李庆扬-数值分析第五版第7章习题答案(0824)汇编
李庆扬数值分析第五版习题答案清华大学出版社
李庆扬数值分析第五版习题答案清华大学出版社数值分析是一门研究数值计算方法的学科,它应用于各个领域,解决了许多实际问题。
《李庆扬数值分析第五版习题答案》是一本为读者提供数值分析习题解答的参考书,由清华大学出版社出版。
第一章误差1.1 绝对误差与相对误差在数值计算过程中,由于测量、取近似值和舍入误差等原因,我们常常会得到与真实值有一定偏差的结果。
绝对误差和相对误差是描述数值计算结果与真实值之间误差大小的衡量标准。
绝对误差表示实际值和计算值之间的差别,相对误差则是绝对误差与实际值之比。
1.2 舍入误差与有效数字在数值计算中,由于计算机底层的二进制表示以及计算机在表示无穷和无法精确表示的数字时需要进行近似,会导致舍入误差。
有效数字是用来表示浮点运算结果的一种方式,能够控制舍入误差的影响。
第二章插值与多项式逼近2.1 插值问题的提出插值问题是在有限数据点的基础上,构造一个与这些数据点足够接近的函数。
插值的目的是通过已知数据点之间构造一个函数,使得通过这个函数计算的结果近似于真实的未知数据点的值。
2.2 拉格朗日插值法拉格朗日插值法是通过构造一个基于已知数据点的多项式函数,来实现对未知数据点的预测。
它通过对每个数据点进行加权,以使得插值多项式通过这些数据点。
2.3 牛顿插值法牛顿插值法是通过使用差商的概念,构造一个多项式函数来进行插值。
差商是指由数据点的函数值所决定的差分系数。
第三章数值积分与数值微分3.1 数值积分的基本思想数值积分是通过将区间进行离散化,将连续变量转化为离散变量的和,从而实现对曲线下面积的近似计算。
3.2 复合求积公式复合求积公式将整个区间分割为若干子区间,对每个子区间进行积分,并将结果相加得到最终的数值积分结果。
通过增加子区间的数量,可以提高数值积分的精确度。
3.3 数值微分的基本思想数值微分是通过利用离散数据点之间的差值,来近似计算函数在某个点处的导数。
第四章线性方程组的数值解法4.1 线性方程组的求解线性方程组的求解是数值分析中的一个重要问题。
李庆扬-数值分析第五版第5章与第7章习题答案
答:根据范数的左义,正确。
(9) 如果线性方程组是良态的,则髙斯消去法可以不选主元。
答:错误,不选主元时,可能除数为0。
(10) 在求解非奇异性线性方程组时,即使系数矩阵病态,用列主元消去法产生的误差也很小。
答:错误。
对于病态方程组,选主元对误差的降低没有影响。
(M) II 如I 讦答:根据范数的定义,正确。
(12)若人是GX 门的非奇异矩阵,则cond(A) = cond(A~*)。
答:正确。
人是CXG 的非奇异矩阵,则A 存在逆矩阵。
cond(A) = ||A||e||A",||根据条件数的定义有:H", , ' , , …,cond (犷)=||A-1| • ||(A -)-1| = | 附 ||-1| 州=||A||. ||f ||所以a :=[如…a.证明:气%2°11 "12。
12。
22设对称矩阵A=,则经过1次髙斯校区法后,有所以A2为对称矩阵。
2、设A 是对称正立矩阵,经过高斯消去法一步后,A约化为A = (a ij\,其中A = (a v)n.证明:(1) A的对角元素勺>0 (i = l,2,・・・/):(2) A?是对称正立矩阵;(1)依次取如=(00…,0」。
…,0几心12…宀则因为A是对称正定矩阵, r所以有5 =x J Ax >0 a(2)人中的元素满足a,)*■V L- “QJ-23・・・y),乂因为A是对称正定5矩阵,满足 5=6、7J = 1,2,…,“,所以a\p = a;j --------- = aa\\即儿是对称矩阵。
3、设厶为指标为R的初等下三角矩阵(除第R列对角元以下元素外,厶和单位阵/相同), 即'1 ■• • •14 = 〔m k^k 1• • •• • •〃山 1求证当i.j>k时,-=1血1»也是一个指标为k的初等下三角矩阵,其中切为初等置换矩阵。
4、试推导矩阵A的Crout分解A=LU的讣算公式,其中L为下三角矩阵,U为单位上三角矩阵。
李庆扬-数值分析第五版第5章和第7章习题答案解析
WORD格式.分享第5章复习与思考题1、用高斯消去法为什么要选主元?哪些方程组可以不选主元?k答:使用高斯消去法时,在消元过程中可能出现a的情况,这时消去法无法进行;即kkk时主元素0和舍入增长a,但相对很小时,用其做除数,会导致其它元素数量级的严重kk计误差的扩散,最后也使得计算不准确。
因此高斯消去法需要选主元,以保证计算的进行和算的准确性。
当主对角元素明显占优(远大于同行或同列的元素)时,可以不用选择主元。
计算时一般选择列主元消去法。
2、高斯消去法与LU分解有什么关系?用它们解线性方程组Ax=b有何不同?A要满足什么条件?答:高斯消去法实质上产生了一个将A分解为两个三角形矩阵相乘的因式分解,其中一个为上三角矩阵U,一个为下三角矩阵L。
