高中数学必修四常考题型总结

合集下载

高中数学必修四常考题型总结

高中数学必修四常考题型总结

必修四常考题型总结三角函数篇三角函数的基础知识与基本运算:。

的值为1.585sin3232??(D) (C) (B)(A)22222.(列关系式中正确的是()000000BA..cos10sin11?sin11sin168?cos10??sin168000000CD..cos10?sin168?sin11sin11?sin168?cos10?1???”是“.(2009北京理)“)”的(3?cos2)?Z?(kk?226 .必要而不充分条件 BA.充分而不必要条件.既不充分也不必要条件 D C.充分必要条件??? 4.(2008浙江理)( )tan???5,若cos则?2sin11 D)()C(B)2 )(A(?2?22图像与性质:1.已知是实数,则函数的图象不可能是( )aax?asin)f(x?1...?2??f()??,则的图象如图所示,=Acos(3.已知函数)=)xf((0)f?x232211?(B) (C)-(D) )(Aw.w.w.k.s.5.u.c.o.m 3223????,数数为(常函4.),?AsinA(x?,)y??上的图象如图所)在闭区间,0]?0?[A?0,?. 示,则=??????示,则图)的知函数y=sin(图x+)(像>0, -如<所已4.??=________________?7?????f。

的图像如图所示,则5.已知函数)xf()??2sin(x??12??w.w.w.k.s.5.u.c.o.m???7.已知函数的图象如图所示,0)???xf()sin(x)(?则=????(cos0))?3sinxx?(fx y?f(x)的图像与直线,已知函数的2y??,则的单调递增区间是两个相邻交点的距离等于)f(x????5115)A )((B?????k[],k?Zk,?Z],k?,k??k[12121212????2(D)(C)????Z],?[kk?,k?Z?,?],[kk?k3663?4?? 2.如果函数的最小值的图像关于点中心对称,那么,0)(||)?y?3sin(2x 3 C)为(????(B)(A)(C)(D) 3264?,下面结论错误的是3.已知函数)?R?sin(x?)(xf(x)..2?A.函数的最小正周期为)(xf2?函数在区间上是增函数B.][0,)(xf2x 0 C.函数的图象关于直线对称=)xf(函数是奇函数 D.)f(x?(本小题共12分)已知函数.4.x)cos?f(x)?2sin(x的最小正周期;(Ⅰ)求)(xf????,?上的最大值和最小值.在区间(Ⅱ)求)x(f??26??????????0,0A?0,?,的周期为已知函数)(其中.5Rf(x?sin(Ax?),x)?2?2,?2)M(.且图象上一个最低点为3?][0,?x,求求(Ⅱ)当的解析式;的最值.)( Ⅰ)x(x(f)f12?2x. f(x)=cos(2x+)+sin本小题满分12分)设函数2. (3(1)求函数f(x)的最大值和最小正周期.C11(2)设A,B,C为ABC的三个内角,若cosB=,,且C为锐角,??f()?324求sinA.4.(本小题满分13分,(Ⅰ)小问7分,(Ⅱ)小问6分.)???xx2.设函数1)?2cos?f(x)?sin(?468(Ⅰ)求的最小正周期.)(xf4(Ⅱ)若函数与的图像关于直线对称,求当时][0,x?)f()y?g(xxy?1?x 3的最大值.)g(xy?图像的变换:????的单位后,得到函数.将函数的图象向左平移20 <1)(xy?sin??的图象,则等于())?sin(xy?6????7511 D. B. C. A.6666 w.w.w.k.s.5.u.c.o.m????))(x?0?tan(y?个单位长度后,与函数2.若将函数的图像向右平移64???)xy?tan(?的最小值为的图像重合,则61111(B)(A) (C) (D) 21世纪教2346育网?个单位, 再向上平移1将函数的图象向左平移个单位,所得图象的3.xy?sin24 ).函数解析式是(?2C.B.A.xy?2cos)x?y?1?sin(2xcosy?242.D x?2siny??,的最小正周期为的图4.已知函数)0w?f(x)?sin(wx?R)(x?,)(xy?f4??的一个值是(y轴对称,则)像向左平移个单位长度,所得图像关于||????3 B C D A 8824????,为了得到函数5.已知函数的最小正周期为0),?)(x?f(x)?sin(Rx?4?的图象,只要将的图象)(xyg(x)?cos?xf??个单位长度 B 向右平移个单位长度 A 向左平移88??个单位长 D 向右平移个单位长度21世纪教育网C 向左平移44 度三角恒等变换:22???????sin?sincos2cos1.已知,则2tan?4345??)()D(B)()(AC 54432.函数最小值是xcos)?sinx(fx11?C. B A.-1 .D.12211???2?cossin”的21世纪教育网3.“”是“22A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件f(x)?(1?3tanx)cosx的最小正周期为4 .函数??3??.C D...A B 2222x?sin2xy?2cos的最小值是_____________________ .函数5.??x0?x)xcostan3(1)(fx??,则,6.若函数的最大值为)x(f2.23?1?3.. C .D A.1 B2??3。

高一数学必修四知识点加题型

高一数学必修四知识点加题型

高一数学必修四知识点加题型高一数学必修四是一门重要的学科,其中包括了多个知识点和题型。

下面将为大家详细介绍这些内容以及相应的解题方法。

1. 二次函数二次函数是高一数学必修四中的重点内容。

它的一般形式为f(x) = ax² + bx + c。

其中,a、b、c为常数,a ≠ 0。

我们可以通过以下几个步骤来解二次函数相关题目:- 确定抛物线的开口方向:若a > 0,则开口向上;若a < 0,则开口向下。

- 求解顶点坐标:顶点坐标为(-b/2a, f(-b/2a))。

- 求解零点:根据二次函数的解的性质,利用求根公式或配方法可以求得二次函数的零点。

2. 三角函数三角函数在高一数学必修四中也占有重要地位。

常见的三角函数包括正弦函数、余弦函数和正切函数等。

我们可以通过以下几个步骤来解三角函数相关题目:- 根据已知条件确定所需求的角所在象限。

- 利用三角函数的定义和性质,结合已知条件求解所需角的值。

- 结合三角函数的图像和周期性,求解三角函数的方程式。

3. 数列与数列的通项公式数列是高一数学必修四中的基础内容。

在解数列的相关题目时,我们可以采用以下几个方法:- 根据给定的数列前几项,观察它们之间的规律,推测数列的通项公式。

- 利用已知的数列通项公式,计算指定位置上的项的值。

- 根据数列的性质,如等差数列、等比数列等,解决相应题目。

4. 平面向量平面向量也是高一数学必修四的重点内容。

在解平面向量相关题目时,我们可以采用以下几个步骤:- 确定平面向量的坐标或起点和终点的坐标。

- 利用平面向量的定义和性质进行向量的运算,如加法、减法、数量乘法等。

- 根据已知条件和向量运算的结果,求解题目所需的向量。

5. 概率与统计概率与统计是高一数学必修四的重要内容。

在解概率与统计的相关题目时,我们可以采用以下几个步骤:- 确定事件的样本空间和可能的结果。

- 利用概率的定义和性质,计算事件发生的概率。

- 对样本数据进行统计分析,如计算平均值、方差、标准差等。

高中数学必修4(人教B版)第三章三角恒等变换3.1知识点总结含同步练习题及答案

高中数学必修4(人教B版)第三章三角恒等变换3.1知识点总结含同步练习题及答案
解:(1) 原式 =
tan 60∘ − tan 15∘ 1 + tan 60∘ ⋅ tan 15∘ = tan(60∘ − 15∘ ) = tan 45∘ = 1.
(2)根据tan α + tan β = tan(α + β)(1 − tan α tan β) ,则有 原式 = tan 120 ∘ (1 − tan 55∘ tan 65∘ ) − √3 tan 55∘ tan 65∘
π ),向左平移 m 个单位后,得到的函数为 3 π π π y = 2 sin (x + + m),若所得到的图像关于 y 轴对称,则 + m = + kπ, k ∈ Z ,所以 3 3 2 π π m = + kπ ,k ∈ Z.取 k = 0 时,m = . 6 6
高考不提分,赔付1万元,关注快乐学了解详情。
和差角公式 辅助角公式
三、知识讲解
1.和差角公式 描述: 两角差的余弦公式 对于任意角α,β 有cos(α − β) = cos α cos β + sin α sin β,称为差角的余弦公式,简记C(α−β) . 两角和的余弦公式 对于任意角α,β 有cos(α + β) = cos α cos β − sin α sin β,称为和角的余弦公式,简记C(α+β) . 两角和的正弦公式 对于任意角α,β 有sin(α + β) = sin α cos β + cos α sin β,称为和角的正弦公式,简记S (α+β) . 两角差的正弦公式 对于任意角α,β 有sin(α − β) = sin α cos β − cos α sin β,称为差角的正弦公式,简记S (α−β) . 两角和的正切公式 对于任意角α,β 有tan(α + β) = 两角差的正切公式 对于任意角α,β 有tan(α − β) =

高中数学必修四----常见题型归类

高中数学必修四----常见题型归类

高中数学必修四 题型归类山石第一章 三角函数1.1任意角和弧度制题型一:终边相同角1.与2003-终边相同的最小正角是______________,最大负角是_________。

2.终边在y 轴上的角的集合为________。

3.若角α与5α的终边关于y 轴对称,则角α的集合________ __ 。

题型二:区域角1.第二象限的角的集合为______ __2.如图,终边落在阴影部分(含边界)的角的集合是______ __3.若α是第二象限的角,确定2α的终边所在位置 .确定2α的终边所在位置 .题型三:弧度制1.若扇形的面积是1cm 2,它的周长是4cm 2,则扇形圆心角的弧度数为 .2.若扇形周长为一定值c (c >0),当α= ,该扇形面积最大.1.2任意角的三角函数题型一:三角函数定义y45030x1.α是第二象限角,P (x ,5)为其终边上一点,且cos α=42x,则sin α的值为 .2.已知角α的终边在直线3x+y=0上,则sin α= ,tan α=题型二:三角函数值的符号与角所在象限的关系1.4tan 3cos 2sin 的值。

