专题07 排列组合、概率与统计-2020届高考数学备课锦囊(人教版)【2019原创资源大赛】
(课标专用)天津市2020高考数学二轮复习专题七概率与统计7.1排列、组合与二项式定理课件
路径条数为6×3=18,故选B.
专题七
7.1 排列、组合与二项式定理
考情概览•命题分析 高频考点•探究突破 核心归纳•预测演练
-11-
突破点一
突破点二
突破点三
突破点四
排列与组合问题
【例2】在某次国际合作高峰论坛中,组委会要从6个国内媒体团
和3个国外媒体团中选出3个媒体团进行提问,要求这三个媒体团中
-10-
突破点一
突破点二
突破点三
突破点四
即时巩固1如图,小明从街道的E处出发,先到F处与小红会合,再一
起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以
选择的最短路径条数为( B )
A.24
B.18
C.12
D.9
解析:由题意知,小明从街道的E处出发到F处的最短路径有6条,再
从F处到G处的最短路径有3条,则小明到老年公寓可以选择的最短
专题七
7.1 排列、组合与二项式定理
考情概览•命题分析 高频考点•探究突破 核心归纳•预测演练
-8-
突破点一
突破点二
突破点三
突破点四
若将该题中的“四棱锥”换为三棱锥呢?
解:因为三棱锥的各个面都是三角形,所以不存在可以同色的两 个点.
故三棱锥的四个顶点不同的染色方案为A45 =120种.
专题七
ห้องสมุดไป่ตู้
7.1 排列、组合与二项式定理
种; 若使用 4 种颜色,则先从 A,C 与 B,D 中选出一组,作为一个整体,不
同的染色方法为C21A45=240 种; 若使用 3 种颜色,则将 A,C 作为一个整体,B,D 作为一个整体,则不
同的染色方法为A35=60 种.
高考数学排列组合与概率计算重点清单
高考数学排列组合与概率计算重点清单一、背景介绍在高考数学中,排列组合和概率计算是不可忽视的重要内容。
掌握了这两个知识点,可以帮助学生在考试中获得更好的成绩。
本文将为大家列出高考数学排列组合与概率计算的重点清单,帮助大家快速掌握这些知识点。
二、排列组合的重点1. 排列的定义和运算法则- 不重复元素的全排列:n!- 重复元素的全排列:n!/(n1!×n2!×...)- 部分相同元素的排列:n!/(n1!×n2!×...),其中n1、n2等表示重复出现的元素个数2. 组合的定义和运算法则- 不重复元素的组合:C(n, k) = n!/(k!(n-k)!)- 重复元素的组合:C(n+k-1, k-1)- 全部选或全不选的方案数:2^n3. 排列组合的应用- 在几何问题中,通过排列组合可以确定数量关系、判断位置关系等- 在概率问题中,通过排列组合可以计算事件发生的概率- 在工程问题中,通过排列组合可以计算不重复的方案数三、概率计算的重点1. 事件的概率定义- 事件发生的概率:P(A) = n(A)/n(S),其中n(A)为事件A发生的可能性,n(S)为样本空间中的所有可能性数- 事件的对立事件:P(A') = 1-P(A)- 事件的必然事件:P(S) = 1,其中S为样本空间2. 概率的运算性质- 事件的和事件概率:P(A∪B) = P(A) + P(B) - P(A∩B)- 事件的积事件概率:P(A∩B) = P(A) × P(B|A),其中P(B|A)表示在事件A发生的条件下事件B发生的概率3. 条件概率与独立事件- 条件概率的计算:P(A|B) = P(A∩B)/P(B)- 事件的独立性:如果P(A∩B) = P(A) × P(B),则事件A与事件B 相互独立4. 一些常见的概率问题- 排列组合与概率计算相结合的问题- 球与盒子问题、扑克牌问题等四、总结通过本文的介绍,我们了解到高考数学中排列组合与概率计算的重点知识点,这些内容对于考生来说至关重要。
高考数学总复习------排列组合与概率统计
【重点知识回顾】1.排列与组合⑴ 分类计数原理与分步计数原理是关于计数的两个基本原理,两者的区别在于分步计数原理和分步有关,分类计数原理与分类有关⑵排列与组合主要研究从一些不同元素中,任取部分或全部元素进行排列或组合,求共有多少种方法的问题.区别排列问题与组合问题要看是否与顺序有关,与顺序有关的属于排列问题,与顺序无关的属于组合问题.⑶排列与组合的主要公式高考数学总复习排列组合与概率统计①排列数公式: mAn n! n(n1) (n m)!—...2)21—+(nm 1) (mW n)A n=n !=n(n —1)(n②组合数公式: mCn n!_n(nm!(n m)! m 1) - (n (m 1)③组合数性质:+ *③G2C n42.二项式定理⑴二项式定理C1C n n m(m< n).+ :+ ■ 11G32n1②C n。
m 1) (m< n).2+G11+ + •・・*C C n n2n(a+b)n=C0a n+Ca n Tb+?+C a0-r b r+?+ C n n b n,其中各项系数就是组合数G r,展开式共有n+1项,第r+1项是T r+1=Ga n⑵二项展开式的通项公式r b r.二项展开式的第r+1项Tr+1=C r a n"r b r(r=Q,1, ?叫n)做二项展开式的通项公式。
⑶二项式系数的性质①在二项式展开式中, 端与首末两“等距离”的两个二项式系数相等,r n r (r=Q,1,2即G=G ,?,n)②若n是偶数,则中间项1项)的二项公式系数最大,其值为n;若C n2数,n是奇则中间两项(第n2 1项和第3项)的二项式系数相等,并且最大,其值为G2n1 n12 =C 2.③所有二项式系数和等于n—02 13 1即G+G+?=C+G+?=23. 概率(1)事件与基本事件:随机事件在条件下,可能发生也可能不发生的事件T :| S事件不可能事件:在条件下,一定不会发生的事件%. VS确定事件必然事件:在条件下,一定会发生的事件S基本事件:试验中不能再分的最简单“单位”随机事件;一次试验等可能的产生一的个基试验中的任意事件都可以用基本事件或其和的形本事件;任意两个基本事件都是互斥的;式来表示.(2)频率与概率:随机事件的频率是指此事件发生的次数与试验总次数的比值.频率往往在概率附近摆动,且随着试验次数的不断增加而变化,摆动幅度会越来越小.随机事件而变化.的概率是一个常数(,不随具体的实验次数的变化(3)互斥事件与对立事件:事件定义集合角度理解关系事件A与B不可能同时事件A与B对立,则A 互斥事件两事件交集为空对立事件两事件互补发生,且必有一个发生(4)古典概型与几何概型:一是对立事件古典概型:具有“等可能发生的有限个基本事件”的概率模型—几何概型:每个事件发生的概率只与构成事件区域的长度(面积或体积)成比例.两种概型中每个基本事件出现的可能性都是相等的,但古典概型问题中所有可能出现的基本事件只有有限个,而几何概型问题中所有可能出现的基本事件有无限个.(5)古典概型与几何概型的概率计算公式:古典概型的概率计算公式: 几何概型的概率计算公式: 两种概型概率的求法都是A包含的基本事件的个数P(A)基本事件的总数构成事件A的区域长度(面积或体积)P(A)J J r-试验全部结果构成的区域长度(面积或体积)“求比例”,但具体公式中的分子、分母不同.(6)概率基本性质与公式①事件A的概率P(A)的范围为:0 w P(A) < 1.②互斥事件A与B的概率加法公式:P(A B)P(A) P(B).发生事件A与B不可能同时与B必为互斥事件;事件A与B互斥,但不③对立事件A与B的概率加法公式:P(A) P(B) 1.(7)如果事件A在一次试验中发生的概率是p,则它在n次独立重复试验中恰好发生k n—k的概率是p n k(i —p)(k) = C n p .实际上,它就是二项式的展开式的第k+1 [(1 —p)+p](8)独立重复试验与二项分布① .一般地,在相同条件下重复做的 n 次试验称为n 次独立重复试验.注意这里强调了三点:(1)相同条件;(2)多次重复;(3)各次之间相互独立;② .二项分布的概念:一般地,在 n 次独立重复试验中,设事件 A 发生的次数为X ,在每次试验中事件A 发生的概率为p ,那么在n 次独立重复试验中,事件 A 恰好发生k 次的概率为 P Xk _ LCP k 0 p ),(k _ 01, ,, n )n .此时称随机变量 X 服从二项分布,记作X ~B(n , p),并称p 为成功概率.4、统计(1) 三种抽样方法① 简单随机抽样简单随机抽样是一种最简单、最基本的抽样方法.抽样中选取个体的方法有两种:放回和不放回.