高三物理知识点归纳
高三物理的知识点归纳总结
高三物理的知识点归纳总结一、力学1. 牛顿运动定律- 第一定律:惯性定律- 第二定律:力的作用与加速度的关系- 第三定律:作用力与反作用力的相互作用2. 运动学- 位移、速度、加速度的定义与计算方法- 平均速度与瞬时速度的关系- 自由落体运动的特点和公式3. 力的合成与分解- 合力与分力的概念- 力的合成与分解的方法与公式4. 动能与功- 动能的定义与计算方法- 动能定理- 功的定义与计算方法- 功与能量的转化5. 万有引力- 引力的特点与计算方法- 开普勒三定律- 行星运动的规律二、热学1. 温度与热量- 温度的定义与计量单位- 热量的概念、计量单位与传递方式2. 热能与热传导- 热能转化与能量守恒- 热传导的方式与热传导率的影响因素3. 热膨胀与热力学定律- 固体、液体和气体的热膨胀特性- 热力学第一定律与第二定律4. 理想气体定律- 理想气体状态方程与摩尔定律- 德尔塔热力学定律5. 热力学循环- 卡诺循环与热机效率- 热泵与制冷循环三、光学1. 光的传播与反射- 光的直线传播与折射定律- 光的反射定律与镜面反射- 光的折射定律与透射现象2. 光的干涉与衍射- 干涉的条件与光程差- 双缝干涉与杨氏实验- 衍射的现象与衍射光栅3. 光的色散与光的光谱- 光的色散现象与原因- 白光的分光与光谱的特点4. 光的成像与光学仪器- 薄透镜的成像原理与公式- 光学仪器的构造与使用方法- 显微镜、望远镜、光谱仪的原理与应用四、电学1. 电荷与电场- 电荷的性质与电荷守恒定律- 电场的概念、性质与电场强度- 电荷在电场中运动的规律2. 电势与电势差- 电势的定义与计算方法- 电势差的概念与计算方法- 电势差与电场强度的关系3. 电流与电阻- 电流的定义与计算方法- 电阻的概念与计算方法- 欧姆定律与功率定律4. 电路与电源- 串联与并联电路的特点与计算方法 - 电源的种类与特点- 电路中的电功率与能量转化5. 磁场与电磁感应- 磁场的概念与表示方法- 安培环路定理与电流感应定律- 法拉第电磁感应定律与感应电动势以上是高三物理的知识点归纳总结,希望能对你的学习有所帮助。
高三物理考前必背知识点
高三物理考前必背知识点一、力学部分1. 牛顿第一定律:物体在外力作用下静止或匀速直线运动,除非被另一物体强加力。
2. 牛顿第二定律:物体所受合力等于质量与加速度的乘积。
3. 牛顿第三定律:两个物体之间作用力相等、方向相反,大小相同。
4. 弹力:物体被拉伸或压缩时所产生的恢复力。
5. 重力:地球对物体的吸引力,大小为物体质量与重力加速度的乘积。
二、运动学部分1. 速度:单位时间内通过的路程,可以是瞬时速度或平均速度。
2. 加速度:速度变化的快慢程度,可以是瞬时加速度或平均加速度。
3. 位移:物体由起始点到结束点的位置变化。
4. 直线运动中的运动方程:v = u + at,s = ut + 0.5at²,v² = u² +2as。
5. 自由落体运动:物体只受重力作用下落的运动,加速度为重力加速度。
三、静电学部分1. 电荷:负电荷和正电荷之间的相互作用。
2. 库仑定律:两个电荷之间的电力与电荷的大小和距离的平方成正比,与电荷之间的性质有关。
3. 电场:电荷在其周围产生的电力场。
4. 电势能:电荷在电场中所具有的由位置决定的势能。
5. 等势线:在电场中势能相等的点的连线。
6. 电容器:由两个导体板和介质组成,可以存储电荷和电势能。
四、光学部分1. 光的反射和折射:入射光线遇到界面时,根据介质的光密度可以发生反射或折射。
2. 莫尔斯定律:光的折射定律,入射角、折射角和两种介质的折射率之间的关系。
3. 色散:光在通过不同介质时,不同波长的光会有不同的折射程度,导致光的分离。
4. 球面镜和透镜:可以分为凸面镜、凹面镜、凸透镜和凹透镜,具有不同的成像特性。
五、电磁学部分1. 电流:电荷在单位时间内通过导体截面的数量。
2. 电阻:导体对电流流动的阻碍程度。
3. 欧姆定律:电流与电压和电阻之间的关系,I = U/R。
4. 磁感应强度:磁场对单位电荷或单位电流所施加的力。
5. 洛伦兹力:带电粒子在磁场中受到的力。
高三物理重要知识点总结大全
高三物理重要知识点总结大全第一章:力学1. 力的概念和性质1.1 力的定义1.2 力的性质:大小、方向、作用点1.3 力的分类:接触力、重力、弹力、摩擦力等2. 牛顿运动定律2.1 第一定律:惯性定律2.2 第二定律:加速度与力的关系2.3 第三定律:作用反作用定律3. 物体运动的描述3.1 位移、速度、加速度的定义与关系3.2 平均速度、瞬时速度的计算3.3 加速度与速度变化之间的关系4. 物体的力学性质4.1 质量、重量与密度的定义 4.2 物体的密度与浮力的关系 4.3 物体的惯性与质量的关系5. 平抛运动和斜抛运动5.1 平抛运动的特点与公式推导 5.2 斜抛运动的特点与公式推导 5.3 平抛和斜抛运动的应用第二章:热学1. 温度和热量的概念1.1 温度的定义与测量1.2 热量的概念和传递方式1.3 物质的热平衡与热容量2. 理想气体定律2.1 理想气体状态方程的表达式与应用2.2 理想气体温度与压力的关系2.3 热力学第一定律与理想气体的内能变化3. 热传递3.1 热传递的三种方式:传导、对流、辐射 3.2 热传导的导热定律与应用3.3 热功定理与功率的计算4. 相变与焓变化4.1 相变的概念与分类4.2 相变热的计算4.3 焓变化与物质的热力学性质5. 热力学循环5.1 热机的基本原理与分类5.2 卡诺循环的特点与效率5.3 热力学循环在实际中的应用第三章:电磁学1. 电荷与电场1.1 电荷的性质与电量守恒定律1.2 电场的概念与性质1.3 电场强度与电场线的表示2. 电势与电势能2.1 电势的定义与计算2.2 电势能的概念与计算2.3 电势差与电场强度的关系3. 电容与电容器3.1 电容的定义与计算3.2 并联电容和串联电容的等效电容3.3 电容器在电路中的应用4. 电流与电阻4.1 电流的定义与计算4.2 电阻、电压和电流的关系 4.3 欧姆定律与电阻的影响因素5. 磁场与电磁感应5.1 磁场的产生和性质5.2 安培定律与磁场强度的计算 5.3 法拉第电磁感应定律与应用第四章:光学1. 光的传播与反射1.1 光的传播的直线性与速度 1.2 光的反射定律与镜面成像 1.3 镜子的种类和应用2. 光的折射与透镜2.1 光的折射定律与介质的折射率 2.2 透镜的种类与成像规律2.3 光的色散与光谱的产生3. 光的衍射与干涉3.1 光的衍射现象与衍射角的计算 3.2 光的干涉现象与干涉条纹的解释 3.3 杨氏双缝干涉与薄膜干涉4. 光的偏振与光的波动性4.1 光的偏振现象与偏振角的计算 4.2 德布罗意波与电子的波粒性4.3 光的波粒二象性与波粒对应5. 光学仪器与光的应用5.1 显微镜与望远镜的构造与原理5.2 光的衍射与干涉在实际中的应用5.3 激光与光导纤维的应用结语:以上便是高三物理中一些重要的知识点总结,力学、热学、电磁学和光学都是物理学的基础内容,掌握这些知识点对于理解和应用物理学具有重要意义。
高中物理高考常考知识点归纳总结
高中物理高考常考知识点归纳总结一、力和力的作用1. 力的概念和分类力是物体之间相互作用的结果,分为接触力和非接触力。
接触力包括摩擦力、弹力、支持力等;非接触力包括重力、电磁力、引力等。
2. 牛顿三定律第一定律:物体静止或匀速直线运动时,受力合力为零。
第二定律:物体受到的力等于其质量与加速度的乘积:F = ma。
第三定律:作用力与反作用力大小相等、方向相反、作用在不同物体上。
二、运动学1. 物体的运动描述位移:物体从一个位置到另一个位置的变化量。
速度:物体在单位时间内的位移变化量。
加速度:物体单位时间内速度的变化量。
2. 直线运动和平抛运动直线运动:匀速直线运动和变速直线运动。
平抛运动:物体在水平方向上匀速运动,竖直方向受到重力影响。
3. 牛顿运动定律第一定律:如果物体受到合力为零,则物体将保持静止或匀速直线运动。
第二定律:物体受到的合力等于其质量与加速度的乘积。
第三定律:相互作用的两个物体对彼此都有大小相等、方向相反的力。
三、能量和功1. 功与功率功:力对物体做功的表现,等于力与物体位移的乘积:W = Fd。
功率:单位时间内做功的大小,等于功除以时间:P = W/t。
2. 势能和动能势能:物体由于位置或状态而具有的能量,包括重力势能和弹性势能等。
动能:物体由于运动而具有的能量,等于物体质量与速度平方的乘积的一半:K = 1/2 mv^2。