A 小于0 B 大于0 C 等于0 D 无法确定 ( )2.已知|cos θ|=cos θ,|tan θ|=-tan θ,则θ2的终边在 ( )A .第二、四象限B .第一、三象限C .第一、三象限或x 轴上D .第二、四象限或x 轴上题型三:三角函数线1.设MP 和OM 分别是角1819π的正弦线和余弦线,则MP 、OM 和0的大小关系为______2.1sin 、1cos 、1tan 的大小关系为_______________题型四:同角公式1.化简1-2sin200°cos160°=________.2.222tan1tan 2tan 88tan 89sin 1sin 2sin 89οοοοοοο⨯⨯⋅⋅⋅⨯⨯++⋅⋅⋅+的值为________. 3.已知ααcos sin 21=,求下列各式的值: (1)ααααcos 9sin 4cos 3sin 2--; (2) 4sin 2α-3sin αcos α-5cos 2α.4.tan110°=k ,则sin70°的值为 ( )A .-k 1+k 2 B.k 1+k2C.1+k 2k D .-1+k2k5.已知51cos sin =-θθ ()πθ,0∈ 求值:(1)θθcos sin ; (2)θθcos sin -;(3)θtan ; (4) θθ33cos sin -1.3三角函数的诱导公式题型:诱导公式1.437tan323cos 641sin πππ-= ________.2.已知cos(3π2+α)=-35,且α是第四象限角,则cos(-3π+α)=3.已知锐角α终边上一点P 的坐标是(2sin2,-2cos2),则α等于 ( )A .2B .223-πC .2-π2D.π2-24.已知sin α是方程5x 2-7x -6=0的根,α是第三象限角,则sin(-α-3π2)sin(3π2-α)tan 3αcos(π2-α)cos(π2+α)=1.4.三角函数的图像与性质题型一:三角函数的定义域1.(1)函数)12sin 2lg(+-=x y 的定义域是(2)函数y =1)43tan(-+πx 的定义域是________________.题型二:三角函数的值域1.(1)函数y =cos 2x +sin x -1的值域为___________.(2)函数xx y cos 31cos 2+-=的值域为___________.(3)函数f(x)=sin xsin(x -π3)在⎣⎡⎦⎤-π6,π3上的最大值与最小值的和为________.(4) 函数y =sin x +cos x +sin xcos x 在⎣⎡⎦⎤-π6,π3的值域为____ 2.设函数f (x )=A +B sin 2x ,若B <0时,f (x )的最大值是32,最小值是-12,则A =________,B =________.3.(1)(2012·高考湖南卷)函数f (x )=sin x -cos ⎝⎛⎭⎫x +π6的值域为( )A .[-2,2]B .[-3,3]C .[-1,1]D .[-32,32]题型三:三角函数的周期1.画出函数x y tan =的图象并指出函数的周期______2.(1)函数y =2sin (4π-2x)+1的周期为_____.(2)函数y =-2tan ⎝⎛⎭⎫3x +π4的周期____(3)函数21)42sin(-+=πx y 的周期_______3.设函数f(x)=3sin ⎝⎛⎭⎫π2x +π4,若存在这样的实数x 1,x 2,对任意的x ∈R ,都有f(x 1)≤f(x)≤f(x 2)成立,则|x 1-x 2|的最小值为________.4.已知函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,-π2≤φ≤π2的图象上的两个相邻的最高点和最低点的距离为22,则ω=________.题型四:三角函数的奇偶性1.判断下列函数的奇偶性 (1))234cos(2π-=x x y (2)3tan 2-=x y(3)xxx y sin 1cos sin 12+-+=2.函数()f x =(x +1)2+sin xx 2+1的奇偶性_________________3.函数f (x )=sin(x+φ-π12) 是R 上的奇函数,则ϕ的值是__________________4.已知f (x )=cos(3x +φ)-3sin(3x +φ)为偶函数,则φ可以取的一个值为( )A.π6B.π3 C .-π6 D .-π3题型五:三角函数的单调性1.将52sinπ,56cos π,57tan π按从小到大的顺序排列,依次是_________________2.指出下列函数的的单调递减区间 (1)y =2)24sin(x-π+1(2)y =-2tan ⎝⎛⎭⎪⎫3x +π4 .(3)x y 2sin log 3.0= .3.下列函数中,周期为π,且在(0, π2)上单调递增的是 ( )A .y =tan|x|B .y =sin|x|C .y =|sinx|D .y =|cosx|4.函数f (x )=M sin(ωx +φ)(ω>0)在区间[a ,b ]上是增函数,且f (a )=-M ,f (b )=M ,则函数g (x )=M cos(ωx +φ)在[a ,b ]上 ( )A .是增函数B .是减函数C .可以取得最大值MD .可以取得最小值-M5.已知ω是正实数,函数f (x )=2sin ωx 在[-π3,π4]上是增函数,那么ω的取值范围是________.6.★已知函数f (x )=sin(ωx +φ)(ω>0,0≤φ≤π)是R 上的偶函数,其图象关于点M ⎝⎛⎭⎫3π4,0对称,且在区间⎣⎡⎦⎤0,π2上是单调函数,求ω和φ的值.7.已知函数y =x x x cos sin 23cos 212+ +1,x ∈R.(1)当函数y 取最大值时,求自变量x 的集合;(2)指出此函数的振幅、周期、初相、频率和单调区间;题型六:三角函数的对称性1.函数y =cos ⎝⎛⎭⎫2x +π3图象的对称轴为 ,对称中心为 .2. 函数y =2sin(3x +φ)⎝⎛⎭⎫|φ|<π2的一条对称轴为x =π12,则φ=________;3.函数y =cos(3x +φ)的图象关于原点成中心对称图形,则φ=________.4.已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f(x)=sin (ωx+φ)图象的两条相邻的对称轴,则φ=( )A.π4 B.π3 C.π2 D.3π45.如果函数x a x y 2cos 2sin +=的图象关于直线8π-=x 对称,那么=a( )A ,2B ,2-C ,1D ,1-6.把函数y x -sin x 的图象向左平移m (m >0)个单位,所得的图象关于y 轴对称,则m 的最小正值是 .7.已知函数f(x)=3sin (ωx -π6)(ω>0)和g(x)=3cos(2x +φ)的图象的对称中心完全相同,若x ∈[0,π2],则f(x)的取值范围是( )A .[-32,3]B .[-3,3]C .[-12,32]D .[0,32]8.函数f(x)=sin xsin(x -π3)的最小正周期、最值、对称中心、单调区间.1.5 函数y=Asin(ωx+φ)图象题型一:三角函数的图象变换1.要得到y =)2sin(x -的图象,只需将y =)62sin(π--x 的图象( ) A .向左平移π3个单位 B .向右平移π3个单位C .向左平移π6个单位 D .向右平移π6个单位2.已知函数y =23sin (2x +6π)(1)当[)+∞∈,0x ,指出此函数的振幅、周期、初相、相位、频率;(2)用五点作图法画出函数y =23sin (2x +6π)[]0,4x π∈的图象;(3)说明此函数的图象可以由y =sin x 的图象经怎样的变换得到?3. (2013·济宁模拟)给出下列六种图象变换方法:①图象上所有点的纵坐标不变,横坐标缩短到原来的12;②图象上所有点的纵坐标不变,横坐标伸长到原来的2倍;③图象向右平移π3个单位长度;④图象向左平移π3个单位长度;⑤图象向右平移2π3个单位长度;⑥图象向左平移2π3个单位长度.请用上述变换中的两种变换,将函数y =sin x 的图象变换到函数y =sin(x 2+π3)的图象,那么这两种变换正确的标号是________________(要求按变换先后顺序填上一种你认为正确的标号即可).4.已知函数21cos sin 3cos )(2++=x x x x f (1)先将)(x f y =化成B x A y ++=)sin(ϕω)0,0(>>ωA 的形式,再求函数()f x的周期;(2)列表、描点画出)(x f y =在⎥⎦⎤⎢⎣⎡-ππ1211,12上的图象。

