完全平方公式第一课时教案(新北师大版)资料

合集下载

北师大版初中数学七年级下册第1章《完全平方公式(一)》说课稿

北师大版初中数学七年级下册第1章《完全平方公式(一)》说课稿

《完全平方公式(一)》说课稿一、说教材1、地位和作用“完全平方公式”是七年级《数学》下册第一章第八节内容,它分为两课时,本节是第一课时,它是“整式运算”这一章中重要的内容之一,它起到承上启下的作用,既是整式相乘的应用,又为以后学习配方法打下扎实的基础。

2、课程目标:(1)、知识目标:经历探索推导完全平方公式的过程,形成数形结合思想,进一步发展符号感。

掌握完全平方公式的结构特点,并能利用公式熟练进行运算。

(2)、能力目标:培养学生发散性思维能力和推理能力,培养学生语言表达能力,动手实践能力,以及合作交流能力。

(3)情感目标:让学生在探索的过程中,体会科学发现探索方法,在合作交流中,体会团结合作精神。

能从多角度思考问题,敢于发表自己的观点。

3、教学重点、难点:重点:完全平方公式的结构特点及公式的直接运用。

难点:对公式中a、b含义的理解与正确应用。

4、教材安排:本节课先从通过计算和比较试验田的面积引出完全平方公式。

直接让学生运用多项式乘法法则推导完全平方公式。

并通过数形结合思想,让学生理解完全平方公式及其结构特点。

最后通过变式训练进行练习和巩固。

二、说教学方法及教学手段:本节课引导学生从已有的知识和生活经验出发,提出开放性的问题让学生进行合作探索,让学生经历知识的形成与应用,从而更好地理解数学知识的意义。

本节课教学中,对于不同的内容选择了不同的方法。

对于求实验田的总面积,进行开放性教学,引导学生利用拼图等方法合作探究多种方法求解;运用多项式相乘推导公式,让学生独立探索;对于完全平方公式的运用,采用变式训练,促进学生灵活掌握。

为了提高课堂教学效果,本节课将借助于多媒体课件辅助教学。

三、说学法教给学生良好的学习方法比直接教给学生知识更重要。

数学教学是师生之间、学生之间交往互动与共同发展的过程,学生的学是中心,会学是目的,因此在教学中要不断指导学生学会学习,又要给学生自主探索和合作交流时间。

本节课先从实际出发,创设有助于学生发散性思考的问题情境,引导学生自己积极思考探索,让学生经历“观察、类比、发现、归纳”的过程,从而培养学生动手实践的能力,提高口头表达能力及逻辑推理能力,使学生真正成为学习的主体。

完全平方公式说课稿-北师大版〔优秀篇〕

完全平方公式说课稿-北师大版〔优秀篇〕

《完全平方公式》说课稿(第一课时)尊敬的评委老师、各位同仁:人家好!今天我说课的内容是:义务教育课程标准实验教科书七年级(下)《完全平方公式》(第•课时)-下面我就从教材内容的分析、学生学情的分析、教法学法的选择.教学资源的利用、教学程序的设计、教学反思的设计等六个方血】向大家介绍我对本节课的埋解与设计。

教材内容的分析(一)教材的地位和作用完全平方公式是整式乘法•特别是多项式乘以多项式的拓展,是初中阶段最基础、最重要的内容之一,是后继学习其它化简与计算.特别是配方法和勾股定理及图形面积计算的基础。

学习它• 可以发展学生的思维品质,培养学生自主学习、合作探究、合理猜想、推理论证、学以致用的能力, 提高学生将现实模型数学化的能力,增强学生对数学的理解和解决实际问题的能力,体验成功的乐趣。

因此.它在初中数学中有着举足轻重的t也位和作用。

(二)教学目标的确定我根据新课标对知识、能力和德育目标的要求,以及学生的认知特点-心理特点及本节谍的知识特点.确定以下三维教学目标。

1.知识目标:(1)完全平方公式的推导及其作用:(2)完全平方公式的几何背景。

2.能力目标:(1)经历探索完全平方公式的过程・进•步发展符合感和推理能力;(2)重视学生对算理的理解,有意识地培养他们有条理的思考和农达能力•3.情感目标:(1)了解数学的历史,激发学生学习数学的兴趣:(2)鼓励学生自己探索算法的多样化,有意识地培养学生的创新能力。

(三)教学重难点Is重点:完全平方公式的推导过程-结构特点.语言衣达-几何解释:2、难点:完全平方公式的应用。

(四)教(学)具准备矩形(含正方形)剪贴板、剪刀.胶水、小黑板、多媒体课件、展示平台等(前三项要求性生也同样准备)。

二.学生学情的分析1.由现实生活中有关的完全平方数,以及小学阶段图形面积的计算中,对完全平方的认识, 学生对完全平方的概念的理解,应该不存在太人的问题(槪念不必涉及〉:2.初一学生的空间想象能力、抽象思维能力、逻辑思维能力、数学化能力有限,理解完全平方公式的几何解释、推导过程、结构特点有一定困难。

北师大版数学七年级下册1.6.1完全平方公式的认识教案设计

北师大版数学七年级下册1.6.1完全平方公式的认识教案设计

完全平方公式(一)教学目标:1.经历探索完全平方公式的过程,进一步发展符号感和推力能力。

2.会推导完全平方公式,并能运用公式进行简单的计算。

3.敢于面对数学活动中的困难,并有独立克服困难和运用知识解决问题的成功体验,有学好数学的自信心;并尊重与理解他人的见解;能从交流中获益。

教学重点:掌握公式的特点,牢记公式。

教学难点:具体问题具体分析,会用公式进行计算。

教材分析:前面学习的积得乘方公式222b a ab =)(,导致这样一种错误的猜想222b a b a +=+)(。

由此引入,在认识错误中探索,激发学生学习兴趣。

学情分析:本节课中,学习了两个公式,应用公式做题时,首先要选择公式,再认准数字,套公式才能应用。

教学方法:引导——探究——应用aabba+ba+ba ab 教学过程: 一、课堂引入生活中,存在各种各样的猜想。

比方:今天下雨了,我猜今天回家坐公交车会堵车。

请问这种猜想正确吗?请验证你的观点。

因为222b a ab =)(,所以 222b a b a +=+)(。

二、新知探究(一)和的完全平方公式1.通过代入具体数据、应用乘方意义、均可说明 。

还有两种方法可算出(a+b )2。

方法一:多项式乘法法则 (a+b )2=(a+b)(a+b)= a 2+ab+ab+b 2= a 2+2ab+b 2 方法二:图形2.总结222)(b a b a +≠+(a+b )2 = a 2+2ab+b 2两数和的平方,等于这两数的平方和加它们积的2倍。

