关系式.(3)客车从宝鸡出发后经过多长时间追上货车.12.周末,小丽和爸爸妈妈开车去了离家180千米的姥姥家,如图是他们离家的距离y(千米)与汽车行驶时间x (小时)之间的函数图象,根据图象解答下列问题:(1)当1.5 2.5≤≤时,求y与x之间的函数关系式;x(2)当他们离目的地还有15千米时,求汽车一共行驶的时间.13.“最是一年春好处”,小墩和小融约定好从各自家里出发,自驾去近郊踏青赏花,小墩家、小融家以及他们的目的地在同一条直线上,小墩从家出发1小时之后,小融才从家出发,先到的人在目的地等待.他们二人与小墩家的距离y(千米)与小墩行驶的时间x(小时)之间的关系如图所示,请根据图象回答下列问题:(1)小墩的速度为______千米/小时,小融的速度为______千米/小时;(2)当小融追上小墩时,他们与目的地的距离为多少千米?(3)小融从家里出发后,当两人相距10千米时,一辆花车沿同一路线从后面追上他们其中一人,已知这辆花车的速度为90千米/小时,当花车继续前行追上前方另一人时,求前一个被花车追上的人此时与目的地的距离.14.甲、乙两人分别从同一公路上的A,B两地同时出发骑车前往C地,两人离A地的距离y(km)与甲行驶的时间x(h)之间的关系如图所示,请根据图象所提供的信息解答下列问题:(1)A,B两地相距km;乙骑车的速度是km/h;(2)求甲追上乙时用了多长时间.15.A,B两城市之间有一条公路相连,公路中途穿过C市,甲车从A市到B市,乙车从C市到A市,两车在途中匀速行驶,甲车的速度比乙车的速度慢20千米/时,两车距离C市的路程y(单位:千米)与甲车行驶的时间t (单位:小时)的函数图象如图所示,结合图象信息,解答下列问题:(1)图中括号内应填入的数为___________,A 、B 两市相距的路程为___________千米;(2)求图象中线段MN 所在直线的函数解析式,不需要写出自变量的取值范围;(3)直接写出甲车出发后几小时,两车距C 市的路程之和是300千米.16.如图是某汽车行驶的路程s (千米)与时间t (分钟)之间的函数关系图,观察图中所提供的信息,解答下列问题:(1)汽车在1830-分钟内的平均速度是多少?(2)汽车在中途停了多少分钟?(3)当08t ≤≤时,求s 关于t 的函数关系式.17.某企业按计划用货车从甲地出发匀速开往距甲地312km 的乙地运送防疫物资,行驶2小时后,天空突然下起大雨,影响车辆行驶速度,货车行驶的路程()km y 与行驶时间()h x 的函数关系如图所示.(1)求行驶2小时之后的货车行驶的路程()km y 与行驶时间()h x 的函数表达式;(2)求将防疫物资送到乙地比原计划多用多少分钟?18.某校因校门口主路修路,导致学生上下学改道往学校后面的小路绕行.小吴和小黄分别从同一个小区出发,沿着相同的路线上学.小吴骑行一段时间后,小黄坐小轿车出发,结果半路上遭遇堵车,当小吴追上小黄后,小黄下车坐小吴的自行车一起去学校.如图是小吴、小黄两人在上学过程中经过的路程y(m)与小吴出发时间x (s)的函数图像.(1)学校和小区相距__________m,小吴骑车的速度为__________m/s;(2)小黄在距离学校多少米处遭遇堵车?从小黄遇到堵车到小吴追上小黄用了多少时间?(3)小吴和小黄何时相距520m?19.甲、乙两地相距480km,一辆货车和一辆轿车先后从甲地出发驶向乙地(两车速度均保持不变)如图,折线ABCD表示轿车离甲地的距离y(千米)与时间x(小时)之间的函数关系,线段OE表示货车离甲地的距离y (千米)与时间x(小时)之间的函数关系,请你根据图象信息,解答下列问题:(1)求轿车的速度和a的值;(2)求线段CD对应的函数表达式;(3)轿车从甲地出发后经过多长时间追上货车?20.小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行.小玲开始跑步,中途改为步行,到达图书馆恰好用30min;小东骑自行车以250m/min的速度直接回家.两人离家的路程y(m)与各自离开出发地的时间x(min)之间的函数图象如图所示.(1)家与图书馆之间的路程为______m,小玲步行的速度为______m/min.(2)求小东离家的路程y关于x的函数解析式.(3)求两人相遇的时间.参考答案:1.(1)4.5;(2)①460;233;60;C (0,40);①y =60x +40;①180000; (3)80; (4)113或316. 2.(1)45,30(2)4h(3)100km3.(1)120,240;(2)y =﹣80x +240; (3)12小时或4920小时或5320小时. 4.(1)y =24x −1(2)7km5.(1)1500;4(2)2700;14(3)在12~14分钟时间段小明的骑车速度不在安全限度内.6.(1)60km/h V =快,30km/h V =慢(2)()3027029y x x =-+≤≤ (3)7h 3或11h 3或5h 7.(1)轿车到达乙地时,货车与甲地的距离为270千米(2)轿车出发2.4追上货车(3)在轿车行进过程中,轿车行驶2.1小时或2.7小时时,两车相距15千米 8.(1)10,3; (2)25106A S t =+; (3)当7265t =或4865t =小时时,B 与A 相距2km . 9.(1)y =﹣60x +180(1.6≤x ≤3)(2)乙从A 地到B 地用了135分钟(3)经过25小时或85小时或2小时,他们相距20千米 10.(1)m 的值是2.5,n 的值是4(2)()26005y x x ≤≤=(3)当轿车到达乙地时,货车与乙地的距离是60km .11.(1)0.5(2)y =100x -170 (3)19222h 12.(1)9045y x =- (2)73小时 13.(1)50,75(2)60千米(3)71.25千米或20千米14.(1)20 5(2)415.(1)10,600(2)80320y t =-(3)3小时或7小时16.(1)汽车在1830-分钟内的平均速度是2km /min ;(2)汽车在中途停了10分钟;(3)s 关于t 的函数关系式是 1.25s t =17.(1)7212y x =+;(2)比原计划多用10分钟.18.(1)4500,5(2)小黄在距离学校3000米处遭遇堵车,从小黄遇到堵车到小吴追上小黄用了100s(3)小吴出发248s 或352s 或496s 时两人相距520m .19.(1)轿车的速度为120千米/小时,a 的值是5.5;(2)120180y x =-;(3)轿车从甲地出发后经过3.5小时追上货车20.(1)4000,100(2)y东=-250x+4000(0≤x≤16)(3)两人相遇时用时间809分钟。
2024年中考数学一轮复习考点精讲课件—一次函数的应用
.
【详解】解:如图, = = 6,∵ ∠ = 60°,∴ 4,3 3 ,
∵点在边上且横坐标为8,∴ 8, 3 , 10,3 3 ,
∵直线过定点,∴ ⊥ 时,点到所在直线的距离取得最大值.
∵ 0, −
5 3
3
∴ 3 = 8 −
, 8, 3 ,设解析式为 = −
考点一 一次函数的实际应用
【变式】(2021·河南平顶山·统考二模)小明和小亮相约从学校前往博物馆,其中学校距离博物馆900米.小明因有
事,比小亮晚一些出发,图中1 = 1 、2 = 2 + 分别是小明、小亮行驶的路程与小明追赶时间之间的关系.
(1)观察图象可知,小亮比小明先走了_______米.
2
20
故答案为:5;3; 3
20
km;
3
考点一 一次函数的实际应用
题型03 行程问题
【例3】(2022·浙江绍兴·统考一模)绍兴首条智慧快速路于今年3月19日正式通车.该快速路上,两站相距
20km,甲、乙两名杭州亚运会会务工作志愿者从站出发前往站附近的比赛场馆开展服务.甲乘坐无人驾驶小
巴,乙乘坐无人驾驶汽车.图中,分别表示甲、乙离开站的路程 km 与时间 min 的函数关系的图象.
(2)求1 、2 的值,并解释2 的实际意义.
(3)通过计算说明,谁先到博物馆.
【详解】
(1)根据图像可以看出小明走的时候,小亮已经走了 100 米.故答案为:100.
(2)将 = 20, = 60代入1 = 1 ,得60 = 201 ,∴1 = 3;
分别将 = 0时, = 100; = 20时, = 140代入2 = 2 + 得
∴A种物品购买7个,B种物品购买13个最省钱.
2022年中考数学人教版一轮复习课件:第5课 一次方程(组)的解法及应用
19.(2021·青海)已知 a,b 是等腰三角形的两边长,且 a,b 满足
2a-3b+5+(2a+3b-13)2=0,则此等腰三角形的周长为
A.8
( D)
B.6 或 8
C.7
D.7 或 8
20.(2021·眉山)解方程组:32xx- +21y5+y-203= =00① ②, .
解:方程组整理,得23xx+-125y=y=-3②20.①, ①×15+②×2,得 49x=-294, 解得 x=-6, 把 x=-6 代入②,得 y=1, ∴这个方程组的解为xy==1-. 6,
个肉粽和 5 个素粽共用去 70 元,设每个肉粽 x 元,则可列方
程为
( A)
A.10x+5(x-1)=70
B.10x+5(x+1)=70
C.10(x-1)+5x=70
D.10(x+1)+5x=70
15.(2021·东营)某玩具商店周年店庆,全场八折促销,持会员卡
可在促销活动的基础上再打六折.某电动汽车原价 300 元,
圆在该快递公司寄一件 8 千克的物品,需要付费
( B)
A.17 元
B.19 元
C.21 元
D.23 元
18.(2021·大连)某校为实现垃圾分类投放,准备在校园内摆放大、 小两种垃圾桶.购买 2 个大垃圾桶和 4 个小垃圾桶共需 600 元;购买 6 个大垃圾桶和 8 个小垃圾桶共需 1 560 元. (1)求大、小两种垃圾桶的单价; (2)该校购买 8 个大垃圾桶和 24 个小垃圾桶共需多少元?
26.(2020·绍兴)若关于 x,y 的二元一次方程组 xA+=y0=2,的解为
xy==11,,则多项式 A 可以是 xx--y(答yx案-不y唯x-一)(写出一个即可).
中考数学重难点专题13 一次函数的实际应用中最值问题(学生版)
中考数学复习重难点与压轴题型专项突围训练(全国通用版)专题13一次函数的实际应用中最值问题【典型例题】1.(2022·河南汝阳·九年级期末)为满足市场需求,某超市在新年来临前夕,购进一款商品,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,如果每盒售价每提高1元,则每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)要使每天销售的利润为6000元,且让顾客得到最大的实惠.售价应定为多少元?(3)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?【专题训练】一、解答题1.(2022·山东青岛·模拟预测)“菊润初经雨,橙香独占秋”,如图,橙子是一种甘甜爽口的水果,富含丰维生素C.某水果商城为了了解两种橙子市场销售情况,购进了一批数量相等的“血橙”和“脐橙”供客户对比品尝,其中购买“脐橙”用了420元,购买“血橙”用了756元,已知每千克“血橙”进价比每千克“脐橙”贵8元.(1)求每千克“血橙”和“脐橙”进价各是多少元?(2)若该水果商城决定再次购买同种“血橙”和“脐橙”共40千克,且再次购买的费用不超过600元,且每种橙子进价保持不变.若“血橙”的销售单价为24元,“脐橙”的销售单价为14元,则该水果商城应如何进货,使得第二批的“血橙”和“脐橙”售完后获得利润最大?最大利润是多少?2.(2022·山东莱芜·九年级期末)2022年冬奥会即将在北京召开,某网络经销商购进了一批以冬奥会为主题的文化衫进行销售,文化衫的进价每件40元,每月销售量y(件)与销售单价x(元)之间的函数关系如图所示,设每月获得的利润为W(元).(1)求出每月的销售量y(件)与销售单价x(元)之间的函数关系式;(2)这种文化衫销售单价定为多少元时,每月的销售利润最大?最大利润是多少元?(3)为了扩大冬奥会的影响,物价部门规定这种文化衫的销售单价不高于60元,该商店销售这种文化衫每月要获得最大利润,销售单价应定为多少元?每月的最大利润为多少元?3.(2022·河南·郑州中学九年级期末)冰墩墩(Bing Dwen Dwen),是2022年北京冬季奥运会的吉祥物.将熊猫形象与富有超能量的冰晶外壳相结合,头部外壳造型取自冰雪运动头盔,装饰彩色光环,整体形象酷似航天员.冬奥会来临之际,冰墩墩玩偶非常畅销.小冬在某网店选中A,B两款冰墩墩玩偶,决定从该网店进货并销售.两款玩偶的进货价和销售价如表:(1)第一次小冬550元购进了A,B两款玩偶共30个,求两款玩偶各购进多少个.(2)第二次小冬进货时,网店规定A款玩偶进货数量不得超过B款玩偶进货数量的一半.小冬计划购进两款玩偶共30个,应如何设计进货方案才能获得最大利润,最大利润是多少?(3)小冬第二次进货时采取了(2)中设计的方案,并且两次购进的玩偶全部售出,请从利润率的角度分析,对于小冬来说哪一次更合算?(注:利润率=(利润÷成本)×100%).4.(2021·山东青岛·一模)某学校为进一步做好疫情防控工作,计划购进A,B两种口罩.已知每箱A种口罩比每箱B种口罩多10包,每箱A种口罩和每箱B种口罩的价格分别是630元和600元,而每包A种口罩和每包B种口罩的价格分别是这一批口罩平均每包价格的0.9倍和1.2倍.(1)求这一批口罩平均每包的价格是多少元.(2)如果购进A,B两种口罩共5500包,最多购进3500包A种口罩,为了使总费用最低,应购进A种口罩和B种口罩各多少包?总费用最低是多少元?5.(2022·江苏滨湖·八年级期末)小李在某网店选中A、B两款玩偶,确定从该网店进货并销售.两款玩偶的进货价和销售价如表:(1)第一次小李用1100元购进了A、B两款玩偶共30个,求两款玩偶各购进多少个?(2)第二次小李进货时,网店规定A款玩偶进货数量不得超过B款玩偶进货数量的一半,小李计划购进两款玩偶60个.设小李购进A款玩偶m个,售完两款玩偶共获得利润W元,问应如何设计进货方案才能获得最大利润?并求W的最大值.6.(2021·山东北区·一模)六一前夕,某商场采购A、B两种品牌的卡通笔袋,已知每个A品牌笔袋的进价,比每个B品牌笔袋的进价多2元;若用3000元购进A品牌笔袋的数量,与用2400元购进B品牌笔袋的数量相同.(1)求每个A品牌笔袋和每个B品牌笔袋的进价分别是多少元;(2)该商场计划用不超过7220元采购A、B两种品牌的笔袋共800个,且其中B品牌笔袋的数量不超过400个,求该商场共有几种进货方式;(3)若每个A品牌笔袋售价16元,每个B品牌笔袋售价12元,在第(1)(2)问的前提下,不计其他因素,将所采购的A、B两种笔袋全部售出,求该商场可以获得的最大利润为多少元.7.(2022·四川简阳·八年级期末)某校准备组织八年级280名学生和5名老师参加研学活动,已知用1辆小客车和2辆大客车每次可运送120人;用3辆小客车和1辆大客车每次可运送135人.(1)每辆小客车和每辆大客车各能坐多少人?(2)若学校计划租用小客车m辆,大客车n辆,一次送完,且恰好每辆车都坐满.①请你设计出所有的租车方案;②若小客车每辆需租金6000元,大客车每辆需租金7500元,总租金为W元,写出W与m的关系式,根据关系式选出最省钱的租车方案,并求出最少租金.8.(2022·山东城阳·八年级期末)七月份河南暴雨,鸿星尔克因捐款5000万爆红网络,为表达对品牌的支持,国人掀起购物潮.我区一家鸿星尔克门店有库存上衣和裤子共1450件,若上衣按每件获利50元卖,裤子按每件获利80元卖,则售完这些库存共可获利92000元.(1)该门店库存有上衣、裤子各多少件?。
中考数学复习方案 第11课时 一次函数的应用
解得x=135,175-135=40,符合题意;
当75<x≤125,175-x≤75时,2.75x-18.75+2.5(175-x)=455,
解得x=145,不符合题意,舍去;
当75<x≤125,75<175-x≤125时,2.75x-18.75+2.75(175-x)-18.75=455,此方程无解.