(完整word版)高一数学必修4知识点复习及重点题型.docx

(完整word版)高一数学必修4知识点复习及重点题型.docx

必修 3 重要知识点梳理第一部分 知 回 : 一、算法与程序框 :1. 程序框 相关符号及 名称和功能 .2. 基本 构: 序 构、 条件 构 和循 构 .3. 基本算法 句: 入 句、 出 句、 句、条件 句、循 句.4. 算法案例:求最大公 数 ---- 相除法 与更相减 ;秦九韶算法; 位制 .二、 : (一)随机抽[ 来源 : 学 #科 #网 ]抽 方法:随机抽 ( 抽 法和 随机数法 )系 抽分 抽 .(二)用 本估 体:1. 用 本的 率分布估 体分布 率分布表, 率分布直方 ,茎叶 , 率分布折 , 体密度曲.2. 用 本的数字特征估 体的数字特征通 原始数据求众数、中位数、平均数和方差/ 准差 .通 率分布直方 估 数据的众数、中位数、平均数和方差/ 准差 .(三) 量 的相关关系1. 相关关系 -- 正相关和 相关2. 两个 量的 性相关回 直 , 最小二乘法求回 直 方程 三、概率:(一)随机事件的概率事件、 数和 率以及概率的正确理解 . 事件的关系:包含、相等、互斥和 立 .事件的运算:并 ( 和) 事件和交 () 事件 .概率的基本性.(二) 古典概型和几何概型 :相 概率模型的特征及运算公式.第二部分 巩固:算法和程序框图部分:1.如果 行下面的程序框 ,那么 出的S 等于 ()A . 2 450B . 2 500C . 2 550D . 2 652 2.若下面的程序框 出的 S 是 126, ① () A . n ≤ 5? B . n ≤ 6? C . n ≤ 7?D . n ≤ 8?3. 下列程序, 其 出的 果() 633112715A.64B.32C.128D.16S = 0n = 2 i = 1 DOS =S + 1/n n = n*2 i = i + 1LOOP UNTIL i> = 7 PRINT S END第 1第 2第 34.如 是求x 1, x 2 ,⋯, x 10 的乘 S 的程序框 , 中空白框中 填入的内容()A . S = S*( n +1)B . S = S*x n + 1C . S = S* nD . S = S*x n5.某程序框 如 所示,若 出的S = 57, 判断框内()A . k>4?B . k>5?C . k>6?D . k>7?6. 如 所示的程序框,运行相 的程序 ,若 出的 果是 16,那么在程序框中的判断框内 填写的条件是 ________.第 5第 4第 5第 67 已知三个数 12(16), 25(7), 33(4),将它 按由小到大的 序排列________.8把 10 231(5)化 四 制数 ________.统计部分:1.某 位有老年人 27 人,中年人 54 人,青年人 81 人, 了 他 的身体状况的某 指 ,需从他中 抽取一个容量 36 的 本 , 老年人 、中年人 、青年人分 抽取的人数是()A . 7,11,19B . 6,12,18C . 6,13,17D . 7,12,1712.已知一 数据 x 1, x 2, x 3, x 4, x 5 的平均数是 2,方差是 3,那么另一 数3x 1 -2,3x 2- 2,3x 3- 2,3x 4-2,3x 5- 2 的平均数 ,方差分 是 ( )12A . 2, 3B .2,1C . 4,3D . 4,3 3.如果在一次实验中 ,测得 (x , y)的四组数值分别是 A(1,3),B(2,3.8) ,C(3,5.2) ,D(4,6) ,则 y 与 x 之间 的回归直线方程是 ( )^^^^A. y = x +1.9B. y = 1.04x + 1.9C.y = 0.95x + 1.04D.y = 1.05x -0.9 4.某商店统计了最近 6个月某商品的进价x 与售价 y(单位:元 )的对应数据如下表: x 3 5 2 8 9 12y46391214假设得到的关于 x 和 y 之间的回归直线方程是 ^^ ^y = b x +a ,那么该直线必过的定点是 ________.5.某单位为了了解用电量y 度与气温 x ℃之间的关系 ,随机统计了某4 天的用电量与当天气温 .气温 (℃ ) 14 12 8 6用电量 (度)22263438^^^^由表中数据得回归方程 y =b x + a 中b =- 2,据此预测当气温为 5℃时 ,用电量的度数约为 ______.6.下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量 x(吨 )与相应的生产能耗 y(吨标准煤 )的几组对照数据 .x 3 4 5 6y 2.53 4 4.5(1) 请画出上表数据的散点图;^^^(2) 请根据上表提供的数据 ,用最小二乘法求出y 关于 x 的回归直线方程 y = bx + a ;(3) 已知该厂技改前 100 吨甲产品的生产能耗为90 吨标准煤.试根据 (2)求出回归直线方程 ,预测生产100 吨甲产品的生产能耗比技改前降低多少吨标准煤? (参考数值: 3× 2.5+ 4× 3+ 5×4+ 6× 4.5= 66.5)7.农科院的专家为了了解新培育的甲 、乙两种麦苗的长势情况 ,从甲、乙两种麦苗的试验田中各抽取6 株麦苗测量麦苗的株高 ,数据如下: ( 单位: cm)(1) 在下面给出的方框内绘出所抽取的甲 、乙两种麦苗株高的茎叶图;(2) 分别计算所抽取的甲 、乙两种麦苗株高的平均数与方差 ,并由此判断甲 、乙两种麦苗的长势情况.甲: 9,10,11,12,10,20乙: 8,14,13,10,12,21.8.今年西南一地区遭遇严重干旱 ,某乡计划向上级申请支援 ,为上报需水量 ,乡长事先抽样调查了 100户村民的月均用水量 ,得到这 100 户村民月均用水量的频率分布表如下表: (月均用水量的单位:吨 )用水量分组 频数 频率[0.5,2.5)12 [2.5,4.5)[4.5,6.5) 40[6.5,8.5)0.18[8.5,10.5]6合计1001(1) 请完成该频率分布表 ,并画出相对应的频率分布直方图和频率分布折线图; (2) 估计样本的中位数是多少?(3) 已知上级将按每户月均用水量向该乡调水 ,若该乡共有 1 200 户,请估计上级支援该乡的月调水量是多少吨?9.从高三抽出 50 名学生参加数学竞赛 ,由成绩得到如下的频率分布直方图.试利用频率分布直方图求:(1)这 50 名学生成绩的众数与中位数.(2)这 50 名学生的平均成绩.3.若 A 表示四件产品中至少有一件是废品的事件,B 表示废品不少于两件的事件,试问对立事件 A 、B 各表示什么 ?4.回答下列问题:(1)甲、乙两射手同时射击一目标 ,甲的命中率为 0.65,乙的命中率为 0.60,那么能否得出结论:目标被命中的概率等于 0.65+0.60=1.25, 为什么 ?(2) 一射手命中靶的内圈的概率是0.25,命中靶的其余部分的概率是0.50,那么能否得出结论:目标被命中的概率等于0.25+0.50=0.75, 为什么 ?(3) 两人各掷一枚硬币, “同时出现正面”的概率可以算得为12 .由于“不出现正面”是上述事件的对立事132件 ,所以它的概率等于12,这样做对吗 ?说明道理 .245.在一只袋子中装有7 个红玻璃球 ,3 个绿玻璃球 .从中无放回地任意抽取两次,每次只取一个.试求:(1)取得两个红球的概率; (2)取得两个绿球的概率;(3) 取得两个同颜色的球的概率;(4)至少取得一个红球的概率.6.盒中有 6 只灯泡 ,其中 2 只次品 ,4 只正品 ,有放回地从中任取两次,每次取一只 ,试求下列事件的概率:(1)取到的 2 只都是次品; (2)取到的 2 只中正品、次品各一只;(3) 取到的 2 只中至少有一只正品.概率部分:随机事件的概率:1.一口袋内装有大小一样的 4 只白球与 4 只黑球 ,从中一次任意摸出 2 只球 .记摸出 2 只白球为事件 A, 摸出 1 只白球和 1 只黑球为事件 B.问事件 A 和 B 是否为互斥事件?是否为对立事件?2.在一个盒子内放有10 个大小相同的小球,其中有 7 个红球、 2 个绿球、 1 个黄球 ,从中任取一个球,求:(1)得到红球的概率;( 2)得到绿球的概率;(3)得到红球或绿球的概率;( 4)得到黄球的概率 .(5)“得到红球”和“得到绿球”这两个事件 A 、B 之间有什么关系 ,可以同时发生吗?(6)( 3)中的事件 D“得到红球或者绿球”与事件 A 、 B 有何联系?7.某市派出甲、乙两支球队参加全省足球冠军赛.甲、乙两队夺取冠军的概率分别是3和1.试求该市74足球队夺得全省足球赛冠军的概率.古典概型:8.在大小相同的 5 个球中 ,2 个是红球 ,3 个是白球 ,若从中任取 2 个 ,则所取的 2 个球中至少有一个红球的概率是 _____________.9.抛掷 2 颗质地均匀的骰子,求点数和为8 的概率 .10.豆的高矮性状的遗传由其一对基因决定,其中决定高的基因记为D,决定矮的基因记为d,则杂交所得第一子代的一对基因为 Dd, 若第二子代的 D,d 基因的遗传是等可能的 ,求第二子代为高茎的概率(只要有基因 D 则其就是高茎 ,只有两个基因全是 d 时 ,才显现矮茎) .11.一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4,(1) 从袋中随机取出两个球,求取出的球的编号之和不大于 4 的概率;(2)先从袋中随机取一个球,该球的编号为 m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n,求 n< m+ 2 的概率.几何概型:12.有一段长为 10 米的木棍 ,现要将其截成两段 ,要求每一段都不小于 3 米 ,则符合要求的截法的概率是多大?13.郭靖、潇湘子与金轮法王等武林高手进行一种比赛,比赛规则如下:在很远的地方有一顶帐篷,可以3看到里面有一张小方几,要将一枚铜板扔到这张方几上.已知铜板的直径是方几边长的,谁能将铜板整4个地落到方几上就可以进行下一轮比赛 .郭靖一扔 ,铜板落到小方几上 ,且没有掉下 ,问他能进入下一轮比赛的概率有多大?14 甲、乙两人相约在上午 9:00 至 10:00 之间在某地见面 ,可是两人都只能在那里停留 5 分钟 .问两人能够见面的概率有多大?15.在 5 升水中有一个病毒,现从中随机地取出 1 升水 ,含有病毒的概率是多大?现在我们将这个问题拓展一下:16.在 5 升水中有两个病毒,现从中随机地取出 1 升水 ,含有病毒的概率是多大?17.在圆心角为90°的扇形中 ,以圆心为起点作射线OC,求使得∠ AOC 和∠ BOC 都不小于 30°的概率 .18.设关于x的一元二次方程x22ax b20 .(1)若a是从 0, 1, 2, 3 四个数中任取的一个数,b是从 0, 1,2 三个数中任取的一个数,求使上述方程组有实数根都概率 .(2)若a是从[0,3]上任取的一个数,b是从区间[0,2]上任取的一个数,求上述方程有实根的概率.19. 某工厂生产A、B两种元件,其质量按测试指标划分为:大于或等于7.5为正品,小于7.5为次品 .现从一批产品中随机抽取这两种元件各 5 件进行检测,检测结果记录如下:A777.599.5B6x8.58.5y由于表格被污损,数据x 、 y 看不清,统计员只记得x y ,且 A 、 B 两种元件的检测数据的平均值相等,方差也相等 .求表格中 x 与 y 的值从被检测的 5 件B种元件中任取2 件,求 2 件都为正品的概率.。

数学必修4知识点归纳总结

数学必修4知识点归纳总结

数学必修4知识点归纳总结第一章 三角函数周期现象与周期函数周期函数定义的理解要掌握三个条件,即存在不为0的常数T ;x 必须是定义域内的任意值; f(x +T)=f(x)。

练习:(1)已知函数f(x)对定义域内的任意x 满足:存在非零常数T ,使得f(x +T)=f(x)恒成立。

求:f(x +2T) ,f(x +3T)解:f(x +2T)=f[(x +T)+T]=f(x +T)=f(x), f(x +3T)=f[(x +2T)+T]=f(x +2T)=f(x)(2)已知函数f(x)是R 上的周期为5的周期函数,且f(1)=2005,求f(11) 解:f(11)=f(6+5)=f(6)=f(1+5)=f(1)=2005(3)已知函数f(x)是R 上的奇函数,且f(1)=2,f(x +3)=f(x),求f(8) 解:f(8)=f(2+2×3)=f(2)=f(-1+3)=f(-1)=-f(1)=-2 角的概念的推广1、正角、负角、零角的概念一条射线由原来的位置OA ,绕着它的端点O 按逆时针方向(或顺时针方向)旋转到终止位置OB ,就形成角α.旋转开始时的射线OA 叫做角的始边,OB 叫终边,射线的端点O 叫做叫α的顶点。