计算:(1)(a+1)2 (2)(2x+3)2 (3)(mn+a )2(二)差的完全平方公式 猜一猜(a-b )2=?能验证你的猜想吗?方法一:多项式乘法法则(a-b )2=(a-b)(a-b) = a 2-ab-ab+b 2= a 2-2ab+b 2方法二:图形方法三:应用和的完全平方公式(a-b )2 =[a+(-b )]2 = a 2+2a(-b)+(-b)2ab=a2-2ab+b2总结:两公式的区别只在于一个加2ab,一个减2ab。

北师大版数学七年级下册《完全平方公式的认识》教案1

北师大版数学七年级下册《完全平方公式的认识》教案1

北师大版数学七年级下册《完全平方公式的认识》教案1一. 教材分析北师大版数学七年级下册《完全平方公式的认识》这一节,是在学生已经掌握了有理数的乘法、完全平方根的概念等知识的基础上进行教学的。

本节课的主要内容是完全平方公式的认识和应用,通过学习完全平方公式,可以帮助学生更好地理解和掌握二次根式的运算规律,为后续学习二次函数、二次方程等知识打下基础。

二. 学情分析学生在七年级上册已经学习了有理数的乘法、完全平方根的概念等知识,对于这些知识有一定的掌握。

但是,由于完全平方公式较为抽象,学生可能对其理解不够深入,需要在教学中通过具体的例子和练习来帮助学生理解和掌握。

三. 教学目标1.让学生理解和掌握完全平方公式的概念和应用。

2.培养学生的数学思维能力和解决问题的能力。

3.提高学生的学习兴趣和积极主动参与课堂活动的意识。

四. 教学重难点1.完全平方公式的概念和应用。

2.完全平方公式的推导过程。

五. 教学方法采用问题驱动法、案例分析法、小组合作法等教学方法,通过设置问题、展示案例、分组讨论等方式,激发学生的学习兴趣,引导学生主动参与课堂活动,培养学生的数学思维能力和解决问题的能力。

六. 教学准备1.准备相关的教学PPT和教学案例。

2.准备完全平方公式的练习题。

七. 教学过程1.导入(5分钟)通过设置问题,引导学生回顾已学的有理数的乘法、完全平方根的概念等知识,为新课的学习做好铺垫。

2.呈现(10分钟)展示完全平方公式的定义和公式,让学生初步了解完全平方公式的概念。

3.操练(10分钟)通过一些简单的例子,让学生运用完全平方公式进行计算,巩固对完全平方公式的理解和掌握。

4.巩固(10分钟)出示一些有关完全平方公式的练习题,让学生独立完成,检验学生对完全平方公式的掌握程度。

5.拓展(10分钟)引导学生思考:完全平方公式在实际生活中有哪些应用?让学生举例说明,进一步拓展学生的知识视野。

6.小结(5分钟)对本节课的主要内容进行总结,强调完全平方公式的概念和应用。

《完全平方公式》word教案 (公开课获奖)2022北师版 (1)

《完全平方公式》word教案 (公开课获奖)2022北师版 (1)