④交点:表示两个函数的自变量与函数值分别对应相等,这个交点是函数值大
小关系的“分界点”.
基
础
知
识
巩
固
高
频
考
向
探
究
对点演练
题组一
必会题
1.一根蜡烛长20 cm,点燃后每小时燃烧5 cm,燃烧时剩下的高度h(单位:cm)与燃
烧时间t(单位:h)(0≤t≤4)之间的关系是
h=-5t+20
.
基
础
知
识
巩
固
∴乙用户2,3月份的用气量分别是135 m3,40 m3.
每月用气量
单价(元/m3)
不超出75 m3的部分
2.5
超出75 m3不超出125 m3的部分
a
超出125 m3的部分
a+0.25
基
础
知
识
巩
固
高
频
考
向
探
究
| 考向精练 |
1.某加油站五月份营销一种油品的销售利润y(万元)与销售量x(万升)之间函数关
2. [八上P157问题2改编]某公司准备与汽车租赁公司签订租车合同.以每月用车里
2022年中考真题汇编 一次函数应用题(一) ---路程问题(1)附答案与解析
二.简答题
1.(2022年江苏盐城)小丽从甲地匀速步行去乙地,小华骑自行车从乙地匀速前往甲地,同时出发,两人离甲地的距离 (m)与出发时间 (min)之间的函数关系如图所示.
(1)小丽步行的速度为__________m/min;
(2)当两人相遇时,求他们到甲地 距离.
A.2.7分钟B.2.8分钟C.3分钟D.3.2分钟
4.(2022年湖北随州)已知张强家、体育场、文具店在同一直线上.下面的图象反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后又走到文具店去买笔,然后散步走回家.图中x表示时间,y表示张强离家的距离.则下列结论不正确的是()
A 张强从家到体育场用了15minB.体育场离文具店1.5km
(2)①0.8;②0.25;③10或116
(3)当 时, ;当 时, ;当 时,
(1)由图象可得,在前12分钟的速度为:1.2÷12=0.1km/min,
故当x=8时,离学生公寓的距离为8×0.1=0.8;
在 时,离学生公寓的距离不变,都是1.2km
故当x=50时,距离不变,都 1.2km;
在 时,离学生公寓的距离不变,都是2km,
(1))解:由函数图象可知小明在离家15分钟时到底体育馆,此时离家的距离为2.5km,
∴小明家离体育馆的距离为2.5km,小明跑步的平均速度为 ,
故答案为:2.5; ;
(2))解:由函数图象可知当 时, ,
当 时,此时y是关于x一次函数,设 ,
∴ ,解得 ,∴此时 ,
综上所述,
(3)解:当小明处在去体育馆的途中离家2km时,
解得,
∴ ,
由上可得,当 时,y关于x的函数解析式为 .
数学中考一轮复习专题14一次函数的应用课件
知识点梳理
知识点1:一次函数解析式的确定
1.确定一次函数解析式的方法: (1)待定系数法; (2)根据题意中等量关系直接列出解析式; (3)通过几何变换(通常为平移)前后的解析式特征(自变量“左加右减”, 函数值“上加下减”)确定新函数解析式.
知识点1:一次函数解析式的确定
知识点梳理
2.用待定系数法求一次函数表达式的一般步骤:
7k b b 4
3
,
解得
k
1 7
,
b 4
∴直线BD的解析式为 y 1 x 4 . 7
故选:A.
知识点2:一次函数的几何应用
典型例题
【例6】(3分)(202X•呼伦贝尔•兴安盟17/26)如图,点B1在直线l:y
1 2
x
上,
点B1的横坐标为1,过点B1作B1A1⊥x轴,垂足为A1,以A1B1为边向右作正方形
典型例题
知识点1:一次函数解析式的确定
【解答】解:(1)把点P的横坐标为2代入得,y=-2+5=3,
∴点P(2,3),
∴
S△AOP
1 2
43
(2)当S=4时,即
6 1
; 4
y
4
,
2
∴y=2,
当y=2时,即2=-x+5,
解得x=3,
∴点P(3,2);
典型例题
知识点1:一次函数解析式的确定
(3)由题意得, S 1 OA y 2y 2(x 5) 2x 10 ,
(2)把x=﹣2代入 y= 1 x 1 ,求得y=﹣2, 2
∴函数y=mx(m≠0)与一次函数 y= 1 x 1 的交点 2
为(﹣2,﹣2),
把点(﹣2,﹣2)代入y=mx,求得m=1,
专题08 一次函数及其应用-备战2022年中考数学题源解密(解析版)
专题08 一次函数及其应用考向1 一次函数的图象与性质【母题来源】(2021·浙江嘉兴)【母题题文】已知点P(a,b)在直线y=﹣3x﹣4上,且2a﹣5b≤0,则下列不等式一定成立的是()A.≤B.≥C.≥D.≤【分析】结合选项可知,只需要判断出a和b的正负即可,点P(a,b)在直线y=﹣3x﹣4上,代入可得关于a和b的等式,再代入不等式2a﹣5b≤0中,可判断出a与b正负,即可得出结论.【解答】解:∵点P(a,b)在直线y=﹣3x﹣4上,∴﹣3a﹣4=b,又2a﹣5b≤0,∴2a﹣5(﹣3a﹣4)≤0,解得a≤﹣<0,当a=﹣时,得b=﹣,∴b≥﹣,∵2a﹣5b≤0,∴2a≤5b,∴≤.故选:D.【试题分析】此题考察了一次函数图象的性质以及点的坐标特征,再转化到不等式中,考察不等式变形;【命题意图】一次函数的图象以及其计算的难度不会很大,但是和其他知识点结合考察的时候,可以同步考察各知识点的融合应用,难度就可以大起来了;【命题方向】一次函数的图象和性质在浙江中考中考察的不多,主要还是以后续的应用为主。
当一次函数和其他函数或者几何图形结合考察时,主要难度也不在一次函数上,而在与之结合的图形上。
但是一次函数的考点规律性较强,也基本上可以和其他所有的几何图形结合,所以整体难度还是可以上去的;【得分要点】一.图象的画法:(原理:两点确定一条直线)二.图象的性质对于任意一次函数y=kx+b(k≠0),点A (x1,y1)B(x2,y2)在其图象上k>0 k<0性质y随x的增大而增大y随x的增大而减小直线走势从左往右看上升从左往右看下降增减应用当x1<x2时,必有y1<y2(不等号开口方向相同)当x1<x2时,必有y1>y2(不等号开口方向相反)必过象限直线必过第一、三象限直线必过第二、四象限b>0 直线过第一、二、三象限直线过第一、二、四象限b=0(正比例函数)直线过第一、三象限直线过第二、四象限正比例函数必过原点(0,0)b<0 直线过第一、三、四象限直线过第二、三、四象限三.待定系数法求一次函数表达式的方法:步骤普通一次函数具体操作正比例函数具体操作1.“设”设所求一次函数解析式为y=kx+b(k≠0)设所求正比例函数解析式为y=kx(k≠0)2.“代入”把两对x、y的对应值分别代入y=kx+b,得到关于k、b的二元一次方程组把除(0,0)外的一对x、y的对应值代入y=kx,得到关于k一元一次方程3.“解”解这个关于k、b的二元一次方程组解这个关于k的一元一次方程4.“再代入”把求得的k、b的值代入到y=kx+b,得到所求的一次函数表达式把求得的k的值代入到y=kx,得到所求的正比例函数表达式步骤一次函数正比例函数找点找任意两个点,一般为“整点”或与坐标轴的交点找除原点外的任意一个点描点在平面直角坐标系中描出所找的点的位置连线过这两个点画一条直线过原点和这个点画一条直线四.一次函数与方程、不等式的关系一次函数y=kx+b 作用具体应用与一元一次方程的关系求与x轴交点坐标方程kx+b=0的解是直线y=kx+b与x轴的交点横坐标与二元一次方程组的关系求两直线交点坐标方程组⎩⎨⎧+=+=2211bxkybxky的解是直线11bxky+=与直线22bxky+=的交点坐标与一元一次不等式(组)的关系一元一次不等(如kx+b>0)的解可以由函数图象观察得出由函数图象直接写出不等式解集的方法归纳:①根据图象找出交点横坐标,②不等式中不等号开口朝向的一方,图象在上方,对应交点的左右,则x取其中一边的范围。
中考数学总复习训练 一次函数的实际应用含解析
一次函数的实际应用一、利用函数的解析式解决问题1.某市种植某种绿色蔬菜,全部用来出口.为了扩大出口规模,该市决定对这种蔬菜的种植实行政府补贴,规定每种植﹣亩这种蔬菜一次性补贴菜农若干元.经调查,种植亩数y(亩)与补贴数额x(元)之间大致满足如图1所示的一次函数关系.随着补贴数额x的不断增大,出口量也不断增加,但每亩蔬菜的收益z(元)会相应降低,且z与x之间也大致满足如图2所示的一次函数关系.(1)在政府未出台补贴措施前,该市种植这种蔬菜的总收益额为多少?(2)分别求出政府补贴政策实施后,种植亩数y和每亩蔬菜的收益z与政府补贴数额x之间的函数关系式;(3)要使全市这种蔬菜的总收益w(元)最大,政府应将每亩补贴数额x定为多少?并求出总收益w的最大值.2.某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如下表:x (元)15 20 25 …y (件)25 20 15 …若日销售量y是销售价x的一次函数.(1)求出日销售量y(件)与销售价x(元)的函数关系式;(2)求销售价定为30元时,每日的销售利润.3.如图,两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中给的数据信息,解答下列问题:(1)求整齐摆放在桌面上饭碗的高度y(cm)与饭碗数x(个)之间的一次函数解析式;(2)把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是多少?4.鞋子的“鞋码”和鞋长(cm)存在一种换算关系,下表是几组“鞋码”与鞋长换算的对应数值:(注:“鞋码”是表示鞋子大小的一种号码)鞋长(cm) 16 19 21 24鞋码(号) 22 28 32 38(1)设鞋长为x,“鞋码”为y,试判断点(x,y)在你学过的哪种函数的图象上;(2)求x、y之间的函数关系式;(3)如果某人穿44号“鞋码”的鞋,那么他的鞋长是多少?5.某市为了鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费,月用水量不超过20m3时,按2元/m3计费;月用水量超过20m3时,其中的20m3仍按2元/m3收费,超过部分按2.6元/m3计费.设每户家庭用水量为xm3时,应交水费y元.(1)分别求出0≤x≤20和x>20时y与x的函数表达式;(2)小明家第二季度交纳水费的情况如下:月份四月份五月份六月份交费金额30元34元42.6元小明家这个季度共用水多少立方米?6.一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y1(km),出租车离甲地的距离为y2(km),客车行驶时间为x(h),y1,y2与x 的函数关系图象如图所示:(1)根据图象,直接写出y1,y2关于x的函数关系式.(2)分别求出当x=3,x=5,x=8时,两车之间的距离.(3)若设两车间的距离为S(km),请写出S关于x的函数关系式.(4)甲、乙两地间有A、B两个加油站,相距200km,若客车进入A站加油时,出租车恰好进入B站加油.求A加油站到甲地的距离.7.我国是世界上严重缺水的国家之一.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费.即一月用水10吨以内(包括10吨)的用户,每吨收水费a元;一月用水超过10吨的用户,10吨水仍按每吨a元收费,超过10吨的部分,按每吨b元(b>a)收费.设一户居民月用水x吨,应收水费y元,y与x之间的函数关系如图所示.(1)求a的值;某户居民上月用水8吨,应收水费多少元;(2)求b的值,并写出当x>10时,y与x之间的函数关系式;(3)已知居民甲上月比居民乙多用水4吨,两家共收水费46元,求他们上月分别用水多少吨?二、利用函数的增减性解决问题8.某饮料厂为了开发新产品,用A种果汁原料和B种果汁原料试制新型甲、乙两种饮料共50千克,设甲种饮料需配制x千克,两种饮料的成本总额为y元.(1)已知甲种饮料成本每千克4元,乙种饮料成本每千克3元,请你写出y与x之间的函数关系式.(2)若用19千克A种果汁原料和17.2千克B种果汁原料试制甲、乙两种新型饮料,下表是试验的相关数据;请你列出关于x且满足题意的不等式组,求出它的解集,并由此分析如何配制这两种饮料,可使y值最小,最小值是多少?甲乙每千克饮料果汁含量果汁A 0.5千克0.2千克B 0.3千克0.4千克9.某厂工人小王某月工作的部分信息如下:信息一:工作时间:每天上午8:00~12:00,下午14:00~18:00,每月25天;信息二:生产甲、乙两种产品,并且按规定每月生产甲产品的件数不少于60件.生产产品件数与所用时间之间的关系见下表:生产甲产品数(件)生产乙产品数(件)所用时间(分)10 10 35030 20 850信息三:按件计酬,每生产一件甲产品可得1.50元,每生产一件乙产品可得2.80元.根据以上信息,回答下列问题:(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分;(2)小王该月最多能得多少元此时生产甲、乙两种产品分别多少件.10.“5.12”汶川特大地震灾害发生后,社会各界积极为灾区捐款捐物,某经销商在当月销售的甲种啤酒尚有2万元货款未收到的情况下,先将销售甲种啤酒全部应收货款的70%捐给了灾区,后又将该月销售乙种啤酒所得的全部货款的80%捐给了灾区.已知该月销售甲、乙两种啤酒共5000件,甲种啤酒每件售价为50元,乙种啤酒每件售价为35元,设该月销售甲种啤酒x件,共捐助救灾款y元.(1)该经销商先捐款元,后捐款元;(用含x的式子表示)(2)写出y与x的函数关系式,并求出自变量x的取值范围;(3)该经销商两次至少共捐助多少元?11.为支持四川抗震救灾,重庆市A、B、C三地现在分别有赈灾物资100吨、100吨、80吨,需要全部运往四川重灾地区的D、E两县.根据灾区的情况,这批赈灾物资运往D县的数量比运往E县的数量的2倍少20吨.(1)求这批赈灾物资运往D、E两县的数量各是多少?(2)若要求C地运往D县的赈灾物资为60吨,A地运往D的赈灾物资为x吨(x为整数),B地运往D县的赈灾物资数量小于A地运往D县的赈灾物资数量的2倍.其余的赈灾物资全部运往E县,且B地运往E县的赈灾物资数量不超过25吨.则A、B两地的赈灾物资运往D、E两县的方案有几种?