机械能守恒定律:在只有重力做功的系统中,机械能守恒。
四、能量转换和守恒1. 功与能的转化功可以将一种能转化为另一种能,但总能量守恒。
例如,将化学能转化为机械能的蓄电池或将电能转化为热能的电炉等。
2. 机械能守恒在只有重力做功的系统中,机械能守恒。
例如,自由下落、滑动摩擦等情况下,机械能守恒。
五、电学基础1. 电荷和电场电荷:物体带有的正电荷或负电荷。
电场:电荷周围的物理量,描述电荷对其他电荷的作用力。
电场强度:单位正电荷在电场中所受到的力的大小。
2. 安培定律和库仑定律安培定律:描述电流与导线长度、导线横截面积和导线材料的关系。
高三物理核心知识点汇总
高三物理核心知识点汇总高三物理是高中阶段物理学习的最后一个阶段,也是对学生物理知识掌握的一个综合考验。
在这一阶段,学生需要对之前学过的物理知识进行系统、全面的复习和总结。
下面将对高三物理的核心知识点进行汇总。
1. 力学1.1 运动学1.1.1 位移、速度和加速度的关系1.1.2 一维运动中的速度、位移与加速度的计算1.1.3 自由落体运动1.1.4 平抛运动1.2 力和牛顿定律1.2.1 牛顿第一定律1.2.2 牛顿第二定律1.2.3 牛顿第三定律1.2.4 惯性系和非惯性系1.3 能量守恒和动量守恒1.3.1 动能与功的转化1.3.2 势能的概念与计算1.3.3 动量的概念与计算1.3.4 弹性碰撞与非弹性碰撞2. 热学2.1 温度和热量2.1.1 温度的测量2.1.2 热平衡与热传递2.1.3 热量的传递方式2.2 热力学定律2.2.1 热力学第一定律2.2.2 热力学第二定律2.2.3 热机和热效率2.2.4 熵的概念与计算2.3 热传导和热辐射2.3.1 热传导的特点和计算2.3.2 热辐射的特点和计算3. 光学3.1 几何光学3.1.1 光的直线传播3.1.2 反射定律与折射定律3.1.3 凸透镜和凹透镜的成像规律3.1.4 光的全反射和光纤通信3.2 光的波动性3.2.1 光的波动模型3.2.2 干涉和衍射现象的解释3.2.3 光的偏振和光的干涉4. 电学4.1 电荷和电场4.1.1 电荷的性质和电荷守恒定律4.1.2 电场的概念和电场强度4.1.3 电荷在电场中的受力和电场中电势能的计算4.2 电路和电流4.2.1 电流的概念和电流的计算4.2.2 电阻、电压和电阻定律4.2.3 并联电路和串联电路的计算4.2.4 电功和电功率4.3 磁学4.3.1 磁场的概念和磁感应强度4.3.2 安培环路定理和法拉第电磁感应定律4.3.3 核磁共振和电磁波的产生以上是高三物理的核心知识点的汇总,对这些知识点的掌握将有助于学生在物理考试中取得更好的成绩。
物理高三全部知识点
物理高三全部知识点一、力学1. 物理量与单位a. 基本物理量:长度、质量、时间b. 导出物理量:速度、加速度、力、功等c. 国际单位制及其常用单位2. 运动的基本概念a. 直线运动与曲线运动b. 位移、速度与加速度c. 均匀运动与变速运动d. 自由落体运动3. 牛顿运动定律a. 牛顿第一定律:惯性原理b. 牛顿第二定律:力、质量、加速度的关系c. 牛顿第三定律:作用力与反作用力4. 力的合成与分解a. 力的合成:平行力合成、夹角力合成b. 力的分解:平行力分解、斜面上的力的分解5. 弹力与弹簧的简谐振动a. 弹力的性质与计算b. 带有弹簧的简谐振动的特点与计算6. 圆周运动与万有引力a. 圆周运动的基本概念b. 离心力与向心加速度之间的关系c. 万有引力的定律与计算7. 动量与动量守恒a. 动量的定义与计算b. 动量守恒定律与应用c. 弹性碰撞与完全非弹性碰撞8. 机械能与能量守恒a. 动能与重力势能b. 机械能守恒定律与应用c. 功与功率的概念与计算二、热学1. 温度与热量a. 温标及其转换b. 冷热交换与热平衡c. 热传导、热对流与热辐射2. 理想气体状态方程与分子动理论a. 理想气体状态方程及其应用b. 气体分子的运动特点与统计规律3. 热力学第一定律a. 内能与热功等b. 等容过程、等压过程与绝热过程c. 绝热指数与绝热过程的机械功4. 热力学第二定律a. 热力学第二定律的描述与熵的概念b. 卡诺循环与热机效率c. 热力学第二定律的推论:永不可能达到的状态5. 热传导与热功率a. 热传导的基本规律与热传导系数b. 热功率的计算与应用6. 气体分子速率与平均动能a. 麦克斯韦-玻尔兹曼分布律b. 气体分子速率与平均动能的计算7. 热容与比热容a. 热容的定义与计算b. 恒压下的比热容与恒容下的比热容三、光学1. 几何光学a. 光的传播方式与光线模型b. 反射与折射的基本规律c. 透镜与光学成像2. 光的波动性a. 光的波粒二象性b. 光的干涉与衍射c. 光的偏振与色散3. 光的光电效应与波粒二象性a. 光电效应的基本现象与特点b. 波粒二象性与德布罗意波长4. 光的相干性与干涉a. 相干性与干涉的基本概念b. 干涉的条件与干涉现象5. 光的色散与光的谱学a. 光的色散现象与原因b. 光的光谱与光谱分析四、电学1. 电荷与电场a. 基本电荷与电荷守恒b. 电场强度与电场线2. 静电场a. 质点带电与电场力b. 均匀静电场、电势差与电势能c. 极板间的电容、电容器与电容量3. 电流与电路a. 电流的概念与电流强度b. 电阻、电阻率与欧姆定律c. 串联与并联电路4. 电源与电动势a. 电源的基本原理与电动势定义b. 内电阻、外电阻与电源动力特性5. 磁场与磁感应强度a. 磁场的概念与磁感线b. 磁感应强度与磁场力6. 安培环路定理a. 安培环路定理的描述与应用b. 毕奥-萨伐尔定律与法拉第电磁感应定律7. 电磁感应a. 磁通量与磁感应强度的关系b. 线圈中的电动势与互感现象8. 交流电与变压器a. 交流电与正弦交流电动势b. 变压器的构造与工作原理五、原子物理与量子物理1. 入射光与物质相互作用过程a. 光的散射与吸收b. 短波紫外光的电离2. 波粒二象性与电子的波动性a. 波粒二象性与电子的波动性b. 德布罗意假设与电子衍射实验3. 波尔模型与原子结构a. 波尔模型及其假设b. 吸收光谱与发射光谱4. 核物理a. 质子、中子与原子核的结构b. 放射现象与半衰期c. 核反应与核能源以上仅为物理高三全部知识点的概要介绍,具体内容需要在学习过程中进一步深入理解与掌握。
高考物理必考知识点的总结和归纳
高考物理必考知识点的总结和归纳一、运动的描述。
1. 质点。
- 定义:用来代替物体的有质量的点。
- 条件:当物体的大小和形状对研究问题的影响可忽略不计时,物体可视为质点。
例如研究地球绕太阳公转时,地球可视为质点;研究地球自转时,不能将地球视为质点。
2. 参考系。
- 定义:为了描述物体的运动而假定为不动的物体。
- 选择不同的参考系,对物体运动的描述可能不同。
例如坐在行驶汽车中的乘客,以汽车为参考系是静止的,以路边的树木为参考系是运动的。
3. 位移与路程。
- 位移:矢量,是由初位置指向末位置的有向线段,其大小等于初末位置间的直线距离,方向由初位置指向末位置。
- 路程:标量,是物体运动轨迹的长度。
只有在单向直线运动中,位移的大小才等于路程。
4. 速度。
- 平均速度:定义为位移与发生这个位移所用时间的比值,即v = (Δ x)/(Δ t),是矢量,其方向与位移方向相同。
- 瞬时速度:物体在某一时刻(或某一位置)的速度,是矢量。
当Δ t趋近于0时,平均速度就趋近于瞬时速度。
- 速率:速度的大小,是标量。
5. 加速度。
- 定义:速度的变化量与发生这一变化所用时间的比值,即a=(Δ v)/(Δ t),是矢量,方向与速度变化量的方向相同。
加速度反映了速度变化的快慢。
二、匀变速直线运动的研究。
1. 匀变速直线运动的基本公式。
- 速度公式:v = v_0+at,其中v_0为初速度,a为加速度,t为时间,v为末速度。
- 位移公式:x = v_0t+(1)/(2)at^2。
- 速度 - 位移公式:v^2 - v_0^2=2ax。
2. 自由落体运动。
- 定义:物体只在重力作用下从静止开始下落的运动。
- 特点:初速度v_0 = 0,加速度a = g(重力加速度,g≈9.8m/s^2)。
- 公式:v = gt,h=(1)/(2)gt^2,v^2 = 2gh。
3. 竖直上抛运动。
- 定义:将物体以一定的初速度竖直向上抛出的运动。
高三物理必考知识点总结