1.6完全平方公式(1)课时课题:第一章第六节完全平方公式(第1课时)课型:新授课授课时间:教学目标:知识与技能:理解完全平方公式的本质,并会运用公式进行简单的计算;了解完全平方公式的几何背景.过程与方法:经历探索完全平方公式的过程,并从推导过程中,培养学生观察、发现、归纳、概括、猜想等探究创新能力,发展逻辑推理能力和有条理的表达能力,培养学生的数形结合意识.情感与态度:体验数学活动充满着探索性和创造性,并在数学活动中获得成功的体验与喜悦,树立学习的自信心.教学重点:完全平方公式及其应用.教学难点:完全平方公式的应用.教法及学法指导:本节课采用自主探索、启发引导、合作交流的模式展开教学,引导学生主动地进行观察、归纳、猜测和验证.考虑到学生的认知方式、思维水平和学习能力的差异进行分层次教学,让不同层次的学生都能主动参与并都能得到充分的发展.边启发、边探索、边归纳,突出以学生为主体的探索性学习活动. 遵循知识的产生过程,从特殊→一般→特殊,将所学的知识用于实践中.课前准备:教师:多媒体课件.学生:课前进行预习工作.教学过程:一前置诊断,开辟道路师:上一节课,我们学习了平方差公式,知道了应用平方差公式可以进行某些多项式乘法的简便运算.那位同学能说一下平方差公式是什么?它的结构特征是什么?生:(积极踊跃,争先恐后)生:平方差公式:(a+b)(a-b)=a2-b2;公式的结构特点:左边是两个二项式的乘积,即两数和与这两数差的积.右边是两数的平方差.师:应用平方差公式要注意什么问题?生1:弄清在什么情况下才能使用平方差公式.生2:(补充)把两个因式中相同的部分看作a,互为相反的部分看作b.师:很好.还记得我们是怎样用图形解释平方差公式的吗?生:利用图形变化前后的面积相等来解释的.从一个边长为a大正方形中割掉一个边长为b的小正方形,剩下图形的面积可以用a2-b2表示,也可以用(a+b)(a-b)表示,就可以得到:(a+b)(a-b)=a2-b2.师:(出示多媒体课件,使学生数形结合起来,帮助其理解.)师:平方差公式实质上是特殊的多项式乘法的一种简便运算,是我们由一些特殊的多项式乘法的计算中分析得到的数学规律,应用它可以进行一些数或式乘法的简便计算.数学中,还有很多规律等待我们去探索、去发现.设计意图:本堂课的学习方向仍是引导鼓励学生通过已学习的知识经过个人思考、小组合作等方式推导出本课新知,进一步发展学生的符号感和推理能力.而这个过程离不开旧知识的铺垫,平方差公式的学习有很多教学环节和形式与本节的学习是类似的,其中包含的基本知识与基本能力也仍是本节的精神主旨,因而复习很有必要.二设问质疑,探究尝试师:(出示多媒体课件)1.观察下列算式及其运算结果,你有什么发现?(m+3)2 (2+3x)2= (m+3)(m+3) =(2+3x)(2+3x)=m2+3m+3m+9 =4+2×3x+2×3x+9x2=m2+2×3m+9 =4+2×2×3x+9x2=m2+6m+9 =4+12x+9x2请同学们观察屏幕上两个算式及其运算结果,你有什么发现? 生:(观察、思考、交流、讨论、争相举手发表自己的发现).生1:我发现两个算式都是两个数和的平方,结果是三项,都有这两个数的平方. 师:很好.生:我发现算式都是两个数和的平方,结果是这两个数的平方和,再加上这两个数的乘积的2倍.师:太好了.同学们看一下是这么回事吗? 生:(齐声)是.师:你能再举两例验证你的发现吗?生:(积极动手、动脑,验证结论,派代表发言.) 师:同学们是否都验证了这个发现? 生:是.师:你能用式子表示这个规律吗? 生:能.(举手) 生1:(a+b)2=a 2+2ab+b 2.师:(板书,进而问)你能验证这个规律吗? 生:(用多项式乘法验证了正确性) 师:用语言怎样叙述?生:两数和的平方,等于它们的平方和加上它们的积的2倍.师:(板书) (出示课件)你能用图1-7解释这一公式吗?生:(思考、讨论后,积极举手)生1:和验证平方差公式一样,用两种方法表示图中大正方形的面积为:(a+b)2和a2+2ab+b2,这两个算式相等,就得到(a+b)2=a2+2ab+b2.师:太棒了!刚才,我们从数和形两个方面验证了这个规律的正确性,今后遇见形如(a+b)2的式子,就可以用这个公式来计算.如:(m+3)2=m2+2×3•m+9=m2+6m+9.比较一下两种做法,哪一种较简单?生:用公式简单.师:试着用公式计算:(2+3x)2 .生:(动手计算,体会公式可以使运算简便.)设计意图:通过特例的探索,引入完全平方公式,再让学生自己举例加深对公式的体会.而在计算图形的面积时,通过对比这些表示方式可以使学生对于公式有一个直观的认识.通过自主探究和交流学到了新的知识,学生的学习积极性和主动性得到大大的激发.三探究规律、形成结论1.初识完全平方公式.师:(出示课件)你能计算:(a-b)2吗?生:(思考、积极动脑,在练习本上试着计算.)师:(巡视,发现两种不同解法,让这两名学生板演.)生1:(a-b)2= (a-b) (a-b)=a2-2ab+b2.生2:(a-b)2=[a+(-b)]2=a2-2a(-b)+b2=a2-2ab+b2.师:看这两个同学的做法是否正确?他们是怎样做的?生:一个是利用多项式的乘法,一个是利用公式,把差的形式化成了和的形式,都正确. 师:很好!你能用语言描述一下这个结果吗?生:两数差的平方,等于它们的平方和减去它们的积的2倍.师:我们把这个规律也当成公式,和前面的公式合起来称为完全平方公式.请你体会一下“完全”的含义.生:(七嘴八舌,最后形成统一意见)“全部”的意思.师:我们把(a+b)2=a2+2ab+b2称为和的完全平方公式,(a-b)2=a2-2ab+b2称为差的完全平方公式.2. 再识完全平方公式.师:你能分析一下完全平方公式的结构特点,并用语言进行完整地描述吗?生:(讨论,争相回答)生1: 结构特点:左边是二项式(两数和或差))的平方;右边是两数的平方和加上(或减去)这两数乘积的2倍.生2:两数和(或差)的平方,等于这两数的平方和加上(或减去)这两数积的2倍.师:很好.学的东西多了,有的同学可能会记混,教你一个口诀便于记忆:首平方,尾平方,积的2倍放中央,是加是减看前方.生:理解口诀,记忆公式.设计意图:让学生从代数运算的角度,推导出两数差的完全平方公式,并在此基础上加以总结,从而完善了完全平方公式,同时培养学生有条理的思考和语言表达能力.最后以口诀的形式,加深学生对公式的理解.四学以致用、巩固新知师:完全平方公式和平方差公式一样,也是整式乘法中的重要公式,应用它们可以使运算简便.(出示多媒体课件)例1 用完全平方公式计算:(1) (2x−3)2; (2) (4x+5y)2 ; (3) (mn−a)2生:分析算式的特点,找准谁相当于公式中的a,谁相当于公式中的b,试着用公式解题. 师:派两名同学板演,师生共同评价.巩固练习.1.计算:(1)2)221(y x - ; (2) 2)512(x xy +; (3)(2x 2-3y 2)2; (4)(n +1)2-n 2.生:板演,师生共同评价. 师:发现学生有新解法,指名板演.生:(n +1)2-n 2=(n+1+ n )( n+1− n ) =(2n+1) 师:给出肯定,建议学生试着用这种解法做一做. 2.纠错练习:指出下列各式中的错误,并加以改正: (1) (2a −1)2=2a 2−2a +1;(2) (2a +1)2=4a 2+1; (3)(-a −1)2=-a 2−2a −1.生:分析错误原因,并改正.设计意图:对照公式,进行独立的简单计算,体会公式在解题中的应用,进一步熟悉公式.并通过小组交流,自我检验,巩固反馈.考察个人的实际运用能力,并及时查漏补缺.例2 利用完全平方公式计算:(1) (-2x +1)2; (2) (-1-2x )2师:指导学生分析算式特点.生:找出相当于公式中a 与b 的数或式,试着解答.设计意图:例2是对课本内容的补充,使学生从更深的一个角度来认识完全平方公式,防止解题时中间项的符号出现问题,并能在解题中通过灵活的变形来运用公式,解决问题. 教学时,首先放手让学生独立来解决第一个题目,学生可能出错较多,且都集中在中间项的符号上,由此引出有进一步认识公式的必要,从而教师引导学生再次观察题目,仔细分析题目当中谁相当于公式当中的a 与b ,从而运用不同的方法和思路,解决问题.在解题过程中学生认识到了解决问题之前恰当选择公式和正确分析题目的必要性,学习的积极性再次被激发.五 知识迁移、变式训练、师:我们把形如a 2±2ab +b 2的式子称为完全平方式,请思考: 1.若(x -1)2=2,则代数式x 2−2x +5的值为 .2. (1)已知9x 2-12x+m 是一个完全平方式,则m 的值是 (2)已知x 2+mx+25是一个完全平方式,则m 的值是 .生:组内交流,探究尝试.师:巡视,发现有程度较好的同学已解出答案,指名,让其说出自己的解法.设计意图:这两题都是常考题型,其中第一题是整体代入法求代数式的值,第二题是考查学生对完全平方式概念的理解,学生解决起来可能会有困难,教师可以给予适当的指导使其掌握这种题型的解法.课上如果时间不允许,可以放到课下进行探索.六总结串联,纳入系统师:引导学生从完全平方公式和平方差公式不同和解题过程中要注意的事项两方面总结本节课所学内容.生:分析.1.完全平方公式和平方差公式不同:(1)形式不同.(2)结果不同:完全平方公式的结果是三项,即 (a ±b)2=a2±2ab+b2;平方差公式的结果是两项,即(a+b)(a−b)=a2−b2.2. 解题过程中要准确确定a和b,对照公式原形的两边, 做到不丢项、不弄错符号、2ab 时不少乘2.设计意图:课堂小结并不只是课堂知识点的回顾,要尽量让学生畅谈自己的切身感受,教师对于发言进行鼓励,进一步梳理本节所学,更要有所思考,达到对所学知识巩固的目的. 七达标检测,评价矫正★1.用完全平方公式计算:(1) (mn-a)2 (2) (-3x﹢b)2 (3) (-m-4n)2★★2.已知2x -1=3,求代数式(x -3)2+2 x(3﹢x)-7的值.设计意图:设计两个题目,由简单到复杂,对不同程度的学生分层要求.程度稍好的学生都完成,一般的学生只要完成第一题即可.学生限定时间独立完成,师生纠错.使学生了解自己学习的掌握情况,也便于教师的学情分析.八课后作业、巩固提高1. 基础训练:课本习题1.11 .2. 拓展练习:(1)试着用图形解释(a-b)2=a2-2ab+b2.(2)(a﹢b)2与(a-b)2有怎样的联系?能否用一个等式来表示两者之间的关系,并尝试用图形来验证你的结论?设计意图:设计两组题目,第一组为基础题,巩固本节所学;第二组题目为下一节课的学习做准备.九板书设计教学反思有前面平方差公式的学习做基础,绝大多数学生能够很顺利地进行自主探究和用图形验证和的完全平方公式,并从中建立了数形结合的意识.关于差的完全平方公式的几何解释,本节课没有让学生给出验证方法,放到课下进行探索,是为了降低难度.这节课的探究活动较多,学生的自主性得到了充分的体现,课堂气氛平等融洽,激情高涨,更可喜的是在完全平方公式的探求和应用过程中,特别是在解决例2的问题时,有些学生观察入微,又统揽全局,表现出了较强的观察力和分析问题、解决问题的能力,此时,作为教师,我们要善于抓住这个契机,及时地对学生提出表扬和鼓励,进一步激发他们的学习兴趣.而对于表现较差的学生,绝不可轻言放弃,则要适时地进行学法指导,使其领会数学的化归思想,学会用一般方法解决问题,培养他们“既见树木,又见森林”的优良观察品质.本节课的不足之处在于,处理达标检测题目的时间有些紧,原因是学生对完全平方式的理解不是很好,变式训练题用的时间稍多一些,建议把变式训练放到课下探究,本节课练好完全平方公式的有关计算即可.第五章反比例函数一、学生知识状况分析通过本章的学习,学生已经经历抽象反比例函数概念的过程,理解了反比例函数的概念,会作出反比例函数的图象,并探索和掌握其性质,能从函数图象中获取信息来解决实际问题。