用LU分解解线性方程组可以简化计算,减少计算量,提高计算精度。
A需要满足的条件是,顺序主子式(1,2,⋯,n-1)不为零。
3、楚列斯基分解与LU分解相比,有什么优点?楚列斯基分解是LU分解的一种,当限定下三角矩阵L的对角元素为正时,楚列斯基分解具有唯一解。
4、哪种线性方程组可用平方根法求解?为什么说平方根法计算稳定?具有对称正定系数矩阵的线性方程可以使用平方根法求解。
,切对角元素恒为正数,因此,是一个稳定的平方根法在分解过程中元素的数量级不会增长算法。
5、什么样的线性方程组可用追赶法求解并能保证计算稳定?对角占优的三对角方程组6、何谓向量范数?给出三种常用的向量范数。
向量范数定义见p53,符合3个运算法则。
正定性齐次性三角不等式x为向量,则三种常用的向量范数为:(第3章p53,第5章p165)设n||x|||x|1ii11n22||x||(x)2ii1||x||max|x i|1in7、何谓矩阵范数?何谓矩阵的算子范数?给出矩阵A=(a ij)的三种范数||A||1,||A||2,精品.资料WORD格式.分享||A||∞,||A||1与||A||2哪个更容易计算?为什么?向量范数定义见p162,需要满足四个条件。
数值分析课程第五版课后习题答案(李庆扬等)
第一章 绪论(12)1、设0>x ,x 的相对误差为δ,求x ln 的误差。
[解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=*****1)()(ln )(ln x xx x x , 相对误差为****ln ln )(ln )(ln x x x x rδεε==。
2、设x 的相对误差为2%,求n x 的相对误差。
[解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而nx 的误差为nn x x nxn x x n x x x **1***%2%2)()()()(ln *⋅=='=-=εε,相对误差为%2)()(ln )(ln ***n x x x nr==εε。
3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x 。
[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。
4、利用公式(3.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。
(1)*4*2*1x x x ++;[解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫ ⎝⎛∂∂=++∑x x x x x f x x x e nk k k εεεε;(2)*3*2*1x x x ;[解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e n k k kεεεε;(3)*4*2/x x 。
数值分析课程第五版课后习题答案李庆扬等
数值分析课程第五版课后习题答案李庆扬等在学习数值分析这门课程的过程中,课后习题的练习与答案的参考对于我们深入理解和掌握知识点起着至关重要的作用。
李庆扬等编写的《数值分析》第五版教材,其课后习题涵盖了丰富的知识点和多种解题思路。
下面,我将为大家详细解析部分课后习题的答案。
首先,让我们来看一道关于插值法的习题。
题目是:给定函数值$f(0)=0$,$f(1)=1$,$f(2)=4$,利用线性插值和抛物插值分别计算$f(15)$的值。
对于线性插值,我们设直线方程为$L_1(x)=ax + b$。
将已知的两个点$(0,0)$和$(1,1)$代入,可得方程组:$\begin{cases}b = 0 \\ a + b = 1\end{cases}$解得$a = 1$,$b = 0$,所以$L_1(x) = x$。
则$f(15) \approxL_1(15) = 15$。
对于抛物插值,设抛物线方程为$L_2(x)=ax^2 + bx + c$。
将三个点$(0,0)$,$(1,1)$,$(2,4)$代入,得到方程组:$\begin{cases}c = 0 \\ a + b + c = 1 \\ 4a + 2b + c =4\end{cases}$解这个方程组,可得$a = 1$,$b = 0$,$c = 0$,所以$L_2(x) = x^2$。
则$f(15) \approx L_2(15) = 225$。
接下来是一道关于数值积分的题目。
求积分$\int_{0}^{1} x^2 dx$的数值解,分别使用梯形公式和辛普森公式。