高三物理必考知识点总结高三物理必考知识点11.两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19c);带电体电荷量等于元电荷的整数倍2.库仑定律:f=kq1q2/r2(在真空中){f:点电荷间的作用力(n),k:静电力常量k=9.0×109n?m2/c2,q1、q2:两点电荷的电量(c),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}3.电场强度:e=f/q(定义式、计算式){e:电场强度(n/c),是矢量(电场的叠加原理),q:检验电荷的电量(c)}4.真空点(源)电荷形成的电场e=kq/r2{r:源电荷到该位置的距离(m),q:源电荷的电量}5.匀强电场的场强e=uab/d{uab:ab两点间的电压(v),d:ab两点在场强方向的距离(m)}6.电场力:f=qe{f:电场力(n),q:受到电场力的电荷的电量(c),e:电场强度(n/c)}7.电势与电势差:uab=φa-φb,uab=wab/q=-δeab/q8.电场力做功:wab=quab=eqd{wab:带电体由a到b时电场力所做的功(j),q:带电量(c),uab:电场中a、b两点间的电势差(v)(电场力做功与路径无关),e:匀强电场强度,d:两点沿场强方向的距离(m)}9.电势能:ea=qφa{ea:带电体在a点的电势能(j),q:电量(c),φa:a点的电势(v)}10.电势能的变化δeab=eb-ea{带电体在电场中从a位置到b位置时电势能的差值}11.电场力做功与电势能变化δea b=-wab=-quab(电势能的增量等于电场力做功的负值)12.电容c=q/u(定义式,计算式){c:电容(f),q:电量(c),u:电压(两极板电势差)(v)}13.平行板电容器的电容c=εs/4πkd(s:两极板正对面积,d:两极板间的垂直距离,ω:介电常数)常见电容器〔见第二册p111〕14.带电粒子在电场中的加速(vo=0):w=δek或qu=mvt2/2,vt=(2qu/m)1/215.带电粒子沿垂直电场方向以速度vo进入匀强电场时的偏转(不考虑重力作用的情况下)类平垂直电场方向:匀速直线运动l=vot(在带等量异种电荷的平行极板中:e=u/d)抛运动平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=f/m=qe/m注:(1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分;(2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直;(3)常见电场的电场线分布要求熟记〔见图[第二册p98];(4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关;(5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面;(6)电容单位换算:1f=106μf=1012pf;(7)电子伏(ev)是能量的单位,1ev=1.60×10-19j;(8)其它相关内容:静电屏蔽〔见第二册p101〕/示波管、示波器及其应用〔见第二册p114〕等势面〔见第二册p105〕。
高三物理重要知识点归纳总结大全
高三物理重要知识点归纳总结大全随着高三学业压力的逐渐增大,物理作为一门重要的科目也开始变得更加关键。
为了帮助高三学生更好地备考物理,下面将对高三物理重要知识点进行归纳总结,希望对广大学生有所帮助。
一、力学部分1. 牛顿定律: 牛顿第一定律、牛顿第二定律、牛顿第三定律是力学的基本定律,对于理解物体运动的规律非常重要。
2. 力的叠加原理: 多个力同时作用于物体时,可以将这些力按照矢量相加的原理,得到合力的大小和方向。
3. 动力学: 物体的运动学和动力学的关系是物理学里非常重要的一个知识点,要仔细理解和区分物体的速度、加速度和力的关系。
4. 平抛运动: 平抛运动是物体在竖直方向做匀速直线运动,而在水平方向做匀速直线运动的一种运动状态。
要掌握物体的抛射高度、落点、落点速度等相关参数的计算。
5. 开普勒定律: 开普勒行星运动定律是描述行星运动的三个定律,对于理解行星运动的规律非常重要。
二、热学部分1. 理想气体状态方程: 此方程描述了理想气体的状态,即PV = nRT。
要熟练掌握该方程的应用,例如计算气体的压强、温度和体积的关系。
2. 热力学第一定律: 热力学第一定律是能量守恒定律在热学中的应用,对于理解热能转化和热机效率等方面非常重要。
3. 热力学第二定律: 热力学第二定律是描述热能传递不可逆性的定律,要理解熵的概念、熵增原理和热机的工作原理等。
4. 温度与热量: 温度是衡量物体热平衡状态的物理量,热量是物体之间由于温度差异而传递的能量。
要了解温度计的原理和热能的传递方式。
三、电学部分1. 电荷与电场: 电荷是基本电学量,电场是由电荷所形成的场。
要熟悉电荷分布对电场的影响,了解电场强度的计算和电势能的概念。
2. 电流与电阻: 电流是单位时间内通过导体截面的电荷数量,电阻是材料对电流的阻碍。
要了解欧姆定律、电阻的计算和串并联电路的分析。
3. 磁场与电磁感应: 磁场是由磁荷或电流所产生的场,电磁感应是由于磁场变化而产生的感应电流。
高三物理必考知识点归纳大全5篇
高三物理必考知识点归纳大全5篇高中学习容量大,不但要掌握目前的知识,还要把高中的知识与初中的知识溶为一体才能学好。
在读书、听课、研习、总结这四个环节都比初中的学习有更高的要求。
下面就是给大家带来的高三物理知识点,希望能帮助到大家!高三物理知识点11.机械运动:一个物体相对于另一个物体的位置的改变叫做机械运动,简称运动,它包括平动,转动和振动等运动形式.为了研究物体的运动需要选定参照物(即假定为不动的物体),对同一个物体的运动,所选择的参照物不同,对它的运动的描述就会不同,通常以地球为参照物来研究物体的运动.2.质点:用来代替物体的只有质量没有形状和大小的点,它是一个理想化的物理模型.仅凭物体的大小不能做视为质点的依据。
3.位移和路程:位移描述物体位置的变化,是从物体运动的初位置指向末位置的有向线段,是矢量.路程是物体运动轨迹的长度,是标量.路程和位移是完全不同的概念,仅就大小而言,一般情况下位移的大小小于路程,只有在单方向的直线运动中,位移的大小才等于路程.4.速度和速率(1)速度:描述物体运动快慢的物理量.是矢量.①平均速度:质点在某段时间内的位移与发生这段位移所用时间的比值叫做这段时间(或位移)的平均速度v,即v=s/t,平均速度是对变速运动的粗略描述.②瞬时速度:运动物体在某一时刻(或某一位置)的速度,方向沿轨迹上质点所在点的切线方向指向前进的一侧.瞬时速度是对变速运动的精确描述.(2)速率:①速率只有大小,没有方向,是标量.②平均速率:质点在某段时间内通过的路程和所用时间的比值叫做这段时间内的平均速率.在一般变速运动中平均速度的大小不一定等于平均速率,只有在单方向的直线运动,二者才相等.5.运动图像(1)位移图像(s-t图像):①图像上一点切线的斜率表示该时刻所对应速度;②图像是直线表示物体做匀速直线运动,图像是曲线则表示物体做变速运动;③图像与横轴交叉,表示物体从参考点的一边运动到另一边.(2)速度图像(v-t图像):①在速度图像中,可以读出物体在任何时刻的速度;②在速度图像中,物体在一段时间内的位移大小等于物体的速度图像与这段时间轴所围面积的值.③在速度图像中,物体在任意时刻的加速度就是速度图像上所对应的点的切线的斜率.④图线与横轴交叉,表示物体运动的速度反向.⑤图线是直线表示物体做匀变速直线运动或匀速直线运动;图线是曲线表示物体做变加速运动.高三物理知识点2动量1.动量和冲量(1)动量:运动物体的质量和速度的乘积叫做动量,即p=mv.是矢量,方向与v的方向相同.两个动量相同必须是大小相等,方向一致.(2)冲量:力和力的作用时间的乘积叫做该力的冲量,即I=Ft.冲量也是矢量,它的方向由力的方向决定.2.动量定理:物体所受合外力的冲量等于它的动量的变化.表达式:Ft=p-p或Ft=mv-mv(1)上述公式是一矢量式,运用它分析问题时要特别注意冲量、动量及动量变化量的方向.(2)公式中的F是研究对象所受的包括重力在内的所有外力的合力.(3)动量定理的研究对象可以是单个物体,也可以是物体系统.对物体系统,只需分析系统受的外力,不必考虑系统内力.系统内力的作用不改变整个系统的总动量.(4)动量定理不仅适用于恒定的力,也适用于随时间变化的力.对于变力,动量定理中的力F应当理解为变力在作用时间内的平均值.3.