7年级数学北师大 版下册教案第1章《完全平方公式》

7年级数学北师大 版下册教案第1章《完全平方公式》

教学设计完全平方公式一、教材内容的分析(一)教材的地位和作用完全平方公式是初中代数的一个重要组成部分之一,学生在已经掌握单项式乘法、多项式乘法及平方差公式基础上的延伸,同时为以后学习因式分解、解一元二次方程、配方法、勾股定理及图形面积计算有着举足轻重的作用,也充分体现出数学的螺旋上升的显著特点。

学习本课时可发展学生的思维品质,培养学生自主学习、合作探究、合理猜想、推理论证、学以致用的能力,提高学生将现实模型数学化的能力,增强学生对数学的理解和解决实际问题的能力,体验成功的乐趣。

(二)教学目标的确定结合本节课的教学内容和学生现有的学习水平,我确定本节课的教学目标如下:1、知道完全平方公式与多项式乘法的关系,理解完全平方公式的意义。

2、经历完全平方公式的探求过程,熟悉完全平方公式的特征,会运用完全平方公式解决一些简单问题。

3、使学生体会数、形结合的优势,进一步发展符号感和推理能力,培养学生数学建模的思想。

鼓励学生自己探索算法的多样化,有意识地培养学生的创新能力。

(三)教学重难点重点:体会完全平方公式的发现和推导过程,理解公式的本质,并会运用公式进行简单的计算。

难点:判别要计算的代数式是哪两个数的和(或差)的平方。

二、学情分析初一学生的空间想象能力、抽象思维能力、逻辑思维能力、数学化能力有限,理解完全平方公式的几何解释、推导过程、结构特点有一定困难。

但学生进校以来,一直采用围坐式自主合作学习教学模式。

经过专门的小组合作学习培训,学生已具备了独立自学,合作学习和自评互评的能力,并能在导学案的引导下自主学习、合作学习、展示交流及组内组间评价。

因此,本节内容任采用围坐式自主合作学习进行内容的探究,发展学生的合情推理能力、合作交流能力。

三、教法与学法(1)教法:结合学情及本节课目标,我采用以教师为主导,学生为主体的“围坐式”小组合作学习,引导学生主动地进行观察、猜测、验证和交流。

从学生的认知方式、思维水平和学习能力的差异进行分层次引导学习,让不同层次的学生都能主动参与并通过爬黑板让他们得到充分的展示。

完全平方公式(一)教案及教案说明

完全平方公式(一)教案及教案说明

第一章整式的运算完全平方公式(一)第一课时教案北师大版义务教育课程标准实验教科书七年级(下)第一章整式的运算8 完全平方公式第一课时教学目标1知识目标:使学生理解公式的推导过程,了解公式的几何背景,会应用公式进行相关的计算。

2能力目标:通过活动渗透建模、化归、换元、数形结合等数学思想,增强其应用意识,提高解决问题的能力和创新能力。

3情感目标:激发学生的好奇心和求知欲,培养学生学习数学的兴趣,体验数学的学习过程充满着探索性和创造性,增强学生学好数学的信心。

教学重点与难点教学重点:1完全平方公式的推导过程、结构特点、语言表达、理解公式的本质。

2完全平方公式的应用。

教学难点:1完全平方公式的推导过程。

2完全平方公式的结构特征及其应用。

教学方法教学方法:引导探索法和赏识教学。

教学手段:采用黑板与投影相结合。

学法指导:倡导学生自主学习、尝试学习、探究学习、合作交流学习。

教学过程一、回顾与思考复习已学过的平方差公式1平方差公式:(a+b)(a-b)=a2-b2公式的结构特点:左边是两个二项式的乘积,即两数和与这两数差的乘积。

右边是两数的平方差。

2应用平方差公式的注意事项:弄清在什么情况下才能使用平方差公式。

(要完全符合平方差公式的结构特征的情况下才可以使用,否则就必须用多项式乘法法则来计算)二、引入新课出示幻灯片,提出问题。

一块边长为a米的正方形实验田,由于效益比较高,所以要扩大农田,将其边长增加b米,形成四块实验田,以种植不同的新品种(如图)。

用不同的形式表示实验田的总面积,并进行比较。

(由于之前对列代数式的学习所以大部分学生能想到两种不同的方法)直接求:(a+b)2间接求:a2+ab+ab+b2问:你发现了什么?引导学生得出公式:(a+b)2=a2+2ab+b2(两数和的完全平方公式)想一想:(1)(a+b)2等于什么?你能用多项式的乘法法则说明理由吗?(让学生用口头叙述推导过程)接下来让学生先了解一下两数和的完全平方公式的结构特征。