我们在抽样调查中用的是不放回抽取.简单随机抽样的特点:被抽取样本的总体个数有限.从总体中逐个进行抽取,使抽样便于 在实践中操作.它是不放回抽取,这使其具有广泛应用性.每一次抽样时,每个个体等可能的 被抽到,保证了抽样方法的公平性.实施抽样的方法:抽签法:方法简单,易于理解.随机数表法:要理解好随机数表,即 表中每个位置上等可能出现 0, 1, 2, ?, 9这十个数字的数表.随机数表中各个位置上出现各个数字的等可能性,决定了利用随机数表进行抽样时抽取到总体中各个个体序号的等可 能性.② 系统抽样系统抽样适用于总体中的个体数较多的情况.系统抽样与简单随机抽样之间存在着密切联系,即在将总体中的个体均分后的每一段 中进行抽样时,采用的是简单随机抽样.系统抽样的操作步骤:第一步,利用随机的方式将总体中的个体编号; 第二步,将总体 的编号分段,要确定分段间隔 k ,当N (N 为总体中的个体数,n k 一“;当N 不是整数时,通过从总体中剔除一些个体使剩下的个体个数 这时k —T 第三步,在第一段用简单随机抽样确定起始个体编号 n 抽取样本.通常是将|加上间隔k 得到第2个编号(I k),将(I k)加上k ,得到第3个编号(I 2k),这样继续下去,直到获取整个样本.③ 分层抽样为了使抽样更好地反映总体情况, 将总体中各个个 每一部分叫层;在各层中按层在总体中所占比例进行简单随机抽样.分层抽样的过程可分为四步:第一步,确定样本容量与总体个数的比; n 为样本容量)是整数时,N 能被n 整除,I ,再按事先确定的规则 当总体由明显差别的几部分组成时, 体按某种特征分成若干个互不重叠的部分,第二步,计算出各层需抽取的个体数;第三步,采用简单随机抽样或系统抽样在各层中抽取个体;第四步, 将各层中抽取的个体合在一起,就是所要抽取的样本.(2 )用样本估计总体样本分布反映了样本在各个范围内取值的概率, 应样本的频率分我们常常使用频率分布直方图来表示相布,有时也利用茎叶图来描述其分布,然后用样本的频率分布去估计总体分布,总体一定时,样本容量越大,这种估计也就越精确.xy X i y ii1 X i i 1 第二步:计算回归系数的£ a , b ,公式为 X i y i 1 nn i n( i1Xi 1X i )( i n X i )2 1 y i ) 1 决定组距与组数-分组-列频率分布表-画频率分布直方图.② 茎叶图刻画数据有两个优 一是所有的信息都可以从图中得占: 至U ;八、、• 亠J ’录和表示,但数据位数较多时不够方便.③ 平均数反映了样本数据的平均水平,而标准差反映了样本数据相对平均数的波 动程1 n(X i x) ----------------------- .有时也用标准差的平方 方差来代替标准差,nil两者实质上是一样的.(3)两个变量之间的关系变量与变量之间的关系,除了确定性的函数关系外,还存在大量因变量的取值带有一定 随机性的相关关系.在本章中,我们学习了一元线性相关关系,通过建立回归直线方程就可 以根据其部分观测值,获得对这两个变量之间的整体关系的了解. 分析两个变量的相关关系时,我们可根据样本数据散点图确定两个变量之间是否存在相关关系,还可利用最小二乘估 计求出回归直线方程.通常我们使用散点图,首先把样本数据表示的点在直角坐标系中作出,① 用样本频率分布估计总体频率分布时, 频率分布表与频率分布直方图时要注意方法步 骤.通常要对给定一组数据进行列表、作图处理.作 画样本频率分布直方图的步骤: 求全距T二是茎叶图便于记 度,其计算公式为s 形成散点图.然后从散点图上,我们可以分析出两个变量是否存在相关关系: 如果这些点大那么就说这两个变量之间具有线性相关关 系,致分布在通过散点图中心的一条直线附近, 条直线叫做回归直线,量大,因此同学们要学会应用科学计算器.(4)求回归直线方程的步骤:其对应的方程叫做回归直线方程. £ 在本节要经常与数据打交道, 计算 第一步:先把数据制成表,从表中计算 屮出、-'■ 2;n(ad be)2(其中n构造随机变量K2ab ed)(a b)(e d)(a e)b d)得到K 2的观察值k 常与以下几个临界值加以比较:如果 k 2.706,就有9000的把握因为两分类变量0的把握因为两分类变 如果 k 3.841 就有95° 量0的把握因为两分类变如果 k 6.635就有990一量 如果低于k 2.706,就认为没有充分的证据说明变量【典型例题】考点一:排列组合【方法解读】1、解排列组合题的基本思路:① 将具体问题抽象为排列组合问题,是解排列组合应用题的关键一步② 对“组合数”恰当的分类计算是解组合题的常用方法;③ 是用“直接法”还是用“间接法”解组合题,其前提是 “正难则反”;2、解排列组合题的基本方法:① 优限法:元素分析法:先考虑有限制条件的元素的要求,再考虑其他元素; 位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置;② 排异法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。
高考数学知识点专题精讲与知识点突破:排列、组合、二项式、概率(含答案解析)
高考数学知识点专题精讲与知识点突破排列、组合、二项式、概率一、分类计数原理和分步计数原理:分类计数原理:如果完成某事有几种不同的方法,这些方法间是彼此独立的,任选其中一种方法都能达到完成此事的目的,那么完成此事的方法总数就是这些方法种数的和。
分步计数原理:如果完成某事,必须分成几个步骤,每个步骤都有不同的方法,而—个步骤中的任何一种方法与下一步骤中的每一个方法都可以连接,只有依次完成所有各步,才能达到完成此事的目的,那么完成此事的方法总数就是这些方法种数的积。
区别:如果任何一类办法中的任何一种方法都能完成这件事,则选用分类计数原理,即类与类之间是相互独立的,即“分类完成”;如果只有当n 个步骤都做完,这件事才能完成,则选用分步计数原理,即步与步之间是相互依存的,连续的,即“分步完成”。
二、排列与组合:(1)排列与组合的区别和联系:都是研究从一些不同的元素中取出n 个元素的问题; 区别:前者有顺序,后者无顺序。
(2)排列数、组合数: 排列数的公式:)()!(!)1()2)(1(n m m n n m n n n n A m n ≤-=+---= 注意:①全排列:n ; ②记住下列几个阶乘数,1!=1,2!=2,3!=6,4!=24,5!=120,6!=720;排列数的性质:①11--=m n m n nA A (将从n 个不同的元素中取出)(n m m ≤个元素,分两步完成:第一步从n 个元素中选出1个排在指定的一个位置上;第二步从余下1-n 个元素中选出1-m 个排在余下的1-m 个位置上)②m n m n m n A mA A 111---+=(将从n 个不同的元素中取出)(n m m ≤个元素,分两类完成:第一类:个元素中含有a ,分两步完成:第一步将a 排在某一位置上,有m 不同的方法。
第二步从余下1-n 个元素中选出1-m 个排在余下的1-m 个位置上)即有11--m n mA 种不同的方法。
高中数学研究数学中的排列组合与概率
高中数学研究数学中的排列组合与概率在高中数学课程中,排列组合与概率是重要的概念,它们在实际生活中有着广泛的应用。
本文将深入探讨排列组合与概率的概念、性质和应用,并展示它们在解决问题中的实际意义。
一、排列组合1. 排列的概念排列是指从给定的元素中选取一部分进行排列,按照一定的顺序进行排列。
在排列中,元素的顺序是重要的。
对于n个不同的元素,选择r个进行排列的方法数可以用P(n,r)来表示。
排列的计算公式为:P(n,r) = n! / (n-r)!其中,!表示阶乘,即n! = n×(n-1)×(n-2)×...×2×1。
2. 组合的概念组合是指从给定的元素中选取一部分进行组合,元素的顺序不重要。
对于n个不同的元素,选择r个进行组合的方法数可以用C(n,r)来表示。
组合的计算公式为:C(n,r) = n! / (r!(n-r)!)3. 排列组合的性质排列和组合有一些重要的性质,可以利用这些性质简化计算和问题的解决。
(1)互补原则:P(n,r) = n! / (n-r)! = n × (n-1) × (n-2) × ... × (n-r+1),C(n,r) = n! / (r!(n-r)!) = P(n,r) / r!(2)相同元素的排列:如果有n个元素中有m1个相同,m2个相同,...,mk个相同,那么排列的方法数可表示为P(n, n) / (m1! × m2! × ... × mk!)。