规定:按逆时针方向旋转形成的角叫做正角;按顺时针方向旋转形成的角叫做负角;如果一条射线没有作任何旋转,我们认为这时它也形成了一个角,并把这个角叫做零角,如果α是零角,那么α=0°;钟表的时针和分针在旋转时所形成的角总是负角。

过去我们研究了0°~360°(00360α≤<)范围的角。

如果我们将角α=030的终边OB 继续按逆时针方向旋转一周、两周……而形成的角分别得到390°,750°……的角。

角的概念经过这样的推广以后就成为任意角,任意角包括正角、负角和零角. 2.象限角、坐标轴上的角的概念.由于角是一个平面图形,所以今后我们常在直角坐标系内讨论角,我们使角的顶点与原点重合,角的始边与x 轴的非负半轴(包括原点)重合,那么角的终边(除端点外)落在第几象限,我们就说这个角是第几象限角. 300°、-60°角都是第四象限角;585°角是第三象限角。

(2021年整理)高中数学必修4知识点经典题型

(2021年整理)高中数学必修4知识点经典题型

高中数学必修4知识点经典题型编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学必修4知识点经典题型)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学必修4知识点经典题型的全部内容。

第三章三角恒等变换★1、角三角函数的基本关系:()221sin cos 1αα+=()2222sin 1cos ,cos 1sin αααα=-=-;()sin 2tan cos ααα=sin sin tan cos ,cos tan αααααα⎛⎫== ⎪⎝⎭. ★2、函数的诱导公式:()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z .()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=.()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-.()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.口诀:函数名称不变,符号看象限.()5sin cos 2παα⎛⎫-= ⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭.()6sin cos 2παα⎛⎫+= ⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭. 口诀:正弦与余弦互换,符号看象限.★3、两角和与差的正弦、余弦和正切公式:⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-;⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+;⑸()tan tan tan 1tan tan αβαβαβ--=+ ⑹()tan tan tan 1tan tan αβαβαβ++=-★4、二倍角的正弦、余弦和正切公式:⑴sin22sin cos ααα=.222)cos (sin cos sin 2cos sin 2sin 1ααααααα±=±+=±⇒⑵2222cos2cos sin 2cos 112sin ααααα=-=-=- ⇒升幂公式2sin 2cos 1,2cos 2cos 122αααα=-=+⇒降幂公式2cos 21cos 2αα+=,21cos 2sin 2αα-=. 22tan tan 21tan ααα=-★5。

高一数学必修4知识点归纳加题型

高一数学必修4知识点归纳加题型

高一数学必修4知识点归纳加题型高一数学必修4是一门重要的学科,涵盖了许多重要的数学知识点。

在本文中,将对高一数学必修4中的知识点进行归纳整理,并附加一些相关的题型,以帮助同学们更好地掌握这些知识。

1. 函数与方程1.1 一次函数一次函数的数学表示形式为y = kx + b,其中k为斜率,b为截距。

常见的题型包括求解线性方程组,求解一次函数的图像等。

示例题:已知一次函数的图像为直线y = 2x - 3,求函数的解析式。

1.2 二次函数二次函数的数学表示形式为y = ax^2 + bx + c,其中a为二次项的系数,b为一次项的系数,c为常数。

常见的题型包括求顶点坐标,求零点,绘制二次函数的图像等。

示例题:已知二次函数的顶点坐标为(-2, 5),且过点(1, 2),求函数的解析式。

2. 三角函数2.1 正弦函数正弦函数的数学表示形式为y = A*sin(Bx + C) + D,其中A为振幅,B为周期,C为初相位,D为垂直位移。

常见的题型包括求解三角方程,求解三角函数的图像等。

示例题:在区间[0, 2π]上,求解方程sin(2x) = 1的解。

2.2 余弦函数余弦函数的数学表示形式为y = A*cos(Bx + C) + D,其中A为振幅,B为周期,C为初相位,D为垂直位移。

常见的题型包括求解三角方程,求解三角函数的图像等。

示例题:在区间[0, 2π]上,求解方程cos(2x) = -1/2的解。

3. 平面向量平面向量的数学表示形式为A = (x, y),其中x和y分别表示向量在x轴和y轴上的分量。

常见的题型包括向量的加法、减法,向量的数量积,向量的模等。

示例题:已知向量A = (2, -1),向量B = (-3, 4),求向量A与向量B的数量积。

4. 解析几何4.1 直线和圆的方程直线的一般方程为Ax + By + C = 0,其中A、B、C为常数。

圆的标准方程为(x - h)^2 + (y - k)^2 = r^2,其中(h, k)为圆心坐标,r为半径长度。

(word完整版)高中数学必修4三角函数常考题型:三角函数的诱导公式(一)

(word完整版)高中数学必修4三角函数常考题型:三角函数的诱导公式(一)

三角函数的诱导公式(一)【知识梳理】1. 诱导公式⑴角n+ a与角a的终边关于原点对称. 如图所示.10丿H(2)公式:sin( n+ a = —sin acos( n+ a) =—cos_ a.tan( n+ a = tan_ a2. 诱导公式三(1)角一a与角a的终边关于X轴对称. 如图所示.彳(2)公式:sin( —a = —sin _aCOs(— a) = COs_ atan(— a = —tan_ a3. 诱导公式四(1)角n— a与角a的终边关于y轴对称.如图所示.(2)公式:sin( n— a = sin __ acos( n— a = 一COS_a tan( n— a = —tan_ a.【常考题型】题型一、给角求值问题【例1】 求下列三角函数值:。

o 119 n⑴sin( — 1 200 °; (2)tan 945 ; (3)cos_^.[解](1)si n( — 1 200 )=— sin 1 200 =—°si n(3 x 360 牛 120 ) =— sin 120 =— sin(180 — 60 )3=—sin 60 =——; 2(2)tan 945 =tan(2 x 360 °+ 225 °= tan 225 = tan( 180 4 45 °)= tan 45 = 1;【类题通法】【对点训练】求 sin 585 cos 1 290 4 cos( — 30°)sin 210 4 tan 135 的值.解:sin 585 °s 1 290 C cos(— 30°)sin 210 ° tan 135 = sin(360 ° 225°)cos(3x 360° 4 210) 4 cos 30 gin 210 半 tan(180 —45 ° = sin 225 c6s 210 半 cos 30 s °n 210 — tan 45 = sin( 180 半 45 °)cos(180 4 30 °)4 cos 30 sin(180 4 30 °— tan 45 =sin 45 cbs 30 — cos 30 s i n 30 — tan 45 = 返 x ©_ ?/3x 1—1 乎-也-42 2 2 2 4题型二、化简求值问题cos — a tan 7 n4 asin n — a(2)化简曲:豊4 " * "—1需°cos — 180 — a sin — a — 180 (3)cos 譽 =cos 20 n — n = cos 6 6n =cos := 6 【例2】 (1)化简:cos — a tan 7 n4 a 解析]sin n— a cos d an n4 asin acos a tan asin a心=1sin a[答案]1•••a+ 125°= 180°+ ( a — 55°),sin 4X 360 °+ a c os 3 x 360 °— a sin a c os — a (2)[解]原式=—— cos 180 + a [ — sin 180 + a ] COS a = =—1. —cos a sin a — COs a 【类题通法】 利用诱导公式一〜四化简应注意的问题(1)利用诱导公式主要是进行角的转化,从而达到统一角的目的;(2)化简时函数名没有改变,但一定要注意函数的符号有没有改变;(3)同时有切(正切)与弦(正弦、余弦)的式子化简,一般采用切化弦,有时也将弦化切. 化简: tan 2 n — 0 sin 2 n — 0 cos 6 n —tan — 0s in — 0cos — 0—cos 0sin n+ 0 tan Osin 0cos 0cos 0sin 0 =tan 0 题型三、给角(或式)求值冋题【例3】 1 (1)已知 sin 3= 3, cos(a+ 3=— 1,贝U sin( a+ 2 3)的值为( ) 3 A . 1 B . — 11 Ci 1D 「11⑵已知cos( a — 55 °)=— 3,且a 为第四象限角,求 sin( a+ 125°)的值.(1)[解析] **cos( a+ 3) = — 1 ,• '•a+ 3= T H- 2k n, k , 1 •'sin( a+ 2 3) = sin [(a+ 3] = sin( n+ 3 = — sin 3= — 3.3[答案]D(2)[解]・.cos( a — 55 °)=— ]0,且a 是第四象限角.• a — 55°是第三象限角.sin( a — 55 °)= — i : 1 — COS ? a — 55 =— 2.23【对点训练】解:原式=••sin( a- 125° = sin[180 — (a — 55°)] = — sin( a — 55°)=警.【类题通法】解决条件求值问题的策略(1)解决条件求值问题,首先要仔细观察条件与所求式之间的角、函数名称及有关运算之间 的差异及联系.(2)可以将已知式进行变形向所求式转化,或将所求式进行变形向已知式转化.【对点训练】1 、sin( n+ a=— 3,求 cos(5n+ a 的值. 3由诱导公式得,sin( n- a = — sin a,当a 是第一象限角时,cos a= - ;1 — Sin 2 a=彳^2 2A /2 此时,cos(5 n — %)= cos( n+ a = —cos a=— 3 . 3当 a 是第二象限角时,cos a=— • :1— sin 2 a=— ^^2 ,2占 此时,cos(5 n — %)= cos( n+ a = — cos a= 3 .3 【练习反馈】1.如图所示,角0的终边与单位圆交于点 P ,晋,则cos(n — 的值为(B . — -5 52*5D. 50-五—5,送•'cos( n — ® = — cos 0= 5 .已知 解: 所以sin a= 3,所以a 是第一象限或第二象限角.解析: 选 C 行=1 ,「.cos答案:2 — 2n5.已知 cos 6"coS a+于的值.n —cos 6— a 2. 4 _ 已知 sin( n+%)= 5,且 a 是第四象限角,贝U COS ( a — 2冗)的值是( ) 3 B.5D.5 4 解析:选 B sin a =-4, 又a 是第四象限角, • 'COS ( a — 2 n )= COS a= \ -1- Sin 2 a= 5. sin a — 3 n + COS n — a 3.设 tan(5 n+ a) = m ,贝U sin — a — COS n+ a 解析: '•ta n(5n+ a = tan a= m , —sin a — cos a — tan a — 1 — m — 1 m + 1 • • •原式= = = = —sin a+ cos a — tan a+ 1 — m + 1 m — 1 答案:cos — 585 ° sin 495 + sin — 570的值是解析: 原式= cos 360 °+ 225 ° sin 360 °+ 135 ° — sin 210 °+ 360 cos 225 cos 180 °+ 45 ° sin 135 — sin 210 °sin 180 °— 45° — sin 180 ° + 30° —cos 45sin 45 + sin 30 —2 .2 1 + _ 2 2 2 — 2.解:cos n+ =— cos n —6 5 n a+E。

高中数学必修四三角函数知识点总结,附真题讲解!