梯形公式为:$T =\frac{b a}{2} \times f(a) + f(b)$,代入$a = 0$,$b = 1$,$f(x) = x^2$,可得:$T =\frac{1 0}{2} \times 0^2 + 1^2 = 05$辛普森公式为:$S =\frac{b a}{6} \times f(a) + 4f(\frac{a + b}{2})+ f(b)$,代入可得:$S =\frac{1 0}{6} \times 0^2 + 4 \times (\frac{1}{2})^2 + 1^2 =\frac{1}{3}$再看一道关于解线性方程组的习题。
数值分析课程第五版课后习题答案(李庆扬等)1
第一章 绪论(12)之阳早格格创做1、设0>x ,x 的相对付缺面为δ,供x ln 的缺面.[解]设0*>x 为x 的近似值,则有相对付缺面为δε=)(*x r ,千万于缺面为**)(x x δε=,进而xln 的缺面为δδεε=='=*****1)()(ln )(ln x xx x x ,相对付缺面为****ln ln )(ln )(ln xxx x rδεε==.2、设x 的相对付缺面为2%,供n x 的相对付缺面.[解]设*x 为x 的近似值,则有相对付缺面为%2)(*=x r ε,千万于缺面为**%2)(x x =ε,进而nx 的缺面为nn x x n x n x x n x x x **1***%2%2)()()()(ln *⋅=='=-=εε,相对付缺面为%2)()(ln )(ln ***n x x x nr==εε.3、下列各数皆是通过四舍五进得到的近似数,即缺面不超出末尾一位的半个单位,试指出它们是几位灵验数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x .[解]1021.1*1=x 有5位灵验数字;0031.0*2=x 有2位灵验数字;6.385*3=x 有4位灵验数字;430.56*4=x 有5位灵验数字;0.17*5⨯=x 有2位灵验数字.4、利用公式(3.3)供下列各近似值的缺面限,其中*4*3*2*1,,,x x x x 均为第3题所给的数.(1)*4*2*1x x x ++;[解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫⎝⎛∂∂=++∑x x x x x f x x x e nk k kεεεε;(2)*3*2*1x x x ;[解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e n k k kεεεε;(3)*4*2/x x . [解]53232323*42*4*2*2*41***4*2*1088654.01021)430.56(461.561021)430.56(461.561021)430.56(031.01021430.561)()()(1)()/(-----=⨯≈⨯⨯=⨯⨯=⨯⨯+⨯⨯=+=⎪⎪⎭⎫⎝⎛∂∂=∑x x x x x x x f x x e n k k kεεε. 5、预计球体积要使相对付缺面限为1%,问度量半径R 允许的相对付缺面是几? [解]由3*3**3**)(34))(34())(34(%1R R R r ππεπε==可知,)()(4)()(34)(34%1))(34(**2***3*3*3**R R R R R R επεπππε⨯='⎥⎦⎤⎢⎣⎡=⨯=, 进而***31%1)(R R ⨯=ε,故300131%1)()(*****=⨯==RR R r εε.6、设280=Y ,按递推公式),2,1(78310011 =-=-n Y Y n n 预计到100Y ,若与982.27783≈(五位灵验数字,)试问预计100Y 将有多大缺面?[解]令n Y 表示n Y 的近似值,n n n Y Y Y e -=)(*,则0)(0*=Y e ,而且由982.2710011⨯-=-n n Y Y ,78310011⨯-=-n n Y Y 可知, )783982.27(100111-⨯--=---n n n n Y Y Y Y ,即=-⨯-=-⨯-=--)783982.27(1002)()783982.27(1001)()(2*1**n n n Y e Y e Y e ,进而982.27783)783982.27()()(0*100*-=--=Y e Y e ,而31021982.27783-⨯≤-,所以3100*1021)(-⨯=Y ε. 7、供圆程01562=+-x x 的二个根,使它起码具备四位灵验数字(982.27783≈)[解]由78328±=x 与982.27783≈(五位灵验数字)可知,982.55982.2728783281=+=+=x (五位灵验数字).而018.0982.2728783282=-=-=x ,惟有二位灵验数字,不切合题意.