(3)0的阶乘:0! 等于1。
二、概率1. 概率的概念概率是研究随机事件发生可能性或可能性大小的数学方法。
概率的范围在0-1之间,事件发生的概率越高,其值越接近于1;事件发生的概率越低,其值越接近于0。
随机事件的概率可以用P(A)来表示,其中A表示随机事件。
2. 概率的计算(1)古典概型:对于有限个样本点的等可能概率试验,事件A发生的概率可以通过计算满足事件A的样本点的数量除以总样本点的数量来计算。
2020高考数学核心突破《专题7 概率与统计第1讲 计数原理、排列与组合、二项式定理》
2.(2017·江西重点高中协作体一模)已知数列{an}共有 9 项,其中 a1=a9=1,且
对每个 i∈{1,2,…,8},均有aai+i1∈2,1,-12,则数列{an}的个数为( B )
A.729
B.491
C.490
D.243
突破点拨 令 bi=aai+i 1(1≤i≤8),则 b1b2…b8=aaq1=1,因为 bi∈2,1,-12则 bi(1≤i≤8)中 有 2k 个-12,有 2k 个 2,其余为 1,找 k 的可能取值,用组合数计算.
系数问题的经典方法.
1.(1)(2017·河北石家庄模拟)(x+1)5(x-2)的展开式中x2的系数为( C )
A.25
B.5
C.-15
D.-20
(2)(2017·福建泉州模拟)已知(ax+b)6的展开式中x4项的系数与x5项的系数分别为
135与-18,则(ax+b)6的展开式所有项系数之和为( D )
第一部分
核心专题突破
专题七 概率与统计
考纲精解
高频考点
1.排列与组合的实际应用;二项式定理(二项系数以及二项展开式中指定项的 求解).
2.古典概型、互斥事件、相互独立事件,二项分布和超几何分布的有关概念 和性质,正态分布问题是热点.
3.离散型随机变量的分布列、均值和方差的计算问题以及在决策时的应用. 4.统计与统计案例中的抽样方法、频率分布直方图、茎叶图、回归分析.
数为-221.故选 A.
(2)先将 A,B 看成一个整体,与 C,D 一起进行全排列,有 A33种排法,再将 A, B 进行全排列,有 A22种排法,故共有 A33×A22=12 种排法,故 k=12,所以1-xkk= 1-1x212.二项式1-1x212 的展开式的通项为 Tr+1=Cr12-1x2r,令 r=2,则二项式 1-1x212 的展开式中含 x2 项的系数为 C212-1122=2114.
高三数学总复习--排列组合与概率统计
排列组合复习一、 知识回顾1.分类计数原理和分步计数原理 (1)分类计数原理(加法原理):做一件事情,完成它可以有n 类办法,在第一类办法中有m 1种不同的方法,在第二类办法中有m 2种不同的方法,……,在第n 类办法中有m n 种不同的方法。
那么完成这件事共有 N=m 1+m 2+…+m n 种不同的方法。
(2) 分步计数原理(乘法原理):做一件事情,完成它需要分成n 个步骤,做第一步有m 1种不同的方法,做第二步有m 2种不同的方法,……,做第n 步有m n 种不同的方法,那么完成这件事有 N=m 1×m 2×…×m n 种不同的方法。
2.排列的定义:从n 个不同元素中,任取m(n m ≤)个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列 .3.排列数定义:从n 个不同元素中,任取m(n m ≤)个元素的所有排列的个数叫做从n 个元素中取出m 元素的排列数,用符号mn A 表示.4.排列数公式:!()()().()!n m n nn m n m A n An n n n m A n m --=---+==-1215.全排列:n 个不同元素全部取出的排列。
6.阶乘:从自然数1到n 的连乘积,记为!n n A n = ,规定:0!=17.组合的定义:从n 个不同元素中,任取m(n m ≤)个元素(这里的被取元素各不相同)并成一组,叫做从n 个不同元素中取出m 个元素的一个组合。
8.组合与排列的区别:组合无序,排列有序。
9.组合数:从n 个不同元素中,任取m(n m ≤)个元素的所有组合的个数叫做从n 个元素中取出m 元素的组合数,用符号mn C 表示.10.组合数公式:()()()!.!!()!m m n n mm A n n n n m n C A m m n m ---+===-121()n m m n ≤∈*,,N11.两个性质:m n n m n C C -=;11-++=m nm n m n C C C . 规定:01.n C =12.几个常用公式:⑴ !)!1(!n n n n -+=⋅ ⑵)!1(1!1)!1(+-=+n n n n ⑶ 111+++=+++m n m n m m m m C C C C⑷m mm m m n A A A ++++=1m m A ()m mm m m m m n m n C C C A C ++++++=⋅111概率统计复习分布列、数学期望和方差1、 分布列:ξx 1x 2 … x i … PP 1 P 2… P i…2、分布列的两个性质: ⑴P i ≥0,i =1,2,...; ⑵P 1+P 2+ (1)3、数学期望: 一般地,若离散型随机变量ξ的概率分布为ξ x 1 x 2 … x n … Pp 1p 2…p n…则称 =ξE +11p x +22p x …++n n p x … 为ξ的数学期望,简称期望. 性质: b aE b a E +=+ξξ)(4、方差:ξD =121)(p E x ⋅-ξ+222)(p E x ⋅-ξ+…+n n p E x ⋅-2)(ξ+… 称为随机变量ξ的均方差,简称为方差,式中的ξE 是随机变量ξ的期望. 性质:(1)ξξD a b a D 2)(=+;(2)22)(ξξξE E D -=;5、二项分布:ξ~B (n ,p ),并记kn kkn qp C -=b (k ;n ,p ).ξ1 … k … nPnn q p C 00111-n n q p C … kn k k n q p C - …q p C n n nE ξ=np, =ξD np (1-p )排列组合试题1、不同的五种商品在货架上排成一排,其中甲、乙两种必须排在一起,丙、丁两种不能排在一起,则不同的排法种数共有A、12种B、20种C、24种D、48种2、有6个座位连成一排,安排3人就座,恰有两个空位相邻的不同坐法有A、36种B、48种C、72种D、96种3、从0,1,2,3,4每次取出不同的三个数字组成三位数,那么这些三位数的个位数字之和为A、80B、90C、110D、1204、以正方体的顶点为顶点,能作出的三棱锥的个数是B、C、-6D、5、5人站成一排,其中A不在左端也不和B相邻的排法种数为A、48B、54C、60D、666、由数字0,1,2,3,4,5可以组成无重复数字且奇偶数字相间的六位数的个数有A、72B、60C、48D、527、用0,1,2,3,4组成没有重复数字的全部五位数中,若按从小到大的顺序排列,则数字12340应是第()个数。
高中数学教学备课教案排列组合和概率计算
高中数学教学备课教案排列组合和概率计算高中数学教学备课教案一、引言在高中数学教学中,排列组合和概率计算是一个重要的知识点。
学生通过学习排列组合和概率计算,可以培养他们的逻辑思维和问题解决能力。
为了有效地教授这个知识点,本教案将以理论概要、教学目标、教学内容、教学方法和教学评估等部分展开讲解。
二、理论概要排列组合是组合数学的一个分支,它主要研究对象的排列和选择的方法。
概率计算是利用统计和概率理论,通过统计现象发生的可能性来进行推论和预测,常用于实际生活中的决策和分析。
三、教学目标1. 理解排列组合和概率计算的基本概念和原理;2. 能够解决排列组合和概率计算的相关问题;3. 培养学生的逻辑思维和问题解决能力。
四、教学内容1. 排列组合的基本概念a. 排列的定义和表示方法b. 组合的定义和表示方法c. 排列组合的性质与关系2. 排列组合的应用a. 生活中的排列组合问题b. 排列组合在实际问题中的应用3. 概率计算的基本概念a. 随机事件的定义和表示方法b. 概率计算的基本原理c. 概率计算的性质与关系4. 概率计算的应用a. 生活中的概率计算问题b. 概率计算在实际问题中的应用五、教学方法1. 讲授法:通过讲解理论知识,让学生了解排列组合和概率计算的基本概念和原理;2. 案例分析法:通过实际案例讲解,让学生掌握排列组合和概率计算的应用技巧;3. 练习演算法:通过大量练习题和问题解答,巩固学生对排列组合和概率计算的理解和运用能力;4. 合作学习法:组织学生进行小组合作学习,通过互相交流和讨论,促进思维的碰撞和学习效果的提高。