数学北师大版七年级下册《完全平方公式》(第一课时)教学设计

数学北师大版七年级下册《完全平方公式》(第一课时)教学设计

《完全平方公式》(第一课时)教学设计一、学生学情分析学生的技能基础:学生通过对本章前几节课的学习,已经学习了整式的概念、整式的加减、幂的运算、整式的乘法、平方差公式,这些基础知识的学习为本节课的学习奠定了基础.学生活动经验基础:在平方差公式一节的学习中,学生已经经历了探索和应用的过程,获得了一些数学活动的经验,培养了一定的符号感和推理能力;同时在相关知识的学习过程中,学生经历了很多探究学习的过程,具有了一定的独立探究意识以及与同伴合作交流的能力.二、教学目标知识与技能:(1)让学生会推导完全平方公式,并能进行简单的应用.(2)了解完全平方公式的几何背景.数学能力:(1)由学生经历探索完全平方公式的过程,进一步发展学生的符号感与推理能力.(2)发展学生的数形结合的数学思想.情感与态度:将学生头脑中的前概念暴露出来进行分析,避免形成教学上的“相异构想”.三、教学重难点教学重点:1、完全平方公式的推导;2、完全平方公式的应用;教学难点:1、消除学生头脑中的前概念,避免形成“相异构想”;2、完全平方公式结构的认知及正确应用.四、教学设计分析本节课设计了十一个教学环节:学生练习、暴露问题——验证——推广到一般情况,形成公式——数形结合——进一步拓广——总结口诀——公式应用——学生反馈——学生PK——学生反思——巩固练习.第一环节:学生练习、暴露问题活动内容:计算:(a+2)2设想学生的做法有以下几种可能:①(a+2)2=a2+22②(a+2)2= a2+2a+22③正确做法;针对这几种结果都将a=1代入计算,得出①②都是错误的,但③的做法是否一定正确呢?怎么验证?活动目的:在很多学生的头脑中,认为两数和的完全平方与两数的平方和等同,即:(a+2)2=a2+22,如果不将这种定式思维推翻,就很难建立起一个正确的概念;这一环节的目的就是让学生的这种错误或其它错误充分暴露出来,并让学生充分认识到自己原有的定式思维是错误的,为下一步构建新的思维模式埋下伏笔.第二环节:验证(a+2)2= a2–4a+22活动内容:(a+2)2= (a+2)•(a+2)=a2+2a+2a+22活动目的:在前一环节已经打破了学生的原有的思维定式的基础上,给学生建立正确的思维方法,避免形成“相异构想”.第三环节:推广到一般情况,形成公式活动内容:(a+b)2=(a+b)(a+b)=a2+ab+ab+b2= a2+2ab +b2活动目的:让学生经历从特殊到一般的探究过程,体验到发现的快乐.第四环节:数形结合活动内容:设问:在多项式的乘法中,很多公式都都可以用几何图形进行解释,那么完全平方公式怎样用几何图形解释呢?展示动画,用几何图形诠释完全平方公式的几何意义.学生思考:还有没有其它的方法来诠释完全平方公式?(课后思考)活动目的:让学生进一步认识到数与形都不是孤立存在的,数与形是可以有机地结合在一起,从而发展学生的数形结合的数学思想.第五环节:进一步拓广活动内容:推导两数差的完全平方公式:(a–b)2=a2–2ab +b2方法1:(a–b)2=(a–b)(a–b)=a2–ab–ab+b2= a2–2ab +b2方法2:(a–b)2=[a+(–b)]2=a2+2a(–b) +(–b)2=a2–2ab +b2活动目的:让学生经历由两数和的完全平方公式拓广到两数差的完全平方公式的过程,体会到符号差异带来的结果差异,由第二种推导方法体会到两数差的完全平方公式是两数和的完全平方公式的应用.第六环节:总结口诀、认识特征活动内容:比较两个公式的共同点与不同点:(a+b)2=a2+2ab +b2(a–b)2=a2–2ab +b2 特征:①左边都是一个二项式的完全平方,两者仅有一个符号不同;右边都是二次三项式,其中第一、三项是公式左边二项式中每一项的平方,中间一项是左边二项式中两项乘积的两倍,两者也仅一个符号不同;②公式中的a、b可以是任意一个代数式(数、字母、单项式、多项式)口诀:首平方,尾平方,首尾相乘的两倍在中央.活动目的:认识完全平方公式的特征,总结出完全平方公式的口诀,便于学生理解与记忆,避免学生在应用该公式中出现错误.第七环节:公式应用活动内容:例:计算:①(2x–3)2;②(4x+)2解:①(2x–3)2=(2x)2–2•(2x)•3+32=4x2–12x+9②(4x+)2=(4x)2+2•••••(4x)( )+()2=16x2+2xy+活动目的:在前几个环节中,学生对完全平方公式已经有了感性认识,通过本环节的讲解以及下一环节的练习,使学生逐步经历认识——模仿——再认识.从而上升到理性认识的阶段.第八环节:随堂练习活动内容:计算:①;②;③(n+1)2–n2活动目的:通过学生的反馈练习,使教师能全面了解学生对完全平方公式的理解是否到位,完全平方公式的应用是否得当,以便教师能及时地进行查缺补漏.第九环节:学生PK活动内容:每个学生各出五道完全平方公式的计算题给自己的同桌解答,比一比谁的准确性率高,速度快.活动目的:活跃课堂气氛,激起学生的好胜心,进一步巩固学生对完全平方公式的理解与应用.第十环节:学生反思活动内容:通过今天这堂课的学习,你有哪些收获?收获1:认识了完全平方公式,并能简单应用;收获2:了解了两数和与两数差的完全平方公式之间的差异;收获3:感受到数形结合的数学思想在数学中的作用.活动目的:通过对一堂课的归纳与总结,巩固学生对完全平方公式的认识,体会数学思想的精妙.第十一环节:布置作业:课本P43习题1.13五、教学设计反思1、在学习完全平方公式之前,总会有相当一部分同学认为(a+b)2=a2+b2,甚至有很多学生在学习了这个公式之后也依然有这种概念存在,这就形成了“相异构想”,要将这种错误的前概念消灭在萌芽状态,仅靠反复说教很难行得通,只有让他的错误大暴露,然后“动手术”剔除才能彻底消灭,由此就产生这种结构的教学设计;2、完全平方公式一定要在学生充分探究的基础上得出,这是一个培养学生推理能力的好机会,切不可为抢进度,冒然给出公式,然后记忆、再用大量的时间进行反复练习,如果这样做,可能学生会应用得很好,但只是知其然,却不知其所以然,对学生的将来发展不利;3、学生PK活动的设计可以有效地调动学生的学习积极性,让学生学习在一个轻松活泼的学习环境中,避免那种枯燥无味的、单调反复的训练,防止学生陷入麻木、机械的练习,最终失去的是学生对数学的兴趣;4、学生的反思不能满足于简单的回顾,而旨在发掘学生思想的火花,发掘更深层次的理解.。