请你写出具体的运送方案;(3)已知A、B、C三地的赈灾物资运往D、E两县的费用如下表:A地B地C地运往D县的费用(元/吨)220 200 200运往E县的费用(元/吨)250 220 210为及时将这批赈灾物资运往D、E两县,某公司主动承担运送这批赈灾物资的总费用,在(2)问的要求下,该公司承担运送这批赈灾物资的总费用最多是多少?12.某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.(1)今年三月份甲种电脑每台售价多少元?(2)为了增加收入,电脑公司决定再经销乙种型号电脑,已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?(3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a元,要使(2)中所有方案获利相同,a值应是多少此时,哪种方案对公司更有利?13.“5•12”四川汶川大地震的灾情牵动全国人民的心,某市A、B两个蔬菜基地得知四川C、D两个灾民安置点分别急需蔬菜240吨和260吨的消息后,决定调运蔬菜支援灾区.已知A蔬菜基地有蔬菜200吨,B蔬菜基地有蔬菜300吨,现将这些蔬菜全部调往C、D两个灾民安置点.从A地运往C、D两处的费用分别为每吨20元和25元,从B地运往C、D两处的费用分别为每吨15元和18元.设从B地运往C处的蔬菜为x吨.(1)请填写下表,并求两个蔬菜基地调运蔬菜的运费相等时x的值;C D 总计A 200吨B x吨300吨总计240吨260吨500吨(2)设A、B两个蔬菜基地的总运费为w元,写出w与x之间的函数关系式,并求总运费最小的调运方案;(3)经过抢修,从B地到C处的路况得到进一步改善,缩短了运输时间,运费每吨减少m 元(m>0),其余线路的运费不变,试讨论总运费最小的调运方案.14.某公司有A型产品40件,B型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:A型利润B型利润甲店200 170乙店160 150(1)设分配给甲店A型产品x件,这家公司卖出这100件产品的总利润为W(元),求W 关于x的函数关系式,并求出x的取值范围;(2)若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种方案设计出来;(3)为了促销,公司决定仅对甲店A型产品让利销售,每件让利a元,但让利后A型产品的每件利润仍高于甲店B型产品的每件利润.甲店的B型产品以及乙店的A,B型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大?一次函数的实际应用参考答案与试题解析一、利用函数的解析式解决问题1.某市种植某种绿色蔬菜,全部用来出口.为了扩大出口规模,该市决定对这种蔬菜的种植实行政府补贴,规定每种植﹣亩这种蔬菜一次性补贴菜农若干元.经调查,种植亩数y(亩)与补贴数额x(元)之间大致满足如图1所示的一次函数关系.随着补贴数额x的不断增大,出口量也不断增加,但每亩蔬菜的收益z(元)会相应降低,且z与x之间也大致满足如图2所示的一次函数关系.(1)在政府未出台补贴措施前,该市种植这种蔬菜的总收益额为多少?(2)分别求出政府补贴政策实施后,种植亩数y和每亩蔬菜的收益z与政府补贴数额x之间的函数关系式;(3)要使全市这种蔬菜的总收益w(元)最大,政府应将每亩补贴数额x定为多少?并求出总收益w的最大值.【考点】二次函数的应用;一次函数的应用.【专题】压轴题.【分析】(1)根据题意可知直接计算这种蔬菜的收益额为3000×800=2400000(元);(2)设种植亩数y和每亩蔬菜的收益z与政府补贴数额x之间的函数关系式分别为:y=kx+800,z=k1x+3000,并根据图象上点的坐标利用待定系数法求函数的解析式即可;(3)表示出蔬菜的总收益w(元)与x之间的关系式,w=﹣24x2+21600x+2400000,利用二次函数最值问题求最大值.【解答】解:(1)政府没出台补贴政策前,这种蔬菜的收益额为3000×800=2400000(元)(2)设种植亩数y和每亩蔬菜的收益z与政府补贴数额x之间的函数关系式分别为:y=kx+800,z=k1x+3000,分别把点(50,1200),(100,2700)代入得,50k+800=1200,100k1+3000=2700,解得:k=8,k1=﹣3,种植亩数与政府补贴的函数关系为:y=8x+800每亩蔬菜的收益与政府补贴的函数关系为z=﹣3x+3000(x>0)(3)由题意:w=yz=(8x+800)(﹣3x+3000)=﹣24x2+21600x+2400000=﹣24(x﹣450)2+7260000,∴当x=450,即政府每亩补贴450元时,总收益额最大,为7260000元.【点评】主要考查利用一次函数和二次函数的模型解决实际问题的能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义准确的列出解析式,再把对应值代入求解.利用二次函数的顶点坐标求最值是常用的方法之一.2.某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如下表:x (元)15 20 25 …y (件)25 20 15 …若日销售量y是销售价x的一次函数.(1)求出日销售量y(件)与销售价x(元)的函数关系式;(2)求销售价定为30元时,每日的销售利润.【考点】一次函数的应用.【专题】压轴题;图表型.【分析】(1)已知日销售量y是销售价x的一次函数,可设函数关系式为y=kx+b(k,b 为常数,且k≠0),代入两组对应值求k、b,确定函数关系式.(2)把x=30代入函数式求y,根据:(售价﹣进价)×销售量=利润,求解.【解答】解:(1)设此一次函数解析式为y=kx+b(k,b为常数,且k≠0).(1分)则.(2分)解得k=﹣1,b=40(4分)即一次函数解析式为y=﹣x+40(5分)(2)当x=30时,每日的销售量为y=﹣30+40=10(件)(6分)每日所获销售利润为(30﹣10)×10=200(元)(8分)【点评】本题主要考查用待定系数法求一次函数关系式,并会用一次函数研究实际问题.3.如图,两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中给的数据信息,解答下列问题:(1)求整齐摆放在桌面上饭碗的高度y(cm)与饭碗数x(个)之间的一次函数解析式;(2)把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是多少?【考点】一次函数的应用.【专题】应用题;压轴题.【分析】(1)可设y=kx+b,因为由图示可知,x=4时y=10.5;x=7时,y=15,由此可列方程组,进而求解;(2)令x=4+7,求出相应的y值即可.【解答】解:(1)设y=kx+b(k≠0).(2分)由图可知:当x=4时,y=10.5;当x=7时,y=15.(4分)把它们分别代入上式,得(6分)解得k=1.5,b=4.5.∴一次函数的解析式是y=1.5x+4.5(x是正整数).(8分)(2)当x=4+7=11时,y=1.5×11+4.5=21(cm).即把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是21cm.(10分)【点评】本题意在考查学生利用待定系数法求解一次函数关系式,并利用关系式求值的运算技能和从情景中提取信息、解释信息、解决问题的能力.而它通过所有学生都熟悉的摞碗现象构造问题,将有关数据以直观的形象呈现给学生,让人耳目一新.从以上例子我们看到,数学就在我们身边,只要我们去观察、发现,便能找到它的踪影;数学是有用的,它可以解决实际生活、生产中的不少问题.4.鞋子的“鞋码”和鞋长(cm)存在一种换算关系,下表是几组“鞋码”与鞋长换算的对应数值:(注:“鞋码”是表示鞋子大小的一种号码)鞋长(cm) 16 19 21 24鞋码(号) 22 28 32 38(1)设鞋长为x,“鞋码”为y,试判断点(x,y)在你学过的哪种函数的图象上;(2)求x、y之间的函数关系式;(3)如果某人穿44号“鞋码”的鞋,那么他的鞋长是多少?【考点】一次函数的应用.【专题】压轴题;图表型.【分析】(1)可利用函数图象判断这些点在一条直线上,即在一次函数的图象上;(2)可设y=kx+b,把两个点的坐标代入,利用方程组即可求解;(3)令(2)中求出的解析式中的y等于44,求出x即可.【解答】解:(1)如图,这些点在一次函数的图象上;(2)设y=kx+b,由题意得,解得,∴y=2x﹣10.(x是一些不连续的值.一般情况下,x取16、16.5、17、17.5、26、26.5、27等);(3)y=44时,x=27.答:此人的鞋长为27cm.【点评】本题首先利用待定系数法确定一次函数的解析式,然后利用函数实际解决问题.5.某市为了鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费,月用水量不超过20m3时,按2元/m3计费;月用水量超过20m3时,其中的20m3仍按2元/m3收费,超过部分按2.6元/m3计费.设每户家庭用水量为xm3时,应交水费y元.(1)分别求出0≤x≤20和x>20时y与x的函数表达式;(2)小明家第二季度交纳水费的情况如下:月份四月份五月份六月份交费金额30元34元42.6元小明家这个季度共用水多少立方米?【考点】一次函数的应用.【专题】应用题.【分析】(1)因为月用水量不超过20m3时,按2元/m3计费,所以当0≤x≤20时,y与x 的函数表达式是y=2x;因为月用水量超过20m3时,其中的20m3仍按2元/m3收费,超过部分按2.6元/m3计费,所以当x>20时,y与x的函数表达式是y=2×20+2.6(x﹣20),即y=2.6x ﹣12;(2)由题意可得:因为四月份、五月份缴费金额不超过40元,所以用y=2x计算用水量;六月份缴费金额超过40元,所以用y=2.6x﹣12计算用水量.【解答】解:(1)当0≤x≤20时,y与x的函数表达式是:y=2x;当x>20时,y与x的函数表达式是:y=2×20+2.6(x﹣20)=2.6x﹣12;(2)因为小明家四、五月份的水费都不超过40元,故0≤x≤20,此时y=2x,六月份的水费超过40元,x>20,此时y=2.6x﹣12,所以把y=30代入y=2x中得,2x=30,x=15;把y=34代入y=2x中得,2x=34,x=17;把y=42.6代入y=2.6x﹣12中得,2.6x﹣12=42.6,x=21.所以,15+17+21=53.答:小明家这个季度共用水53m3.【点评】本题是贴近社会生活的应用题,赋予了生活气息,使学生真切地感受到“数学来源于生活”,体验到数学的“有用性”.这样设计体现了《新课程标准》的“问题情景﹣建立模型﹣解释、应用和拓展”的数学学习模式.6.一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y1(km),出租车离甲地的距离为y2(km),客车行驶时间为x(h),y1,y2与x 的函数关系图象如图所示:(1)根据图象,直接写出y1,y2关于x的函数关系式.(2)分别求出当x=3,x=5,x=8时,两车之间的距离.(3)若设两车间的距离为S(km),请写出S关于x的函数关系式.(4)甲、乙两地间有A、B两个加油站,相距200km,若客车进入A站加油时,出租车恰好进入B站加油.求A加油站到甲地的距离.【考点】一次函数的应用.【分析】(1)可根据待定系数法来确定函数关系式;(2)可依照(1)得出的关系式,得出结果;(3)要根据图象中自变量的3种不同的取值范围,分类讨论;(4)根据(3)中得出的函数关系式,根据自变量的取值范围分别计算出A加油站到甲地的距离.【解答】解:(1)y1=60x(0≤x≤10),y2=﹣100x+600(0≤x≤6)(2)当x=3时,y1=180,y2=300,∴y2﹣y1=120,当x=5时y1=300,y2=100,∴y1﹣y2=200,当x=8时y1=480,y2=0,∴y1﹣y2=480.(3)当两车相遇时耗时为x,y1=y2,解得x=,S=y2﹣y1=﹣160x+600(0≤x≤)S=y1﹣y2=160x﹣600(<x≤6)S=60x(6<x≤10);(4)由题意得:S=200,①当0≤x≤时,﹣160x+600=200,∴x=,∴y1=60x=150.②当<x≤6时160x﹣600=200,∴x=5,∴y1=300,③当6<x≤10时,60x≥360不合题意.即:A加油站到甲地距离为150km或300km.【点评】本题通过考查一次函数的应用来考查从图象上获取信息的能力.借助函数图象表达题目中的信息,读懂图象是关键.注意自变量的取值范围不能遗漏.7.我国是世界上严重缺水的国家之一.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费.即一月用水10吨以内(包括10吨)的用户,每吨收水费a元;一月用水超过10吨的用户,10吨水仍按每吨a元收费,超过10吨的部分,按每吨b元(b>a)收费.设一户居民月用水x吨,应收水费y元,y与x之间的函数关系如图所示.(1)求a的值;某户居民上月用水8吨,应收水费多少元;(2)求b的值,并写出当x>10时,y与x之间的函数关系式;(3)已知居民甲上月比居民乙多用水4吨,两家共收水费46元,求他们上月分别用水多少吨?【考点】一次函数的应用;二元一次方程组的应用;分段函数.【分析】(1)由图中可知,10吨水出了15元,那么a=15÷10=1.5元,用水8吨,应收水费1.5×8元;(2)由图中可知当x>10时,有y=b(x﹣10)+15.把(20,35)代入一次函数解析式即可.(3)应先判断出两家水费量的范围.【解答】解:(1)a=15÷10=1.5.(1分)用8吨水应收水费8×1.5=12(元).(2分)(2)当x>10时,有y=b(x﹣10)+15.(3分)将x=20,y=35代入,得35=10b+15.b=2.(4分)故当x>10时,y=2x﹣5.(5分)(3)∵假设甲乙用水量均不超过10吨,水费不超过46元,不符合题意;假设乙用水10吨,则甲用水14吨,∴水费是:1.5×10+1.5×10+2×4<46,不符合题意;∴甲、乙两家上月用水均超过10吨.(6分)设甲、乙两家上月用水分别为x吨,y吨,则甲用水的水费是(2x﹣5)元,乙用水的水费是(2y﹣5)元,则(8分)解得:(9分)故居民甲上月用水16吨,居民乙上月用水12吨.