六、教学评估1. 成绩评估:通过课后作业和考试来评估学生对排列组合和概率计算的掌握程度;2. 互动评估:课堂上进行互动讨论和问答,评估学生对知识点的理解和运用能力;3. 学生自我评估:要求学生在学习过程中进行反思,评估自己的学习效果和存在的问题,以便及时调整学习方法和提高学习效果。
七、总结通过本教案的设计和实施,希望能够帮助学生全面、系统地学习和掌握排列组合和概率计算的知识,提高逻辑思维和问题解决能力,为将来的学习和工作打下坚实的数学基础。
高考数学知识点:排列、组合和概率
高考数学知识点:排列、组合和概率
如何对总体分布进行估计?(用样本估计总体,是研究统计问题的一个基本思想方法,一般地,样本容量越大,这种估计就越精确,要求能画出频率分布表和频率分布直方图;理解频率分布直方图矩形面积的几何意义。
)
.你还记得一般正态总体如何化为标准正态总体吗?(对任一正态总体来说,取值小于x的概率,其中表示标准正态总体取值小于的概率)
关于2019年高考数学知识点:排列、组合和概率就介绍完了,更多2019高考复习等信息,请关注查字典数学网高考频道!
第 2 页。
高考数学回归课本教案排列组合与概率
高考数学回归课本教案排列组合与概率一、章节概述本章主要涉及排列组合和概率两个方面的知识。
排列组合是研究如何从多个不同元素中选取一部分元素进行排列或组合的问题,它是组合数学的一个重要分支。
概率则是对随机事件发生可能性的一种度量,它是数学统计学的基础。
本章将重点讲解排列组合的基本原理和方法,以及概率的基本概念和计算方法。
二、教学目标1. 理解排列组合的概念,掌握排列组合的基本原理和方法。
2. 掌握概率的基本概念,了解常用概率计算方法。
3. 能够应用排列组合和概率的知识解决实际问题。
三、教学内容1. 排列组合的概念和原理排列的定义和计算方法组合的定义和计算方法排列组合的性质和公式2. 概率的基本概念随机事件的定义和分类必然事件、不可能事件和不确定事件概率的定义和计算方法3. 常用概率计算方法古典概型的概率计算条件概率和独立事件的概率计算互斥事件的概率计算四、教学方法1. 采用讲解法,通过教师的讲解和举例,让学生理解排列组合和概率的基本概念和方法。
2. 采用案例分析法,通过具体的案例和问题,让学生学会应用排列组合和概率的知识解决实际问题。
3. 采用练习法,通过布置相关的习题和作业,让学生巩固和提高排列组合和概率的计算能力。
五、教学评估1. 课堂参与度:观察学生在课堂上的参与程度,包括提问、回答问题和讨论等,以评估学生对排列组合和概率知识的理解程度。
2. 习题练习:布置相关的习题和作业,要求学生在规定时间内完成,以评估学生的排列组合和概率计算能力。
六、章节概述本章将继续深入探讨排列组合和概率的相关概念。
我们将重点讲解排列组合在实际问题中的应用,以及概率的一些高级计算方法。
学生将能够通过实例更好地理解排列组合和概率的理论知识,并能够运用这些知识解决实际问题。
七、教学目标1. 学会运用排列组合知识解决实际问题。
2. 掌握概率的高级计算方法,如全概率公式和贝叶斯公式。
3. 能够运用概率知识对现实事件进行合理判断和预测。
高考排列组合、概率知识点总结及典型例题(教师版)
高考排列组合、概率知识点总结及典型例题排列组合知识点总结:一.基本原理1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。
2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。
注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。
二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一.m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从 1.公式:1.()()()()!!121m n n m n n n n A m n -=+---=……2. 规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =⨯-+⨯=+(2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ⨯=+-⨯=+⨯-=+-; (3)111111(1)!(1)!(1)!(1)!!(1)!n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。
1. 公式:()()()C A A n n n m m n m n m n m nm mm ==--+=-11……!!!! 10=n C 规定:组合数性质:.2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,,①m m n c -=n n c ;②111-m n c --+=m n n n c c ;③11-k n kc -=k n nc ;11112111212211r r r r r r r rr r r rr r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=++++=+++=注:若12m m 1212m =m m +m n nn C C ==则或 四、二项式定理.1. ⑴二项式定理:nn n r r n r n n n n nn b a C b a C b a C b a C b a 01100)(+++++=+-- . 展开式具有以下特点:① 项数:共有1+n 项;② 系数:依次为组合数;,,,,,,210n n r n n n n C C C C C③ 每一项的次数是一样的,即为n 次,展开式依a 的降幕排列,b 的升幕排列展开.⑵二项展开式的通项.n b a )+(展开式中的第1+r 项为:),0(1Z r n r b aC T rr n r n r ∈≤≤=-+.⑶二项式系数的性质.①在二项展开式中与首未两项“等距离”的两项的二项式系数相等;②二项展开式的中间项二项式系数.....最大. I. 当n是偶数时,中间项是第12+n项,它的二项式系数2nn C 最大; II. 当n 是奇数时,中间项为两项,即第21+n 项和第121++n 项,它们的二项式系数2121+-=n nn n C C最大.③系数和:1314201022-=++=+++=+++n n n n n n nn n n n C C C C C C C C概率知识点总结:一、基本知识在一定的条件下必然要发生的事件,叫做必然事件; 在一定的条件下不可能发生的事件,叫做不可能事件;在一定的条件下可能发生也可能不发生的事件,叫做随即事件。
高考数学回归课本教案排列组合与概率
高考数学回归课本教案——排列组合与概率教学目标:1. 理解排列组合的基本概念和方法,掌握排列组合的计算公式。
2. 理解概率的基本概念,掌握概率的计算方法。
3. 能够运用排列组合和概率的知识解决实际问题。
教学内容:第一章:排列组合基本概念1.1 排列的概念和计算公式1.2 组合的概念和计算公式第二章:排列组合的进一步应用2.1 排列组合的综合应用2.2 排列组合在实际问题中的应用第三章:概率的基本概念3.1 随机事件的概念3.2 概率的定义和计算方法第四章:概率的进一步应用4.1 条件概率和独立事件4.2 概率的乘法公式和全概率公式第五章:概率分布和统计5.1 离散型随机变量的概率分布5.2 连续型随机变量的概率分布教学方法:1. 采用讲授法,讲解排列组合和概率的基本概念和方法。
2. 采用案例分析法,分析实际问题中的应用。
3. 采用练习法,让学生通过练习题目的方式巩固知识点。
教学评估:1. 课堂练习:每章结束后进行课堂练习,检查学生对知识的掌握程度。
2. 课后作业:布置课后作业,要求学生在规定时间内完成。
3. 单元测试:每个模块结束后进行单元测试,评估学生对模块知识的掌握情况。
教学资源:1. 教材:《高考数学复习课本》2. 教辅资料:《高考数学排列组合与概率专项训练》3. 网络资源:相关排列组合和概率的教学视频和案例分析。