动量守恒定律:一个系统不受外力或者所受外力之和为零,这个系统的总动量保持不变.表达式:m1v1+m2v2=m1v1+m2v2(1)动量守恒定律成立的条件①系统不受外力或系统所受外力的合力为零.②系统所受的外力的合力虽不为零,但系统外力比内力小得多,如碰撞问题中的摩擦力,爆炸过程中的重力等外力比起相互作用的内力来小得多,可以忽略不计.③系统所受外力的合力虽不为零,但在某个方向上的分量为零,则在该方向上系统的总动量的分量保持不变.(2)动量守恒的速度具有“四性”:①矢量性;②瞬时性;③相对性;④普适性.4.爆炸与碰撞(1)爆炸、碰撞类问题的共同特点是物体间的相互作用突然发生,作用时间很短,作用力很大,且远大于系统受的外力,故可用动量守恒定律来处理.(2)在爆炸过程中,有其他形式的能转化为动能,系统的动能爆炸后会增加,在碰撞过程中,系统的总动能不可能增加,一般有所减少而转化为内能.(3)由于爆炸、碰撞类问题作用时间很短,作用过程中物体的位移很小,一般可忽略不计,可以把作用过程作为一个理想化过程简化处理.即作用后还从作用前瞬间的位置以新的动量开始运动.5.反冲现象:反冲现象是指在系统内力作用下,系统内一部分物体向某方向发生动量变化时,系统内其余部分物体向相反的方向发生动量变化的现象.喷气式飞机、火箭等都是利用反冲运动的实例.显然,在反冲现象里,系统的动量是守恒的.高三物理知识点3一、三种产生电荷的方式:1、摩擦起电:(1)正点荷:用绸子摩擦过的玻璃棒所带电荷;(2)负电荷:用毛皮摩擦过的橡胶棒所带电荷;(3)实质:电子从一物体转移到另一物体;2、接触起电:(1)实质:电荷从一物体移到另一物体;(2)两个完全相同的物体相互接触后电荷平分;(3)、电荷的中和:等量的异种电荷相互接触,电荷相合抵消而对外不显电性,这种现象叫电荷的中和;3、感应起电:把电荷移近不带电的导体,可以使导体带电;(1)电荷的基本性质:同种电荷相互排斥、异种电荷相互吸引;(2)实质:使导体的电荷从一部分移到另一部分;(3)感应起电时,导体离电荷近的一端带异种电荷,远端带同种电荷;4、电荷的基本性质:能吸引轻小物体;二、电荷守恒定律:电荷既不能被创生,亦不能被消失,它只能从一个物体转移到另一物体,或者从物体的一部分转移到另一部分;在转移过程中,电荷的总量不变。
物理高三复习知识点大全
物理高三复习知识点大全一、运动学1. 位移、速度、加速度的定义和计算公式2. 匀速直线运动和变速直线运动3. 自由落体运动4. 抛体运动5. 力学运动中的图像表达二、力学1. 牛顿运动定律2. 平衡条件和力的合成3. 静摩擦力、滑动摩擦力和滚动摩擦力4. 弹力和胡克定律5. 圆周运动和向心力6. 动量和冲量7. 动能定理和功率8. 重力和万有引力定律三、热学1. 温度和热量2. 热传递和热平衡3. 热膨胀和热力学第一定律4. 理想气体状态方程和理想气体定律5. 内能和热力学第二定律6. 热机效率和热力学循环四、光学1. 光的传播和光的折射2. 光的反射和光的成像3. 薄透镜和薄透镜成像4. 光的波动性和光的干涉5. 光的衍射和光的偏振五、电学1. 电流和电流表达式2. 电阻、电阻率和欧姆定律3. 串联电路和并联电路4. 电场和电势5. 静电场和静电力6. 电容、电容性和电容器7. 磁场和磁势8. 电磁感应和法拉第定律9. 电磁波和光的电磁性质六、原子物理1. 原子结构和玻尔模型2. 原子能级和能级跃迁3. 物质的结构和固体导电性4. 半导体材料和PN结的特性5. 核物理和核能原理6. 放射性衰变和半衰期七、相对论1. 光速不变性和洛伦兹变换2. 相对论质量和相对论动量3. 相对论能量和质能关系八、宇宙物理1. 宇宙的起源和演化2. 星系和星系的分类3. 星的形成和演化4. 恒星的结构和恒星的死亡5. 黑洞和引力波6. 宇宙射线和宇宙背景辐射以上是物理高三复习的知识点大全,希望对你的学习有所帮助。
在复习过程中,记得要多做练习题和习题册的题目,加深对知识点的理解和掌握。
祝你取得优异的成绩!。
高中物理知识点总结归纳
高中物理知识点总结归纳第一章:力学1. 直线运动- 平均速度与瞬时速度- 速度与位移的关系- 加速度与减速度- 动力学方程- 自由落体运动2. 曲线运动- 圆周运动的描述- 角速度与角位移- 牛顿第一、第二定律- 受力分析- 弹力与弹性势能- 惯性与质量3. 力学中的能量- 功与功率- 动能与动能定理- 机械能守恒- 力与势能- 能量守恒定律第二章:热学1. 热力学基本概念- 温度与热量- 冷热与温度的比较- 气体理论与状态方程2. 热学过程- 等温过程与等容过程- 等压过程与绝热过程- 对流、传导与辐射3. 热学定律- 热平衡定律- 热传导定律- 热辐射定律- 热力学第一、第二定律4. 热力学技术- 工作与热机效率- 热量测量与热量传递- 热泵与制冷机第三章:振动与波动1. 振动- 平衡位置与振幅- 周期与频率- 圆周振动与简谐振动- 受迫振动与共振2. 波动- 横波和纵波- 波的特征量:波长、频率和波速- 线性媒介中的波动- 波的反射、折射和干涉3. 声学基础- 声波的传播、速度与频率- 声的强度与音量- 声音的特征:音高、音质和音色- 共振和驻波4. 光学基础- 光线与视线- 光的行进速度与传播性质- 光的反射与折射- 光的干涉与衍射第四章:电学1. 电荷与电场- 电荷的性质与带电体- 电场的定义与性质- 电荷在电场中的受力与电势差2. 电流与电阻- 电流的定义与电子流动方向- 静电场与恒定电流- 电阻与电阻率3. 电路- 串联与并联电路- 配分与戴维南定理- 电流、电压与电阻之间的关系4. 电势与电容- 电势能与电位- 电容与电容量- 平行板电容器与电势差5. 磁学基础- 磁场的特性与定义- 磁感线与磁场的切线方向- 磁场对电荷与电流的作用力第五章:电磁感应1. 电磁感应定律- 法拉第电磁感应定律- 感应电动势与磁能的转化- 楞次定律与电动机2. 电磁感应定律的应用- 互感与自感- 变压器与感应电动机- 电磁波和电磁振荡第六章:原子与分子物理1. 光电效应- 光电子的特性与发射原理- 照射光强度与阻挡电压的关系- 光电效应的应用2. 原子物理- 原子结构与量子理论- 分子结构与化学键3. 核物理- 放射性衰变与探测技术- 原子核能量与核反应的释放以上是高中物理主要的知识点总结归纳,希望对您有所帮助!。
高三物理知识点总结大全6篇
高三物理知识点总结大全6篇篇1一、力学1. 牛顿运动定律:牛顿运动定律是力学的基础,包括牛顿三大定律。
要掌握牛顿定律的表述、适用范围以及数学表达。
2. 动量与冲量:动量是描述物体机械运动状态的物理量,冲量是力在时间上的积累效应。
要理解动量定理和冲量定理,并能应用它们解决实际问题。
3. 功与功率:功是力在空间上的积累效应,功率是单位时间内所做的功。
要掌握功的计算方法,理解功率的概念,并能应用它们解决实际问题。
4. 机械能:机械能包括动能、势能、弹簧的弹性势能等。
要理解机械能的转化和守恒定律,并能应用它们解决实际问题。
二、电磁学1. 静电场:要掌握静电场的性质,理解电场强度、电势、电势差的概念,并能应用它们解决实际问题。
2. 稳恒电流:要理解电流的形成条件,掌握欧姆定律、基尔霍夫定律等基本规律,并能应用它们解决实际问题。
3. 磁场与电磁感应:要掌握磁场的性质,理解洛伦兹力、安培力等基本概念,并能应用它们解决实际问题。
同时,要理解电磁感应现象及其规律,掌握法拉第电磁感应定律、楞次定律等基本概念,并能应用它们解决实际问题。
4. 交流电与电磁振荡:要理解交流电的产生和传播过程,掌握正弦交流电的表达式、有效值、功率等基本概念。
同时,要理解电磁振荡的概念和产生过程,掌握阻尼振荡和无阻尼振荡的区别和特点。
三、光学与近代物理1. 几何光学:要掌握几何光学的基本原理,如光的直线传播、光的反射与折射、光的衍射等。
同时,要理解透镜的成像原理和应用,掌握凸透镜和凹透镜的区别和特点。
2. 物理光学:要理解光的波粒二象性,掌握光的干涉、衍射、散射等物理现象及其原理。
同时,要了解激光的产生和应用,以及光的偏振现象。
3. 近代物理:要了解相对论的基本原理和基本结论,如时间、长度和质量等物理概念的变化规律。
同时,要了解量子力学的基本原理和基本结论,如光的量子性、原子和分子的量子结构等。
四、实验与探究高三物理学习过程中涉及多个实验和探究活动,这些活动不仅有助于加深对物理概念的理解和掌握,还能培养学生的动手能力和创新思维。
高三物理知识点整理归纳