高中数学必修四三角函数知识点总结,附真题讲解!

高中数学必修四三角函数知识点总结,附真题讲解!
2、象限角角a的顶点与原点重合,角的始边与x轴的非负半轴重合,终边落在第几象限,
则称a为第几象限角.3、
的象限已知a是第几象限角,确定所在象限的
方法:先把各象限均分n等份,再从x轴的正半轴的上方起,依次将各区域标上一、二、三、四,则a原来是第几象限对应的标
号即为终边所落在的区域.4、弧度制⑴ 1弧度的定义:长度等于半径长的弧所对的圆心角叫做1弧度.⑵ 弧长公式 半径为r的圆的圆心角a所对弧的长为l,则角a的弧度数的绝对值是
.⑶弧度制与角度制的换算公式:,,
.⑷若扇形的圆心角为a(a位弧度制),半径为
r,弧长为l,周长为C,面积为S,则,,

【答案】。

(完整版)必修四考试题型归纳,推荐文档

(完整版)必修四考试题型归纳,推荐文档

2 第一章 三角函数题型一:象限角的判定及角的集合:1. 若是第四象限的角,则-是()A. 第一象限的角B.第二象限的角C.第三象限的角D.第四象限的角- 2. 若是第三象限的角,是第二象限的角,则是第象限的角.23. 满足sin x =3 的 x 的集合为。

2题型二:弧度制的相关运算4. 设扇形的周长为8cm ,面积为 4cm 2 ,则扇形的圆心角的弧度数是 。

5. 如果1弧度的圆心角所对的弦长为 2 ,那么这个圆心角所对的弧长为()1A.sin 0.5B . sin0.5C . 2 s in 0.5D . tan 0.5题型三:三角函数周期的相关运算6.在 函 数 y = sin x 、 y = sin x 、 y = sin(2x +2 ) 、 y = cos(2x + 32) 中,最小正周期为3的函数的个数为( ) A .1个 B . 2 个 C . 3 个 D . 4 个7. 已知函数 y = 2a + b sin x 的最大值为3 ,最小值为1,则函数 y = -4a sinbx 的最小正周期为2,值域为 .8.若函数 f (x ) = 2 tan(kx + ) 的最小正周期T 满足1< T < 2 ,则自然数k 的值为 .3题型四:三角函数定义域的相关运算9. 函数 y = f (cos x ) 的定义域为 ⎡2k-+2⎤f (x ) 的定义域为.题型五:三角函数值域的相关运算,2k⎣6(k ∈ Z ) ,则函数 y = 3 ⎦10. y = sin x - sin x的值域是( )A . [-1,0]题型六:三角函数最值的相关运算2 + cos x11.函 数 y = 2 - cos x的最大值为.B . [0,1]C . [-1,1]D . [-2,0]12.若 f (x ) = 2sinx (0 << 1) 在区间[0, ] 上的最大值是 ,则=。

3题型七:三角函数单调区间的求解13. 函数 y = -cos( x- ) 的单调递增区间是.2 3题型八:三角函数的图形变换 14. 将函数 y = sin(x -3) 的图象上所有点的横坐标伸长到原来的 2 倍(纵坐标不变),再将所得 的图象向左平移 个单位,得到的图象对应的僻析式是()3710132, 3A. y = sin 1xB. y = sin(1x -) C. y = sin(1x -) D. y = sin(2x - )222266题型九:三角函数对称轴的相关运算15. 已知函数 f (x ) = sin(2x +)的图象关于直线 x = 对称,则可能是()8A.B . -3C .D .2 44 4题型十:三角函数读图求解析式16. 已知定义在区间[ -, 2]上的函数 y = f (x ) 的图象关于直线 x = -对称,当x ∈[ - 2] 3 时,函数 f (x ) = A sin(x +) ( A > 0 ,> 0 , << 6 y,)6 3 其图象如图所示.(1)求函数 y = f (x ) 在[ -,2] 的表达式; 3•2 21•o2•x(2) 求方程 f (x ) =的解.2π6x = -6题型十一:向量中的正投影问题第二章 向量→→→→17.若 a = (2,3) , b = (-4,7) ,则 a 在 b 上的投影为 。

人教版高中数学必修四常见公式及知识点总结(完整版)

人教版高中数学必修四常见公式及知识点总结(完整版)

必修四常考公式及高频考点第一部分 三角函数与三角恒等变换考点一 角的表示方法 1.终边相同角的表示方法:所有与角α终边相同的角,连同角α在内可以构成一个集合:{β|β= k ·360 °+α,k ∈Z } 2.象限角的表示方法:第一象限角的集合为{α| k ·360 °<α<k ·360 °+90 °,k ∈Z }第二象限角的集合为{α| k ·360 °+90 °<α<k ·360 °+180 °,k ∈Z } 第三象限角的集合为{α| k ·360 °+180 °<α<k ·360 °+270 °,k ∈Z } 第四象限角的集合为{α| k ·360 °+270 °<α<k ·360 °+360 °,k ∈Z } 3.终边在某条射线、某条直线或两条垂直的直线上(如轴线角)的表示方法:(1)若所求角β的终边在某条射线上,其集合表示形式为{β|β= k ·360 °+α,k ∈Z },其中α为射线与x 轴非负半轴形成的夹角(2)若所求角β的终边在某条直线上,其集合表示形式为{β|β= k ·180 °+α,k ∈Z },其中α为直线与x 轴非负半轴形成的任一夹角(3)若所求角β的终边在两条垂直的直线上,其集合表示形式为{β|β= k ·90 °+α,k ∈Z },其中α为直线与x 轴非负半轴形成的任一夹角 例:终边在y 轴非正半轴上的角的集合为{α|α= k ·360 °+270 °,k ∈Z }终边在第二、第四象限角平分线上的集合为{α|α= k ·180 °+135 °,k ∈Z } 终边在四个象限角平分线上的角的集合为{α|α= k ·90 °+45 °,k ∈Z } 易错提醒:区别锐角、小于90度的角、第一象限角、0~90、小于180度的角 考点二 弧度制有关概念与公式 1.弧度制与角度制互化π=︒180,1801π=︒,1弧度︒≈︒=3.57180π2.扇形的弧长和面积公式(分别用角度制、弧度制表示方法)弧长公式:R Rn l απ==180, 其中α为弧所对圆心角的弧度数 扇形面积公式:lR R n S 213602==π=12 R 2|α|, 其中α为弧所对圆心角的弧度数 易错提醒:利用S=12R 2|α|求解扇形面积公式时,α为弧所对圆心角的弧度数,不可用角度数规律总结:“扇形周长、面积、半径、圆心角”4个量,“知二求二”,注意公式选取技巧考点三 任意角的三角函数 1.任意角的三角函数定义设α是一个任意角,它的终边与单位圆交于点()y x P ,,那么sin y r α=,cos x r α=,tan y x α=(22||r OP x y ==+);化简为xyx y ===αααtan ,cos ,sin . 2.三角函数值符号规律总结:利用三角函数定义或“一全正、二正弦、三正切、四余弦”口诀记忆象限角或轴线角的三角函数值符号. 3.特殊角三角函数值SIN15º=SIN(60º-45º)=SIN60ºCOS45º-SIN45ºCOS60º=(√6-√2)/4 COS15º=COS(60º-45º)=COS60ºCOS45º+SIN60ºSIN45º=(√6+√2)/4除此之外,还需记住150、750的正弦、余弦、正切值 4.三角函数线经典结论: (1)若(0,)2x π∈,则sin tan x x x <<(2)若(0,)2x π∈,则1sin cos 2x x <+≤(3)|sin ||cos |1x x +≥考点四 三角函数图像与性质y OxyOxα终边yOx yOx P M A TPM A T正弦线余弦线 正切线PP MA TP MA T α终边α终边α终边sin y x =cos y x = tan y x =图象定义域R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当22x k ππ=+()k ∈Z 时,max 1y =;当22x k ππ=-()k ∈Z 时,min1y=-.当()2x k k π=∈Z 时,max 1y =;当2x k ππ=+()k ∈Z 时,min 1y =-.既无最大值也无最小值周期性 2π2ππ奇偶性奇函数偶函数奇函数单调性在2,222k k ππππ⎡⎤-+⎢⎥⎣⎦()k ∈Z 上是增函数; 在32,222k k ππππ⎡⎤++⎢⎥⎣⎦()k ∈Z 上是减函数.在[]()2,2k k k πππ-∈Z 上是增函数; 在[]2,2k k πππ+()k ∈Z 上是减函数.在,22k k ππππ⎛⎫-+⎪⎝⎭()k ∈Z 上是增函数.对称性对称中心()(),0k k π∈Z对称轴()2x k k ππ=+∈Z 对称中心(),02k k ππ⎛⎫+∈Z⎪⎝⎭对称轴()x k k π=∈Z对称中心(),02k k π⎛⎫∈Z⎪⎝⎭无对称轴考点五 正弦型(y=Asin(ωx +φ))、余弦型函数(y=Acos(ωx +φ))、正切性函数(y=Atan(ωx +φ))图像与性质 1.解析式求法字母 确定途径 说明A 由最值确定 A =最大值-最小值2B 由最值确定B =最大值+最小值2ω 由函数的周期确定相邻的最高点与最低点的横坐标之差的绝对值为半个周期,最高点(或最低点)的横坐标与相邻零点差的绝对值为0.25个周期φ由图象上的特殊点确定可通过认定特殊点是五点中的第几个关键点,然后列方程确定;也可通过解简单三角方程确定A 、B 通过图像易求,重点讲解φ、ω求解思路: ①φ求解思路:函数性质代入图像的确定点的坐标.如带入最高点),(11y x 或最低点坐标),(22y x ,则)(221Z k k x ∈+=+ππϕω或)(2232Z k k x ∈+=+ππϕω,求ϕ值. 易错提醒:y=Asin(ωx+φ),当ω>0,且x=0时的相位(ωx+φ=φ)称为初相.如果不满足ω>0,先利用诱导公式进行变形,使之满足上述条件,再进行计算.如y=-3sin(-2x+600)的初相是-600②ω求解思路:利用三角函数对称性与周期性的关系,解ω.相邻的对称中心之间的距离是周期的一半;相邻的对称轴之间的距离是周期的一半;相邻的对称中心与对称轴之间的距离是周期的四分之一. 2.“一图、两域、四性” “一图”:学好三角函数,图像是关键。