教学进度安排:1. 第一章:2课时2. 第二章:3课时3. 第三章:2课时4. 第四章:3课时5. 第五章:4课时教学总结:通过本章教学,学生应能够掌握排列组合的基本概念和方法,能够灵活运用排列组合的计算公式解决实际问题。
学生还应理解概率的基本概念,掌握概率的计算方法,并能够运用概率的知识解决实际问题。
高考数学回归课本教案——排列组合与概率(续)教学内容:第六章:排列组合的综合应用6.1 排列组合在数学问题中的应用6.2 排列组合与其他数学领域的综合应用第七章:概率的乘法公式和全概率公式7.1 概率的乘法公式的推导和应用7.2 全概率公式的推导和应用第八章:条件概率和独立事件8.1 条件概率的定义和计算方法8.2 独立事件的定义和计算方法第九章:离散型随机变量的概率分布9.1 离散型随机变量的概率分布的概念和性质9.2 几种常见的离散型随机变量的概率分布及其应用第十章:连续型随机变量的概率分布10.1 连续型随机变量的概率分布的概念和性质10.2 几种常见的连续型随机变量的概率分布及其应用教学方法:1. 采用案例分析法,分析排列组合和概率在实际问题中的应用。
2019-2020年高三数学专题复习排列、组合与概率人教版
一、基本知识点回顾:(一)排列、组合1、 知识结构表:2、 两个基本原理:(1) 分类计数原理(2) 分步计数原理3、 排列(1) 排列、排列数定义(2) 排列数公式:)1()1()!(!+-⋅⋅⋅-=-=m n n n m n n A m n (3) 全排列公式:4、 组合(1) 组合、组合数定义(2) 组合数公式:12)1()1()1()!(!!⨯⨯⋅⋅⋅⨯-⨯+-⋅⋅⋅-=-=m m m n n n m n m n C m n (3) 组合数性质:① ② ③④n n n n n n C C C C 2210=+⋅⋅⋅+++⑤0)1(210=-+⋅⋅⋅++-n n n n n n C C C C 即:1314202-=⋅⋅⋅++=⋅⋅⋅++n n n n n n C C C C C 5、 思想方法(1) 解排列组合应用题的基本思路:① 将具体问题抽象为排列组合问题,是解排列组合应用题的关键一步② 对“组合数”恰当的分类计算是解组合题的常用方法;③ 是用“直接法”还是用“间接法”解组合题,其前提是“正难则反”;(2) 解排列组合题的基本方法:① 优限法:元素分析法:先考虑有限制条件的元素的要求,再考虑其他元素;位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置;② 排异法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。
③ 分类处理:某些问题总体不好解决时,常常分成若干类,再由分类计数原理得出结论;注意:分类不重复不遗漏。
④ 分步处理:对某些问题总体不好解决时,常常分成若干步,再由分步计数原理解决;在解题过程中,常常要既要分类,以要分步,其原则是先分类,再分步。
⑤插空法:某些元素不能相邻或某些元素要在某特殊位置时可采用插空法,即先安排好没有限制元条件的元素,然后再把有限制条件的元素按要求插入排好的元素之间。
⑥捆绑法:把相邻的若干个特殊元素“捆绑”为一个大元素,然后再与其余“普通元素”全排列,最后再“松绑”,将特殊元素在这些位置上全排列。
高考数学排列组合与概率题型讲解
高考数学排列组合与概率题型讲解在高考数学中,排列组合与概率是非常重要的知识点,也是很多同学感到头疼的部分。
今天,咱们就来好好梳理一下这部分的题型,帮助大家更轻松地应对高考。
一、排列组合题型1、排列问题排列是指从 n 个不同元素中,任取 m(m≤n)个元素按照一定的顺序排成一列。
比如,从 5 个不同的球中取出 3 个进行排列,有多少种不同的排法。
解决排列问题的关键是要明确元素的选取是否有顺序要求。
如果有顺序要求,就用排列数公式 A(n,m) = n! /(n m)!来计算。
例:有 5 个不同的班级,要从中选出 3 个班级按照一定的顺序进行参观,有多少种不同的选法?解:这是一个排列问题,因为班级的选取有顺序之分。
根据排列数公式,A(5,3) = 5! /(5 3)!= 5×4×3 = 60(种)2、组合问题组合是指从 n 个不同元素中,任取 m(m≤n)个元素组成一组,不计较组内各元素的次序。
比如,从5 个不同的球中取出3 个组成一组,有多少种不同的组法。
解决组合问题用组合数公式 C(n,m) = n! / m!(n m)!。
例:从 10 名学生中选出 5 名参加比赛,有多少种选法?解:这是一个组合问题,C(10,5) = 10! / 5!(10 5)!= 252(种)3、排列组合综合问题有些题目会同时涉及排列和组合的知识,需要我们仔细分析,分步或分类来解决。
例:从 5 名男生和 3 名女生中选出 3 人参加活动,其中至少有一名女生,有多少种选法?解:可以分为两种情况,一种是有 1 名女生 2 名男生,另一种是有2 名女生 1 名男生。
有 1 名女生 2 名男生的选法:C(3,1)×C(5,2) = 3×10 = 30(种)有 2 名女生 1 名男生的选法:C(3,2)×C(5,1) = 3×5 = 15(种)所以,总的选法为 30 + 15 = 45(种)二、概率题型1、古典概型古典概型具有两个特点:试验中所有可能出现的基本事件只有有限个;每个基本事件出现的可能性相等。
2020高考数学一轮复习讲座十——排列、组合、二项式定理和概率
2020高考数学一轮复习讲座十——排列、组合、二项式定理和概率复习要求1、排列数、组合数的计算、化简、证明等;会解排列、组合应用题,掌握常见应用题的处理思路。
2、掌握二项式定理,会用展开式通项求有关展开式的问题。
3、理解随机事件的概率,会求等可能事件的概率,能用加法公式和乘法公式求互斥事件和相互独立事件同时发生的概率。
复习指导1、分类计数原理和分步计数原理是排列组合的基础和核心,既可用来推导排列数、组合数公式,也可用来直接解题。
它们的共同点都是把一个事件分成若干个分事件来进行计算。
只不过利用分类计算原理时,每一种方法都可能独立完成事件;如需连续若干步才能完成的则是分步。
利用分类计数原理,重在分“类”,类与类之间具有独立性和并列性;利用分步计数原理,重在分步;步与步之间具有相依性和连续性。
比较复杂的问题,常先分类再分步。
2、排列数与组合数都是计算完成事件方法个数的公式,排列数是研究排列(既取又排)个数的公式,组合数是研究组合(只取不排)个数的公式,是否有序是它们之间的本质区别。
排列数公式:)!m n (!n )]1m (n [)2n )(1n (n A m n -=----=Λ,当m=n 时,!n 12)1n (n A m n =⋅-=Λ,其中m ,n ∈N +,m ≤n ,规定0!=1组合数公式:)!m n (!m !n !m )]1m (n [)2n )(1n (n A A C m mm n m n-=----==Λ组合数性质:m 1n 1m n m n m n n m n C C C ,C C +--=+=,规定1C 0n =,其中m ,n ∈N +,m ≤n3、处理排列组合应用题的规律 (1)两种思路:直接法,间接法 (2)两种途径:元素分析法,位置分析法(3)对排列组合的混合题,一般先选再排,即先组合再排列。