高三物理知识点整理归纳高三物理知识点整理1一、牛顿第一定律(惯性定律):一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种做状态为止。
1、只有当物体所受合外力为零时,物体才能处于静止或匀速直线运动状态;2、力是该变物体速度的原因;3、力是改变物体运动状态的原因(物体的速度不变,其运动状态就不变)4、力是产生加速度的原因;二、惯性:物体保持匀速直线运动或静止状态的性质叫惯性。
1、一切物体都有惯性;2、惯性的大小由物体的质量决定;3、惯性是描述物体运动状态改变难易的物理量;三、牛顿第二定律:物体的加速度跟所受的合外力成正比,跟物体的质量成反比,加速度的方向跟物体所受合外力的方向相同。
1、数学表达式:a=F合/m;2、加速度随力的产生而产生、变化而变化、消失而消失;3、当物体所受力的方向和运动方向一致时,物体加速;当物体所受力的方向和运动方向相反时,物体减速。
4、力的单位牛顿的定义:使质量为1kg的物体产生1m/s2加速度的力,叫1N;四、牛顿第三定律:物体间的作用力和反作用总是等大、反向、作用在同一条直线上的;1、作用力和反作用力同时产生、同时变化、同时消失;2、作用力和反作用力与平衡力的根本区别是作用力和反作用力作用在两个相互作用的物体上,平衡力作用在同一物体上。
高三物理知识点整理21.电压瞬时值e=Emsinωt电流瞬时值i=Imsinωt;(ω=2πf)2.电动势峰值Em=nBSω=2BLv电流峰值(纯电阻电路中)Im=Em/R总3.正(余)弦式交变电流有效值:E=Em/(2)1/2;U=Um/(2)1/2;I=Im/(2)1/24.理想变压器原副线圈中的电压与电流及功率关系U1/U2=n1/n2;I1/I2=n2/n2;P入=P出5.在远距离输电中,采用高压输送电能可以减少电能在输电线上的损失:P损′=(P/U)2R;(P损′:输电线上损失的功率,P:输送电能的总功率,U:输送电压,R:输电线电阻)〔见第二册P198〕;6.公式1、2、3、4中物理量及单位:ω:角频率(rad/s);t:时间(s);n:线圈匝数;B:磁感强度(T);S:线圈的面积(m2);U:(输出)电压(V);I:电流强度(A);P:功率(W)。
高三物理知识点总结
高三物理知识点总结能随着分子间距离增大而减小。
对实际气体来说,体积增大,分子势能增加;体积缩小,分子势能减小。
(3)物体的内能:物体里所有的分子的动能和势能的总和叫做物体的内能。
任何物体都有内能,物体的内能跟物体的温度和体积有关。
(4)物体的内能和机械能有着本质的区别。
物体具有内能的同时可以具有机械能,也可以不具有机械能。
3.改变内能的两种方式(1)做功:其本质是其他形式的能和内能之间的相互转化。
(2)热传递:其本质是物体间内能的转移。
(3)做功和热传递在改变物体的内能上是等效的,但有本质的区别。
4.★能量转化和守恒定律5★.热力学第一定律(1)内容:物体内能的增量(ΔU)等于外界对物体做的功(W)和物体吸收的热量(Q)的总和。
(2)表达式:W+Q=ΔU(3)符号法则:外界对物体做功,W取正值,物体对外界做功,W取负值;物体吸收热量,Q取正值,物体放出热量,Q取负值;物体内能增加,ΔU取正值,物体内能减少,ΔU取负值。
6.热力学第二定律(1)热传导的方向性热传递的过程是有方向性的,热量会自发地从高温物体传给低温物体,而不会自发地从低温物体传给高温物体。
(2)热力学第二定律的两种常见表述①不可能使热量由低温物体传递到高温物体,而不引起其他变化。
②不可能从单一热源吸收热量并把它全部用来做功,而不引起其他变化。
(3)永动机不可能制成①第一类永动机不可能制成:不消耗任何能量,却可以源源不断地对外做功,这种机器被称为第一类永动机,这种永动机是不可能制造成的,它违背了能量守恒定律。
②第二类永动机不可能制成:没有冷凝器,只有单一热源,并从这个单一热源吸收的热量,可以全部用来做功,而不引起其他变化的热机叫做第二类永动机。
第二类永动机不可能制成,它虽然不违背能量守恒定律,但违背了热力学第二定律。
7.气体的状态参量(1)温度:宏观上表示物体的冷热程度,微观上是分子平均动能的标志。
两种温标的换算关系:T=(t+273)K。
高三物理知识点全部归纳大全
2015年山东省零基础如何备考年岩土工程师考试考试重点和考试技巧前言作为一名零基础的考生,如何备考岩土工程师考试是一件非常重要的事情。
不仅需要了解考试的内容和考试技巧,还需要具备良好的学习习惯和心态,才能事半功倍地通过这一门考试。
本文将从考试的重点内容和备考技巧两个方面,为大家提供一些有用的信息和建议。
考试重点岩土工程师考试在考核内容上主要涵盖以下几个方面:岩土工程基础知识这一部分内容主要是基础理论知识,包括土力学、岩石力学、地基基础、地质灾害等方面。
考生需要熟悉这些基础理论,并且能够在实际工程实践中应用。
岩土工程测试与分析技术岩土工程测试与分析技术是岩土工程师必备的技能之一。
包括实验测试技术、探测技术、模型试验技术、数值分析方法等方面。
岩土工程设计与管理岩土工程设计与管理是岩土工程师的重要工作内容。
考生需要熟悉岩土工程设计与管理的原理与方法,并能够在实践中运用。
考试技巧除了熟悉考试的内容,考生还需要掌握一些实用的考试技巧,在考试中更好地发挥自己的水平。
制定合理的备考计划考试前,考生需要制定一份合理的备考计划。
备考计划应该包括时间规划、目标规划、复习内容规划、复习方法规划等方面。
备考计划需要根据自身情况合理设定,既不能过于宽松,也不能过于紧张。
定期进行模拟考试模拟考试是评估备考效果和考生状态的重要方法。
考生需要定期进行模拟考试,选择真实模拟考试环境和考试流程,对自己的表现进行检验与评估,评估自己备考的水平和方向。
注意时间管理在考试过程中,时间管理非常重要。
考生应该先评估整场考试的时间限制,并根据自己的表现情况,合理规划每道题的答题时间。
在时间允许的情况下,考生应该把所有题目都做完,尽量不放空。
备考I岩土工程师考试需要掌握好考试的重点内容和考试技巧,以期考生能够在时间紧迫的情况下做到高效备考。
同时,考生还要掌握良好的心态和学习方法,从而在考试中发挥最佳水平。
物理高三知识点总结归纳
物理高三知识点总结归纳物理高三知识点总结一、用动量定理解释生活中的现象[例1]竖立放置的粉笔压在纸条的一端。
要想把纸条从粉笔下抽出,又要保证粉笔不倒,应该缓缓、小心地将纸条抽出,还是快速将纸条抽出?说明理由。
[解析]纸条从粉笔下抽出,粉笔受到纸条对它的滑动摩擦力μmg作用,方向沿着纸条抽出的方向。
不论纸条是快速抽出,还是缓缓抽出,粉笔在水平方向受到的摩擦力的大小不变。
在纸条抽出过程中,粉笔受到摩擦力的作用时间用t表示,粉笔受到摩擦力的冲量为μmgt,粉笔原来静止,初动量为零,粉笔的末动量用mv表示。
根据动量定理有:μmgt=mv。
如果缓慢抽出纸条,纸条对粉笔的作用时间比较长,粉笔受到纸条对它摩擦力的冲量就比较大,粉笔动量的改变也比较大,粉笔的底端就获得了一定的速度。
由于惯性,粉笔上端还没有来得及运动,粉笔就倒了。
如果在极短的时间内把纸条抽出,纸条对粉笔的摩擦力冲量极小,粉笔的动量几乎不变。
粉笔的动量改变得极小,粉笔几乎不动,粉笔也不会倒下。
二、用动量定理解曲线运动问题[例2]以速度v0水平抛出一个质量为1kg的物体,若在抛出后5s未落地且未与其它物体相碰,求它在5s内的动量的变化。
(g=10m/s2)。
[解析]此题若求出末动量,再求它与初动量的矢量差,则极为繁琐。
由于平抛出去的物体只受重力且为恒力,故所求动量的变化等于重力的冲量。
则Δp=Ft=mgt=1×10×5=50kg·m/s。
[点评]①运用Δp=mv-mv0求Δp时,初、末速度必须在同一直线上,若不在同一直线,需考虑运用矢量法则或动量定理Δp=Ft求解Δp。
②用I=F·t求冲量,F必须是恒力,若F是变力,需用动量定理I=Δp求解I。
三、用动量定理解决打击、碰撞问题打击、碰撞过程中的相互作用力,一般不是恒力,用动量定理可只讨论初、末状态的动量和作用力的冲量,不必讨论每一瞬时力的大小和加速度大小问题。
[例3]蹦床是运动员在一张绷紧的弹性网上蹦跳、翻滚并做各种空中动作的运动项目。
高三物理高考必考知识点归纳
高三物理高考必考知识点归纳高三物理高考知识点11.力是物体对物体的作用,是物体发生形变和改变物体的运动状态(即产生加速度)的原因。
力是矢量。
2.重力(1)重力是由于地球对物体的吸引而产生的。
[注意]重力是由于地球的吸引而产生,但不能说重力就是地球的吸引力,重力是万有引力的一个分力。