(10分)【点评】本题主要考查了一次函数与图形的结合,应注意分段函数的计算方法.二、利用函数的增减性解决问题8.某饮料厂为了开发新产品,用A种果汁原料和B种果汁原料试制新型甲、乙两种饮料共50千克,设甲种饮料需配制x千克,两种饮料的成本总额为y元.(1)已知甲种饮料成本每千克4元,乙种饮料成本每千克3元,请你写出y与x之间的函数关系式.(2)若用19千克A种果汁原料和17.2千克B种果汁原料试制甲、乙两种新型饮料,下表是试验的相关数据;请你列出关于x且满足题意的不等式组,求出它的解集,并由此分析如何配制这两种饮料,可使y值最小,最小值是多少?甲乙每千克饮料果汁含量果汁A 0.5千克0.2千克B 0.3千克0.4千克【考点】一元一次不等式组的应用.【专题】应用题;压轴题.【分析】(1)由题意可知y与x的等式关系:y=4x+3(50﹣x)化简即可;(2)根据题目条件可列出不等式方程组,推出y随x的增大而增大,根据实际求解.【解答】解:(1)依题意得y=4x+3(50﹣x)=x+150;(2)依题意得解不等式(1)得x≤30解不等式(2)得x≥28∴不等式组的解集为28≤x≤30∵y=x+150,y是随x的增大而增大,且28≤x≤30∴当甲种饮料取28千克,乙种饮料取22千克时,成本总额y最小,即y最小=28+150=178元.【点评】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.注意本题的不等关系为:甲种果汁不超过19,乙种果汁不超过17.2.9.某厂工人小王某月工作的部分信息如下:信息一:工作时间:每天上午8:00~12:00,下午14:00~18:00,每月25天;信息二:生产甲、乙两种产品,并且按规定每月生产甲产品的件数不少于60件.生产产品件数与所用时间之间的关系见下表:生产甲产品数(件)生产乙产品数(件)所用时间(分)10 10 35030 20 850信息三:按件计酬,每生产一件甲产品可得1.50元,每生产一件乙产品可得2.80元.根据以上信息,回答下列问题:(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分;(2)小王该月最多能得多少元此时生产甲、乙两种产品分别多少件.【考点】二元一次方程组的应用;一次函数的应用.【专题】压轴题;阅读型;图表型.【分析】(1)设生产一件甲种产品需x分,生产一件乙种产品需y分,利用待定系数法求出x,y的值.(2)设生产甲种产品用x分,则生产乙种产品用(25×8×60﹣x)分,分别求出甲乙两种生产多少件产品.【解答】解:(1)设生产一件甲种产品需x分,生产一件乙种产品需y分.由题意得:(2分)即:解这个方程组得:答:生产一件甲产品需要15分,生产一件乙产品需要20分.(4分)(2)设生产甲种产品共用x分,则生产乙种产品用(25×8×60﹣x)分.则生产甲种产品件,生产乙种产品件.(5分)∴w总额===0.1x+1680﹣0.14x=﹣0.04x+1680(7分)又,得x≥900,由一次函数的增减性,当x=900时w取得最大值,此时w=0.04×900+1680=1644(元)此时甲有(件),乙有:(件)(9分)答:小王该月最多能得1644元,此时生产甲、乙两种产品分别60,555件.【点评】通过表格当中的信息,我们可以利用列方程组来求出生产甲、乙两种产品的时间,然后利用列函数关系式表示出小王得到的总钱数,然后利用一次函数的增减性求出钱数的最大值.10.“5.12”汶川特大地震灾害发生后,社会各界积极为灾区捐款捐物,某经销商在当月销售的甲种啤酒尚有2万元货款未收到的情况下,先将销售甲种啤酒全部应收货款的70%捐给了灾区,后又将该月销售乙种啤酒所得的全部货款的80%捐给了灾区.已知该月销售甲、乙两种啤酒共5000件,甲种啤酒每件售价为50元,乙种啤酒每件售价为35元,设该月销售甲种啤酒x件,共捐助救灾款y元.(1)该经销商先捐款元,后捐款元;(用含x的式子表示)(2)写出y与x的函数关系式,并求出自变量x的取值范围;(3)该经销商两次至少共捐助多少元?【考点】一次函数的应用.【专题】压轴题.【分析】(1)根据题意可直接得出经销商先捐款50x•70%=35x元,后捐款35(5000﹣x)•80%或(140000﹣28x)元;(2)根据题意可列出式子为y=7x+140000,根据“50x﹣20000≥0”,“5000﹣x>0”求出自变量取值范围为400≤x<5000;(3)当x=400时,y最小值=142800.【解答】解:(1)50x•70%或35x,35(5000﹣x)•80%或(140000﹣28x);(2)y与x的函数关系式为:y=7x+140000,由题意得解得400≤x<5000,∴自变量x的取值范围是400≤x<5000;(3)∵y=7x+140000是一个一次函数,且7>0,400≤x<5000,∴当x=400时,y最小值=142800.答:该经销商两次至少共捐款142800元.【点评】主要考查利用一次函数的模型解决实际问题的能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义求解.注意要根据自变量的实际范围确定函数的最值.11.为支持四川抗震救灾,重庆市A、B、C三地现在分别有赈灾物资100吨、100吨、80吨,需要全部运往四川重灾地区的D、E两县.根据灾区的情况,这批赈灾物资运往D县的数量比运往E县的数量的2倍少20吨.(1)求这批赈灾物资运往D、E两县的数量各是多少?(2)若要求C地运往D县的赈灾物资为60吨,A地运往D的赈灾物资为x吨(x为整数),B地运往D县的赈灾物资数量小于A地运往D县的赈灾物资数量的2倍.其余的赈灾物资全部运往E县,且B地运往E县的赈灾物资数量不超过25吨.则A、B两地的赈灾物资运往D、E两县的方案有几种?请你写出具体的运送方案;(3)已知A、B、C三地的赈灾物资运往D、E两县的费用如下表:A地B地C地运往D县的费用(元/吨)220 200 200运往E县的费用(元/吨)250 220 210为及时将这批赈灾物资运往D、E两县,某公司主动承担运送这批赈灾物资的总费用,在(2)问的要求下,该公司承担运送这批赈灾物资的总费用最多是多少?【考点】一元一次不等式组的应用;一次函数的应用.【专题】压轴题;方案型.【分析】(1)设这批赈灾物资运往D县的数量为a吨,运往E县的数量为b吨,得到一个二元一次方程组,求解即可.(2)根据题意得到一元二次不等式,再找符合条件的整数值即可.(3)求出总费用的函数表达式,利用函数性质可求出最多的总费用.【解答】解:(1)设这批赈灾物资运往D县的数量为a吨,运往E县的数量为b吨.(1分)由题意,得(2分)解得(3分)答:这批赈灾物资运往D县的数量为180吨,运往E县的数量为100吨.(4分)(2)由题意,得(5分)解得即40<x≤45.∵x为整数,∴x的取值为41,42,43,44,45.(6分)则这批赈灾物资的运送方案有五种.具体的运送方案是:方案一:A地的赈灾物资运往D县41吨,运往E县59吨;B地的赈灾物资运往D县79吨,运往E县21吨.。
2022年中考数学专题复习:一次函数的实际应用(分配方案问题)
2022年中考数学专题复习:一次函数的实际应用(分配方案问题)1.某学校为改善办学条件,计划采购A、B两种型号的空调,已知采购3台A型空调和2台B型空调,需费用39000元;4台A型空调比5台B型空调的费用多6000元.(1)求A型空调和B型空调每台各需多少元;(2)若学校计划采购A、B两种型号空调共30台,且A型空调的台数不少于B型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?2.神舟十三号飞船即将荣耀归来,为激发同学们对航天事业的兴趣,学校组织进行了一场以“飞天”为主题的文艺晚会,学校打算购买一些“飞天”装饰挂件与专属航天印章送给学生留作纪念.已知每盒挂件有30个,每盒印章有20个,且都只能整盒购买,每盒挂件的价钱比每盒印章的价钱多10元;用200元购买挂件的盒数与用150元购买印章的盒数相同.(1)求每盒挂件和每盒印章的价格分别为多少元?(2)如果给每位学生分发2个挂件与2个印章.设购买挂件a盒,购买印章b盒恰好能配套分发,请用含α的代数式表示b;(3)累计购买超过850元后,超出850元的部分有6折的优惠.学校以(2)中的配套方式购买,共需要花费w元,求w关于a的函数关系式.该校有750名学生,需要购买挂件与印章各多少盒?共需要多少费用?3.某快递公司在我市新设了一处中转站,预计每周将运送快递308吨.为确保完成任务,该中转站计划向汽车厂家购买电动、燃油两种类型的货车.根据测算,每辆电动货车每周能运送快递48吨,每辆燃油货车每周能运送快递36吨.已知汽车厂家售出1辆电动货车、2辆燃油货车的总价为39万元;售出3辆电动货车、1辆燃油货车的总价为57万元.(1)分别求出每辆电动、燃油货车的价格;(2)考虑到环保因素,电动货车最少购买4辆,为确保完成每周的快递运送任务,求该中转站最低的购车成本.4.某学校要印制招生宣传材料,如图,1l,2l分别表示甲、乙印刷厂的收费y(元)与印制数量x(份)之间的关系,根据图象回答下列问题:(1)印制800份宜传材料时,选择哪家印刷厂比较合算?(2)该学校拟拿出5000元用于印制宣传材料,选择哪家印刷厂印制的份数较多,并说明能多印制多少份?5.某商场准备购进A ,B 两种型号电脑,每台A 型号电脑进价比每台B 型号电脑多500元,用40000元购进A 型号电脑的数量与用30000元购进B 型号电脑的数量相同,请解答下列问题:(1)A ,B 型号电脑每台进价各是多少元?(2)若每台A 型号电脑售价为2500元,每台A 型号电脑售价为1800元,商场决定用不超过35000元同时购进A ,B 两种型号电脑20台,且全部售出,请写出所获的利润y (单位:元)与A 型号电脑x (单位:台)的函数关系式并求此时的最大利润.(3)在(2)问的条件下,将不超过所获得的最大利润再次购买A ,B 两种型号电脑捐赠给某个福利院,问有多少种捐赠方案?最多捐赠多少台电脑?6.某公司分别在A 、B 两城生产同种产品,共100件.A 城生产产品的总成本y (万元)与产品数量x (件)之间具有函数关系230y x x =+,B 城生产产品的每件成本为70万.若A ,B 两城生产这批产品的总成本的和最小.(1)求A 、B 两城各生产多少件?(2)从A 城把该产品运往C ,D 两地的费用分别为5万元/件和3万元/件:从B 城把该产品运往C ,D 两地的费用分别为1万元/件和2万元件,C 地需要90件,D 地需要10件,求两城总运费之和W 的最小值.7.某农副产品经销商以30元/千克的价格收购农户们的一批农副产品进行销售,经过市场调查发现一部分数据如下:其中,月销售量是关于销售价格的一次函数.(1)请直接写出p与x之间的一次函数关系(2)该农副产品经销商应如何确定这批农副产品的销售价格,才能使得月销售利润最大?(3)在(2)的条件下,该农副产品经销商打算把这一批农副产品运往A,B两个销售网点进行销售,根据市场要求,A销售网点的销量应不低于B销售网点的一半且不高于总销量的一半,运使往A、B两个销售网点的运费分别为a元/千克(其中0a ),3元/千克,请直接写出最优的调运方案.8.学校需购买测温枪与消毒液,若购买5个测温枪与1瓶消毒液需440元,若购买1个测温枪与3瓶消毒液需200元.(1)求测温枪和消毒液的单价;(2)学校计划购买两种物资共60件,并要求测温枪的数量不少于消毒液数量的14,设计最省钱的购买方案,并说明理由.9.崂山茶是青岛的特产之一,某崂山茶企业为了扩大生产规模,计划投入一笔资金购进甲、乙两种设备.已知购进2件甲设备和1件乙设备共需3.5万元;购进1件甲设备和3件乙设备共需3万元.(1)求购进1件甲设备和1件乙设备分别需要多少万元;(2)如果扩大规模后,在一个季度内,每件甲设备能为企业增加0.5万元利润,每件乙设备能为企业增加0.2万元利润.该企业计划购进甲、乙两种设备共10件,且投入资金不超过12万元,求应该如何采购甲、乙两种设备,才能使企业这个季度的利润最大?。
八年级数学知识点归纳:一次函数的应用
八年级数学知识点归纳:一次函数的应用八年级数学知识点归纳:一次函数的应用在日常的学习中,是不是听到知识点,就立刻清醒了?知识点在教育实践中,是指对某一个知识的泛称。
掌握知识点有助于大家更好的学习。
下面是店铺帮大家整理的八年级数学知识点归纳:一次函数的应用,欢迎大家分享。
一、分段函数问题分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际。
二、函数的多变量问题解决含有多变量问题时,可以分析这些变量的关系,选取其中一个变量作为自变量,然后根据问题的条件寻求可以反映实际问题的函数三、概括整合(1)简单的一次函数问题:①建立函数模型的方法;②分段函数思想的应用。
(2)理清题意是采用分段函数解决问题的关键。
常用公式1.求函数图像的k值:(y1-y2)/(x1-x2)2.求与x轴平行线段的中点:(x1+x2)/23.求与y轴平行线段的中点:(y1+y2)/24.求任意线段的长:√[(x1-x2)^2+(y1-y2)^2 ]5.求两个一次函数式图像交点坐标:解两函数式两个一次函数y1=k1x+b1 y2=k2x+b2 令y1=y2 得k1x+b1=k2x+b2 将解得的x=x0值代回y1=k1x+b1 y2=k2x+b2 两式任一式得到y=y0 则(x0,y0)即为 y1=k1x+b1 与 y2=k2x+b2 交点坐标6.求任意2点所连线段的中点坐标:[(x1+x2)/2,(y1+y2)/2]拓展:数学八年级知识点提纲一、勾股定理1、勾股定理直角三角形两直角边a,b的平方和等于斜边c的平方,即a2+b2=c2。
2、勾股定理的逆定理如果三角形的三边长a,b,c有这种关系,那么这个三角形是直角三角形。
3、勾股数满足的三个正整数,称为勾股数。
常见的勾股数组有:(3,4,5);(5,12,13);(8,15,17);(7,24,25);(20,21,29);(9,40,41);……(这些勾股数组的倍数仍是勾股数)。
中考数学:一次函数的性质与应用问题真题+模拟(原卷版北京专用)