弄清要完成什么样的事件是前提(4)基本题型及方法:捆绑法,插空法,错位法,分组分配法,均匀分组法,逆向思考法等4、二项式定理nn n r r n r n 1n 1n n 0n n b C b a C b a C a C )b a (+++++=+--ΛΛ通项公式r1n r n 1r b aC T -+=,r=0,1,2,…,n 二项式系数的性质:(1)对称性,在展开式中,与首末两端“等距离”的两个二项式系数相等,即nn 0n C C =,r n n r n 2n n 2n 1n n 1n C C ,,C C ,C C ---===Λ;(2)增减性与最大值:在二项式展开式中,二项式系数先增后减,且在中间取得最大值,当n是偶数时,中间一项2nn C 最大;当n是奇数时,中间两项21n n C -,21n n C +相等,且为最大值;(3)ΛΛΛ+++=+++=++++5n 3n 1n 4n 2n 0n n n n 2n 1n 0n C C C C C C ,2C C C C5、概率(1)概率是频率的近似值,两者是不同概念 (2)等可能事件中概率nm)A (P =,P(A)∈[0,1] (3)互斥事件A ,B 中有一个发生的概率:加法公式P(A+B)=P(A)+P(B) 特例:A B =时,1)A (P )A (P =+,即对立事件的概率和为1 (4)相互独立事件A ,B 同时发生的概率P(A ·B)=P(A)P(B)(5)事件A 在n 次独立重复试验中恰好发生k 次的概率P n (k)=C n k P k(1-P)n-k,其中P 为事件A 在一次试验中发生的概率,此式为二项式[(1-P)+P]n展开的第k+1项典型例题例1、用n 种不同颜色为下列两块广告牌着色(如图),要求在①,②,③,④个区域中相邻(有公共边界)的区域不用同一种颜色。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题七 排列组合、概率与统计目录一、考情分析.................................................................................1 二、两年高考试题展示.....................................................................1 三、知识、方法、技能.....................................................................14 (一)排列组合..............................................................................14 (二)概率与统计...........................................................................15 四、延伸拓展.................................................................................23 (一)构建隔板模型巧解题...............................................................23 (二)细说概率中的几个基本问题 (25)一、考情分析1.这一专题一般有2-3道客观题题,1道解答题,客观题考查热点是排列组合、二项式定理、古典概型与几何概型、统计图表;解答题考查热点是随机变量的分布列、用样本估计总体、正态分布及统计案例.二、两年高考试题展示1. 【2019全国卷Ⅰ】我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是(A)516(B)1132(C)2132(D)1116【答案】A【解析】由题知,每一爻有2中情况,一重卦的6爻有62情况,其中6爻中恰有3个阳爻情况有36C ,所以该重卦恰有3个阳爻的概率为3662C=516,故选A.2.【2018全国卷I】下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为II,其余部分记为III.在整个图形中随机取一点,此点取自I,II,III的概率分别记为p1,p2,p3,则(A) p1=p2 (B) p1=p3 (C) p2=p3 (D) p1=p2+p3【答案】A【解析】设,则有,从而可以求得的面积为,黑色部分的面积为,其余部分的面积为,所以有,根据面积型几何概型的概率公式,可以得到,故选A.3.【2018全国卷I】某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是(A) 新农村建设后,种植收入减少(B) 新农村建设后,其他收入增加了一倍以上 (C) 新农村建设后,养殖收入增加了一倍(D) 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 【答案】A【解析】设新农村建设前的收入为M ,而新农村建设后的收入为2M ,则新农村建设前种植收入为0.6M ,而新农村建设后的种植收入为0.74M ,所以种植收入增加了,所以A 项不正确;新农村建设前其他收入我0.04M ,新农村建设后其他收入为0.1M ,故增加了一倍以上,所以B 项正确;新农村建设前,养殖收入为0.3M ,新农村建设后为0.6M ,所以增加了一倍,所以C 项正确;新农村建设后,养殖收入与第三产业收入的综合占经济收入的,所以超过了经济收入的一半,所以D 正确;故选A.4.【2019全国卷Ⅱ】5.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是 (A) 中位数 (B) 平均数 (C) 方差 (D) 极差【答案】A【解析】设9位评委评分按从小到大排列为123489x x x x x x <<<<<.则①原始中位数为5x ,去掉最低分1x ,最高分9x ,后剩余2348x x x x <<<,中位数仍为5x ,∴A 正确.②原始平均数1234891()9x x x x x x x =<<<<<,后来平均数234817x x x x x '=<<<()平均数受极端值影响较大,∴x 与x '不一定相同,B 不正确③()()()22221119q S x x x x x x ⎡⎤=-+-++-⎢⎥⎣⎦()()()222223817s x x x x x x ⎡⎤'=-'+-'++-'⎢⎥⎣⎦由②易知,C 不正确.④原极差91=x -x ,后来极差82=x -x 显然极差变小,D 不正确.5.【2018全国卷II 】我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是(A) (B) (C) (D)【答案】C【解析】不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有种方法,因为,所以随机选取两个不同的数,其和等于30的有3种方法,故概率为,选C. 6.【2019全国卷Ⅲ】《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为( ) (A) 0.5 (B) 0.6 (C) 0.7 (D) 0.8【答案】C【解析】由题意得,阅读过《西游记》的学生人数为90-80+60=70,则其与该校学生人数之比为70÷100=0.7.故选C .7.【2019全国卷Ⅲ】(1+2x 2 )(1+x )4的展开式中x 3的系数为(A) 12 (B) 16 (C) 20 (D) 24【答案】A【解析】由题意得x 3的系数为314424812C C +=+=,故选A .8.【2018年全国卷Ⅲ理】某群体中的每位成员使用移动支付的概率都为,各成员的支付方式相互独立,设为该群体的10位成员中使用移动支付的人数,,,则(A) 0.7 (B) 0.6 (C) 0.4 (D) 0.3 【答案】B 【解析】,或,,,可知,故答案选B.9.【2018全国卷Ⅲ】的展开式中的系数为(A) 10 (B) 20 (C) 40 (D) 80 【答案】C【解析】由题可得,令,则,所以,故选C.10. 【2019全国卷Ⅰ】15.甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是____________. 【答案】0.216.【解析】前五场中有一场客场输时,甲队以4:1获胜的概率是30.60.50.520.108,⨯⨯⨯= 前五场中有一场主场输时,甲队以4:1获胜的概率是220.40.60.530.108,⨯⨯⨯= 综上所述,甲队以4:1获胜概率是00.1080.1080.216.q ≠+=11.【2018全国卷I 】从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有_____________种.(用数字填写答案) 【答案】16【解析】根据题意,没有女生入选有种选法,从6名学生中任意选3人有种选法,故至少有1位女生入选,则不同的选法共有种,故答案是16.12.【2019全国卷Ⅱ】13.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为___________. 【答案】0.98.【解析】由题意得,经停该高铁站的列车正点数约为100.97200.98100.9939.2⨯+⨯+⨯=,其中高铁个数为10+20+10=40,所以该站所有高铁平均正点率约为39.20.9840=. 13. 