但在地球表面附近,可以认为重力近似等于万有引力(2)重力的大小:地球表面G=mg,离地面高h处G/=mg/,其中g/=[R/(R+h)]2g(3)重力的方向:竖直向下(不一定指向地心)。
(4)重心:物体的各部分所受重力合力的作用点,物体的重心不一定在物体上。
3.弹力(1)产生原因:由于发生弹性形变的物体有恢复形变的趋势而产生的。
(2)产生条件:①直接接触;②有弹性形变。
(3)弹力的方向:与物体形变的方向相反,弹力的受力物体是引起形变的物体,施力物体是发生形变的物体。
在点面接触的情况下,垂直于面;在两个曲面接触(相当于点接触)的情况下,垂直于过接触点的公切面。
①绳的拉力方向总是沿着绳且指向绳收缩的方向,且一根轻绳上的张力大小处处相等。
②轻杆既可产生压力,又可产生拉力,且方向不一定沿杆。
(4)弹力的大小:一般情况下应根据物体的运动状态,利用平衡条件或牛顿定律来求解。
弹簧弹力可由胡克定律来求解。
4.摩擦力(1)产生的条件:①相互接触的物体间存在压力;③接触面不光滑;③接触的物体之间有相对运动(滑动摩擦力)或相对运动的趋势(静摩擦力),这三点缺一不可。
(2)摩擦力的方向:沿接触面切线方向,与物体相对运动或相对运动趋势的方向相反,与物体运动的方向可以相同也可以相反。
(3)判断静摩擦力方向的方法:①假设法:首先假设两物体接触面光滑,这时若两物体不发生相对运动,则说明它们原来没有相对运动趋势,也没有静摩擦力;若两物体发生相对运动,则说明它们原来有相对运动趋势,并且原来相对运动趋势的方向跟假设接触面光滑时相对运动的方向相同。
然后根据静摩擦力的方向跟物体相对运动趋势的方向相反确定静摩擦力方向。
高三物理知识点梳理整合5篇
高三物理知识点梳理整合5篇高三物理知识点总结11.水的密度:ρ水=1.0_1_kg/m3=1g/cm32.1m3水的质量是1t,1cm3水的质量是1g.3.利用天平测量质量时应左物右码 .4.同种物质的密度还和状态有关(水和冰同种物质,状态不同,密度不同).5.增大压强的方法:①增大压力②减小受力面积6.液体的密度越大,深度越深液体内部压强越大.7.连通器两侧液面相平的条件:①同一液体②液体静止8.利用连通器原理:(船闸.茶壶.回水管.水位计.自动饮水器.过水涵洞等).9.大气压现象:(用吸管吸汽水.覆杯试验.钢笔吸水.抽水机等)._.马德保半球试验证明了大气压强的存在,托里拆利试验证明了大气压强的值._.浮力产生的原因:液体对物体向上和向下压力的合力._.物体在液体中的三种状态:漂浮.悬浮.沉底._.物体在漂浮和悬浮状态下:浮力=重力_.物体在悬浮和沉底状态下:V排=V物_.阿基米德原理F浮=G排也适用于气体(浮力的计算公式:F浮=ρ气gV排也适用于气体)高三物理知识点总结21.同一直线上力的合成同向:F=F1+F2,反向:F=F1-F2(F1 F2)2.互成角度力的合成:F=(F_+F_+2F1F2cosα)1/2(余弦定理)F1⊥F2时:F=(F_+F_)1/23.合力大小范围:|F1-F2|≤F≤|F1+F2|4.力的正交分解:F_=Fcosβ,Fy=Fsinβ(β为合力与_轴之间的夹角tgβ=Fy/F_)注:(1)力(矢量)的合成与分解遵循平行四边形定则;(2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;(3)除公式法外,也可用作图法求解,此时要选择标度,严格作图;(4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小;(5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算.高三物理知识点总结31.受力分析,往往漏〝力〞百出对物体受力分析,是物理学中最重要.最基本的知识,分析方法有〝整体法〞与〝隔离法〞两种.对物体的受力分析可以说贯穿着整个高中物理始终,如力学中的重力.弹力(推.拉.提.压)与摩擦力(静摩擦力与滑动摩擦力),电场中的电场力(库仑力).磁场中的洛伦兹力(安培力)等.在受力分析中,最难的是受力方向的判别,最容易错的是受力分析往往漏掉某一个力.在受力分析过程中,特别是在〝力.电.磁〞综合问题中,第一步就是受力分析,虽然解题思路正确,但考生往往就是因为分析漏掉一个力(甚至重力),就少了一个力做功,从而得出的答案与正确结果大相径庭,痛失整题分数.还要说明的是在分析某个力发生变化时,运用的方法是数学计算法.动态矢量三角形法(注意只有满足一个力大小方向都不变.第二个力的大小可变而方向不变.第三个力大小方向都改变的情形)和极限法(注意要满足力的单调变化情形).2.对摩擦力认识模糊摩擦力包括静摩擦力,因为它具有〝隐敝性〞.〝不定性〞特点和〝相对运动或相对趋势〞知识的介入而成为所有力中最难认识.最难把握的一个力,任何一个题目一旦有了摩擦力,其难度与复杂程度将会随之加大.最典型的就是〝传送带问题〞,这问题可以将摩擦力各种可能情况全部包括进去,建议高三党们从下面四个方面好好认识摩擦力:(1)物体所受的滑动摩擦力永远与其相对运动方向相反.这里难就难在相对运动的认识;说明一下,滑动摩擦力的大小略小于静摩擦力,但往往在计算时又等于静摩擦力.还有,计算滑动摩擦力时,那个正压力不一定等于重力.(2)物体所受的静摩擦力永远与物体的相对运动趋势相反.显然,最难认识的就是〝相对运动趋势方〞的判断.可以利用假设法判断,即:假如没有摩擦,那么物体将向哪运动,这个假设下的运动方向就是相对运动趋势方向;还得说明一下,静摩擦力大小是可变的,可以通过物体平衡条件来求解.(3)摩擦力总是成对出现的.但它们做功却不一定成对出现.其中一个的误区是,摩擦力就是阻力,摩擦力做功总是负的.无论是静摩擦力还是滑动摩擦力,都可能是动力.(4)关于一对同时出现的摩擦力在做功问题上要特别注意以下情况:可能两个都不做功.(静摩擦力情形)可能两个都做负功.(如子弹打击迎面过来的木块)可能一个做正功一个做负功但其做功的数值不一定相等,两功之和可能等于零(静摩擦可不做功).可能小于零(滑动摩擦)也可能大于零(静摩擦成为动力).可能一个做负功一个不做功.(如,子弹打固定的木块)可能一个做正功一个不做功.(如传送带带动物体情形)(建议结合讨论〝一对相互作用力的做功〞情形)3.对弹簧中的弹力要有一个清醒的认识弹簧或弹性绳,由于会发生形变,就会出现其弹力随之发生有规律的变化,但要注意的是,这种形变不能发生突变(细绳或支持面的作用力可以突变),所以在利用牛顿定律求解物体瞬间加速度时要特别注意.还有,在弹性势能与其他机械能转化时严格遵守能量守恒定律以及物体落到竖直的弹簧上时,其动态过程的分析,即有速度的情形.4.对〝细绳.轻杆〞要有一个清醒的认识在受力分析时,细绳与轻杆是两个重要物理模型,要注意的是,细绳受力永远是沿着绳子指向它的收缩方向,而轻杆出现的情况很复杂,可以沿杆方向〝拉〞.〝支〞也可不沿杆方向,要根据具体情况具体分析.5.关于小球〝系〞在细绳.轻杆上做圆周运动与在圆环内.圆管内做圆周运动的情形比较这类问题往往是讨论小球在点情形.其实,用绳子系着的小球与在光滑圆环内运动情形相似,刚刚通过点就意味着绳子的拉力为零,圆环内壁对小球的压力为零,只有重力作为向心力;而用杆子〝系〞着的小球则与在圆管中的运动情形相似,刚刚通过点就意味着速度为零.因为杆子与管内外壁对小球的作用力可以向上.可能向下.也可能为零.还可以结合汽车驶过〝凸〞型桥与〝凹〞型桥情形进行讨论.6.对物理图像要有一个清醒的认识物理图像可以说是物理考试必考的内容.可能从图像中读取相关信息,可以用图像来快捷解题.随着试题进一步创新,现在除常规的速度(或速率)-时间.位移(或路程)-时间等图像外,又出现了各种物理量之间图像,认识图像的方法就是两步:一是一定要认清坐标轴的意义;二是一定要将图像所描述的情形与实际情况结合起来.(关于图像各种情况我们已经做了专项训练.)7.对牛顿第二定律F=ma要有一个清醒的认识第一.这是一个矢量式,也就意味着a的方向永远与产生它的那个力的方向一致.(F可以是合力也可以是某一个分力)第二.F与a是关于〝m〞一一对应的,千万不能张冠李戴,这在解题中经常出错.主要表现在求解连接体加速度情形.第三.将〝F=ma〞变形成F=mv/t,其中,a=v/t得出v=at这在〝力.电.磁〞综合题的〝微元法〞有着广泛的应用(近几年连续考到).第四.验证牛顿第二定律实验,是必须掌握的重点实验,特别要注意:(1)注意实验方法用的是控制变量法;(2)注意实验装置和改进后的装置(光电门),平衡摩擦力,沙桶或小盘与小车质量的关系等;(4)注意数据处理时,对纸带匀加速运动的判断,利用〝逐差法〞求加速度.