中考数学一次函数的性质与应用问题【方法归纳】(1)一次函数与方程、不等式之间的关系:利用待定系数法确定一次函数的解析式,一次函数与x轴和y轴交点、不等式的解集、一次函数的平移、参数的确定等、(2)一次函数与几何图形的面积问题:首先要根据题意画出草图,结合图形分析其中的几何图形,再求出面积.(3)一次函数的优化问题:通常一次函数的最值问题首先由不等式找到x的取值范围,进而利用一次函数的增减性在前面范围内的前提下求出最值.(4)用函数图象解决实际问题:从已知函数图象中获取信息,求出函数值、函数表达式,并解答相应的问题.2.一次函数的应用(1)分段函数问题:分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际.(2)函数的多变量问题:解决含有多变量问题时,可以分析这些变量的关系,选取其中一个变量作为自变量,然后根据问题的条件寻求可以反映实际问题的函数.(3)常见题型:行程问题、表格问题、图象问题、最大利润问题、方案问题常用的解题思路:①建立函数模型的方法;②分段函数思想的应用.【典例剖析】【例1】(2022·北京·中考真题)在平面直角坐标系xOy中,函数y=kx+b(k≠0)的图象经过点(4,3),(−2,0),且与y轴交于点A.(1)求该函数的解析式及点A的坐标;(2)当x>0时,对于x的每一个值,函数y=x+n的值大于函数y=kx+b(k≠0)的值,直接写出n的取值范围.【例2】(2021·北京·中考真题)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图x的图象向下平移1个单位长度得到.象由函数y=12(1)求这个一次函数的解析式;(2)当x>−2时,对于x的每一个值,函数y=mx(m≠0)的值大于一次函数y=kx+b的值,直接写出m的取值范围.【真题再现】必刷真题,关注素养,把握核心1.(2016·北京·中考真题)如图,在平面直角坐标系xOy中,过点A(−6,0)的直线l1与直线l2:y= 2x相交于点B(m,4).(1)求直线l1的表达式;(2)过动点P(n,0)且垂直于x轴的直线与l1,l2的交点分别为C,D,当点C位于点D上方时,写出n的取值范围.2.(2019·北京·中考真题)在平面直角坐标系xOy中,直线l:y=kx+1(k≠0)与直线x=k,直线y=−k分别交于点A,B,直线x=k与直线y=−k交于点C.(1)求直线l与y轴的交点坐标;(2)横、纵坐标都是整数的点叫做整点.记线段AB,BC,CA围成的区域(不含边界)为W.①当k=2时,结合函数图象,求区域W内的整点个数;②若区域W内没有整点,直接写出k的取值范围.3.(2020·北京·中考真题)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由函数y=x的图象平移得到,且经过点(1,2).(1)求这个一次函数的解析式;(2)当x>1时,对于x的每一个值,函数y=mx(m≠0)的值大于一次函数y=kx+b的值,直接写出m的取值范围.【模拟精练】一、解答题1.(2022·北京房山·二模)已知,在平面直角坐标系xOy中,直线l:y=ax+b(a≠0)经过点A(1,2),与x轴交于点B(3,0).(1)求该直线的解析式;(2)过动点P(0,n)且垂直于y轴的直线与直线l交于点C,若PC≥AB,直接写出n的取值范围.2.(2022·北京朝阳·二模)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由函数y=2x的图象平移得到,且经过点(2,2).(1)求这个一次函数的表达式;(2)当x<2时,对于x的每一个值,函数y=mx(m≠0)的值大于一次函数y=kx+b的值,直接写出m的取值范围.3.(2022·北京东城·二模)如图,在平面直角坐标系xOy中,双曲线y=k(k≠0)经过点xA(2,−1),直线l:y=−2x+b经过点B(2,−2).(1)求k,b的值;(2)过点P(n,0)(n>0)作垂直于x轴的直线,与双曲线y=k(k≠0)交于点C,与直线l交于点xD.①当n=2时,判断CD与CP的数量关系;②当CD≤CP时,结合图象,直接写出n的取值范围.4.(2022·北京北京·二模)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由函数y=−x的图象平移得到,且经过点(1,1).(1)求这个一次函数的表达式;(2)当x>−1时,对于x的每一个值,函数y=mx−1(m≠0)的值小于一次函数y=kx+b的值,直接写出m的取值范围.5.(2022·北京丰台·二模)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由函数y=x的图象向下平移4个单位长度得到.(1)求这个一次函数的解析式;(2)一次函数y=kx+b的图象与x轴的交点为A,函数y=mx(m<0)的图象与一次函数y= kx+b的图象的交点为B,记线段OA,AB,BO围成的区域(不含边界)为W,横、纵坐标都是整数的点叫做整点,若区域W内恰有2个整点,直接写出m的取值范围.6.(2022·北京密云·二模)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象经过点A(0,−3)和点B(5,2).(1)求这个一次函数的表达式;(2)当x≥2时,对于x的每一个值,函数y=mx+2(m≠0)的值小于一次函数y=kx+b的值,直接写出m的取值范围.7.(2022·北京西城·二模)在平面直角坐标系xOy中,一次函数y=−x+b的图象与x轴交于点(4,0),且与反比例函数y=m的图象在第四象限的交点为(n,−1).x(1)求b,m的值;<y p<4,连接OP,结(2)点P(x p,y p)是一次函数y=−x+b图象上的一个动点,且满足mx p合函数图象,直接写出OP长的取值范围.8.(2022·北京平谷·二模)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由x平移得到,且过点(0,−1).函数y=12(1)求这个一次函数y=kx+b(k≠0)的表达式;(2)当x>−2时,对于x的每一个值,函数y=mx+1的值大于一次函数y=kx+b(k≠0)的值,求m的取值范围.9.(2022·北京东城·一模)对于平面直角坐标系xOy中的点C及图形G,有如下定义:若图形G上存在A,B两点,使得△ABC为等腰直角三角形,且∠ABC=90°,则称点C为图形G的“友好点”.(1)已知点O(0,0),M(4,0),在点C1(0,4),C2(1,4),C3(2,−1)中,线段OM的“友好点”是_______;(2)直线y=−x+b分别交x轴、y轴于P,Q两点,若点C(2,1)为线段PQ的“友好点”,求b 的取值范围;(3)已知直线y=x+d(d>0)分别交x轴、y轴于E,F两点,若线段EF上的所有点都是半径为2的⊙O的“友好点”,直接写出d的取值范围.10.(2022·北京昌平·二模)在平面直角坐标系xOy中,直线y=kx+b(k≠0)与直线y=x平行,且过点(2,1).(1)求这个一次函数的解析式;(2)直线y=kx+b(k≠0)分别交x,y轴于点A,点B,若点C为x轴上一点,且S△ABC=2,直接写出点C的坐标.11.(2022·北京顺义·一模)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象平x,且经过点A(2,2).行于直线y=12(1)求这个一次函数的表达式;(2)当x<2时,对于x的每一个值,一次函数y=kx+b(k≠0)的值大于一次函数y=mx−1(m≠0)的值,直接写出m的取值范围.x+b与直线l2:y=2x 12.(2022·北京石景山·一模)在平面直角坐标系xOy中,直线l1:y=12交于点A(m,n).(1)当m=2时,求n,b的值;(2)过动点P(t,0)且垂直于x轴的直线与l1,l2的交点分别是C,D.当t≤1时,点C位于点D上方,直接写出b的取值范围.13.(2022·北京市十一学校二模)在平面直角坐标系xOy中,已知点P(1,2),Q(−2,2),函.数y=mx(1)当函数y=m的图象经过点Q时,求m的值并画出直线y=-x-m.x(2)若P,Q两点中恰有一个点的坐标(x,y)满足不等式组{y>mxy<−x−m(m<0),求m的取值范围.14.(2022·北京丰台·一模)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由函数y=2x的图象平移得到,且经过点(2,1).(1)求这个一次函数的解析式;(2)当x>0时,对于x的每一个值,函数y=mx(m≠0)的值大于一次函数y=kx+b的值,直接写出m的取值范围.15.(2022·北京·东直门中学模拟预测)如图,在平面直角坐标系xOy中,点A(1,4),B(3,m).(1)如果点A,B均在反比例函数y1=kx的图象上,求m的值;(2)如果点A,B均在一次函数y2=ax+b的图象上,①当m=2时,求该一次函数的表达式;②当x≥3时,如果不等式mx−1>ax+b始终成立,结合函数图象,直接写出m的取值范围.16.(2022·北京一七一中一模)在平面直角坐标系xOy中,直线l与双曲线y=kx(k≠0)的两个交点分别为A(−3,−1),B(1,m).(1)求k和m的值;(2)求直线l的解析式;(3)点P为直线l上的动点,过点P作平行于x轴的直线,交双曲线y=k(k≠0)于点Q.当点Q位x于点P的左侧时,求点P的纵坐标n的取值范围.17.(2022·北京市燕山教研中心一模)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0) x的图象向上平移3个单位长度得到.的图象由函数y=12(1)求这个一次函数的解析式;(2)当x>2时,对于x的每一个值,函数y=mx(m≠0)的值大于一次函数y=kx+b的值,直接写出m的取值范围.18.(2022·北京平谷·一模)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象经过点(﹣1,0),(0,2).(1)求这个一次函数的表达式;(2)当x>﹣2时,对于x的每一个值,函数y=mx(m≠0)的值小于一次函数y=kx+b(k≠0)的值,直接写出m的取值范围.19.(2022·北京门头沟·一模)我们规定:在平面直角坐标系xOy中,如果点P到原点O的距离为a,点M到点P的距离是a的整数倍,那么点M就是点P的k倍关联点.(1)当点P1的坐标为(−1.5,0)时,①如果点P1的2倍关联点M在x轴上,那么点M的坐标是;②如果点M(x,y)是点P1的k倍关联点,且满足x=−1.5,−3≤y≤5.那么k的最大值为________;(2)如果点P2的坐标为(1,0),且在函数y=−x+b的图象上存在P2的2倍关联点,求b的取值范围.20.(2022·北京朝阳·一模)在平面直角坐标系xOy中,对于直线l:y≡kx+b,给出如下定义:若直线l与某个圆相交,则两个交点之间的距离称为直线l关于该圆的“圆截距”.(1)如图1,⊙O的半径为1,当k=1,b=1时,直接写出直线l关于⊙O的“圆截距”;(2)点M的坐标为(1,0),①如图2,若⊙M的半径为1,当b=1时,直线l关于⊙M的“圆截距”小于4√5,求k的取值5范围;②如图3,若⊙M的半径为2,当k的取值在实数范围内变化时,直线l关于⊙M的“圆截距”的最小值为2,直接写出b的值.21.(2022·北京房山·一模)如图1,一次函数y=kx+4k(k≠0)的图象与x轴交于点A,与y 轴交于点B,且经过点C(2,m).(1)当m=9时,求一次函数的解析式并求出点A的坐标;2(2)当x>-1时,对于x的每一个值,函数y=x的值大于一次函数y=kx+4k(k≠0)的值,求k 的取值范围.22.(2022·北京房山·一模)如图1,⊙I与直线a相离,过圆心I作直线a的垂线,垂足为H,且交⊙I于P,Q两点(Q在P,H之间).我们把点P称为⊙I关于直线a的“远点”,把PQ·PH 的值称为⊙I关于直线a的“特征数”.(1)如图2,在平面直角坐标系xOy中,点E的坐标为(0,4),半径为1的⊙O与两坐标轴交于点A,B,C,D.①过点E作垂直于y轴的直线m﹐则⊙O关于直线m的“远点”是点__________________(填“A”,“B”,“C”或“D”),⊙O关于直线m的“特征数”为_____________;②若直线n的函数表达式为y=√3x+4,求⊙O关于直线n的“特征数”;(2)在平面直角坐标系xOy、中,直线l经过点M(1,4),点F是坐标平面内一点,以F为圆心,√3为半径作⊙F.若⊙F与直线l相离,点N(–1,0)是⊙F关于直线l的“远点”,且⊙F关于直线l的“特征数”是6√6,直接写出直线l的函数解析式.23.(2022·北京·中国人民大学附属中学分校一模)在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“非常距离”,给出如下定义:若|x1−x2|⩾|y1−y2|,则点P1与点P2的“非常距离”为|x1−x2|;若|x1−x2|<|y1−y2|,则点P1与点P2的“非常距离”为|y1−y2|.(1)已知点A(−1,0),B为y轴上的一个动点,2①若点A与点B的“非常距离”为4,直接写出点B的坐标:;②求点A与点B的“非常距离”的最小值;(2)已知C是直线y=1x+2上的一个动点,2①若点D的坐标是(0,1),求点C与点D的“非常距离”的最小值及相应的点C的坐标;②若点E是以原点O为圆心,1为半径的圆上的一个动点,求点C与点E的“非常距离”的最小值及相应的点E和点C的坐标.24.(2022·北京市第一六一中学分校一模)在平面直角坐标系xOy中,直线l1:y=﹣2x+6与y轴交于点A,与x轴交于点B,二次函数的图象过A,B两点,且与x轴的另一交点为点C,BC=2;(1)求点C的坐标;(2)对于该二次函数图象上的任意两点P1(x1,y1),P2(x2,y2),当x1>x2>2时,总有y1>y2.①求二次函数的表达式;②设点A在抛物线上的对称点为点D,记抛物线在C,D之间的部分为图象G(包含C,D两点).若一次函数y=kx﹣2(k≠0)的图象与图象G有公共点,结合函数图象,求k的取值范围.25.(2022·北京通州·一模)已知一次函数y1=2x+m的图象与反比例函数y2=k(k>0)的x图象交于A,B两点.(1)当点A的坐标为(2,1)时.