(新北师大)1.8完全平方公式(1)教案

(新北师大)1.8完全平方公式(1)教案

1.8完全平方公式(1)教学目标: 1.经历探索完全平方公式的过程,进一步发展学生的符号感和推理能力;2.会推导完全平方公式,并能运用公式进行简单的计算;3.了解完全平方公式的几何背景.教学重点:1. 弄清完全平方公式的来源及其结构特点,能用自己的语言说明公式及其特点;2. 会用完全平方公式进行运算.教学难点:会用完全平方公式进行运算教学方法:探索讨论、归纳总结.教学工具:投影仪教学过程:一、 探索归纳:一块边长为a 米的正方形实验田,因需要将其边长增加b 米,形成四块实验田,以种植不同的新品种.(如图)b用不同的形式表示实验田的总面积,并进行比较你发现了什么? aa b观察得到的式子,想一想:(1)(a+b )2等于什么?你能不能用多项式乘法法则说明理由呢?(2)(a-b )2等于什么?小颖写出了如下的算式:(a —b )2=[a+(—b )]2.她是怎么想的?你能继续做下去吗?由此归纳出完全平方公式:(a+b )2=a 2+2ab+b 2(a —b )2=a 2—2ab+b 2教师在此时应该引导观察完全平方公式的特点,并用自己的言语表达出来.二、例题例:(利用完全平方公式计算)(1)(2x-3)2解: (2x-3)2=(2x )2- 2·(2x )·3 + 32 =4x – 12x +9一、 随堂练习:1、下列各式中哪些可以运用完全平方公式计算(1)()()c a b a ++ (2)()()x y y x +-+(3)()()ab x x ab +--33 (4)()()n m n m +--2、计算下列各式:(1)()()b a b a 7474++ (2)()()n m n m +--22 (3)⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛+b a b a 21312131(4)()()x x 2525++- (5)()()233222--a a(6)()()33221221----+⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛+x x x x4、填空:(1)()()=++y x y x 3232 (2)()()1816142++=-a a a(3)()9_________49137122++=⎪⎭⎫ ⎝⎛+b a ab四、小结:熟记完全平方公式,会用完全平方公式进行运算.五、作业: P 36 1、2、3六、板书设计七、教学后记:。

北师大版七年级下册1.6.1完全平方公式(教案)

北师大版七年级下册1.6.1完全平方公式(教案)
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解完全平方公式的概念。完全平方公式是指两个相同的数或整式的平方可以表示为特定形式。它是解决多项式乘法的一种有效工具,并在几何图形面积计算等方面有着广泛应用。
2.案例分析:接下来,我们来看一个具体的案例。通过计算(3x+4)²,展示完全平方公式在实际中的应用,以及它如何帮助我们简化计算过程。
2.教学难点
-理解完全平方公式的推导过程:学生需要从具体的例子中抽象出公式,理解为何中间项是2ab而不是其他数。
-正确运用完全平方公式:学生在运用公式时可能会忘记符号变化,或者在多项式中无法识别出可以应用完全平方公式的部分。
-实际问题的转化:将现实生活中的问题转化为数学表达式,学生可能会在识别问题和应用公式上遇到困难。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《完全平方公式》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算面积的情况?”比如,我们如何计算一个正方形的面积?这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索完全平方公式的奥秘。
北师大版七年级下册1.6.1完全平方公式(教案)
一、教学内容
北师大版七年级下册1.6.1完全平方公式:
1.掌握完全平方公式的结构特征及推导过程;
(a+b)² = a² + 2ab + b²
(a-b)² = a² - 2ab + b²
2.能够运用完全平方公式进行整式的乘法运算;
例如:(x+3)² = x² + 6x + 9
在讲授过程中,我尽量用简单明了的语言解释完全平方公式的推导过程,并通过动画和实物模型让学生更直观地感受公式中每个项的来源。这样的教学方法似乎对学生们的理解有所帮助,但我觉得还可以进一步优化。

北师大七年级数学教案-完全平方公式

北师大七年级数学教案-完全平方公式

《完全平方公式(一)》說課稿一、說教材1、地位和作用“完全平方公式”是七年級《數學》下冊第一章第八節內容,它分為兩課時,本節是第一課時,它是“整式運算”這一章中重要的內容之一,它起到承上啟下的作用,既是整式相乘的應用,又為以後學習配方法打下扎實的基礎。

2、課程目標:(1)、知識目標:經歷探索推導完全平方公式的過程,形成數形結合思想,進一步發展符號感。

掌握完全平方公式的結構特點,並能利用公式熟練進行運算。

(2)、能力目標:培養學生發散性思維能力和推理能力,培養學生語言表達能力,動手實踐能力,以及合作交流能力。

(3)情感目標:讓學生在探索的過程中,體會科學發現探索方法,在合作交流中,體會團結合作精神。

能從多角度思考問題,敢於發表自己的觀點。

3、教學重點、難點:重點:完全平方公式的結構特點及公式的直接運用。

難點:對公式中a、b含義的理解與正確應用。

4、教材安排:本節課先從通過計算和比較試驗田的面積引出完全平方公式。

直接讓學生運用多項式乘法法則推導完全平方公式。

並通過數形結合思想,讓學生理解完全平方公式及其結構特點。

最後通過變式訓練進行練習和鞏固。

二、說教學方法及教學手段:本節課引導學生從已有的知識和生活經驗出發,提出開放性的問題讓學生進行合作探索,讓學生經歷知識的形成與應用,從而更好地理解數學知識的意義。

本節課教學中,對於不同的內容選擇了不同的方法。

對於求實驗田的總面積,進行開放性教學,引導學生利用拼圖等方法合作探究多種方法求解;運用多項式相乘推導公式,讓學生獨立探索;對於完全平方公式的運用,採用變式訓練,促進學生靈活掌握。

為了提高課堂教學效果,本節課將借助於多媒體課件輔助教學。

三、說學法教給學生良好的學習方法比直接教給學生知識更重要。

數學教學是師生之間、學生之間交往互動與共同發展的過程,學生的學是中心,會學是目的,因此在教學中要不斷指導學生學會學習,又要給學生自主探索和合作交流時間。

本節課先從實際出發,創設有助於學生發散性思考的問題情境,引導學生自己積極思考探索,讓學生經歷“觀察、類比、發現、歸納”的過程,從而培養學生動手實踐的能力,提高口頭表達能力及邏輯推理能力,使學生真正成為學習的主體。

北师大版七年级上数学《完全平方公式》学历案

北师大版七年级上数学《完全平方公式》学历案

北师大版七年级上数学《完全平方公式》学历案全文共5篇示例,供读者参考北师大版七年级上数学《完全平方公式》学历案篇1经历探索完全平方公式的过程,进一步发展符号感和推理能力;在变式中,拓展提高;通过积极参与数学学习活动,培养学生自主探究能力,勇于创新的精神和合作学习的习惯;重点是正确理解完全平方公式(a±b)2=a2±2ab+b2,并初步运用;难点是完全平方公式的运用。