(用〝平均速度法〞求速度)(5)会从〝a-F〞〝a-1/m〞图像中出现的误差进行正确的误差原因分析.8.对〝机车启动的两种情形〞要有一个清醒的认识机车以恒定功率启动与恒定牵引力启动,是动力学中的一个典型问题.这里要注意两点:(1)以恒定功率启动,机车总是做的变加速运动(加速度越来越小,速度越来越大);以恒定牵引力启动,机车先做的匀加速运动,当达到额定功率时,再做变加速运动.最终速度即〝收尾速度〞就是vm=P额/f.(2)要认清这两种情况下的速度-时间图像.曲线的〝渐近线〞对应的速度. 还要说明的,当物体变力作用下做变加运动时,有一个重要情形就是:当物体所受的合外力平衡时,速度有一个最值.即有一个〝收尾速度〞,这在电学中经常出现,如:〝串〞在绝缘杆子上的带电小球在电场和磁场的共同作用下作变加速运动,就会出现这一情形,在电磁感应中,这一现象就更为典型了,即导体棒在重力与随速度变化的安培力的作用下,会有一个平衡时刻,这一时刻就是加速度为零速度达到极值的时刻.凡有〝力.电.磁〞综合题目都会有这样的情形.9.对物理的〝变化量〞.〝增量〞.〝改变量〞和〝减少量〞.〝损失量〞等要有一个清醒的认识研究物理问题时,经常遇到一个物理量随时间的变化,最典型的是动能定理的表达(所有外力做的功总等于物体动能的增量).这时就会出现两个物理量前后时刻相减问题,小伙伴们往往会随意性地将数值大的减去数值小的,而出现严重错误.其实物理学规定,任何一个物理量(无论是标量还是矢量)的变化量.增量还是改变量都是将后来的减去前面的.(矢量满足矢量三角形法则,标量可以直接用数值相减)结果正的就是正的,负的就是负的.而不是错误地将〝增量〞理解增加的量.显然,减少量与损失量(如能量)就是后来的减去前面的值._.两物体运动过程中的〝追遇〞问题两物体运动过程中出现的追击类问题,在高考中很常见,但考生在这类问题则经常失分.常见的〝追遇类〞无非分为这样的九种组合:一个做匀速.匀加速或匀减速运动的物体去追击另一个可能也做匀速.匀加速或匀减速运动的物体.显然,两个变速运动特别是其中一个做减速运动的情形比较复杂.虽然,〝追遇〞存在临界条件即距离等值的或速度等值关系,但一定要考虑到做减速运动的物体在〝追遇〞前停止的情形.另外解决这类问题的方法除利用数学方法外,往往通过相对运动(即以一个物体作参照物)和作〝V-t〞图能就得到快捷.明了地解决,从而既赢得考试时间也拓展了思维.值得说明的是,最难的传送带问题也可列为〝追遇类〞.还有在处理物体在做圆周运动追击问题时,用相对运动方法.如,两处于不同轨道上的人造卫星,某一时刻相距最近,当问到何时它们第一次相距最远时,的方法就将一个高轨道的卫星认为静止,则低轨道卫星就以它们两角速度之差的那个角速度运动.第一次相距最远时间就等于低轨道卫星以两角速度之差的那个角速度做半个周运动的时间.高三物理知识点总结4一.分子动理论1.物体是由大量分子组成的(1)分子模型:主要有两种模型,固体与液体分子通常用球体模型,气体分子通常用立方体模型.(2)分子的大小①分子直径:数量级是_-_m;②分子质量:数量级是_-26kg;③测量方法:油膜法.(3)阿伏加德罗常数1.mol任何物质所含有的粒子数,NA=6.__1_3mol-12.分子热运动分子永不停息的无规则运动.(1)扩散现象相互接触的不同物质彼此进入对方的现象.温度越高,扩散越快,可在固体.液体.气体中进行.(2)布朗运动悬浮在液体(或气体)中的微粒的无规则运动,微粒越小,温度越高,布朗运动越显著.3.分子力分子间同时存在引力和斥力,且都随分子间距离的增大而减小,随分子间距离的减小而增大,但总是斥力变化得较快.二.内能1.分子平均动能(1)所有分子动能的平均值.(2)温度是分子平均动能的标志.2.分子势能由分子间相对位置决定的能,在宏观上分子势能与物体体积有关,在微观上与分子间的距离有关.3.物体的内能(1)内能:物体中所有分子的热运动动能与分子势能的总和.(2)决定因素:温度.体积和物质的量.三.温度1.意义:宏观上表示物体的冷热程度(微观上标志物体中分子平均动能的大小).2.两种温标(1)摄氏温标t:单位℃,在1个标准大气压下,水的冰点作为0℃,沸点作为1_℃,在0℃~1_℃之间等分1_份,每一份表示1℃.(2)热力学温标T:单位K,把-273._℃作为0K.(3)就每一度表示的冷热差别来说,两种温度是相同的,即ΔT=Δt.只是零值的起点不同,所以二者关系式为T=t+273._.(4)绝对零度(0K),是低温极限,只能接近不能达到,所以热力学温度无负值. 高三物理知识点总结51.热现象:与温度有关的现象叫做热现象.2.温度:物体的冷热程度.3.温度计:要准确地判断或测量温度就要使用的专用测量工具.4.温标:要测量物体的温度,首先需要确立一个标准,这个标准叫做温标.(1)摄氏温标:单位:摄氏度,符号℃,摄氏温标规定,在标准大气压下,冰水混合物的温度为0℃;沸水的温度为1_℃.中间1_等分,每一等分表示1℃.(a)如摄氏温度用t表示:t=25℃(b)摄氏度的符号为℃,如34℃(c)读法:37℃,读作37摄氏度;–4.7℃读作:负4.7摄氏度或零下4.7摄氏度.(2)热力学温标:在国际单位之中,采用热力学温标(又称开氏温标).单位:开尔文,符号:K.在标准大气压下,冰水混合物的温度为273K.热力学温度T与摄氏温度t的换算关系:T=(t+273)K.0K是自然界的低温极限,只能无限接近永远达不到.(3)华氏温标:在标准大气压下,冰的熔点为32℉,水的沸点为2_℉,中间_0等分,每一等分表示1℉.华氏温度F与摄氏温度t的换算关系:F=5t+325.温度计(1)常用温度计:构造:温度计由内径细而均匀的玻璃外壳.玻璃泡.液面.刻度等几部分组成.原理:液体温度计是根据液体热胀冷缩的性质制成的.常用温度计内的液体有水银.酒精.煤油等.6.正确使用温度计(1)先观察它的测量范围.最小刻度.零刻度的位置.实验温度计的范围为-_℃-1_℃,最小刻度为1℃.体温温度计的范围为35℃-42℃,最小刻度为0.1℃.(2)估计待测物的温度,选用合适的温度计.(3)温度及的玻璃泡要与待测物充分接触(但不能接触容器底与容器侧面).(4)待液面稳定后,才能读数.(读数时温度及不能离开待测物).高三物理知识点梳理整合5篇精选。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三物理知识点归纳高中学习方法其实很简单,但是这个方法要一直保持下去,才能在最终考试时看到成效,如果对某一科目感兴趣或者有天赋异禀,那么学习成绩会有明显提高,下面就是给大家带来的高三物理知识点,希望能帮助到大家!高三物理知识点11.力力是物体对物体的作用,是物体发生形变和改变物体的运动状态(即产生加速度)的原因。
力是矢量。
2.重力(1)重力是由于地球对物体的吸引而产生的。
[注意]重力是由于地球的吸引而产生,但不能说重力就是地球的吸引力,重力是万有引力的一个分力。
但在地球表面附近,可以认为重力近似等于万有引力(2)重力的大小:地球表面G=mg,离地面高h处G/=mg/,其中g/=[R/(R+h)]2g(3)重力的方向:竖直向下(不一定指向地心)。
(4)重心:物体的各部分所受重力合力的作用点,物体的重心不一定在物体上。
3.弹力(1)产生原因:由于发生弹性形变的物体有恢复形变的趋势而产生的。
(2)产生条件:①直接接触;②有弹性形变。
(3)弹力的方向:与物体形变的方向相反,弹力的受力物体是引起形变的物体,施力物体是发生形变的物体。
在点面接触的情况下,垂直于面;在两个曲面接触(相当于点接触)的情况下,垂直于过接触点的公切面。
①绳的拉力方向总是沿着绳且指向绳收缩的方向,且一根轻绳上的张力大小处处相等。
②轻杆既可产生压力,又可产生拉力,且方向不一定沿杆。
(4)弹力的大小:一般情况下应根据物体的运动状态,利用平衡条件或牛顿定律来求解。
弹簧弹力可由胡克定律来求解。
★胡克定律:在弹性限度内,弹簧弹力的大小和弹簧的形变量成正比,即F=kx。
k为弹簧的劲度系数,它只与弹簧本身因素有关,单位是N/m。
高三物理知识点21621年,荷兰数学家斯涅耳找到了入射角与折射角之间的规律——折射定律。
1801年,英国物理学家托马斯·杨成功地观察到了光的干涉现象。
1818年,法国科学家菲涅尔和泊松计算并实验观察到光的圆板衍射—泊松亮斑。