高中数学必修四三角恒等变换题型归纳及训练题

高中数学必修四三角恒等变换题型归纳及训练题

三角恒等变换一、知识概括:1.两角和与差的三角函数公式2.二倍角公式: sin 2α=2sin αcos α; tan 2α=2tan α1-tan 2α.cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α;3.公式的变形与应用(1)两角和与差的正切公式的变形tan α+tan β=tan(α+β)(1-tan αtan β); tan α-tan β=tan(α-β)(1+tan αtan β).(2)降幂公式:sin 2α=1-cos 2α2;cos 2α=1+cos 2α2.二、方法归纳总结:1.三角函数式的化简遵循的三个原则(1)一看“角”,这是最重要的一环,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式.(2)二看“函数名称”,看函数名称之间的差异,从而确定使用的公式,常见的有“切化弦”.(3)三看“结构特征”,分析结构特征,可以帮助我们找到变形的方向,常见的有“遇到分式要通分”等.三、典例剖析:题型一、【公式顺用、逆用、变用】例1、sin 75= ; cos15= ; 2、sin 20°cos 10°-cos 160°sin 10°=( )A .-32 B.32 C .-12 D.123.设sin 2sin ,(,)2παααπ=-∈,则tan 2α的值是________.4、若3tan 4α=,则2cos 2sin 2αα+= ( ) (A)6425 (B) 4825 (C) 1 (D)1625专题二:【凑角应用】例3、已知0<β<π4<α<34π,135)43sin(,53)4cos(=+=-βπαπ,求)sin(βα+的值.注:常见的配角技巧:α=2·α2;α=(α+β)-β;α=β-(β-α);α=12[(α+β)+(α-β)];β=12[(α+β)-(α-β)];π4+α=π2-()4πα-变式1、若0<α<π2,π2<β<3π2,14cos(),cos(),43425ππβα+=-=则cos()2βα+=________.变式2、已知tan 2α=-,()1tan 7αβ+=,则tan β的值为_______.题型三、【三角恒等变换的综合运用】1.已知函数()22sin sin 6f x x x π⎛⎫=--⎪⎝⎭,R x ∈ (I)求()f x 最小正周期;(II)求()f x 在区间[,]34ππ-上的最大值和最小值.2.已知函数()sin(),4f x A x x R π=+∈,且53()122f π=. ①求A 的值; ②若f (θ)+f (-θ)=32,(0,)2πθ∈,求3()4f πθ-3.已知tan 2α=. (1)求tan 4πα⎛⎫+ ⎪⎝⎭的值; (2)求2sin 2sin sin cos cos 21ααααα+--的值.三角恒等变形课后训练题1.cos 24cos36cos66cos54︒︒︒︒-的值为 ( )A. 0B. 12C.D. 12-2. =+-)12sin 12(cos )12sin12(cosππππ( )A. 23-B. 21-C. 21D.23 3.设1tan 2,1tan xx +=-则sin 2x 的值是 ( )A. 35B. 34-C. 34D. 1-4. 已知()()tan 3,tan 5αβαβ+=-=,则()tan 2α的值为 ( )A. 47-B. 47C. 18D. 18-5.βα,都是锐角,且5sin 13α=,()4cos 5αβ+=-,则βsin 的值是 ( )A. 3365B.1665C. 5665D. 63656.)4,43(ππ-∈x 且3cos 45x π⎛⎫-=- ⎪⎝⎭则cos2x 的值是 ( )A. 725-B. 2425-C. 2425D. 7257.cos 23x x a +=-中,a 的取值域范围是 ( )A. 2521≤≤aB. 21≤aC. 25>aD. 2125-≤≤-a 8. 已知等腰三角形顶角的余弦值等于54,则这个三角形底角的正弦值为 ( )A.1010 B. 1010- C. 10103 D. 10103-9. 函数sin22x xy =的图像的一条对称轴方程是 ( ) A. x =113π B. x =53π C. 53x π=- D. 3x π=-10.在ABC ∆中,tan tan tan A B A B +=,则C 等于 ( )A.3π B. 23π C. 6π D. 4π11.若βαtan ,tan 是方程04332=++x x 的两根,且),2,2(,ππβα-∈则βα+等于 . 12. .在ABC ∆中,已知tanA ,tanB 是方程23720x x -+=的两个实根,则tan C = . 13. 已知tan 2x =,则3sin 22cos 2cos 23sin 2x xx x+-的值为 .14. 关于函数()cos2cos f x x x x =-,下列命题:①若存在1x ,2x 有12x x π-=时,()()12f x f x =成立;②()f x 在区间,63ππ⎡⎤-⎢⎥⎣⎦上是单调递增; ③函数()f x 的图像关于点,012π⎛⎫⎪⎝⎭成中心对称图像; ④将函数()f x 的图像向左平移512π个单位后将与2sin 2y x =的图像重合. 其中正确的命题序号 .(注:把你认为正确的序号都填上)三、解答题:15.在ABC ∆中,已知的值求sinC ,135B c ,53cosA ==os .16.已知αβαβαπαβπsin2,53)(sin ,1312)(cos ,432求-=+=-<<<.17. 已知α为第二象限角,且 sin α=,415求12cos 2sin )4sin(+++ααπα的值.18已知tan α=2,tan β=-13,其中0<α<π2,π2<β<π.(1)求tan(α-β)的值;(2)求α+β的值.19.已知函数)0)(6sin(2)(>-=ωπωx x f 的最小正周期为π6(1)求)0(f (2)设56)23(,1310)23(0,2,2,0=+=+⎥⎦⎤⎢⎣⎡-∈⎥⎦⎤⎢⎣⎡∈πβπαπβπαf f ,求)cos(βα+的值.20.已知函数22sin sin 23cos y x x x =++,求 (1)函数的最小值及此时的x 的集合。

(完整word版)高中数学必修四常考题型总结

(完整word版)高中数学必修四常考题型总结

(完整word 版)高中数学必修四常考题型总结必修四常考题型总结三角函数篇三角函数的基础知识与基本运算: 1. sin585。

的值为(A) 22-(B )22 (C )32- (D) 322。

(列关系式中正确的是( )A .000sin11cos10sin168<<B .000sin168sin11cos10<<C .000sin11sin168cos10<<D .000sin168cos10sin11<< 3.(2009北京理)“2()6k k Z παπ=+∈”是“1cos 22α="的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 4.(2008浙江理)cos 2sin 5,tan ( )ααα+=-=若则(A )12(B )2 (C )12- (D)2-图像与性质:1.已知a 是实数,则函数()1sin f x a ax =+的图象不可能...是 ( )3.已知函数()f x =Acos(x ωϕ+)的图象如图所示,2()23f π=-,则(0)f =(A)23- (B)23 (C )- 12 (D ) 12w 。

w.w 。

k 。

s 。

5。

u.c 。

o 。

m(完整word 版)高中数学必修四常考题型总结4.)函数sin()y A x ωϕ=+(,,A ωϕ为常数,0,0A ω>>)在闭区间[,0]π-上的图象如图所示,则ω= 。

4。

已知函数y=sin (ωx+ϕ)(ω〉0, —π≤ϕ〈π)的图像如图所示,则 ϕ=________________5。

已知函数()2sin()f x x ωφ=+的图像如图所示,则712f π⎛⎫= ⎪⎝⎭。

w 。

w 。

w 。

k.s.5。

u 。

c 。

o 。

m7.已知函数()sin()(0)f x x ωϕω=+>的图象如图所示, 则ω =已知函数()3sin cos (0)f x x x ωωω=+>,()y f x =的图像与直线2y =的两个相邻交点的距离等于π,则()f x 的单调递增区间是(A )5[,],1212k k k Z ππππ-+∈ (B )511[,],1212k k k Z ππππ++∈ (C )[,],36k k k Z ππππ-+∈ (D)2[,],63k k k Z ππππ++∈ 2.如果函数3sin(2)y x ϕ=+的图像关于点4(,0)3π中心对称,那么||ϕ 的最小值为(C ) (A )6π (B)4π (C )3π (D ) 2π3.已知函数))(2sin()(R x x x f ∈-=π,下面结论错误..的是 A . 函数)(x f 的最小正周期为2πB . 函数)(x f 在区间[0,]2π上是增函数C .函数)(x f 的图象关于直线x =0对称D . 函数)(x f 是奇函数4.(本小题共12分)已知函数()2sin()cos f x x x π=-. (Ⅰ)求()f x 的最小正周期;(Ⅱ)求()f x 在区间,62ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值.5.已知函数()sin(),f x A x x R ωϕ=+∈(其中0,0,02A πωϕ>><<)的周期为π,且图象上一个最低点为2(,2)3M π-. (Ⅰ)求()f x 的解析式;(Ⅱ)当[0,]12x π∈,求()f x 的最值.2。