然而是22107863.1982.55178328178328-⨯==+=-=x .8、当N 充分大时,何如供⎰++1211N N dx x? [解]果为N N dx xN Narctan )1arctan(1112-+=+⎰+,当N 充分大时为二个相近数相减,设)1arctan(+=N α,N arctan =β,则αtan 1=+N ,βtan =N ,进而11)1(1)1(tan tan 1tan tan )tan(2++=++-+=+-=-N N N N N N βαβαβα,果此11arctan 11212++=-=+⎰+N N dx x N Nβα. 9、正圆形的边少约莫为100cm ,应何如丈量才搞使其里积缺面不超出12cm ?[解]由)(2)(])[())((*****2*2**l l l l l εεε='=可知,若央供1))((2**=l ε,则2001100212))(()(*2****=⨯==l l l εε,即边少应谦脚2001100±=l .10、设221gt S =,假定g 是准确的,而对付t 的丈量有1.0±秒的缺面,道明当t 减少时S 的千万于缺面减少,而相对付缺面却缩小.[道明]果为******1.0)()()()(gt t gt t dtdS S ===εεε,***2******51)(2)(21)()()(t t t t g t gt S S S r====εεεε,所以得证.11、序列{}n y 谦脚递推闭系),2,1(1101 =-=-n y y n n ,若41.120≈=y (三位灵验数字),预计到10y 时缺面有多大?那个预计历程宁静吗?[解]设n y 为n y 的近似值,n n n y y y -=)(*ε,则由⎪⎩⎪⎨⎧-==-110210n ny y y 与 ⎩⎨⎧-==-11041.110n n y y y 可知,20*1021)(-⨯=y ε,)(1011---=-n n n n y y y y ,即 )(10)(10)(0*1**y y y n n n εεε==-,进而82100*1010*1021102110)(10)(⨯=⨯⨯==-y y εε,果此预计历程不宁静. 12、预计6)12(-=f,与4.12≈,利用下列公式预计,哪一个得到的截止最佳?6)12(1+,3)223(-,3)223(1+,27099-.[解]果为1*1021)(-⨯=f ε,所以对付于61)12(1+=f ,2417*11*10211054.61021)14.1(6)4.1()(---⨯<⨯=⨯⨯+='=e f f e ,有一位灵验数字; 对付于32)223(-=f ,1112*22*10211012.01021)4.123(6)4.1()(---⨯<⨯=⨯⨯⨯-='=e f f e ,不灵验数字; 对付于33)223(1+=f ,2314*33*10211065.21021)4.123(6)4.1()(---⨯<⨯=⨯⨯⨯+='=e f f e ,有一位灵验数字;对付于270994-=f ,111*44*10211035102170)4.1()(⨯<⨯=⨯⨯='=--e f f e ,不灵验数字. 13、)1ln()(2--=x x x f ,供)30(f 的值.若启仄圆用六位函数表,问供对付数时缺面有多大?若改用另一等价公式)1ln()1ln(22-+-=--x x x x 预计,供对付数时缺面有多大?[解]果为9833.298991302==-(六位灵验数字),4*1021)(-⨯=x ε,所以2442**11*102994.010219833.293011021)13030(1)()()(---⨯=⨯⨯-=⨯⨯---='=x e f f e ,6442**22*108336.010219833.29301102111)()()(---⨯=⨯⨯+=⨯⨯-+-='=x x x e f f e .14、试用消元法解圆程组⎩⎨⎧=+=+2101021102101x x x x ,假定惟有三位数预计,问截止是可稳当?[解]透彻解为110210,110101*********--=-=x x .当使用三位数运算时,得到1,121==x x ,截止稳当.15、已知三角形里积c ab s sin 21=,其中c 为弧度,20π<<c ,且丈量a ,b ,c 的缺面分别为c b a ∆∆∆,,,道明里积的缺面s ∆谦脚cc b b a a s s ∆+∆+∆≤∆. [解]果为c c ab b c a a c b x x f s nk k k ∆+∆+∆=∆∂∂=∆∑=cos 21sin 21sin 21)()(1, 所以cc b b c c c c b b c c c ab cc ab b c a a c b ss ∆+∆+∆≤∆+∆+∆=∆+∆+∆=∆tan sin 21cos 21sin 21sin 21. 