微波天线相位资料

合集下载

微波技术与天线(重点)

微波技术与天线(重点)

微波:是电磁波中介于超短波与红外线之间的波段,它属于无线电波中波长最短(频率最高)的波段,其频率范围从300Mhz (波长1m)至3000GHz(波长0.1m).微波的特性:1.似光性2.穿透性3.宽频带特性4.热效应特性5.散射特性6.抗低频干扰特性.与低频区别:趋肤效应,辐射效应,长线效应,分布参数。

微波传输线的三种类型:1.双导体传输线,2.金属波导管3.介质传输线。

集总参数:在一般的电路分析中,电路的所有参数,如阻抗、容抗、感抗都集中于空间的各个点上,各个元件上,各点之间的信号是瞬间传递的,这种理想化的电路模型称为集总电路。

这类电路所涉及电路元件的电磁过程都集中在元件内部进行。

用集总电路近似实际电路是有条件的,这个条件是实际电路的尺寸要远小于电路工作时的电磁波长。

对于集总参数电路,由基尔霍夫定律唯一地确定了电压电流。

分布参数:电路是指电路中同一瞬间相邻两点的电位和电流都不相同。

这说明分布参数电路中的电压和电流除了是时间的函数外,还是空间坐标的函数。

分布参数电路的实际尺寸能和电路的工作波长相比拟。

对于分布参数电路由传输线理论对其进行分析。

均匀传输线方程(电报方程):,传输线瞬时电压电流:特性阻抗:(无耗传输线R=G=0.)平行双导线(直径为d,间距为D):同轴线(内外导体半径a,b):相移常数:tt ziLt zRizt zu∂∂+=∂∂),(),(),(tt zuCt zGizt z i∂∂+=∂∂),(),(),()cos()cos(),(21zteAzteAt zu zzβωβωαα-++=-+)]cos()cos([1),(21zteAzteAZt zi zzβωβωαα-++=-+CjGLjRZωω++=dDZr2ln1200ε=abZrln600ε=λπωβ2==LC输入阻抗:反射系数:终端反射系数:输入阻抗与反射系数关系:驻波比:;1.行波状态沿线电压电流振幅不变,驻波比为1,终端反射系数0,传输线上各点阻抗等于传输线特性阻抗。

微波天线

微波天线

微波天线工作于米波、分米波、厘米波、毫米波等波段的发射或接收天线,统称为微波天线。

微波主要靠空间波传播,为增大通信距离,天线架设较高。

在微波天线中,应用较广的有抛物面天线、喇叭抛物面天线、喇叭天线、透镜天线、开槽天线、介质天线、潜望镜天线等。

微波天线技术是制约雷达、测量控制技术发展的瓶颈。

与其他电子产品不同的是,微波天线的电气性能和整机功能,主要靠馈源网络的结构保证,因此,馈源网络的设计及工艺制造是天线产品制造的关键技术。

微波天线是一种用在微波通信领域用作反射面通信的馈源的天线装置,如今它还用来对其它通信进行校正和测量。

微波天线的主要参数1、方向性图:天线的基本作用是将馈线传输的电磁波变为自由空间传播的电磁波,天线的方向图是表征天线辐射时电磁波能量(或场强)在空间各点分布的情况,它是描述天线的主要传输之一。

天线的方向性图是一个立体图形。

它的特性可以用两个互相垂直的平面(E平面和H平面)内方向性图来描述。

2、方向性系数:上述方向性图虽然一定程度上反映了天线辐射状态,但它是一个相对值,为了定量描述天线集中辐射程度,引进了方向性系数这一概念。

方向性系数定义是:在同一距离及相同辐射条件下,某一天线最大辐射方向性上辐射功率密度Smax(或场强平方E2max)和无方向天线(点源)辐射功率密度S0(或场强平方E20)之比,用D来表示。

3、天线效率:一般来说构成天线的导体和绝缘介质都有一定的能量损耗,输入天线的功率不可能全部转化为自由空间电磁波的辐射功率,我们把天线辐射功率Pr和天线输入功率之比称作天线效率。

4、增益系数:简称增益,它的定义是:在同一距离及相同输入功率的条件下,某一天线在最大辐射方向上的辐射功率密度Smax(或场强平方E2max)和无方向天线(理想点源)的辐射功率密度S0(或场强平方E20)之比,用G来表示。