师:前面学习了平方差公式,同学们对平方差公式的结构特点、运用以及学习公式的意义有了初步的认识。

今天,我们继续学习、研究另一种“乘法公式”——完全平方公式。

请拿出你的“预习知识树”,小组内互查并交流,在预习中有疑问的同学请询问。

(活动:老师巡视、检查学生的预习情况,并解答学生在预习中存在的问题)生:(互查、讨论“预习知识树”,有问题的询问问题。

)师:(老师点评学生预习情况,并出示老师做的“知识树”,引出课题:完全平方公式。

)说明:把预习提到课前,利用“知识树”引导学生自学,学生可以独立思考、自主学习,也可合作交流、讨论研究,这样预习会更充分,听讲时就能有准备、有选择;一上课,老师就检查“预习知识树”,了解学生新课学习情况,适当点拨,在课堂上留出更多的时间大量拓展、提高,发展学生的能力。

(活动:投影显示练习题。

)生:(四人到黑板上板演,答错了,由学生纠正,老师再点评。

)师:观察练习,公式中的a、b可代表什么?生:可以表示一个数,也可以表示一个单项式、多项式。

师:说得非常好,明确“公式中的a、b可以表示一个数,也可以表示一个单项式、多项式”的变化规律,就能正确运用公式解题了。

显然,刚做的练习题是由公式变化来的,若是变下去,能变多少道题?生:无数道。

师:最终是几道题?生:一道。

说明:这就是老师的“暗线”语言,引导学生明白从公式出发,反映在a、b上只是取值不同,可以演变出无数道题,是“解压”的过程,最终还是利用公式解题,所有的题目只有“一道”,只是形式不同,这又是“压缩”的过程,把握了变化规律才能更好地解题。

北师大版七下数学1.6完全平方公式第1课时完全平方公式的认识说课稿

北师大版七下数学1.6完全平方公式第1课时完全平方公式的认识说课稿

北师大版七下数学1.6完全平方公式第1课时完全平方公式的认识说课稿一. 教材分析完全平方公式是北师大版七下数学1.6节的内容,本节课主要介绍完全平方公式的概念和应用。

教材通过简单的例题引导学生探究完全平方公式的规律,进而使学生能够熟练运用完全平方公式进行计算和解决问题。

本节课的内容是学生学习二次方程和二次函数的基础,对于培养学生的数学思维和解决问题的能力具有重要意义。

二. 学情分析在开始本节课之前,学生已经学习了有理数的乘方和完全平方根的概念,对于二次根式的化简和计算有一定的了解。

然而,学生对于完全平方公式的理解和运用还需要进一步的引导和培养。

因此,在教学过程中,我需要关注学生的认知水平,通过合适的教学方法和手段,激发学生的学习兴趣,引导学生主动参与课堂讨论和实践活动,从而提高学生对完全平方公式的理解和运用能力。

三. 说教学目标本节课的教学目标是使学生理解完全平方公式的概念和意义,能够运用完全平方公式进行计算和解决问题。

具体来说,学生需要能够:1.记忆并理解完全平方公式的表达式;2.运用完全平方公式进行计算和解决问题;3.理解完全平方公式在实际问题中的应用和意义。

四. 说教学重难点本节课的重难点是引导学生理解和掌握完全平方公式的运用。

学生需要通过观察和分析例题,发现完全平方公式的规律,并能够熟练运用完全平方公式进行计算和解决问题。

在教学过程中,我需要关注学生的学习情况,对于理解有困难的学生给予适当的引导和帮助,确保学生能够掌握完全平方公式的运用。

五. 说教学方法与手段为了提高学生的学习兴趣和参与度,我将在教学过程中运用多种教学方法和手段。

首先,我将以提问的方式引导学生回顾完全平方根的概念,激发学生的思考。

然后,我将通过展示例题和引导学生进行小组讨论,使学生发现完全平方公式的规律,并能够运用完全平方公式进行计算和解决问题。

此外,我还将利用多媒体教学手段,如动画和图表,直观地展示完全平方公式的运用过程,帮助学生更好地理解和掌握知识。

七年级数学下册 1.6 完全平方公式(第1课时)教案 北师大版(2021学年)

七年级数学下册 1.6 完全平方公式(第1课时)教案 北师大版(2021学年)

辽宁省灯塔市七年级数学下册1.6 完全平方公式(第1课时)教案(新版)北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(辽宁省灯塔市七年级数学下册1.6 完全平方公式(第1课时)教案(新版)北师大版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为辽宁省灯塔市七年级数学下册1.6完全平方公式(第1课时)教案(新版)北师大版的全部内容。

6 完全平方公式(第1课时)教学目标是:1.知识与技能:理解公式的本质,从不同的层次上理解完全平方公式,并会运用公式进行简单的计算,了解完全平方公式的几何背景2.过程与方法:经历探索完全平方公式的过程,并从推导过程中,培养学生观察、发现、归纳、概括、猜想等探究创新能力,发展逻辑推理能力和有条理的表达能力,培养学生的数形结合意识。

3.情感与态度:在学习中使学生体会学习数学的乐趣,培养学习数学的信心,感受数学的内在美.一、教学过程设计本节课设计了七个教学环节:回顾与思考、探索引入、初识完全平方公式、再识完全平方公式、又识完全平方公式、课堂小结、布置作业.第一环节回顾与思考活动内容:复习已学过的平方差公式1. 由下面的两个图形你能得到哪个公式?2.平方差公式:(a+b)(a-b)=a2—b2 ;公式的结构特点:左边是两个二项式的乘积,即两数和与这两数差的积。

右边是两数的平方差.3。

应用平方差公式的注意事项:弄清在什么情况下才能使用平方差公式。

活动目的:本堂课的学习方向仍是引导鼓励学生通过已学习的知识经过个人思考、小组合作等方式推导出本课新知,进一步发展学生的符号感和推理能力。

而这个过程离不开旧知识的铺垫,平方差公式的学习有很多教学环节和形式与本节的学习是类似的,其中包含的基本知识与基本能力也仍是本节的精神主旨,因而复习很有必要。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

完全平方公式第一课时教案(新北师大版)
1.6.1完全平方公式
教材分析
本节内容主要研究的是完全平方公式的推导和公式在整式乘法中的应用。

完全平方公式是初中代数的一个重要组成部分,是学生在已经掌握单项式乘法、多项式乘法及平方差公式基础上的拓展,而且公式的推导是初中代数中运用推理方法进行代数式恒等变形的开端,通过对公式的学习来简化某些整式的运算,且在以后学习因式分解、解一元二次方程、配方法、勾股定理、二次函数求最大值(最小值)及图形面积计算都有举足轻重的作用。