第二章 插值法(40-42)1、根据(2.2)定义的范德受止列式,令⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=----nn n n n nn n x x xx xx x x x x x x x V21211020110111),,,,(,道明)(x V n 是n 次多项式,它的根是121,,,-n x x x ,且)())(,,,(),,,,(101101110------=n n n n n x x x x x x x V x x x x V .[道明]由∏∏∏∏-=---=-=-=--⋅=-⋅-=1110111010110)(),,,()()(),,,,(n j j n n n j j n i i j j i n n x x x x x V x x x x x x x x V 可得供证.2、当2,1,1-=x 时,4,3,0)(-=x f ,供)(x f 的二次插值多项式.[解]372365)1(34)23(21)12)(12()1)(1(4)21)(11()2)(1()3()21)(11()2)(1(0))(())(())(())(())(())(()(2221202102210120120102102-+=-++--=+-+-⨯+------⨯-+-+-+⨯=----+----+----=x x x x x x x x x x x x x x x x x x x y x x x x x x x x y x x x x x x x x y x L .3、给出x x f ln )(=的数值表用线性插值及二次插值预计54.0ln 的近似值.[解]若与5.00=x ,6.01=x , 则693147.0)5.0()(00-===f x f y ,510826.0)6.0()(11-===f x f y ,则 604752.182321.1)5.0(10826.5)6.0(93147.65.06.05.0510826.06.05.06.0693147.0)(010110101-=---=--⨯---⨯-=--+--=x x x x x x x x x y x x x x y x L ,进而6202186.0604752.19845334.0604752.154.082321.1)54.0(1-=-=-⨯=L . 若与4.00=x ,5.01=x ,6.02=x ,则916291.0)4.0()(00-===f x f y , 693147.0)5.0()(11-===f x f y ,510826.0)6.0()(22-===f x f y ,则217097.2068475.404115.2)2.09.0(5413.25)24.0(3147.69)3.01.1(81455.45)5.06.0)(4.06.0()5.0)(4.0()510826.0()6.05.0)(4.05.0()6.0)(4.0()693147.0()6.04.0)(5.04.0()6.0)(5.0(916291.0))(())(())(())(())(())(()(22221202102210120120102102-+-=+--+-⨯++-⨯-=----⨯-+----⨯-+----⨯-=----+----+----=x x x x x x x x x x x x x x x x x x x x x x y x x x x x x x x y x x x x x x x x y x L ,进而61531984.0217097.21969765.259519934.0217097.254.0068475.454.004115.2)54.0(22-=-+-=-⨯+⨯-=L .4、给出 900,cos ≤≤x x 的函数表,步少 )60/1(1='=h ,若函数具备5位灵验数字,钻研用线性插值供x cos 近似值时的总缺面界.[解]设插值节面为h x x x x +=<<010,对付应的x cos 值为10,y y ,函数表值为10,y y ,则由题意可知,5001021-⨯≤-y y ,5111021-⨯≤-y y ,近似线性插值多项式为01011011)(x x x x y x x x x y x L --+--=,所以总缺面为()100101110100100101110100101111,,)()())((2cos )()())((!2)()()()()()()()(x x x x x x y y x x x x y y x x x x x x x x y y x x x x y y x x x x f x L x L x L x f x L x f x R ∈---+---+---=---+---+--''=-+-=-=ξξξ,进而55555201051015100101110100101047.310211094.621102114400121102142110211021))((21))((cos 21)(-------⨯=⨯+⨯⨯=⨯+⨯=⨯+≤--⨯⨯+--⨯⨯+---≤---+---+--≤h x x x x x x x x x x x x x x x x y y x x x x y y x x x x x R ξ.5、设3,2,1,0=+=k kh x x k,供)(max 220x l x x x ≤≤.