5、天线阻抗:是指天线输入端口向天线辐射口方向看过去的输入阻抗,它取决于天线结构和工作频率。

微波与天线-二元天线阵讲解学习

微波与天线-二元天线阵讲解学习

2
x
d
(b) 横向二元阵
远区情况:R ? d R1 // R2
R2 R1ON
OMdcos
O NO M sin
所以:R1 R2
R
Rdsin
cos
同理,两单元的辐射电场分别为 :
E1 EmF0(,)eRjk1R1
E2 EmF0(,)ej
该二元阵的辐射电场:
ejkR2 R2
EE1 E2
E m F 0(,
121200° 151500° 180°
90°1
0.8 0.6 0.4 0.2
6600° 3300°

21021° 0
333030°
242400 °
330000°
270°
(a) 元因子
120° 150° 180°
90°1
0.8 0.6 0.4 0.2
60° 30° 0°
210°
330°
240°
300°
E
2Em R
cos cos
2
sin
cos
2
令 φ= 0, 即得二元阵的E面方向图函数:
FE()
cos2cos sin
co1s(kdsin)
2
令θ=π/2,得到二元阵的H面方向图函数:
FH()co1 2s(kdcos)
例 画出两个沿x方向排列间距为λ/2且 平行于z轴放置的振子天线在等幅同 相激励时的H面方向图。
)ejkR(1ejejkdsincos) R
2Eme R jkRej 2F0(,)cos( 2)
其中:kdsincos
比较这两种二元阵,其辐射场的 表达式形式相同,不同的是两阵 元的相位差表示式不一样。

微波与天线PPT精品文档32页

微波与天线PPT精品文档32页

1.22
0.1
20
1.3
0.1304 17.70
较好
1.4
0.1667 15.56
1.43
?
15
0.000 0.227 0.826
1.?0
1.700 2.779
?
100.00 99.773 99.174
99.0?00
98.300 97.221
?
0.000

0.010
填 入
0.036


?

0.074
(1) 线上电压和电流的振 幅恒定不变
(2) 电压行波与电流行波 同相,它们的相位是位置 z和时间t的函数 (3) 线上的输入阻抗处处 相等,且均等于特性阻 抗
纯驻波工作状态
负载不吸收有功功率,入射波的功率在终 端产生全反射,线上的入射波与反射波相 叠加,形成了纯驻波状态。
1 传输线理论
1.1 长线理论
反射系数 与输入阻抗的关系
Zin(z')Z011 ((zz''))
上式表明,线上任意点的反射系数和该点 向负载看去的输入阻抗有一一对应的关系。
将z′=0代入上式,便得终端负载阻抗与终端反 射系数的关系,即为
ZL
Z0
1 L 1 L
L
ZL ZL
Z0 Z0
波的反射是长线工作的基本物理现象,反射系数不但具有明确 的物理意义,而且便于测量,因此非常常用。
Umax ImaxVSWR
Umin Imin
Voltage Standing Wave Ratio
ZL
电压(电流)振幅
驻波系数
传输线任何点的电压和电流是入射波和反射波叠加的结果

微波天线主要技术参数概要

微波天线主要技术参数概要

目录一、概述二、微波天线主要技术参数1.方向图(1)方向性图(2)方向性系数2.天线效率3.增益系数(增益)4.天线阻抗5.天线极化6.频带宽度三、实验用的天线-角锥喇叭天线四、天线测量实验系统的建立1.系统连接2.测试实验系统的阻抗匹配情况3.测试实验系统中两天线间距离及架设高度的选择(1)两天线架设最小间距Vmin(2)天线架设高度五、测量1.天线增益系数的测量(1)测量理论(2)测量方法2.天线方向性图的测量(1)方法(一)(2)方法(二)六、附录-同轴传输系统中微波天线测量实验微波天线测量实验一、概述微波天线是微波通信设备中一个重要的组成部分,微波信息的质量与天线性能密切相关。