高考数学必修4知识点归纳总结

高考数学必修4知识点归纳总结

高考数学必修4知识点归纳总结高考数学是每个学生都要面对的科目之一,而数学必修4是其中的一部分内容。

本文将对数学必修4的知识点进行归纳总结,以便帮助同学们更好地复习备考。

1. 二次函数与一元二次方程1.1 二次函数的定义和性质- 二次函数的定义:f(x) = ax^2 + bx + c,其中a、b、c为常数且a ≠ 0。

- 二次函数的图像特征:开口方向、顶点、对称轴、零点等。

1.2 一元二次方程- 一元二次方程的定义:ax^2 + bx + c = 0,其中a、b、c为已知的实数,且a ≠ 0。

- 一元二次方程的解的判别式:Δ = b^2 - 4ac。

- 当Δ > 0时,方程有两个不相等的实数解。

- 当Δ = 0时,方程有两个相等的实数解。

- 当Δ < 0时,方程无实数解。

2. 分式函数和分式方程2.1 分式函数的定义和性质- 分式函数的定义:f(x) = (P(x))/(Q(x)),其中P(x)和Q(x)是两个多项式函数,且Q(x) ≠ 0。

- 分式函数的特点:定义域、零点、图像等。

2.2 分式方程- 分式方程的定义:(P(x))/(Q(x)) = 0,其中P(x)和Q(x)是两个多项式函数,且Q(x) ≠ 0。

- 分式方程的解的求解步骤:1) 化简分式方程;2) 求解分子为零的方程;3) 检查解是否在原方程中成立。

3. 概率与统计3.1 概率- 概率的定义:某一事件发生的可能性。

- 概率的计算方法:- 等可能概型:P(A) = (事件A的样本点数)/(样本空间的样本点数);- 非等可能概型:P(A) = (事件A的样本点数)/(样本空间的样本点数)。

3.2 统计- 统计的基本概念:总体、样本、频数、频率等。

- 统计的方法:- 平均数:算术平均数、加权平均数等。

- 中位数:有序数据中位于中间位置的数。

- 众数:重复次数最多的数。

- 极差:最大值与最小值之差。

4. 解析几何4.1 平面直角坐标系- 平面直角坐标系的定义和性质。

高中数学必修4(人教A版)第一章三角函数1.6知识点总结含同步练习及答案

高中数学必修4(人教A版)第一章三角函数1.6知识点总结含同步练习及答案

21 24 7.9 11.1
经长期观察,函数 y = f (t) 的图象可以近似地看成函数 y = k + A sin (ωt + φ) 的图象.下面的函数 中,最能近似表示表中数据间对应关系的函数是 ( A.y = 11 + 3 sin (
)
π π t + ) , t ∈ [0, 24] 12 2 π B.y = 11 + 3 sin ( t + π) , t ∈ [0, 24] 6 π C.y = 11 + 3 sin t , t ∈ [0, 24] 12 π D.y = 11 + 3 sin t , t ∈ [0, 24] 6
π π t + ) , t ∈ [0, 24] 12 2 π B. y = 11 + 3 sin ( t + π) , t ∈ [0, 24] 6 π C. y = 11 + 3 sin t , t ∈ [0, 24] 6 π D. y = 11 + 3 sin t , t ∈ [0, 24] 12
3. 某城市一年中 12 个月的平均气温与月份的关系可近似地用三角函数 y = a + A cos
π (x − 6) ( 6
x = 1, 2, 3, ⋯ , 12 ) 来表示,已知 6 月份的月平均气温最高,为 28∘ C , 12 月份的月平均气温最
低,为 18∘ C ,则 10 月份的平均气温值为
B.[1, 7]
D.[0, 1] 和 [7, 12]
2π π π 弧度,从而经过 t 秒转了 = t 弧度. 12 6 6 1 √3 π 而 t = 0 时, 点 A ( , .经过 t 秒后点 A 的纵坐标为 ) ,则 ∠xOA = 2 2 3

高中数学必修四知识点总结归纳

高中数学必修四知识点总结归纳

高中数学必修四第一章:三角函数1.1任意角和弧度制考点1:任意角的概念考点2:终边相同的角考点3:象限角与轴线角1.1.2弧度制考点1:弧度制考点2:弧度制与角度制考点3:用弧度表示有关角考点4:扇形的弧长与面积1.2任意角的三角函数1.2.1任意角的三角函数考点1:任意角的三角函数的定义考点2:三角函数值的符号考点3:诱导公式(一)考点4:三角函数式的化简与证明考点5:三角函数线考点6:三角函数的定义域与值域1.2.2同角三角函数的基本关系考点1:同角三角函数的基本关系考点2:三角函数式的化简考点3:利用sinα,cosα,sinαcos α之间的关系求值考点4:三角函数恒等式的证明1.3三角函数的诱导公式考点1:诱导公式考点2:运用诱导公式化简、求值考点3:诱导公式的综合运用1.4三角函数的图像与性质1.4.1正弦函数、余弦函数的图像1.4.2正弦函数。

余弦函数的性质考点1:函数的周期性考点2:正弦函数与余弦函数的图像考点3:正弦函数与余弦函数的定义域和值域考点4:正弦函数与余弦函数的奇偶性考点5:正弦函数与余弦函数的单调性考点6:正弦函数与余弦函数的对称性1.4.3正切函数的性质与图像考点1:正切函数的图像考点2:正切函数的性质考点3:正切函数的综合问题1.5函数y=Asin(ωx+φ)的综合应用考点1:用“五点法”作函数y=Asin(ωx+φ)的图像考点2:用变换作图法作函数y=Asin(ωx+φ)的图像考点3:由函数y=Asin(ωx+φ)的部分图像确定其解析式考点4:简谐运动的有关概念考点5:函数y=Asin(ωx+φ)的综合应用1.6三角函数模型的简单应用考点1:利用三角函数定义建立三角函数模型考点2:用拟合法建立三角函数模型考点3:三角函数模型应用的综合问题考法整合:考法1:任意角三角函数定义的灵活运用考法2:山脚函数图像的对称性考法3:三角函数的值域与最值问题考法4:利用图像解题第二章:平面向量2.1平面向量的事件背景及基本概念考点1:平面向量的概念考点2:平行向量(共线向量)、相等向量与相反向量考点3:平面向量的应用2.2平面向量的线性运算2.2.1向量加法运算及其几何意义2.2.2向量减法运算及其集合意义考点1:向量的加法考点2:向量的减法考点3:向量的化简考点4:响亮的加减法应用2.2.3向量数乘运算及其集合意义考点1:向量的数乘运算考点2:向量的线性运算考点3:向量的共线问题考点4:利用向量解决平面几个问题2.3平面向量的基本定理及坐标表示2.3.1平面向量的基本定理考点1:平面向量的基本定理考点2:平面向量基本定理的应用考点3:两个平面向量的夹角2.3.2平面向量的正交分解及坐标表示2.3.3平面向量的坐标运算2.3.4平面向量共线的坐标表示考点1:平面向量的坐标表示考点2:平面向量的坐标运算考点3:平面向量贡献的坐标表示考点4:线段的定比分点考点5:平面向量坐标表示的应用2.4平面向量的数量积2.4.1平面向量数量积的物理背景及其含义考点1:平面向量的数量积考点2:数量积的性质及其运算律考点3:两向量的夹角考点4:数量积的应用2.4.2平面向量数量积的坐标表示。

高中必修四数学知识点总结

高中必修四数学知识点总结

高中必修四数学知识点总结
一、文档
二、文档目的:
本文档旨在为高中学生提供一个关于必修四数学课程的全面知识点总结,以便学生能够更好地理解和掌握课程内容。

三、文档范围:
本文档覆盖高中数学必修四的全部知识点,包括但不限于函数、几何、概率与统计等领域。

四、文档结构:
1. 引言
- 课程简介
- 学习目标
2. 函数与方程
- 指数函数
- 对数函数
- 函数的复合与反函数
- 方程与不等式的解法
3. 三角函数
- 三角函数的定义
- 三角恒等变换
- 三角函数的图像与性质
- 解三角形问题
4. 数列与数学归纳法
- 等差数列与等比数列
- 数列的极限
- 数学归纳法的原理与应用
5. 空间几何
- 平面与空间中的几何体
- 空间向量及其运算
- 点、线、面之间的几何关系
6. 概率与统计
- 随机事件与概率的定义
- 概率的计算与分布
- 统计量的计算与图表解读
7. 附录
- 重要公式汇总
- 常见题型解析
- 练习题与答案
五、文档使用说明:
本文档应作为学习辅助材料,学生在使用时应结合实际课程内容和教师指导,针对不同知识点进行深入学习和练习。

六、修订记录:
- 版本 1.0 - 初始发布
七、版权声明:
© [年份] [作者/机构名称]。

保留所有权利。

请注意,上述内容是一个结构化的概要,具体的知识点总结需要根据实际的教材内容进行详细的编写和扩展。

每个部分都应该包含详细的解释、公式、图表、例题和解析,以确保文档的完整性和实用性。

人教版高中数学必修四知识点归纳总结

人教版高中数学必修四知识点归纳总结

人教版高中数学必修四知识点归纳总结1.1.1 任意角1.角的有关概念: ①角的定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形. ②角的名称:③角的分类: ④注意:⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”; ⑵零角的终边与始边重合,如果α是零角α =0°; ⑶角的概念经过推广后,已包括正角、负角和零角. 2.象限角的概念:①定义:若将角顶点与原点重合,角的始边与x 轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角.1.1.2弧度制(一)1.定 义我们规定,长度等于半径的弧所对的圆心角叫做1弧度的角;用弧度来度量角的单位制叫做弧度制.在弧度制下, 1弧度记做1rad .在实际运算中,常常将rad 单位省略. 弧度制的性质:①半圆所对的圆心角为;ππ=r r②整圆所对的圆心角为.22ππ=rr ③正角的弧度数是一个正数. ④负角的弧度数是一个负数.⑤零角的弧度数是零. ⑥角α的弧度数的绝对值|α|=. rl4.角度与弧度之间的转换: ①将角度化为弧度:π2360=︒; π=︒180;rad 01745.01801≈=︒π;rad n n 180π=︒.②将弧度化为角度:︒=3602π;︒=180π;815730.57)180(1'︒=︒≈︒=πrad ;︒=) 180 (πn n .5.常规写法:① 用弧度数表示角时,常常把弧度数写成多少π 的形式, 不必写成小数. ② 弧度与角度不能混用. 6.特殊角的弧度正角:按逆时针方向旋转形成的角零角:射线没有任何旋转形成的角负角:按顺时针方向旋转形成的角顶点AOαα⋅=⇒=r l rl弧长等于弧所对应的圆心角(的弧度数)的绝对值与半径的积.4-1.2.1任意角的三角函数(三)1. 三角函数的定义2. 诱导公式)Z (tan )2tan()Z (cos)2cos()Z (sin )2sin(∈=+∈=+∈=+k k k k k k ααπααπααπ 当角的终边上一点(,)P x y 1=时,有三角函数正弦、余弦、正切值的几何表示——三角函数线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