一、知识与技能
1、理解完全平方公式的意义,熟记完全平方公式结构特征;
2、能运用完全平方公式进行简单的计算。

3、经历探索完全平方公式的过程,并从完全平方公式的推导过程中,培养学生观察、发现、归纳、概括、猜想等探究创新能力,发展逻辑推理能力和有条理的表达能力。

二、过程与方法
1、经历探索过程,学会归纳推导出某种特定类型乘法并用简单的数学式子表达出,即给出公式。

2、在探索过程的教学中,培养学生观察、归纳的能力,发展学生的符号感和语言描述能力。

三、情感与态度
以探索、归纳公式和简单运用公式这一数学学习的成功体验,增加学习数学和使用数学的信心,爱数学的兴趣。

教学重点:
理解完全平方公式的意义,掌握平方差公式的结构特征,正确运用公式。

教学难点:
公式的推导及对公式含义的理解。

教学方法:
学生探索归纳与教师讲授结合(建议小组合作学习)
课前准备:
投影仪、幻灯片
四、教学过程设计
(一)复习回顾,引出课题
1、回顾平方差公式的结构特征;
学生口述平方差公式及其结构特征。

2、下面算式能否运用平方差公式计算?请计算出结果。

(1)(m+3)2 = (m+3) (m+3) = ____;
(2)(2-x)2=(2-x)(2-x) = ;
教师巡视,检查学生完成情况,关注学困生的完成情况,及时辅导、表扬和鼓励。

【设计意图】通过对特殊的多项式与多项式相乘的计算,既复习了旧知,又为下面学习完全平方公式作了铺垫,让学生感受从一般到特殊的认识规律,引出乘法公式----完全平方公式.
(二)合作探究,获得新知
1.探索新知,尝试发现
问题:你能从式子中发现什么规律?回答下列问题:
①式子的左边具有什么共同特征?②它们的结果有什么特征?③能不能用字母表示你的发现?
师生活动:让学生观察算式及结果,通过自主探究、与小组进行合作交流,发现规律。

教师提问,教师鼓励大胆表达意见,积极与小组同伴合作,讨论,交流,然后统一看法,得出式子左边是两个数的和或这两个数的差的平方,右边是三项式,其中两项是左边二项式中两项的平方和,另一项是左边二项式中两项乘积的两倍。

【设计意图】让学生积极参与数学再创造活动,化特殊为一般,培养数学建模思想,化归思想。

使抽象、枯燥的公式变得生动、趣味,突破难点。

让学生体验成功的快乐,自己是数学的主人。

2.总结归纳,发现新知
师生共同总结:
(a+b)2=a2+2ab+b2
(a-b)2=a2-2ab+b2
这两个公式叫做完全平方公式。

问题:①这两个公式有何相同点与不同点?②你能用自己的语言叙述这两个公式吗?
顺口溜强化记忆:首平方,尾平方,首尾两倍中间放,同号是加异号是减。

教师向学生强调平方差公式是多项式乘多项式的特殊形式,从而结果是特殊的。

中间项符号的确定是易错点,也要强调。

【设计意图】鼓励学生用自己的语言表述,从而提高学生的语言组织与表达能力。

教材对这两个公式的语言叙述比较抽象,理解有一定难度,为此结合两个公式的特征,可用顺口溜强化记忆。

3.剖析公式,发现本质
(1)左边是一个二项式的完全平方;
(2)右边的积有三项,其中两项是左边二项式中两项的平方和,另一项是左边二项式中两项乘积的两倍;
(3)字母a,b可以代表数字,也可以代表单项式、多项式。

【设计意图】通过观察完全平方公式,体验公式的简洁性并通过分析公式的本质特征掌握公式.在认清公式的结构特征的基础上,进一步剖析a、b的广泛含义,抓住了概念的核心,使学生在公式的运用中能得心应手,起到事半功倍的效果。

4.自学例题
P24例题1:利于完全平方公式计算:
①(2x-3)2 ②(4x+5y)2 ③(mn-a)2
解析:
①(m +3)2= m2+ 6m + 9
(a +b))2 =a2 +2ab + b2
教师提示学生以后做题时,可按照“解析”那样,对照公式检查结果是否正确。

【设计意图】培养学生的自学能力和小组合作交流能力,进一步强化学生对法则的理解,遵循由浅入深。

(三)巩固运用,内化新知
1、下列各式中哪些可以运用完全平方公式计算 (填序号)
(1)(a+b)(a+c)(2)(x+y)(x-y)
(3)(m+n)(m+n) (4)(-ab+3) (3-ab)
教师巡视学生完成的情况,点名学生回答是,要学生说明判断的依据,培养学生的推理能力和语言表达能力。

(4)小题有点难度,旨在培养学生的观察和分析能力。

【设计意图】学生经过思考、讨论、交流,进一步熟悉完全平方公式的本质特征,掌握运用完全平方公式必须具备的条件.巩固完全平方公式,进一步体会字母a、b可以是数,也可以是式,加深对字母含义广泛性的理解.熟练地“套用”完全平方公式进行计算。

2、计算下列各式:
(1)(2x-y)2(2)(-a-b)2(3)(-2m+n)2 (4)(b-a) 2 强调学生做题时,可根据刚才编的顺口溜,直接套用公式,写出结果,要注意中间项的符号的确定。

学生完成后,抽取几个学生的答案,特别是典型的错例,用幻灯片出示,点名学生当“小老师”来批改,如果错,要说明错在哪里?怎么改?通过学生自行纠正错题的方法,加强学生对易错题的印象,避免再犯类似的错误。

【设计意图】使学生通过运用用公式解题这一学习体验,体验公式的优越性和成功的喜
悦;(2)、(4)小题是为了让学生体会:(-a−b)2
=(a+b)
2
,(b−a)
2
=(a-b)
2
;(3)小题
是为了突破确定中间项符号(同号是加异号是减)的这一易错点设计的。

3、填空:
(1)(2x+3y)2 = (2)( )2 =9a2 +6a+1
(3)()2 =4a2 -4a+1
【设计意图】设计此组题旨在从正反两方面灵活运用完全公式,关键在于理解公式结构特征,同时锻炼了学生逆向思维能力。

第(2)(3)个填空题有两种填法,属开放设计.目的是加强学生对公式结构特征的理解,同时也锻炼学生的发散思维。

(四)总结概括,作业布置
在这节课中你学到了什么?有什么感想?
1、完全平方公式: (a+b)2=a2+2ab+b2(a-b)2=a2-2ab+b2
2 、两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的2倍。

3、注意:项数、符号、字母及其指数;
4、解题时常用结论:(-a−b)2
=(a+b)
2
,(b−a)
2
=(a-b)
2
教师指出,对于符合完全平方公式特征的多项式乘多项式,直接运用公式法进行运算,会更简便,这是也是学习完全平方公式的必要性。

【设计意图】从知识和情感态度两个方面加以小结,使学生对本节课的知识有一个系统全面的认识。

2.作业:
(1)P26习题1.11的练习中,任选4小题。

学生根据自己的实际,选适合自己能力的题目。

对于成绩好的学生,鼓励他们至少选2小题自己认为难度大。

(2)课后交流“练习拓广”第3题,记录好你们发现的规律。

(3)课后要完成相应的练习,并预习课本P28-30的内容。

【设计意图】作业分层设计,自由选择,满足不同学生对学习的要求,不强加给学生任务,充分体现减负思想和人性化设计。

相关文档
最新文档