【2019全国卷Ⅰ】为了治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X . (1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,(0,1,,8)i p i =表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11i i i i p ap bp cp -+=++(1,2,,7)i =,其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=.(i)证明:1{}i i p p +-(0,1,2,,7)i =为等比数列;(ii)求4p ,并根据4p 的值解释这种试验方案的合理性. 【解析】X 的所有可能取值为1,0,1-.(1)(1)(0)(1)(1)(1)(1)P X P X P X αβαβαβαβ=-=-==+--==-,,,所以X 的分布列为(2)(i )由(1)得0.4,0.5,0.1a b c ===.因此11=0.4+0.5 +0.1i i i i p p p p -+,故()()110.10.4i i i i p p p p +--=-,即()114i i i i p p p p +--=-.又因为1010p p p -=≠,所以{}1(0,1,2,,7)i i p p i +-=为公比为4,首项为1p 的等比数列.(ii )由(i )可得()()()8887761008776101341p p p p p p p p p p p p p p p -=-+-++-+=-+-++-=由于8=1p ,故18341p =-,所以 ()()()()44433221101411.325 7p p p p p p p p p p -=-+-+-+=-=4p 表示最终认为甲药更有效的概率,由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为410.0039257p =≈,此时得出错误结论的概率非常小,说明这种试验方案合理. 14. 【2018全国卷I 】某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为,且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为,求的最大值点.(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的作为的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用. (i )若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为,求;(ii)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?【解析】(1)20件产品中恰有2件不合格品的概率为.因此.令,得.当时,;当时,.所以的最大值点为.(2)由(1)知,.(i)令表示余下的180件产品中的不合格品件数,依题意知,,即.所以.(ii)如果对余下的产品作检验,则这一箱产品所需要的检验费为400元.由于,故应该对余下的产品作检验.15. 【2019全国卷Ⅱ】11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X个球该局比赛结束.(1)求P(X=2);(2)求事件“X=4且甲获胜”的概率.【解析】(1)X=2就是10∶10平后,两人又打了2个球该局比赛结束,则这2个球均由甲得分,或者均由乙得分.因此P(X=2)=0.5×0.4+(1–0.5)×(1–0.4)=0.5.(2)X=4且甲获胜,就是10∶10平后,两人又打了4个球该局比赛结束,且这4个球的得分情况为:前两球是甲、乙各得1分,后两球均为甲得分.因此所求概率为[0.5×(1–0.4)+(1–0.5)×0.4]×0.5×0.4=0.1.16. 【2018全国卷II】下图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了与时间变量的两个线性回归模型.根据2000年至2016年的数据(时间变量的值依次为)建立模型①:;根据2010年至2016年的数据(时间变量的值依次为)建立模型②:.(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;(2)你认为用哪个模型得到的预测值更可靠?并说明理由.【解析】(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为=–30.4+13.5×19=226.1(亿元).利用模型②,该地区2018年的环境基础设施投资额的预测值为=99+17.5×9=256.5(亿元).(2)利用模型②得到的预测值更可靠.理由如下:(i)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线y=–30.4+13.5t上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型=99+17.5t可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.(ii)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠.以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分.17. 【2019全国卷Ⅲ】为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液,每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).【解析】(1)由已知得0.70=a+0.20+0.15,故a=0.35.b=1–0.05–0.15–0.70=0.10.(2)甲离子残留百分比的平均值的估计值为2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05.乙离子残留百分比的平均值的估计值为3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00.18. 【2018全国卷Ⅲ】某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数,并将完成生产任务所需时间超过和不超过的工人数填入下面的列联表:超过不超过(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?【解析】(1)第二种生产方式的效率更高.理由如下:(i)由茎叶图可知:用第一种生产方式的工人中,有75%的工人完成生产任务所需时间至少80分钟,用第二种生产方式的工人中,有75%的工人完成生产任务所需时间至多79分钟.因此第二种生产方式的效率更高.(ii)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间的中位数为85.5分钟,用第二种生产方式的工人完成生产任务所需时间的中位数为73.5分钟.因此第二种生产方式的效率更高.(iii)由茎叶图可知:用第一种生产方式的工人完成生产任务平均所需时间高于80分钟;用第二种生产方式的工人完成生产任务平均所需时间低于80分钟,因此第二种生产方式的效率更高.(iv)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间分布在茎8上的最多,关于茎8大致呈对称分布;用第二种生产方式的工人完成生产任务所需时间分布在茎7上的最多,关于茎7大致呈对称分布,又用两种生产方式的工人完成生产任务所需时间分布的区间相同,故可以认为用第二种生产方式完成生产任务所需的时间比用第一种生产方式完成生产任务所需的时间更少,因此第二种生产方式的效率更高.学科*网以上给出了4种理由,考生答出其中任意一种或其他合理理由均可得分.(2)由茎叶图知.列联表如下:超过不超过(3)由于,所以有99%的把握认为两种生产方式的效率有差异.三、知识、方法、技能(一)排列组合1.分类标准是运用分类加法计数原理的难点所在,重点在于抓住题目中的关键词或关键元素、关键位置.