通常,微波天线都为面式天线,验证这类天线的性能,首先是通过测量来实现的。

本文作为结合实验内容,对天线系统架设于调整,天线的增益系数,天线方向性图的测量实验,及实验使用的天线性能等方面内容作一些介绍。

二、微波天线主要技术参数1.方向性(1)方向性图天线的基本功能是将馈线传输的电磁波变为自由空间传播的电磁波,天线的方向图是表征天线辐射时电磁波能量(或场强)在空间各点分布的情况,它是描述天线的主要传输之一。

天线的方向性图是一个立体图形。

它的特性可以用两个互相垂直的平面(E 平面和H平面)内方向性图来描述。

如图(1)所示:图(1)天线方向性图天线方向性图能直观地反映出天线辐射能量集中程度、方向性图越尖锐,表示辐射能量越集中,相反则能量分散。

若天线将电磁能量均匀地向四周辐射,方向性图就变成一球面,称作无方向性,这就是一理想点源在空中辐射场。

天线方向性图可通过测试来绘制,如测得的是功率,即可绘出功率方向性图,如测得的是场强,则绘出场强方向性图,但两者图形形状是完全一样的。

通常图形方向性图有多个叶瓣,其中最大辐射方向的是叶瓣,称主瓣,其余称副瓣(或旁瓣)。

在方向性图中主瓣信息是我们最关心的。

a. 方向性图主瓣宽度b. 方向性图主瓣零点角如图2所示,方向性图零点角是指主瓣两侧零辐射方向之间夹角,用2θ0来表示。

微波技术与天线必考知识点复习

微波技术与天线必考知识点复习

微波技术与天线必考知识点复习微波必考知识点复习1、微波是一般指频率从300M至3000GHz范围内的电磁波,其相应的波长从1m 至0.1mm。

从电子学和物理学的观点看,微波有似光性、似声性、穿透性、非电离性、信息性等重要特点。

2、导行波的模式,简称导模,是指能够沿导行系统独立存在的场型,其特点是:(1)在导行系统横截面上的电磁波呈驻波分布,且是完全确定的。

这一分布与频率无关,并与横截面在导行系统上的位置无关;(2)导模是离散的,具有离散谱;当工作频率一定时,每个导模具有唯一的传播常数;(3)导模之间相互正交,彼此独立,互不耦合;(4)具有截止特性,截止条件和截止波长因导行系统和因模式而异。

3、广义地讲,凡是能够导引电磁波沿一定的方向传播的导体、介质或由它们组成的导波系统,都可以称为传输线。

若按传输线所导引的电磁波波形(或称模、场结构、场分布),可分为三种类型:(1)TEM波传输线,如平行双导线、同轴线、带状线和微带线,他们都是双导线传输系统;(2)TE波和TM波传输线,如矩形、圆形、脊形和椭圆形波导等,他们是由金属管构成的,属于单导体传输系统;(3)表面波传输系统,如介质波导(光波导)、介质镜象线等,电磁波聚集在传输线内部及其表面附近沿轴线方向传播,一般是TE或TM波的叠加。

对传输线的基本要求是:工作频带宽、功率容量大、工作稳定性好、损耗小、易耦合、尺寸小和成本低。

一般地,在米波或分米波段,可采用双导线或同轴线;在厘米波段可采用空心金属波导管及带状线和微带线等;在毫米波段采用空心金属波导管、介质波导、介质镜像线和微带线;在光频波段采用光波导(光纤)。

以上划分主要是从减少损耗和结构工艺等方面考虑。

传输线理论主要包括两方面的内容:一是研究所传输波形的电磁波在传输线横截面内电场和磁场的分布规律(也称场结构、模、波型),称横向问题;二是研究电磁波沿传输线轴向的传播特性和场的分布规律,称为纵向问题。

横向问题要通过求解电磁场的边值问题来解决;各类传输线的纵向问题却有很多共同之处。

微波天线基础知识

微波天线基础知识

微波天线基础知识微波天线基础知识1 天线1.1 天线的作用与地位无线电发射机输出的射频信号功率,通过馈线(电缆)输送到天线,由天线以电磁波形式辐射出去。

电磁波到达接收地点后,由天线接下来(仅仅接收很小很小一部分功率),并通过馈线送到无线电接收机。

可见,天线是发射和接收电磁波的一个重要的无线电设备,没有天线也就没有无线电通信。

天线品种繁多,以供不同频率、不同用途、不同场合、不同要求等不同情况下使用。

对于众多品种的天线,进行适当的分类是必要的:按用途分类,可分为通信天线、电视天线、雷达天线等;按工作频段分类,可分为短波天线、超短波天线、微波天线等;按方向性分类,可分为全向天线、定向天线等;按外形分类,可分为线状天线、面状天线等;等等分类。