[解])3)()((max 21)()2()3)()((max))()(())()((max)(max 000300032120231023033030h x x h x x x x h h h h h x x h x x x x x x x x x x x x x x x x x l xx x xx x x x x x x x -----=------=------=≤≤≤≤≤≤≤≤.令)34()383()43()3)()(()(0220302020203000x h hx x x h h x x x h x x h x x h x x x x x f ++-++++-=-----=,则)383()43(23)(202002h h x x x h x x x f ++++-=',进而极值面大概为 hx h h x h h x x h x h x x 37437)43(6)383(12)43(4)43(2002020200±+=±+=++-+±+=,又果为30)20714(271375371374)374(h h h h h x f -=--⨯-⨯-=-+, 30)71420(271357371374)374(h h h h h x f +-=-⨯+⨯+=++, 隐然)374()374(00h x f h x f ++≤-+,所以277710)71420(27121)374(21)(max 3303230+=+=++=≤≤h h h x f h x l x x x . 6、设),,1,0(n j x j=为互同节面,供证:1)),,1,0()(0n k x x l x kn j j k j =≡∑=;2)),,2,1()()(0n k x x l x x knj j k j =≡-∑=;[解]1)果为左侧是k x 的n 阶推格朗日多项式,所以供证创制. 2)设k x y y f )()(-=,则左侧是k x y y f )()(-=的n 阶推格朗日多项式,令x y =,即得供证.7、设[]b a C x f ,)(2∈且0)()(==b f a f ,供证)(max )(81)(max 2x f a b x f b x a b x a ''-≤≤≤≤≤. [解]睹补充题3,其中与0)()(==b f a f 即得.8、正在44≤≤-x 上给出x e x f =)(的等距节面函数表,若用二次插值供x e 的近似值,要使截断缺面不超出610-,问使用函数表的步少h 应与几?[解]由题意可知,设x 使用节面h x x -=10,1x ,h x x +=12举止二次插值,则插值余项为()201112102,)],()[)](([6))()((!3)()(x x h x x x x h x x ex x x x x x f x R ∈+----=---'''=ξξξ,令)()3(3)]()[)](([)(2211221213111h x x x h x x x x h x x x x h x x x f -+-+-=+----=,则)3(63)(22112h x x x x x f -+-=',进而)(x f 的极值面为h x x 331±=,故3932)331()331(33)(max2h h h h x f xx x =-⋅+⋅=≤≤,而 343422739326)(max 6)(20h e h e x f e x R x x x =≤≤≤≤ξ,要使其不超出610-,则有63410273-≤h e ,即22226210472.010389.74863.310243---⨯=⨯≈⨯≤ee h . 9、若n n y 2=,供n y 4∆及n y 4δ.[解]nn n n n n nn n n n n n n n n j jn j j n j jn n y y y y y y j y E j y I E y 22282242322162242624244)1(34)1(24)1(14)1(04)1(4)1(4)1()(123441322314040440444=+⨯-⨯+⨯-⨯=+⨯-⨯+⨯-=⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-=-=∆++++++++=-+=-∑∑.22221221122413211204024024021)4(2142121422282242322162242624244)1(34)1(24)1(14)1(04)1(4)1(4)1(4)1()(--------++--++=-+=-=---=+⨯-⨯+⨯-⨯=+⨯-⨯+⨯-=⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-=-=∑∑∑n n n n n n n n n n n n n n n n j jn j j n j j j njj jn n y y y y y y j y E j y E Ej y E E y δ. 10、如果)(x f 是m 次多项式,记)()()(x f h x f x f -+=∆,道明)(x f 的k 阶好分)0()(m k x f k ≤≤∆是k m -次多项式,而且0)(=∆+x f l m (l 为正整数).