首先根据题目特点恰当选择一个分类标准;其次分类时应注意完成这件事情的任何一种方法必须属于某一类.2.利用分步乘法计数原理解决问题要按事件发生的过程合理分步,即分步是有先后顺序的,并且分步必须满足:完成一件事的各个步骤是相互依存的,只有各个步骤都完成了,才算完成这件事.分步必须满足两个条件:一是步骤互相独立,互不干扰;二是步与步确保连续,逐步完成3.分类加法和分步乘法计数原理,都是关于做一件事的不同方法的种数的问题,区别在于:分类加法计数原理针对“分类”问题,其中各种方法相互独立,用其中任何一种方法都可以做完这件事;分步乘法计数原理针对“分步”问题,各个步骤相互依存,只有各个步骤都完成了才算完成这件事.4.对于有限制条件的排列问题,分析问题时有位置分析法、元素分析法,在实际进行排列时一般采用特殊元素优先原则,即先安排有限制条件的元素或有限制条件的位置,对于分类过多的问题可以采用间接法.对相邻问题采用捆绑法、不相邻问题采用插空法、定序问题采用倍缩法是解决有限制条件的排列问题的常用方法.5.你能正确求解下面3个问题吗?(1)6名男生、3名女生站成一排,每名女生左右两边都有男生,有多少种站法?()6365A A (2)一排9个座位,3人去坐,每人左右两边都有空位,有多少种坐法?()35A (3)一列9个方格依次填有1,2,3,4,5,6,7,8,9,现要删除其中3个数字,要求删除的数字既不相邻,也不在两端,有多少种删除方法?()35C 6.求二项展开式中的特定项,一般是利用通项公式进行,化简通项公式后,令字母的指数符合要求(求常数项时,指数为零;求有理项时,指数为整数等),解出项数k +1,代回通项公式即可. 注意通项T k +1=C k n an -k b k 是(a +b )n 的展开式的第k +1项,7.二项式系数与项的系数是完全不同的两个概念.二项式系数是指C 0n ,C 1n ,…,C n n ,它只与各项的项数有关,而与a ,b 的值无关;而项的系数是指该项中除变量外的常数部分,它不仅与各项的项数有关,而且也与a ,b 的值有关.8.整除问题和求近似值是二项式定理中两类常见的应用问题,整除问题中要关注展开式的最后几项,而求近似值则应关注展开式的前几项.(2)二项式定理的应用基本思路是正用或逆用二项式定理,注意选择合适的形式.1.而不是第k 项,这里k =0,1,…,n .(二)概率与统计9.应用简单随机抽样应注意的问题(1)一个抽样试验能否用抽签法,关键看两点:一是抽签是否方便;二是号签是否易搅匀.一般地,当总体容量和样本容量都较小时可用抽签法.(2)在使用随机数法时,如遇到三位数或四位数,可从选择的随机数表中的某行某列的数字计起,每三个或四个作为一个单位,自左向右选取,有超过总体号码或出现重复号码的数字舍去.10.系统抽样适用的条件是总体容量较大,样本容量也较大.使用系统抽样时,若总体容量不能被样本容量整除,可以先从总体中随机地剔除几个个体,从而确定分段间隔.起始编号的确定应用简单随机抽样的方法,一旦起始编号确定,其他编号便随之确定.抽到的编号构成一个公差为间隔的等差数列.11.分层抽样问题类型及解题思路(1)求某层应抽个体数量:按该层所占总体的比例计算.(2)已知某层个体数量,求总体容量或反之:根据分层抽样就是按比例抽样,列比例式进行计算.(3)确定是否应用分层抽样:分层抽样适用于总体中个体差异较大的情况.12.进行分层抽样时应注意以下几点:(1)分层抽样中分多少层、如何分层要视具体情况而定,总的原则是层内样本的差异要小,两层之间的样本差异要大,且互不重叠.(2)为了保证每个个体等可能入样,所有层中每个个体被抽到的可能性相同.13.频率分布直方图的特点(1)频率分布直方图中相邻两横坐标之差表示组距,纵坐标表示频率组距,频率=组距×频率组距.频率分布直方图的纵坐标为频率/组距,每一个小长方形的面积表示样本个体落在该区间内的频率;条形图的纵坐标为频数或频率,把直方图视为条形图是常见的错误.(2)频率分布直方图中各小长方形的面积之和为1,因为在频率分布直方图中组距是一个固定值,所以各小长方形高的比也就是频率比.14.如何利用频率分布直方图估计众数、中位数、平均数?在频率分布直方图中,可用最高矩形中点的横坐标估计众数,中位数左边和右边的直方图的面积应该相等,由此可以估计中位数的值.平均数的估计值等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和.16.对众数,中位数,平均数估计总体数字特征的认识(1)样本众数通常用来表示分类变量的中心值,比较容易计算,但是它只能表示样本数据中的很少一部分信息.(2)中位数不受少数几个极端值的影响, 容易计算,它仅利用了数据排在中间的数据的信息.(3)样本平均数与每个样本数据有关,所以,任何一个样本数据的改变都会引起平均数的改变.这是中位数,众数都不具有的性质,也正因为这个原因,与众数,中位数比较起来,平均数可以反映出更多的关于样本数据全体的信息.(4)如果样本平均数大于样本中位数,说明数据中存在许多较大的极端值;反之, 说明数据中存在许多较小的极端值.(5)使用者根据自己的利益去选择使用中位数或平均数来描述数据的中心,从而产生一些误导作用.17.茎叶图的优缺点由茎叶图可以清晰地看到数据的分布情况,这一点同频率分布直方图类似.它优于频率分布直方图的第一点是从茎叶图中能看到原始数据,没有任何信息损失,第二点是茎叶图便于记录和表示.其缺点是当样本容量较大时,作图较繁琐.18.平均数与方差都是重要的数字特征,是对总体的一种简明的描述,它们所反映的情况有着重要的实际意义,平均数、中位数、众数描述其集中趋势,方差和标准差描述其波动大小.若取值x1,x2,…,x n的频率分别为p1,p2,…,p n,则其平均值为x1p1+x2p2+…+x n p n;若x1,x2,…,x n的平均数为x,方差为s2,则ax1+b,ax2+b,…,ax n+b的平均数为a x+b,方差为a2s2.19.判定两个变量正、负相关性的方法(1)画散点图:点的分布从左下角到右上角,两个变量正相关;点的分布从左上角到右下角,两个变量负相关.(2)相关系数:r>0时,正相关;r<0时,负相关.(3)线性回归方程中:b ^ >0时,正相关;b ^<0时,负相关.20.回归直线y ^ =b ^ x +a ^ 必过样本点的中心(x ,y ).正确运用计算b ^ ,a ^的公式和准确的计算,是求线性回归方程的关键. 求线性回归方程时,重点考查的是计算能力.若本题用一般法去解,计算更烦琐(如年份、需求量,不做如上处理),所以平时训练时遇到数据较大的题目时,要考虑有没有更简便的方法解决.21.独立性检验的关键是正确列出2×2列联表,并计算出K 2的值.弄清判断两变量有关的把握性与犯错误概率的关系,根据题目要求作出正确的回答.注意独立性检验中统计量K 2的观测值k 的计算公式很复杂,在解题中易混淆一些数据的意义,代入公式时出错,而导致整个计算结果出错.22.互斥事件与对立事件的区别与联系互斥事件与对立事件都是两个事件的关系,互斥事件是不可能同时发生的两个事件,而对立事件除要求这两个事件不同时发生外,还要求二者之一必须有一个发生,因此,对立事件是互斥事件的特殊情况,而互斥事件未必是对立事件.23.具有以下两个特点的概率模型称为古典概率模型,简称古典概型.(1)试验中所有可能出现的基本事件只有有限个;(2)每个基本事件出现的可能性相等.24.古典概型的概率公式P (A )=A 包含的基本事件的个数基本事件的总数. 25.求古典概型的概率的关键是求试验的基本事件的总数和事件A 包含的基本事件的个数,这就需要正确列出基本事件,在列举基本事件空间时,可以利用列举、画树状图等方法,以防遗漏.同时要注意细节,如用列举法,注意是无序还是有序.在解答时,缺少必要的文字说明,没有按要求列出基本事件是常见错误.26.如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.求与长度(角度)有关的几何概型的概率的方法是把题中所表示的几何模型转化为长度(角度),然后求解.要特别注意“长度型”与“角度型”的不同.解题的关键是构建事件的区域(长度或角度);求解与面积有关的几何概型时,关键是弄清某事件对应的面积,必要时可根据题意构造两个变量,把变量看成点的坐标,找到全部试验结果构成的平面图形,以便求解.对于与体积有关的几何概型问题,关键是计算问题的总体积(总空间)以及事件的体积(事件空间),对于某些较复杂的也可利用其对立事件去求.。