*电磁波的辐射导线上有交变电流流动时,就可以发生电磁波的辐射,辐射的能力与导线的长度和形状有关。

如图1.1 a所示,若两导线的距离很近,电场被束缚在两导线之间,因而辐射很微弱;将两导线张开,如图1.1 b所示,电场就散播在周围空间,因而辐射增强。

必须指出,当导线的长度L 远小于波长λ时,辐射很微弱;导线的长度L增大到可与波长相比拟时,导线上的电流将大大增加,因而就能形成较强的辐射。

1.2 对称振子对称振子是一种经典的、迄今为止使用最广泛的天线,单个半波对称振子可简单地单独立地使用或用作为抛物面天线的馈源,也可采用多个半波对称振子组成天线阵。

两臂长度相等的振子叫做对称振子。

每臂长度为四分之一波长、全长为二分之一波长的振子,称半波对称振子, 见图1.2 a。

另外,还有一种异型半波对称振子,可看成是将全波对称振子折合成一个窄长的矩形框,并把全波对称振子的两个端点相叠,这个窄长的矩形框称为折合振子,注意,折合振子的长度也是为二分之一波长,故称为半波折合振子,见图1.2 b。

1.3 天线方向性的讨论1.3.1 天线方向性发射天线的基本功能之一是把从馈线取得的能量向周围空间辐射出去,基本功能之二是把大部分能量朝所需的方向辐射。

(整理)天线测量与微波测量实验讲义

(整理)天线测量与微波测量实验讲义

天线测量与微波测量实验讲义(试用)实验一、喇叭天线方向图的测量一、 实验目的:1、 了解喇叭天线的方向图特性;2、 掌握天线方向图的测量方法。

二、 实验原理:H 面和E 面方向图的计算公式为E H θ)E 0b[(λR H )/8]1/2{exp[j(π/4)λR Hθ/λ))2][C(u 1)+C(u 2)-jS(u 1)-jS(u 2)]+exp[j(π/4)λR H ((1/a h )-(2sin θ/λ))2][C(u 3)+C(u 4) -jS(u 3)-jS(u 4)]}E E 2]1/2cos θ}{[C(w 1)+C(w 2)]2+[S(w 1)+S(w 2)]2}1/2±j(π/2)t 2]dt=C(x)±jS(x)u1=(1/2)1/2{[a h/(λR H)1/2]+(λR H)1/2[(1/a h)+(2sinθ/λ)]}u2=(1/2)1/2{[a h/(λR H)1/2]-(λR H)1/2[(1/a h)+(2sinθ/λ)]}u3=(1/2)1/2{[a h/(λR H)1/2]+(λR H)1/2[(1/a h)-(2sinθ/λ)]}u4=(1/2)1/2{[a h/(λR H)1/2]-(λR H)1/2[(1/a h)-(2sinθ/λ)]} w1=[b h/(2λg R E)1/2]+{[(2λg R E)1/2/λ]sinθ}w2=[b h/(2λg R E)1/2]-{[(2λg R E)1/2/λ]sinθ}w1=[b h/(2λg R E)1/2]+{[(2λg R E)1/2/λ]sinθ}w1=[b h/(2λg R E)1/2]+{[(2λg R E)1/2/λ]sinθ}w1=[b h/(2λg R E)1/2]+{[(2λg R E)1/2/λ]sinθ}三、实验装置:测量方向图所需的基本设备可分为发射系统和接收系统两大部分。

微波技术与天线复习知识要点

微波技术与天线复习知识要点

《微波技术与天线》复习知识要点绪论●微波的定义:微波是电磁波谱介于超短波与红外线之间的波段,它属于无线电波中波长最短的波段。

●微波的频率范围:300MHz~3000GHz ,其对应波长范围是1m~0.1mm●微波的特点(要结合实际应用):似光性,频率高(频带宽),穿透性(卫星通信),量子特性(微波波谱的分析)第一章均匀传输线理论●均匀无耗传输线的输入阻抗(2个特性)定义:传输线上任意一点z处的输入电压和输入电流之比称为传输线的输入阻抗注:均匀无耗传输线上任意一点的输入阻抗与观察点的位置、传输线的特性阻抗、终端负载阻抗、工作频率有关。