必修四常考题型总结三角函数篇三角函数的基础知识与基本运算: 1. sin 585。

的值为(A) 22-(B)22 (C)32- (D) 322.(列关系式中正确的是( )A .000sin11cos10sin168<<B .000sin168sin11cos10<<C .000sin11sin168cos10<<D .000sin168cos10sin11<<3.(2009北京理)“2()6k k Z παπ=+∈”是“1cos 22α=”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件4.(2008浙江理)cos 2sin 5,tan ( )ααα+=-=若则(A )12 (B )2 (C )12- (D )2-图像与性质:1.已知a 是实数,则函数()1sin f x a ax =+的图象不可能...是 ( )3.已知函数()f x =Acos(x ωϕ+)的图象如图所示,2()23f π=-,则(0)f =(A )23- (B) 23 (C)- 12 (D) 124.)函数sin()y A x ωϕ=+(,,A ωϕ为常数,0,0A ω>>)在闭区间[,0]π-上的图象如图所示,则ω= .4.已知函数y=sin (ωx+ϕ)(ω>0, -π≤ϕ<π)的图像如图所示,则ϕ=________________5.已知函数()2sin()f x x ωφ=+的图像如图所示,则712f π⎛⎫=⎪⎝⎭。

7.已知函数()sin()(0)f x x ωϕω=+>的图象如图所示, 则ω =已知函数()3sin cos (0)f x x x ωωω=+>,()y f x =的图像与直线2y =的两个相邻交点的距离等于π,则()f x 的单调递增区间是(A )5[,],1212k k k Z ππππ-+∈ (B )511[,],1212k k k Z ππππ++∈(C )[,],36k k k Z ππππ-+∈ (D )2[,],63k k k Z ππππ++∈2.如果函数3sin(2)y x ϕ=+的图像关于点4(,0)3π中心对称,那么||ϕ 的最小值为(C )(A )6π (B )4π (C )3π (D) 2π3.已知函数))(2sin()(R x x x f ∈-=π,下面结论错误..的是 A . 函数)(x f 的最小正周期为2πB . 函数)(x f 在区间[0,]2π上是增函数C .函数)(x f 的图象关于直线x =0对称D . 函数)(x f 是奇函数4.(本小题共12分)已知函数()2sin()cos f x x x π=-. (Ⅰ)求()f x 的最小正周期;(Ⅱ)求()f x 在区间,62ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值.5.已知函数()sin(),f x A x x R ωϕ=+∈(其中0,0,02A πωϕ>><<)的周期为π,且图象上一个最低点为2(,2)3M π-. (Ⅰ)求()f x 的解析式;(Ⅱ)当[0,]12x π∈,求()f x 的最值.2. (本小题满分12分)设函数f(x)=cos(2x+3π)+sin 2x. (1) 求函数f(x)的最大值和最小正周期.(2) 设A,B,C 为∆ABC 的三个内角,若cosB=31,1()24C f =-,且C 为锐角,求sinA.4.(本小题满分13分,(Ⅰ)小问7分,(Ⅱ)小问6分.)设函数2()sin()2cos 1468x xf x πππ=--+.(Ⅰ)求()f x 的最小正周期.(Ⅱ)若函数()y g x =与()y f x =的图像关于直线1x =对称,求当4[0,]3x ∈时()y g x =的最大值.图像的变换:1.将函数sin y x =的图象向左平移ϕ(0 ≤ϕ<2π)的单位后,得到函数sin()6y x π=-的图象,则ϕ等于()A .6π B .56π C. 76π D.116π2.若将函数)0)(4tan(>+=ωπωx y 的图像向右平移6π个单位长度后,与函数)6tan(πω+=x y 的图像重合,则ω的最小值为(A)61 (B)41(C)31 (D)213.将函数sin 2y x =的图象向左平移4π个单位, 再向上平移1个单位,所得图象的函数解析式是( ).A .cos 2y x =B .22cos y x =C .)42sin(1π++=x yD .22sin y x =4.已知函数)0,)(4sin()(>∈+=w R x wx x f π的最小正周期为π,)(x f y =的图像向左平移||ϕ个单位长度,所得图像关于y 轴对称,则ϕ的一个值是( )A2π B 83π C 4π D 8π5.已知函数()sin()(,0)4f x x x R πϖϖ=+∈>的最小正周期为π,为了得到函数()cos g x x ϖ=的图象,只要将()y f x =的图象A 向左平移8π个单位长度 B 向右平移8π个单位长度C 向左平移4π个单位长度 D 向右平移4π个单位长度三角恒等变换: 1.已知tan 2θ=,则22sin sin cos 2cos θθθθ+-=(A )43-(B )54 (C )34-(D )452.函数()sin cos f x x x =最小值是A .-1B . 12- C . 12 D .13.“1sin 2α=”是“1cos 22α=”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 4.函数()(13)cos f x x x =+的最小正周期为A .2πB .32π C .π D .2π5.函数22cos sin 2y x x =+的最小值是_____________________ . 6.若函数()(13)cos f x x x =+,02x π≤<,则()f x 的最大值为A .1B .2C 31D 32 1.若42x ππ<<,则函数3tan 2tan y x x =的最大值为 。

7. (本小题满分12分)设函数2()cos(2)sin 3f x x x π=++(1)求函数()f x 的最大值和最小正周期.(2)11,,cos ,(),,sin 324c A B C ABC B f C A ∆==-设为的三个内角,若且为锐角求8.设函数2()sin()2cos 1468x xf x πππ=--+.(Ⅰ)求()f x 的最小正周期.(Ⅱ)若函数()y g x =与()y f x =的图像关于直线1x =对称,求当4[0,]3x ∈时()y g x =的最大值.9.设函数22()(sin cos )2cos (0)f x x x x ωωωω=++>的最小正周期为23π. (Ⅰ)求ω的最小正周期.(Ⅱ)若函数()y g x =的图像是由()y f x =的图像向右平移2π个单位长度得到,求()y g x =的单调增区间.三角函数与向量综合: 1.(本小题满分12分)已知向量)2,(sin -=θa 与)cos ,1(θ=b 互相垂直,其中)2,0(πθ∈(1)求θsin 和θcos 的值(2)若ϕϕθcos 53)cos(5=-,<<ϕ02π,求ϕcos 的值2.(本小题满分14分)设向量(4cos ,sin ),(sin ,4cos ),(cos ,4sin )a b c ααββββ===-(1)若a 与2b c -垂直,求tan()αβ+的值;(2)求||b c +的最大值;(3)若tan tan 16αβ=,求证:a ∥b .3. 已知向量(sin ,cos 2sin ),(1,2).a b θθθ=-=(Ⅰ)若//a b ,求tan θ的值;(Ⅱ)若||||,0,a b θπ=<<求θ的值。

4.已知ΔABC 的角A 、B 、C 所对的边分别是a 、b 、c ,设向量(,)m a b =, (sin ,sin )n B A =,(2,2)p b a =-- . (1) 若m //n ,求证:ΔABC 为等腰三角形;(2) 若m ⊥p ,边长c = 2,角C = ABC 的面积 .5.已知向量m =(sin A ,cos A ),n =1)-,m ·n =1,且A 为锐角. (Ⅰ)求角A 的大小;(Ⅱ)求函数()cos 24cos sin ()f x x A x x R =+∈的值域.平面向量篇题型1.基本概念判断正误:(1)共线向量就是在同一条直线上的向量。

(2)若两个向量不相等,则它们的终点不可能是同一点。

(3)与已知向量共线的单位向量是唯一的。

(4)若AB CD =,则A 、B 、C 、D 四点构成平行四边形。

(5)直角坐标平面上的x 轴、y 轴都是向量。

(6)相等向量一定是共线向量,但共线向量不一定相等; (7)若a 与b 共线, b 与c 共线,则a 与c 共线。

(8)若ma mb =,则a b =。

(9)若ma na =,则m n =。

(10)若a 与b 不共线,则a 与b 都不是零向量。

(11)若||||a b a b ⋅=⋅,则//a b 。

(12)若a 与b 均为非零向量,||||a b a b +=-,则a b ⊥。

2.给出命题(1)零向量的长度为零,方向是任意的. (2)若a ,b 都是单位向量,则a =b . (3)向量AB 与向量BA 相等.(4)若非零向量AB 与CD 是共线向量,则A ,B ,C ,D 四点共线. 以上命题中,正确命题序号是A.(1)B.(2)C.(1)和(3)D.(1)和(4)题型2.向量的线性运算1.设a 表示“向东走8km ”, b 表示“向北走6km ”,则||a b += 。

2.化简()()AB MB BO BC OM ++++= AB AC BC -+=_______;AB AD DC --=________; _ .NQ QP MN MP ++-________=3.已知||5OA =,||3OB =,则||AB 的最大值和最小值分别为 、 。

4.已知AC AB AD 为与的和向量,且,AC a BD b ==,则AB = ,AD = 。

5.已知点C 在线段AB 上,且35AC AB =,则AC = BC ,AB = BC 。

6.已知向量b a 与反向,下列等式中成立的是 ( )A .||||||b a b a -=-B .||||b a b a -=+C .||||||b a b a -=+D .||||||b a b a +=+7计算:(1)3()2()a b a b +-+= (2)2(253)3(232)a b c a b c +---+-=8.已知,24),(=a 求与a 垂直的单位向量的坐标。

相关文档
最新文档