[道明]对付k 使用数教归纳法可证. 11、道明k k k k k k g f g f g f ∆+∆=∆+1)(. [道明]kk k k k k k k k k k k k k k k k k k k k k k k g f g f g g f g f f g f g f g f g f g f g f g f ∆+∆=-+-=-+-=-=∆++++++++++1111111111)()()(.12、道明∑∑-=+-=∆--=∆11001n k k k n n n k kk f g g f g f g f .[道明]果为01111111111011)()]()([)(g f g f g f f g f f g g g f f g g f f g g fn n n k k k k k n k k k k k k k n k k k k k n k k k n k k k-=-=-+-=∆+∆=∆+∆∑∑∑∑∑-=++-=+++-=+-=+-=,故得证.13、道明:0102y y y n n j j∆-∆=∆∑-=.[道明]01112)(y y y y y n n j j j n j j ∆-∆=∆-∆=∆∑∑-=+-=.14、若n n n n x a x a x a a x f ++++=--1110)( 有n 个分歧真根n x x x ,,,21 ,道明⎩⎨⎧-=-≤≤='-=∑1,20,0)(11n k a n k x f x n nj j k j. [道明]由题意可设∏=-=---=ni i n n n x x a x x x x x x a x f 121)()())(()( ,故∏≠=-='nji i i j n j x x a x f 1)()(,再由好商的本量1战3可知:)!1()(1],,[1)()()1(1111-==-='-=≠==∑∏∑n x a x x x a x x a x xf x n k n n k n nj nj i i i j n k jnj j k j,进而得证.15、道明n 阶均好有下列本量:1)若)()(x cf x F =,则],,,[],,,[1010n n x x x cf x x x F =; 2)若)()()(x g x f x F +=,则],,,[],,,[],,,[101010n n n x x x g x x x f x x x F +=.[道明]1)],,,[)()()()()()(],,,[1000000010n nj nji i i jj nj nji i i jj nj nji i i jj n x x x cf x xx f c x xx cf x xx F x x x F =-=-=-=∑∏∑∏∑∏=≠==≠==≠=.2)],,,[],,,[)()()()()()()()()(],,,[10100000000010n n nj nji i i jj nj nji i i jj nj nji i i jj j nj nji i i jj n x x x g x x x f x xx g x xx f x xx g x f x xx F x x x F +=-+-=-+=-=∑∏∑∏∑∏∑∏=≠==≠==≠==≠=.16、13)(47+++=x x x x f ,供]2,,2,2[71f ,0!80!8)(]2,,2,2[)8(81===ξf f . [解]1!7!7!7)(]2,,2,2[)7(71===ξf f ,]2,,2,2[810 f .17、道明二面三次埃我米特插值余项是()1212)4(3,,!4/)())(()(++∈--=k k k k x x x x x x f x R ξξ,并由此供出分段三次埃我米特插值的缺面限. [解]睹P30与P33,缺面限为k nk f h h '+≤≤0max 278)(ω. 18、XXXXXXXXXX .19、供一个次数不下于4次的多项式)(x P ,使它谦脚0)0()0(='=P P ,1)1()1(='=P P ,1)2(=P .