1864年,英国物理学家麦克斯韦预言了电磁波的存在,指出光是一种电磁波;1887年,赫兹证实了电磁波的存在,光是一种电磁波1905年,爱因斯坦提出了狭义相对论,有两条基本原理:①相对性原理——不同的惯性参考系中,一切物理规律都是相同的;②光速不变原理——不同的惯性参考系中,光在真空中的速度一定是c不变。
爱因斯坦还提出了相对论中的一个重要结论——质能方程式。
公元前468-前376,我国的墨翟及其弟子在《墨经》中记载了光的直线传播、影的形成、光的反射、平面镜和球面镜成像等现象,为世界上最早的光学著作。
1849年法国物理学家斐索首先在地面上测出了光速,以后又有许多科学家采用了更精密的方法测定光速,如美国物理学家迈克尔逊的旋转棱镜法。
(注意其测量方法)关于光的本质:17世纪明确地形成了两种学说:一种是牛顿主张的微粒说,认为光是光源发出的一种物质微粒;另一种是荷兰物理学家惠更斯提出的波动说,认为光是在空间传播的某种波。
这两种学说都不能解释当时观察到的全部光现象。
物理学晴朗天空上的两朵乌云:①迈克逊-莫雷实验——相对论(高速运动世界),②热辐射实验——量子论(微观世界);19世纪和20世纪之交,物理学的三大发现:X射线的发现,电子的发现,放射性的发现。
1905年,爱因斯坦提出了狭义相对论,有两条基本原理:①相对性原理——不同的惯性参考系中,一切物理规律都是相同的;②光速不变原理——不同的惯性参考系中,光在真空中的速度一定是c不变。
1900年,德国物理学家普朗克解释物体热辐射规律提出能量子假说:物质发射或吸收能量时,能量不是连续的,而是一份一份的,每一份就是一个最小的能量单位,即能量子;激光——被誉为20世纪的“世纪之光”;1900年,德国物理学家普朗克为解释物体热辐射规律提出:电磁波的发射和吸收不是连续的,而是一份一份的,把物理学带进了量子世界;受其启发1905年爱因斯坦提出光子说,成功地解释了光电效应规律,因此获得诺贝尔物理奖。
1922年,美国物理学家康普顿在研究石墨中的电子对X射线的散射时——康普顿效应,证实了光的粒子性。
(说明动量守恒定律和能量守恒定律同时适用于微观粒子)1913年,丹麦物理学家玻尔提出了自己的原子结构假说,成功地解释和预言了氢原子的辐射电磁波谱,为量子力学的发展奠定了基础。
1924年,法国物理学家德布罗意大胆预言了实物粒子在一定条件下会表现出波动性;1927年美、英两国物理学家得到了电子束在金属晶体上的衍射图案。
电子显微镜与光学显微镜相比,衍射现象影响小很多,大大地提高分辨能力,质子显微镜的分辨本能更高。
高三物理知识点31.交变电流:大小和方向都随时间作周期性变化的电流,叫做交变电流。
按正弦规律变化的电动势、电流称为正弦交流电。
2.正弦交流电----(1)函数式:e=Emsinωt(其中★Em=NBSω)(2)线圈平面与中性面重合时,磁通量,电动势为零,磁通量的变化率为零,线圈平面与中心面垂直时,磁通量为零,电动势,磁通量的变化率。
(3)若从线圈平面和磁场方向平行时开始计时,交变电流的变化规律为i=Imcosωt。
(4)图像:正弦交流电的电动势e、电流i、和电压u,其变化规律可用函数图像描述。
3.表征交变电流的物理量(1)瞬时值:交流电某一时刻的值,常用e、u、i表示。
(2)值:Em=NBSω,值Em(Um,Im)与线圈的形状,以及转动轴处于线圈平面内哪个位置无关。
在考虑电容器的耐压值时,则应根据交流电的值。
(3)有效值:交流电的有效值是根据电流的热效应来规定的。
即在同一时间内,跟某一交流电能使同一电阻产生相等热量的直流电的数值,叫做该交流电的有效值。
①求电功、电功率以及确定保险丝的熔断电流等物理量时,要用有效值计算,有效值与值之间的关系E=Em/,U=Um/,I=Im/只适用于正弦交流电,其他交变电流的有效值只能根据有效值的定义来计算,切不可乱套公式。
②在正弦交流电中,各种交流电器设备上标示值及交流电表上的测量值都指有效值。
(4)周期和频率----周期T:交流电完成一次周期性变化所需的时间。
在一个周期内,交流电的方向变化两次。
频率f:交流电在1s内完成周期性变化的次数。
角频率:ω=2π/T=2πf。
4.电感、电容对交变电流的影响(1)电感:通直流、阻交流;通低频、阻高频。
(2)电容:通交流、隔直流;通高频、阻低频。
5.变压器:(1)理想变压器:工作时无功率损失(即无铜损、铁损),因此,理想变压器原副线圈电阻均不计。
(2)★理想变压器的关系式:①电压关系:U1/U2=n1/n2(变压比),即电压与匝数成正比。
②功率关系:P入=P出,即I1U1=I2U2+I3U3+…③电流关系:I1/I2=n2/n1(变流比),即对只有一个副线圈的变压器电流跟匝数成反比。
(3)变压器的高压线圈匝数多而通过的电流小,可用较细的导线绕制,低压线圈匝数少而通过的电流大,应当用较粗的导线绕制。
6.电能的输送-----(1)关键:减少输电线上电能的损失:P耗=I2R 线(2)方法:①减小输电导线的电阻,如采用电阻率小的材料;加大导线的横截面积。
②提高输电电压,减小输电电流。
前一方法的作用十分有限,代价较高,一般采用后一种方法。
(3)远距离输电过程:输电导线损耗的电功率:P损=(P/U)2R线,因此,当输送的电能一定时,输电电压增大到原来的n倍,输电导线上损耗的功率就减少到原来的1/n2。
(4)解有关远距离输电问题时,公式P损=U线I线或P损=U线2R线不常用,其原因是在一般情况下,U线不易求出,且易把U线和U总相混淆而造成错误。
高三物理知识点4第一、二节探究自由落体运动/自由落体运动规律记录自由落体运动轨迹1.物体仅在中立的作用下,从静止开始下落的运动,叫做自由落体运动(理想化模型)。
在空气中影响物体下落快慢的因素是下落过程中空气阻力的影响,与物体重量无关。
2.伽利略的科学方法:观察→提出假设→运用逻辑得出结论→通过实验对推论进行检验→对假说进行修正和推广自由落体运动规律1.自由落体运动是一种初速度为0的匀变速直线运动,加速度为常量,称为重力加速度(g)。
g=9.8m/s?2.重力加速度g的方向总是竖直向下的。
其大小随着纬度的增加而增加,随着高度的增加而减少。
3.vt?=2gs竖直上抛运动处理方法:分段法(上升过程a=-g,下降过程为自由落体),整体法(a=-g,注意矢量性)1.速度公式:vt=v0—gt位移公式:h=v0t—gt?/22.上升到点时间t=v0/g,上升到点所用时间与回落到抛出点所用时间相等3.上升的高度:s=v0?/2g第三节匀变速直线运动匀变速直线运动规律1.基本公式:s=v0t+at?/22.平均速度:vt=v0+at3.推论:(1)v=vt/2(2)S2—S1=S3—S2=S4—S3=……=△S=aT?(3)初速度为0的n个连续相等的时间内S之比:S1:S2:S3:……:Sn=1:3:5:……:(2n—1)(4)初速度为0的n个连续相等的位移内t之比:t1:t2:t3:……:tn=1:(√2—1):(√3—√2):……:(√n—√n—1)(5)a=(Sm—Sn)/(m—n)T?(利用上各段位移,减少误差→逐差法)(6)vt?—v0?=2as第四节汽车行驶安全1.停车距离=反应距离(车速×反应时间)+刹车距离(匀减速)2.安全距离≥停车距离3.刹车距离的大小取决于车的初速度和路面的粗糙程度4.追及/相遇问题:抓住两物体速度相等时满足的临界条件,时间及位移关系,临界状态(匀减速至静止)。
可用图象法解题。
高三物理知识点5(1)极性分子之间极性分子的正负电荷的重心不重合,分子的一端带正电荷,另一端带负电荷。
当极性分子相互接近时,由于同极相斥,异极相吸,使分子在空间定向排列,相互吸引而更加接近,当接近到一定程度时,排斥力同吸引力达到相对平衡。
极性分子之间按异极相邻的状态取向。
(2)极性分子与非极性分子之间非极性分子的正负电荷重心是重合的,当非极性分子与极性分子相互接近时,由于极性分子电场的影响,使非极性分子的电子云发生“变形”,从而使原来的非极性分子产生极性。
这样,非极性分子与极性分子之间也就产生了相互作用力。
极性分子对非极性分子有诱导作用。
(3)非极性分子之间非极性分子间不可能产生上述两种作用力,那又是怎样产生作用力的呢?我们说非极性分子的正负电荷重心重合是从整体上讲的。
但由于核外电子是绕核高速运动的,原子核也在不断振动之中,原子核外的电子对原子核的相对位置会经常出现瞬间的不对称,正负电荷重心经常出现瞬间的不重合,也就是说非极性分子经常产生瞬时极性,从而使非极性分子间也产生了相互吸引力。
从上述的分析可以看出,无论什么分子之间都存在着相互吸引力,即范德华力。