①求m,k的值;②当x>2时,y1______y2(填“>”“=”或“<”).(2)将一次函数y1=2x+m的图象沿y轴向下平移4个单位长度后,使得点A,B关于原点对称,求m的值26.(2022·北京西城·xOy中,直线l1:y=kx+b与坐标轴分别交于A(2,0),B(0,4)两点.将直线l1在x轴上方的部分沿x轴翻折,其余的部分保持不变,得到一个新的图形,这个图形与直线l2:y=m(x−4)(m≠0)分别交于点C,D.(1)求k,b的值;(2)横、纵坐标都是整数的点叫做整点.记线段AC,CD,DA围成的区域(不含边界)为W.①当m=1时,区域W内有______个整点;②若区域W内恰有3个整点,直接写出m的取值范围.27.(2022·北京海淀·一模)在平面直角坐标系xOy中,二次函数y=ax2−2ax(a≠0)的图象经过点A(−1,3).(1)求该二次函数的解析式以及图象顶点的坐标;(2)一次函数y=2x+b的图象经过点A,点(m,y1)在一次函数y=2x+b的图象上,点(m+4,y2)在二次函数y=ax2−2ax的图象上.若y1>y2,求m的取值范围.28.(2022·北京十一学校一分校一模)在平面直角坐标系xOy中,函数y=k的图象与直线yx=mx交于点A(2,2).(1)求k,m的值;(2)点P的横坐标为n,且在直线y=mx上,过点P作平行于x轴的直线,交y轴于点M,交(x>0)的图象于点N.函数y=kx①n=1时,用等式表示线段PM与PN的数量关系,并说明理由;②若0<PN≤3PM,结合函数的图象,直接写出n的取值范围.29.(2022·北京·东直门中学模拟预测)在平面直角坐标系xOy中,对于点P(x1,y1),给出如下定义:当点Q(x2,y2)满足x1+x2=y1+y2时,称点Q是点P的等和点.已知点P(2,0).(1)在Q1(0,2),Q2(−2,−1),Q3(1,3)中,点P的等和点有______;(2)点A在直线y=−x+4上,若点P的等和点也是点A的等和点,求点A的坐标;(3)已知点B(b,0)和线段MN,对于所有满足BC=1的点C,线段MN上总存在线段PC上每个点的等和点.若MN的最小值为5,直接写出b的取值范围.30.(2022·北京市第五中学分校模拟预测)在平面直角坐标系xOy中,直线l1:y=ax(a≠0)过点A(﹣2,1),直线l2:y=mx+n过点B(﹣1,3).(1)求直线l的解析式;(2)用含m的代数式表示n;(3)当x<2时,对于x的每一个值,函数y=ax的值小于函数y=mx+n的值,求m的取值范围.。
一次函数的应用与综合篇(解析版)--中考数学必考考点总结+题型专训
知识回顾一次函数的应用与综合--中考数学必考考点总结+题型专训1.一次函数的图像与性质:一次函数与x 轴的交点坐标公式为:⎪⎭⎫ ⎝⎛-0 ,kb ;与y 轴的交点坐标公式为:()b ,0。
2.一次函数的平移:①左右平移,自变量上进行加减。
左加右减。
即若()0≠+=k b kx y 向左移动了m 个单位,则平移后的函数解析式为:()()0≠++=k b m x k y ;若()0≠+=k b kx y 向右移动了m 个单位,则平移后的函数解析式为:()()0≠+-=k b m x k y 。
②上下平移,解析式整体后面进行加减。
上加下减。
即若()0≠+=k b kx y 向上移动了m 个单位,则平移后的函数解析式为:()0≠++=k m b kx y ;若()0≠+=k b kx y 向下移动了m 个单位,则平移后的函数解析式为:()0≠-+=k m b kx y 。
3.一次函数的对称变换:①若一次函数关于x 轴对称,则自变量不变,函数值变为相反数。
即()0≠+=k b kx y 关于x 轴的函数解析式为:()0≠+=-k b kx y ,即()0≠--=k b kx y 。
②若一次函数关于y 轴对称,则函数值不变,自变量变成相反数。
即()0≠+=k b kx y 关于y 轴的函数解析式为:()()0≠+-=k b x k y ,即()0≠+-=k b kx y 。
③若一次函数关于原点对称,则自变量与函数值均变成相反数。
即()0≠+=k b kx y 关于原点的函数解析式为:()()0≠+-=-k b x k y ,即()0≠-=k b kx y 。
4.待定系数法求函数解析式:具体步骤:①设函数解析式——()0≠+=k b kx y 。
②找点——经过函数图像上的点。
③带入——将找到的点的坐标带入函数解析式中得到方程(或方程组)。
④解——解③中得到的方程(或方程组),求出b k ,的值。
⑤反带入——将求出的k ,5.一次函数与一元一次方程:①若一次函数()0≠+=k b kx y 的图像经过点()n m ,,则一元一次方程n b kx =+的解为m x =。
2022年中考数学复习专题12一次函数及其应用2
专题12 一次函数及其应用☞2年中考【2022年题组】 1.〔2022宿迁〕在平面直角坐标系中,假设直线b kx y +=经过第一、三、四象限,那么直线k bx y +=不经过的象限是〔 〕A .第一象限B .第二象限C .第三象限D .第四象限【答案】C .【解析】试题分析:由一次函数b kx y +=的图象经过第一、三、四象限,∴k >0,b <0,∴直线k bx y +=经过第一、二、四象限,∴直线k bx y +=不经过第三象限,应选C .考点:一次函数图象与系数的关系.2.〔2022桂林〕如图,直线y kx b =+与y 轴交于点〔0,3〕、与x 轴交于点〔a ,0〕,当a 满足30a -≤<时,k 的取值范围是〔 〕A .10k -≤<B .13k ≤≤C .1k ≥D .3k ≥【答案】C .考点:1.一次函数与一元一次不等式;2.综合题.3.〔2022贺州〕120k k <<,那么函数1k y x =和21y k x =-的图象大致是〔 〕A .B .C .D . 【答案】C .【解析】试题分析:∵120k k <<,b=﹣1<0,∴直线过一、三、四象限;双曲线位于二、四象限.应选C .考点:1.反比例函数的图象;2.一次函数的图象.4.〔2022南通〕在20km 越野赛中,甲乙两选手的行程y 〔单位:km 〕随时间x 〔单位:h 〕变化的图象如下图,根据图中提供的信息,有以下说法:①两人相遇前,甲的速度小于乙的速度;②出发后1小时,两人行程均为10km ;③出发后1.5小时,甲的行程比乙多3km ;④甲比乙先到达终点.其中正确的有〔 〕A .1个B .2个C .3个D .4个【答案】C .考点:一次函数的应用.5.〔2022徐州〕假设函数y kx b =-的图象如下图,那么关于x 的不等式(3)0k x b -->的解集为〔 〕A .x <2B .x >2C .x <5D .x >5【答案】C.【解析】试题分析:∵一次函数y kx b=-经过点〔2,0〕,∴2k﹣b=0,b=2k.函数值y随x的增大而减小,那么k<0;解关于(3)0k x b-->,移项得:kx>3k+b,即kx>5k;两边同时除以k,因为k<0,因而解集是x<5.应选C.考点:1.一次函数与一元一次不等式;2.含字母系数的不等式;3.综合题.6.〔2022连云港〕如图是本地区一种产品30天的销售图象,图①是产品日销售量y〔单位:件〕与时间t〔单位;天〕的函数关系,图②是一件产品的销售利润z〔单位:元〕与时间t 〔单位:天〕的函数关系,日销售利润=日销售量×一件产品的销售利润,以下结论错误的选项是〔〕A.第24天的销售量为200件B.第10天销售一件产品的利润是15元C.第12天与第30天这两天的日销售利润相等D.第30天的日销售利润是750元【答案】C.考点:1.一次函数的应用;2.综合题.7.〔2022德阳〕如图,在一次函数6y x=-+的图象上取一点P,作PA⊥x轴于点A,PB⊥y轴于点B,且矩形PBOA的面积为5,那么在x轴的上方满足上述条件的点P的个数共有〔〕A.1个B.2个C.3个D.4个【答案】C.考点:1.一次函数图象上点的坐标特征;2.分类讨论.8.〔2022德阳〕1m x =+,2n x =-+,假设规定1 ()1 ()m n m n y m n m n +-≥⎧=⎨-+<⎩,那么y 的最小值为〔 〕A .0B .1C .﹣1D .2【答案】B .【解析】试题分析:因为1m x =+,2n x =-+,当12x x +≥-+时,可得:0.5x ≥,那么1122y x x x =+++-=,那么y 的最小值为1;当12x x +<-+时,可得:0.5x <,那么11222y x x x =---+=-+,那么y <1,应选B .考点:1.一次函数的性质;2.分段函数;3.新定义;4.分类讨论;5.最值问题.A .y=0.12x ,x >0B .y=60﹣0.12x ,x >0C .y=0.12x ,0≤x≤500D .y=60﹣0.12x ,0≤x≤500【答案】D .【解析】试题分析:因为油箱容量为60 L 的汽车,加满汽油后行驶了100 Km 时,油箱中的汽油大约消耗了15,可得:15×60÷100=0.12L/km ,60÷0.12=500〔km 〕,所以y 与x 之间的函数解析式和自变量取值范围是:y=60﹣0.12x ,〔0≤x≤500〕,应选D .考点:根据实际问题列一次函数关系式.10.〔2022河池〕我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆〞.如图,直线l :43y kx =+与x 轴、y 轴分别交于A 、B ,∠OAB=30°,点P 在x 轴上,⊙P 与l 相切,当P 在线段OA 上运动时,使得⊙P 成为整圆的点P 个数是〔 〕A .6B .8C .10D .12【答案】A .考点:1.切线的性质;2.一次函数图象上点的坐标特征;3.新定义;4.动点型;5.综合题.11.〔2022广元〕如图,把RI △ABC 放在直角坐标系内,其中∠CAB=90°, BC=5.点A 、B 的坐标分别为〔1,0〕、〔4,0〕.将△ABC 沿x 轴向右平移,当点C 落在直线26y x =-上时,线段BC 扫过的面积为〔 〕A .4B .8C .16D .82【答案】C .考点:1.一次函数综合题;2.一次函数图象上点的坐标特征;3.平行四边形的性质;4.平移的性质.12.〔2022泸州〕假设关于x 的一元二次方程2210x x kb -++=有两个不相等的实数根,那么一次函数y kx b =+的大致图象可能是〔 〕 A . B . C .D .【答案】B .【解析】试题分析:∵2210x x kb -++=有两个不相等的实数根,∴△=4﹣4〔kb+1〕>0,解得kb <0,A .k >0,b >0,即kb >0,故A 不正确;B .k >0,b <0,即kb <0,故B 正确;C .k <0,b <0,即kb >0,故C 不正确;D .k >0,b=0,即kb=0,故D 不正确;应选B .考点:1.根的判别式;2.一次函数的图象.13.〔2022鄂州〕甲、乙两车从A 城出发匀速行驶至B 城.在整个行驶过程中,甲、乙两车离开A 城的距离y 〔千米〕与甲车行驶的时间t 〔小时〕之间的函数关系如下图.那么以下结论:①A ,B 两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车; ④当甲、乙两车相距50千米时,t=54或154.其中正确的结论有〔 〕A .1个B .2个C .3个D .4个【答案】B .考点:一次函数的应用.14.〔2022随州〕甲骑摩托车从A 地去B 地,乙开汽车从B 地去A 地,同时出发,匀速行驶,各自到达终点后停止,设甲、乙两人间距离为s 〔单位:千米〕,甲行驶的时间为t 〔单位:小时〕,s 与t 之间的函数关系如下图,有以下结论:①出发1小时时,甲、乙在途中相遇;②出发1.5小时时,乙比甲多行驶了60千米;③出发3小时时,甲、乙同时到达终点;④甲的速度是乙速度的一半.其中,正确结论的个数是〔 〕A .4B .3C .2D .1【答案】B .【解析】试题分析:由图象可得:出发1小时,甲、乙在途中相遇,故①正确;甲骑摩托车的速度为:120÷3=40〔千米/小时〕,设乙开汽车的速度为a 千米/小时,那么120140a =+,解得:a=80,∴乙开汽车的速度为80千米/小时,∴甲的速度是乙速度的一半,故④正确;∴出发1.5小时,乙比甲多行驶了:1.5×〔80﹣40〕=60〔千米〕,故②正确;乙到达终点所用的时间为1.5小时,甲得到终点所用的时间为3小时,故③错误;∴正确的有3个,应选B .考点:一次函数的应用.15.〔2022北京市〕一家游泳馆的游泳收费标准为30元/次,假设购置会员年卡,可享受如下优惠:例如,购置A 类会员年卡,一年内游泳20次,消费50+25×20=550元,假设一年内在该游泳馆游泳的次数介于45~55次之间,那么最省钱的方式为〔 〕A .购置A 类会员年卡B .购置B 类会员年卡C .购置C 类会员年卡D .不购置会员年卡【答案】C .考点:一次函数的应用.16.〔2022甘南州〕如图,直线y kx b =+经过A 〔2,1〕,B 〔﹣1,﹣2〕两点,那么不等式122x kx b >+>-的解集为〔 〕A .x <2B .x >﹣1C .x <1或x >2D .﹣1<x <2【答案】D .【解析】试题分析:把A 〔2,1〕,B 〔﹣1,﹣2〕两点的坐标代入y kx b =+,得:212k b k b +=⎧⎨-+=-⎩,解得:11k b =⎧⎨=-⎩.解不等式组:1122x x >->-,得:﹣1<x <2.应选D .考点:1.一次函数与一元一次不等式;2.数形结合.17.〔2022南平〕直线22y x =+沿y 轴向下平移6个单位后与x 轴的交点坐标是〔 〕A . 〔﹣4,0〕B . 〔﹣1,0〕C . 〔0,2〕D . 〔2,0〕【答案】D .考点:一次函数图象与几何变换.18.〔2022宁德〕如图,在平面直角坐标系中,点A1,A2,A3…都在x 轴上,点B1,B2,B3…都在直线y x =上,△OA1B1,△B1A1A2,△B2B1A2,△B2A2A3,△B3B2A3…都是等腰直角三角形,且OA1=1,那么点B2022的坐标是〔 〕A .〔20142,20142〕B .〔20152,20152〕C .〔20142,20152〕D .〔20152,20142〕【答案】A .