两个特性:1、λ/2重复性:无耗传输线上任意相距λ/2处的阻抗相同Z in(z)= Z in(z+λ/2)2、λ/4变换性: Z in(z)- Z in(z+λ/4)=Z02证明题:(作业题)●均匀无耗传输线的三种传输状态(要会判断)1.行波状态:无反射的传输状态▪匹配负载:负载阻抗等于传输线的特性阻抗▪沿线电压和电流振幅不变▪电压和电流在任意点上同相2.纯驻波状态:全反射状态▪负载阻抗分为短路、开路、纯电抗状态3.行驻波状态:传输线上任意点输入阻抗为复数●传输线的三类匹配状态(知道概念)▪负载阻抗匹配:是负载阻抗等于传输线的特性阻抗的情形,此时只有从信源到负载的入射波,而无反射波。

▪源阻抗匹配:电源的内阻等于传输线的特性阻抗时,电源和传输线是匹配的,这种电源称之为匹配电源。

此时,信号源端无反射。

▪共轭阻抗匹配:对于不匹配电源,当负载阻抗折合到电源参考面上的输入阻抗为电源内阻抗的共轭值时,即当Z in=Z g﹡时,负载能得到最大功率值。

共轭匹配的目的就是使负载得到最大功率。

●传输线的阻抗匹配(λ/4阻抗变换)(P15和P17)●阻抗圆图的应用(*与实验结合)史密斯圆图是用来分析传输线匹配问题的有效方法。

1.反射系数圆图:Γ(z)=|Γ1|e j(Φ1-2βz)= |Γ1|e jΦΦ1为终端反射系数的幅度,Φ=Φ1-2βz是z处反射系数的幅角。

微波技术与天线复习知识要点

微波技术与天线复习知识要点

《微波技术与天线》复习知识要点绪论●微波的定义:微波是电磁波谱介于超短波与红外线之间的波段,它属于无线电波中波长最短的波段。

●微波的频率围:300MHz~3000GHz ,其对应波长围是1m~0.1mm●微波的特点(要结合实际应用):似光性,频率高(频带宽),穿透性(卫星通信),量子特性(微波波谱的分析)第一章均匀传输线理论●均匀无耗传输线的输入阻抗(2个特性)定义:传输线上任意一点z处的输入电压和输入电流之比称为传输线的输入阻抗注:均匀无耗传输线上任意一点的输入阻抗与观察点的位置、传输线的特性阻抗、终端负载阻抗、工作频率有关。

两个特性:1、λ/2重复性:无耗传输线上任意相距λ/2处的阻抗相同Z in(z)= Z in(z+λ/2)2、λ/4变换性: Z in(z)- Z in(z+λ/4)=Z02证明题:(作业题)..●均匀无耗传输线的三种传输状态(要会判断)1.行波状态:无反射的传输状态▪匹配负载:负载阻抗等于传输线的特性阻抗▪沿线电压和电流振幅不变▪电压和电流在任意点上同相2.纯驻波状态:全反射状态▪负载阻抗分为短路、开路、纯电抗状态3.行驻波状态:传输线上任意点输入阻抗为复数●传输线的三类匹配状态(知道概念)..▪负载阻抗匹配:是负载阻抗等于传输线的特性阻抗的情形,此时只有从信源到负载的入射波,而无反射波。

▪源阻抗匹配:电源的阻等于传输线的特性阻抗时,电源和传输线是匹配的,这种电源称之为匹配电源。

此时,信号源端无反射。

▪共轭阻抗匹配:对于不匹配电源,当负载阻抗折合到电源参考面上的输入阻抗为电源阻抗的共轭值时,即当Z in=Z g﹡时,负载能得到最大功率值。

共轭匹配的目的就是使负载得到最大功率。

●传输线的阻抗匹配(λ/4阻抗变换)(P15和P17)●阻抗圆图的应用(*与实验结合)史密斯圆图是用来分析传输线匹配问题的有效方法。

1.反射系数圆图:Γ(z)=|Γ1|e j(Φ1-2βz)= |Γ1|e jΦΦ1为终端反射系数的幅度,Φ=Φ1-2βz是z处反射系数的幅角。

微波与天线-传输线理论(3)