【解析】试题分析:∵OA1=1,∴点A1的坐标为〔1,0〕,∵△OA1B1是等腰直角三角形,∴A1B1=1,∴B1〔1,1〕,∵△B1A1A2是等腰直角三角形,∴A1A2=1,2,∵△B2B1A2为等腰直角三角形,∴A2A3=2,∴B2〔2,2〕,同理可得,B3〔22,22〕,B4〔32,32〕,…Bn 〔12n -,12n -〕,∴点B2022的坐标是〔20142,20142〕.应选A .考点:1.一次函数图象上点的坐标特征;2.等腰直角三角形;3.规律型;4.综合题.19.〔2022长春〕如图,在平面直角坐标系中,点A 〔﹣1,m 〕在直线23y x =+上,连结OA ,将线段OA 绕点O 顺时针旋转90°,点A 的对应点B 恰好落在直线y x b =-+上,那么b 的值为〔 〕A .﹣2B .1C .32 D .2【答案】D .考点:1.一次函数图象上点的坐标特征;2.坐标与图形变化-旋转;3.压轴题.20.〔2022哈尔滨〕小明家、公交车站、学校在一条笔直的公路旁〔小明家、学校到这条公路的距离忽略不计〕,一天,小明从家出发去上学,沿这条公路步行到公交车站恰好乘上一辆公交车,公交车沿这条公路匀速行驶,小明下车时发现还有4分钟上课,于是他沿这条公路跑步赶到学校〔上、下车时间忽略不计〕,小明与家的距离s 〔单位:米〕与他所用时间t 〔单位:分钟〕之间的函数关系如下图,小明从家出发7分钟时与家的距离为1200米,从上公交车到他到达学校共用10分钟,以下说法:①小明从家出发5分钟时乘上公交车 ②公交车的速度为400米/分钟③小明下公交车后跑向学校的速度为100米/分钟 ④小明上课没有迟到其中正确的个数是〔 〕A .1个B .2个C .3个D .4个【答案】D .【解析】试题分析:①小明从家出发乘上公交车的时间为7﹣〔1200﹣400〕÷400=5分钟,①正确; ②公交车的速度为〔3200﹣1200〕÷〔12﹣7〕=400米/分钟,②正确;③小明下公交车后跑向学校的速度为〔3500﹣3200〕÷3=100米/分钟,③正确;④上公交车的时间为12﹣5=7分钟,跑步的时间为10﹣7=3分钟,因为3<4,小明上课没有迟到,④正确;应选D .考点:1.一次函数的应用;2.分段函数.21.〔2022西宁〕同一直角坐标系中,一次函数11y k x b =+与正比例函数22y k x =的图象如下图,那么满足12y y ≥的x 取值范围是〔 〕A .2x ≤-B .2x ≥-C .2x <-D .2x >-【答案】A .考点:一次函数与一元一次不等式.22.〔2022枣庄〕直线y kx b =+,假设5k b +=-,5kb =,那该直线不经过的象限是〔 〕A .第一象限B .第二象限C .第三象限D .第四象限【答案】A .【解析】试题分析:∵5k b +=-,5kb =,∴k <0,b <0,∴直线y kx b =+经过二、三、四象限,即不经过第一象限.应选A .考点:一次函数图象与系数的关系.23.〔2022济南〕如图,一次函数1y x b =+与一次函数24y kx =+的图象交于点P 〔1,3〕,那么关于x 的不等式4x b kx +>+的解集是〔 〕A .x >﹣2B .x >0C .x >1D .x <1【答案】C .【解析】试题分析:当x >1时,4x b kx +>+,即不等式4x b kx +>+的解集为x >1.应选C . 考点:一次函数与一元一次不等式.24.〔2022淄博〕一次函数3y x b =+和3y ax =-的图象如下图,其交点为P 〔﹣2,﹣5〕,那么不等式33x b ax +>-的解集在数轴上表示正确的选项是〔 〕A .B .C .D .【答案】C . 考点:1.一次函数与一元一次不等式;2.在数轴上表示不等式的解集.25.〔2022菏泽〕如图,在平面直角坐标系xOy 中,直线3y =经过点A ,作AB ⊥x 轴于点B ,将△ABO 绕点B 逆时针旋转60°得到△CBD .假设点B 的坐标为〔2,0〕,那么点C 的坐标为〔 〕A .〔﹣13〕B .〔﹣23〕C .〔3,1〕D .〔32〕【答案】A .考点:1.坐标与图形变化-旋转;2.一次函数图象上点的坐标特征.26.〔2022丽水〕在平面直角坐标系中,过点〔﹣2,3〕的直线l 经过一、二、三象限,假设点〔0,a 〕,〔﹣1,b 〕,〔c ,﹣1〕都在直线l 上,那么以下判断正确的选项是〔 〕A .a <bB .a <3C .b <3D .c <﹣2【答案】D .【解析】试题分析:设一次函数的解析式为y kx b =+〔0k ≠〕,∵直线l 过点〔﹣2,3〕.点〔0,a 〕,〔﹣1,b 〕,〔c ,﹣1〕,∴斜率302a k -=+=312b --+=132c --+,即k=32a -=3b -=42c -+,∵直线l 经过一、二、三象限,∴k >0,∴a >3,b >3,c <﹣2.应选D .考点:一次函数图象上点的坐标特征.27.〔2022北海〕如图,直线22y x =-+与两坐标轴分别交于A 、B 两点,将线段OA 分成n 等份,分点分别为P1,P2,P3,…,Pn ﹣1,过每个分点作x 轴的垂线分别交直线AB 于点T1,T2,T3,…,Tn ﹣1,用S1,S2,S3,…,Sn ﹣1分别表示Rt △T1OP1,Rt △T2P1P2,…,Rt △Tn ﹣1Pn ﹣2Pn ﹣1的面积,那么当n=2022时,S1+S2+S3+…+Sn ﹣1= . 【答案】10072015. 故答案为:10072015.考点:1.一次函数图象上点的坐标特征;2.规律型;3.综合题.28.〔2022贵港〕如图,点A1,A2,…,An 均在直线1y x =-上,点B1,B2,…,Bn 均在双曲线1y x =-上,并且满足:A1B1⊥x 轴,B1A2⊥y 轴,A2B2⊥x 轴,B2A3⊥y 轴,…,AnBn ⊥x 轴,BnAn+1⊥y 轴,…,记点An 的横坐标为an 〔n 为正整数〕.假设11a =-,那么a2022= .【答案】2.考点:1.反比例函数图象上点的坐标特征;2.一次函数图象上点的坐标特征;3.规律型;4.综合题.29.〔2022宜宾〕如图,一次函数的图象与x 轴、y 轴分别相交于点A 、B ,将△AOB 沿直线AB 翻折,得△ACB .假设C 〔32,那么该一次函数的解析式为 .【答案】y =考点:1.翻折变换〔折叠问题〕;2.待定系数法求一次函数解析式;3.综合题.30.〔2022达州〕在直角坐标系中,直线1y x =+与y 轴交于点A ,按如图方式作正方形A1B1C1O 、A2B2C2C1、A3B3C1C2…,A1、A2、A3…在直线1y x =+上,点C1、C2、C3…在x 轴上,图中阴影局部三角形的面积从左到游依次记为1S 、2S 、3S 、…n S ,那么n S 的值为 〔用含n 的代数式表示,n 为正整数〕.【答案】232n -.考点:1.一次函数图象上点的坐标特征;2.正方形的性质;3.规律型;4.综合题.31.〔2022天水〕正方形OA1B1C1、A1A2B2C2、A2A3B3C3,按如图放置,其中点A1、A2、A3在x轴的正半轴上,点B1、B2、B3在直线2y x=-+上,那么点A3的坐标为.【答案】〔74,0〕.【解析】试题分析:设正方形OA1B1C1的边长为t,那么B1〔t,t〕,所以t=﹣t+2,解得t=1,得到B1〔1,1〕;设正方形A1A2B2C2的边长为a,那么B2〔1+a,a〕,a=﹣〔1+a〕+2,解得a=12,得到B2〔32,12〕;设正方形A2A3B3C3的边长为b,那么B3〔32+b,b〕,b=﹣〔32+b〕+2,解得b=14,得到B3〔74,14〕,所以A3〔74,0〕.故答案为:〔74,0〕.考点:1.正方形的性质;2.一次函数图象上点的坐标特征;3.规律型;4.综合题.32.〔2022东营〕如图放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为1的等边三角形,点A在x轴上,点O,B1,B2,B3,…都在直线l上,那么点A2022的坐标是.【答案】〔20172201532〕.考点:1.一次函数图象上点的坐标特征;2.等边三角形的性质;3.规律型;4.综合题.33.〔2022阜新〕小明到超市买练习本,超市正在打折促销:购置10本以上,从第11本开始按标价打折优惠,买练习本所花费的钱数y 〔元〕与练习本的个数x 〔本〕之间的关系如下图,那么在这个超市买10本以上的练习本优惠折扣是 折.【答案】七.考点:1.一次函数的应用;2.分段函数.34.〔2022来宾〕过点〔0,﹣2〕的直线1l :1y kx b =+〔0k ≠〕与直线2l :21y x =+交于点P 〔2,m 〕.〔1〕写出使得12y y <的x 的取值范围;〔2〕求点P 的坐标和直线1l 的解析式.【答案】〔1〕x <2;〔2〕P 〔2,3〕,.【解析】试题分析:〔1〕观察函数图象可得到当x <2时,直线1l 在直线2l 的下方,那么12y y <; 〔2〕先P 〔2,m 〕代入21y x =+可求出m 得到P 点坐标,然后利用待定系数法求直线1l 的解析式.试题解析:〔1〕当x <2时,12y y <; 〔2〕把P 〔2,m 〕代入21y x =+得m=2+1=3,那么P 〔2,3〕,把P 〔2,3〕和〔0,﹣2〕分别代入1y kx b =+得:232k b b +=⎧⎨=-⎩,解得:522k b ⎧=⎪⎨⎪=-⎩,所以直线1l 的解析式为:1522y x =-. 考点:两条直线相交或平行问题.35.〔2022梧州〕梧州市特产批发市场有龟苓膏粉批发,其中A 品牌的批发价是每包20元,B 品牌的批发价是每包25元,小王需购置A 、B 两种品牌的龟苓膏共1000包.〔1〕假设小王按需购置A 、B 两种品牌龟苓膏粉共用22000元,那么各购置多少包? 〔2〕凭会员卡在此批发市场购置商品可以获得8折优惠,会员卡费用为500元.假设小王购置会员卡并用此卡按需购置1000包龟苓膏粉,共用了y 元,设A 品牌买了x 包,请求出y 与x 之间的函数关系式.〔3〕在〔2〕中,小王共用了20000元,他方案在网店包邮销售这批龟苓膏粉,每包龟苓膏粉小王需支付邮费8元,假设每包销售价格A 品牌比B 品牌少5元,请你帮他计算,A 品牌的龟苓膏粉每包定价不低于多少元时才不亏本〔运算结果取整数〕?【答案】〔1〕A 600包、B 400包;〔2〕y=﹣4x+20500;〔3〕24.考点:1.一次函数的应用;2.综合题.36.〔2022河池〕丽君花卉基地出售两种盆栽花卉:太阳花6元/盆,绣球花10元/盆.假设一次购置的绣球花超过20盆时,超过20盆局部的绣球花价格打8折.〔1〕分别写出两种花卉的付款金额y 〔元〕关于购置量x 〔盆〕的函数解析式;〔2〕为了美化环境,花园小区方案到该基地购置这两种花卉共90盆,其中太阳花数量不超过绣球花数量的一半.两种花卉各买多少盆时,总费用最少,最少费用是多少元?【答案】〔1〕太阳花:6y x =,绣球花:y=10 (20)840 (20)x x x x ≤⎧⎨+>⎩;〔2〕太阳花30盆,绣球花60盆时,总费用最少,最少费用是700元.考点:1.一次函数的应用;2.最值问题;3.综合题;4.分段函数;5.分类讨论.37.〔2022常州〕某市的光明中学、市图书馆和光明电影院在同一直线上,它们之间的距离如下图.小张星期天上午带了75元现金先从光明中学乘出租车去了市图书馆,付费9元;中午再从市图书馆乘出租车去了光明电影院,付费12.6元.假设该市出租车的收费标准是:不超过3公里计费为m 元,3公里后按n 元/公里计费.〔1〕求m ,n 的值,并直接写出车费y 〔元〕与路程x 〔公里〕〔x >3〕之间的函数关系式; 〔2〕如果小张这天外出的消费还包括:中午吃饭花费15元,在光明电影院看电影花费25元.问小张剩下的现金够不够乘出租车从光明电影院返回光明中学?为什么?【答案】〔1〕m=9,n=1.8,y=1.8x+3.6〔x >3〕;〔2〕不够.考点:1.一次函数的应用;2.综合题;3.分段函数.38.〔2022徐州〕为加强公民的节水意识,合理利用水资源.某市对居民用水实行阶梯水价,居民家庭每月用水量划分为三个阶梯,一、二、三级阶梯用水的单价之比等于1:1.5:2.如图折线表示实行阶梯水价后每月水费y〔元〕与用水量xm3之间的函数关系.其中线段AB 表示第二级阶梯时y与x之间的函数关系.〔1〕写出点B的实际意义;〔2〕求线段AB所在直线的表达式;〔3〕某户5月份按照阶梯水价应缴水费102元,其相应用水量为多少立方米?【答案】〔1〕图中B点的实际意义表示当用水25m3时,所交水费为90元;〔2〕945 22y x=-;〔3〕27.考点:1.一次函数的应用;2.分段函数;3.综合题.39.〔2022泰州〕一次函数42-=x y 的图象与x 轴、y 轴分别相交于点A 、B ,点P 在该函数的图象上,P 到x 轴、y 轴的距离分别为1d 、2d .〔1〕当P 为线段AB 的中点时,求21d d +的值;〔2〕直接写出21d d +的范围,并求当123d d +=时点P 的坐标;〔3〕假设在线段AB 上存在无数个P 点,使421=+ad d 〔a 为常数〕,求a 的值.【答案】〔1〕3;〔2〕122d d +≥, P 的坐标为〔1,2〕或〔73,23〕;〔3〕2.〔3〕设P 〔m ,2m ﹣4〕,∴1d =24m -,2d =m ,∵P 在线段AB 上,∴0≤m≤2,∴1d =4﹣2m ,2d =m ,∵421=+ad d ,∴4﹣2m+am=4,即〔a ﹣2〕m=0,∵有无数个点,∴a=2. 考点:1.一次函数综合题;2.分类讨论;3.综合题;4.压轴题.40.〔2022淮安〕小丽的家和学校在一条笔直的马路旁,某天小丽沿着这条马路上学,先从家步行到公交站台甲,再乘车到公交站台乙下车,最后步行到学校〔在整个过程中小丽步行的速度不变〕,图中折线ABCDE 表示小丽和学校之间的距离y 〔米〕与她离家时间x 〔分钟〕之间的函数关系.〔1〕求小丽步行的速度及学校与公交站台乙之间的距离;〔2〕当8≤x≤15时,求y与x之间的函数关系式.【答案】〔1〕50米/分钟,150米;〔2〕5007650y x=-+〔8≤x≤15〕.考点:一次函数的应用.41.〔2022盐城〕如图,在平面直角坐标系xOy中,正比例函数xy43=与一次函数7+-=xy的图象交于点A.〔1〕求点A的坐标;〔2〕设x轴上有一点P〔a,0〕,过点P作x轴的垂线〔垂线位于点A的右侧〕,分别交x y43 =和7+-=xy的图象于点B、C,连接OC.