微波与天线-传输线理论(3)

26
Smith圆图的基本构成——电阻圆
观察圆图——电阻圆
r 纯电抗 0
圆心坐标
r
r 1 r
i 0
0
0
半径
1 1 r
1 大圆
1
1
0
1
2
2
2
1
2
3
0
3
北京邮电大学——《微波技术基础》
27
Smith圆图的基本构成——电抗圆
Smith圆图中的电抗圆
r 1
电抗圆物理意义:
归一化阻抗的电抗部 分为某一定值,电阻 部分可以为任意值, 各点对应的电阻值各 不相同,对应的反射 系数值也各不相同。
电抗圆
8
整电的抗S圆mi补th充圆完图Smith圆图i 的基本构成
等反射系数圆、 电阻圆、电抗圆 是如何建立的?
北京邮电大学——《微波技术基础》
r
9
Smith圆图的基本构成——等反射系数圆
➢反射系数回顾
0 | (l) | 1
u
(l)
U0e jl U0e jl
U0
U
0
e2 jl
反射系数性质
无耗传输线反射系数的模是系 统的不变量——沿传输线移动时,
和传Z0输、线长度l 的基础上
Smith圆图正是把特征参数和工作参数形成一体,包含
和体现了特征参数和工作参数之间的关系,是采用图解法
解决工程计算问题的一种专用Chart。自三十年代出现以
来,已历经六十年而不衰。
Smith圆图主要用于无损耗传输线的分析。
北京邮电大学——《微波技术基础》
6
完整的 Smith圆图
阻抗圆图和导纳圆图
则线上任一点

微波技术与天线复习知识要点

微波技术与天线复习知识要点

微波技术与天线复习知识要点《微波技术与天线》复习知识要点绪论微波的定义:微波是电磁波谱介于超短波与红外线之间的波段,它属于无线电波中波长最短的波段。

微波的频率范围:300MHz~3000GHz ,其对应波长范围是1m~0.1mm微波的特点(要结合实际应用):似光性,频率高(频带宽),穿透性(卫星通信),量子特性(微波波谱的分析)第一章均匀传输线理论均匀无耗传输线的输入阻抗(2个特性)定义:传输线上任意一点z处的输入电压和输入电流之比称为传输线的输入阻抗注:均匀无耗传输线上任意一点的输入阻抗与观察点的位置、传输线的特性阻抗、终端负载阻抗、工作频率有关。

两个特性:1、λ/2重复性:无耗传输线上任意相距λ/2处的阻抗相同Zin(z)=Zin(z+λ/2)2、λ/4变换性:Zin(z)-Zin(z+λ/4)=Z02证明题:(作业题)均匀无耗传输线的三种传输状态(要会判断)参数|Γ|ρZ1行波01匹配驻波1∞短路、开路、纯电抗行驻波0<|Γ|<11<ρ<∞任意负载能量电磁能量全部被负载吸收电磁能量在原地震荡1.行波状态:无反射的传输状态匹配负载:负载阻抗等于传输线的特性阻抗沿线电压和电流振幅不变电压和电流在任意点上同相2.纯驻波状态:全反射状态负载阻抗分为短路、开路、纯电抗状态3.行驻波状态:传输线上任意点输入阻抗为复数传输线的三类匹配状态(知道概念)负载阻抗匹配:是负载阻抗等于传输线的特性阻抗的情形,此时只有从信源到负载的入射波,而无反射波。

源阻抗匹配:电源的内阻等于传输线的特性阻抗时,电源和传输线是匹配的,这种电源称之为匹配电源。

此时,信号源端无反射。

共轭阻抗匹配:对于不匹配电源,当负载阻抗折合到电源参考面上的输入阻抗为电源内阻抗的共轭值时,即当Zin=Zg﹡时,负载能得到最大功率值。

共轭匹配的目的就是使负载得到最大功率。

传输线的阻抗匹配(λ/4阻抗变换)(P15和P17)阻抗圆图的应用(*与实验结合)史密斯圆图是用来分析传输线匹配问题的有效方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档