假设BC=57OA,求△OBC的面积.【答案】〔1〕A〔4,3〕;〔2〕28.考点:1.两条直线相交或平行问题;2.勾股定理.【2022年题组】1. 〔2022年广东汕尾中考〕直线y=kx+b,假设k+b=﹣5,kb=6,那么该直线不经过〔〕A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A.考点:1.不等式的性质;2.一次函数图象与系数的关系.2. 〔2022年贵州贵阳中考〕如图,A点的坐标为〔﹣4,0〕,直线y3x n=+与坐标轴交于点B,C,连接AC,如果∠ACD=90°,那么n的值为〔〕A. 2-B. 423 C.432 D.453【答案】C.【解析】试题分析:∵直线y3x n=+与坐标轴交于点B,C,∴B点的坐标为〔33-n,0〕,C点的坐标为〔0,n〕.∵A点的坐标为〔﹣4,0〕,∠ACD=90°,∴AB2=AC2+BC2.∵AC2=AO2+OC2,BC2=OB2+OC2,∴AB2=AO2+OC2+OB2+OC2,即2222233n44n n n33⎛⎫⎛⎫-+=++-+⎪ ⎪⎪ ⎪⎝⎭⎝⎭.解得n=433-.应选C.考点:1.直线上点的坐标与方程的关系;2.勾股定理;3.方程思想的应用.3. 〔2022年贵州黔西南中考〕甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.甲先出发2秒.在跑步过程中,甲、乙两人的距离y〔米〕与乙出发的时间t〔秒〕之间的关系如下图,给出以下结论:①a=8;②b=92;③c=123.其中正确的选项是〔〕A. ①②③B. 仅有①C. 仅有①③D. 仅有②③【答案】A.考点:一次函数的图象分析.4.〔2022年江苏镇江中考〕过点()23-,的直线()y ax b a0=+≠不经过第一象限.设s a2b=+,那么s的取值范围是〔〕A.35s2-≤≤-B.36<s2-≤-C.36s2-≤≤-D.37<s2-≤-【答案】B.【解析】考点:1. 一次函数图象与系数的关系;2.直线上点的坐标与方程的关系;3.不等式的性质.5.〔2022年四川内江中考〕如图,A1、A2、A3、…、An 、An+1是x 轴上的点,且OA1=A1A2=A2A3=…=AnAn+1=1,分别过点A1、A2、A3、…、An 、An+1作x 轴的垂线交直线y=2x 于点B1、B2、B3、…、Bn 、Bn+1,连接A1B2、B1A2、B2A3、…、AnBn+1、BnAn+1,依次相交于点P1、P2、P3、…、Pn .△A1B1P1、△A2B2P2、△AnBnPn 的面积依次记为S1、S2、S3、…、Sn ,那么Sn 为〔 〕A .n 12n 1++B .m 3n 1-C .2n 2n 1-D .2n 2n 1+【答案】D .【解析】试题分析:∵A1、A2、A3、…、An 、An+1是x 轴上的点,且OA1=A1A2=A2A3=…=AnAn+1=1,分别过点A1、A2、A3、…、An 、An+1作x 轴的垂线交直线y=2x 于点B1、B2、B3、…、Bn 、Bn+1,∴B1的横坐标为:1,纵坐标为:2,那么B1〔1,2〕.同理可得:B2的横坐标为:2,纵坐标为:4,那么B2〔2,4〕,B3〔2,6〕…∵A1B1∥A2B2,∴△A1B1P1∽△A2B2P1. ∴1122A B 1A B 2=.∴△A1B1C1与△A2B2C2对应高的比为:1:2. ∴A1B1边上的高为:13.∴1111A B C 111S S 2233∆==⋅⋅=.同理可得出:2223332A B C 3A B C 49S S ,S S 57∆∆==== ,…… ∴2n n S 2n 1=+.应选D . 考点:1.探索规律题〔图形的变化类〕;2.直线上点的坐标与方程的关系;3.相似三角形的判定和性质.6〔2022年福建莆田中考〕如图放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为2的等边三角形,边AO 在y 轴上,点B1,B2,B3,…都在直线3y 3=上,那么A2022的坐标是 .【答案】〔20223,2022〕.考点:1.探索规律题〔图形的变化类〕;2.直线上点的坐标与方程的关系;3.等边三角形的性质;4. 锐角三角函数定义;5.特殊角的三角函数值.7. 〔2022年贵州黔东南中考〕在如下图的平面直角坐标系中,点P是直线y=x上的动点,A〔1,0〕,B〔2,0〕是x轴上的两点,那么PA+PB的最小值为.5考点:1.轴对称的应用〔最短路线问题〕;2.直线上点的坐标与方程的关系;3.勾股定理.8. 〔2022年江苏常州中考〕在平面直角坐标系xOy中,一次函数y kx b=+的图像经过点P〔1,1〕,与x轴交于点A,与y轴交于点B,且tan∠ABO=3,那么A点的坐标是【答案】〔-2,0〕或〔4,0〕.【解析】试题分析:如答图,在Rt△AOB中,由tan∠ABO=3,可得OA=3OB,那么一次函数y=kx+b中1k3=±.∵一次函数y=kx+b〔k≠0〕的图象过点P〔1,1〕,∴当k=13时,求可得b=23,一次函数的解析式为12y x33 =+.令y=0,那么x=-2. 当k=13-时,求可得b=43,一次函数的解析式为14y x33=-+.令y=0,那么x=4.∴点A 的坐标是〔-2,0〕或〔4,0〕.考点:1.待定系数法求一次函数解析式;2.锐角三角函数的定义;3.分类思想的应用.9. 〔2022年辽宁营口中考〕如图,在平面直角坐标系中,直线l :3y x 3=,直线l2:y 3x =,在直线l1上取一点B ,使OB=1,以点B 为对称中心,作点O 的对称点B1,过点B1作B1A1∥l2,交x 轴于点A1,作B1C1∥x 轴,交直线l2于点C1,得到四边形OA1B1C1;再以点B1为对称中心,作O 点的对称点B2,过点B2作B2A2∥l2,交x 轴于点A2,作B2C2∥x 轴,交直线l2于点C2,得到四边形OA2B2C2;…;按此规律作下去,那么四边形OAnBnCn 的面积是 .【答案】n436.考点:1.探索规律题〔图形的变化类〕;2.一次函数的性质;3.点的坐标;4.菱形的判定和性质;5.等边三角形的判定和性质.10.〔2022年江苏无锡中考〕某发电厂共有6台发电机发电,每台的发电量为300万千瓦/月.该厂方案从今年7月开始到年底,对6台发电机各进行一次改造升级.每月改造升级1台,这台发电机当月停机,并于次月再投入发电,每台发电机改造升级后,每月的发电量将比原来提高20%.每台发电机改造升级的费用为20万元.将今年7月份作为第1个月开始往后算,该厂第x 〔x 是正整数〕个月的发电量设为y 〔万千瓦〕.〔1〕求该厂第2个月的发电量及今年下半年的总发电量;〔2〕求y 关于x 的函数关系式;〔3〕如果每发1千瓦电可以盈利0.04元,那么从第1个月开始,至少要到第几个月,这期间该厂的发电盈利扣除发电机改造升级费用后的盈利总额ω1〔万元〕,将超过同样时间内发电机不作改造升级时的发电盈利总额ω2〔万元〕?【答案】〔1〕该厂第2个月的发电量为1560千瓦;今年下半年的总发电量为9900千瓦;〔2〕y=60x+1440〔1≤x≤6〕;〔3〕至少要到第17个月ω1超过ω2.〔3〕设到第n 个月时ω1>ω2,当n=6时,ω1=9900×0.04﹣20×6=276,ω2=300×6×6×0.04=432,ω1>ω2不符合.∴n >6.∴ω1=[9900+360×6〔n ﹣6〕]×0.04﹣20×6=86.4n ﹣240,ω2=300×6n×0.04=72n .当ω1>ω2时,86.4n ﹣240>72n ,解之得n >16.7,∴n=17. 答:至少要到第17个月ω1超过ω2.考点:1.一次函数和不等式的应用;2.由实际问题列函数关系式.☞考点归纳归纳1:正比例函数和一次函数的概念根底知识归纳:1、一般地,如果bkxy+=〔k,b是常数,k≠0〕,那么y叫做x的一次函数.特别地,当一次函数bkxy+=中的b为0时,kxy=〔k为常数,k≠0〕。
云南省2022年中考数学总复习课件:第11讲一次函数的应用
【自主解答】(1)由题意可知:1
200 x
=1 500 x+4
,
解得:x=16.
经检验,x=16 是所列方程的解,所以 x 的值是 16.
(2)设购进甲种水果 m 千克,则购进乙种水果(100-m)千克,利润为 y 元,
由题意可知:
y=(20-16)m+(25-16-4)(100-m)
=-m+500,
水果单价
甲乙
进价/(元/千克) x x+4
售价/(元/千克) 20 25
已知用 1 200 元购进甲种水果的重量与用 1 500 元购进乙种水果的重量相同.
(1)求 x 的值;
(2)若超市购进这两种水果共 100 千克,其中甲种水果的重量不低于乙种水果重量的 3
倍,则超市应如何进货才能获得最大利润?最大利润是多少?
【思路点拨】(1)根据函数图象和题意可以求得小刚家与学校的距离为 3 000 m,小刚 骑自行车的速度为 200 m/min. (2)先求出小刚从图书馆返回家的时间,进而得出总时间,再利用待定系数法即可求出 y 与 x 之间的函数表达式. (3)把 x=35 代入(2)的结论解答即可. 【自主解答】(1)由题意得,小刚家与学校的距离为 3 000 m, 小刚骑自行车的速度为:(5 000-3 000)÷10=200(m/min).
b=9 000,
∴y=-200x+9 000(20≤x≤45).
(3)小刚出发 35 分钟时,即当 x=35 时,
y=-200×35+9 000=2 000.
答:此时他离家 2 000 m.
(2021·广安中考)国庆节前,某超市为了满足人们的购物需求,计划购进甲、乙
两种水果进行销售.经了解,甲种水果和乙种水果的进价与售价如表所示.
2022年中考数学一轮复习高频考点精讲精练专题14 一次函数
专题14 一次函数一、一次函数的图象【高频考点精讲】1.一次函数的图象的画法:经过两点(0,b)、(﹣,0)或(1,k+b)作直线y=kx+b。
注意:①使用两点法画一次函数的图象,不一定就选择上面的两点,而要根据具体情况,所选取的点的横、纵坐标尽量取整数,以便于描点准确;②一次函数的图象是与坐标轴不平行的一条直线(正比例函数是过原点的直线),但直线不一定是一次函数的图象.如x=a,y=b分别是与y轴,x轴平行的直线,就不是一次函数的图象。
2.一次函数图象之间的位置关系:直线y=kx+b,可以看做由直线y=kx平移|b|个单位而得到.当b>0时,向上平移;b<0时,向下平移。
注意:①如果两条直线平行,则其比例系数相等;反之亦然;②将直线平移,其规律是:上加下减,左加右减;③两条直线相交,其交点都适合这两条直线。
【热点题型精练】1.(2021•宁夏中考)已知点A(x1,y1)、B(x2,y2)在直线y=kx+b(k≠0)上,当x1<x2时,y2>y1,且kb>0,则在平面直角坐标系内,它的图象大致是()A.B.C.D.2.(2021•阿坝州中考)已知一次函数y=ax﹣1,若y随x的增大而减小,则它的图象不经过第象限.3.(2021•自贡中考)当自变量﹣1≤x≤3时,函数y=|x﹣k|(k为常数)的最小值为k+3,则满足条件的k的值为.二、一次函数图象与系数的关系【高频考点精讲】由于y=kx+b与y轴交于(0,b),当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.①k>0,b>0⇔y=kx+b的图象在一、二、三象限;②k>0,b<0⇔y=kx+b的图象在一、三、四象限;③k<0,b>0⇔y=kx+b的图象在一、二、四象限;④k<0,b<0⇔y=kx+b的图象在二、三、四象限。
【热点题型精练】4.(2021•柳州中考)若一次函数y=kx+b的图象如图所示,则下列说法正确的是()A.k>0B.b=2C.y随x的增大而增大D.x=3时,y=05.(2021•眉山中考)一次函数y=(2a+3)x+2的值随x值的增大而减少,则常数a的取值范围是.6.(2021•成都中考)在正比例函数y=kx中,y的值随着x值的增大而增大,则点P(3,k)在第象限.三、一次函数图象上点的坐标特征【高频考点精讲】一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(﹣,0);与y轴的交点坐标是(0,b),直线上任意一点的坐标都满足函数关系式y=kx+b。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 1 页 共 17 页
2022届中考数学总复习:一次函数的应用
1.油箱中有油20升,油从管道中匀速流出,100分钟流完.油箱中剩油量Q (升)与流出的时间t (分)之间的函数关系式是( )
A .Q=20-5t
B .Q=15t+20
C .Q=20-15t
D .Q=15t 2如图11-4是甲、乙两车在某时段内速度随时间变化的图象,下列结论错误的是
( )
图11-4
A .乙前4秒行驶的路程为48米
B .在0到8秒内甲的速度每秒增加4米
C .两车到第3秒时行驶的路程相等
D .在4至8秒内甲的速度都大于乙的速度
3.A,B 两地相距20千米,甲、乙两人都从A 地去B 地,图11-5中l 1和l 2分别表示甲、乙两人所走路程s (千米)与时间t (时)之间的关系.下列说法:①乙晚出发1小时;②乙出发3小时后追上甲;③甲的速度是4千米/时;④乙先到达B 地.其中正确说法的个数是 ( )
图11-5
A .1
B .2
C .3
D .4
4.如图11-6,正方形ABCD 的边长为4,P 为正方形边上一动点,点P 沿A →D →C →B →A 的路径匀速运动,设点P 经过的路径长为x ,△APD 的面积是y ,则下列图象能大致反映y 与x 之间的函数关系的是 (
)
第
2
页 共 17 页
图11-6
图11-7
5.已知等腰三角形的周长是10,底边长y 是腰长x 的函数,则下列图象中,能正确反映y 与x 之间的函数关系的图象是 ( )
图11-8
6如图11-9所示,购买一种苹果,所付款金额y (元)与购买量x (千克)之间的函数图象由线段OA 和射线AB 组成,则一次购买3千克这种苹果比分三次每次购买1千克这种苹果可节省 元.
图11-9
图11-10
7.李老师开车从甲地到相距240千米的乙地,如果油箱中剩余油量y (升)与行驶里程x (千米)。