[解]设1223344)(a x a x a x a x a x P ++++=,则122334234)(a x a x a x a x P +++=',再由0)0()0(='=P P ,1)1()1(='=P P ,1)2(=P 可得:⎪⎪⎪⎩⎪⎪⎪⎨⎧++++==+++='=++++==='===012341234012*********)2(1234)(1)1(1)0(0)0(0a a a a a P a a a a x P a a a a a P a P a P 解得⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧==-===432141234900aa a a a .进而4)3()96(4492341)(2222234-=+-=+-=x x x x x x x x x P .20、设],[)(b a C x f ∈,把[]b a ,分为n 仄分,试构制一个台阶形的整次分段插值函数)(x n ϕ,并道明当∞→n 时,)(x n ϕ正在[]b a ,上普遍支敛到)(x f .[解]令n i x f x f x ii ii x x x x x xi ,,3,2,1,2)(inf)(sup )(11 =+=≤≤≤≤--ϕ.21、设)1/(1)(2x x f +=,正在55≤≤-x 上与10=n ,按等距节面供分段线性插值函数)(x I h ,预计各节面中面处的)(x I h 与)(x f 的值,并预计缺面.[解]由题意可知,1=h ,进而当[]1,+∈k k x x x 时,)(])1(1[1)()1(1)1(1111)(2121211211k k kk k k k k k k k k h x x k h x x k h x x x x k x x x x k l f l f x I -+++-+-=--+++--+=+=++++++.22、供2)(x x f =正在[]b a ,上的分段线性插值函数)(x I h ,并预计缺面.[解]设将[]b a ,区分为少度为h 的小区间b x x x a n =≤≤≤= 10,则当[]1,+∈k k x x x ,1,,2,1,0-=n k 时, 进而缺面为))(())((!2)()(112++--=--''=k k k k x x x x x x x x f x R ξ, 故4))(()(212h x x x x x R k k ≤--=+.23、供4)(x x f =正在[]b a ,上的分段埃我米特插值,并预计缺面. [解]设将[]b a ,区分为少度为h 的小区间b x x x a n =≤≤≤= 10,则当[]1,+∈k k x x x ,1,,2,1,0-=n k 时,)(4)(42121)()(121312113112141121141111++++++++++++++++-⎪⎪⎭⎫⎝⎛--+-⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛--='+'++=k k k kk k k k k k k k k k k kk k k kk kk k k k k k k k k k h x x x x x x x x x x x x x x x x x x xx x x x x x x x x x x x x x f f f f x I ββαα,进而缺面为212212)4(2)()()()(!4)()(++--=--=k k k k x x x x x x x x f x R ξ, 故16)()()(42122h x x x x x R k k ≤--=+.24、给定数据表如下:试供三次样条函数)(x S ,并谦脚条件: 1)6868.0)53.0(,0000.1)25.0(='='S S ; 2)0)53.0()25.0(=''=''S S .[解]由05.025.030.00=-=h ,09.030.039.01=-=h ,06.039.045.02=-=h ,08.045.053.03=-=h ,及(8.10)式)1,,1(,,111-=+=+=---n j h h h h h h jj j j jj j j μλ可知,14909.005.009.01011=+=+=h h h λ,5206.009.006.02122=+=+=h h h λ,7408.006.008.03233=+=+=h h h λ,14509.005.005.01001=+=+=h h h μ,5306.009.009.02112=+=+=h h h μ,7308.006.006.03223=+=+=h h h μ,由(8.11)式)1,1(]),[],[(311-=+=+-n j x x f x x f g j j j j j j jμλ可知,7541.2700019279)900768145500477149(3)30.039.05477.06245.014525.030.05000.05477.0149(3])()(145)()(149[3]),[],[(3121201012111011==⨯+⨯⨯=--⨯+--⨯⨯=--+--=+=x x x f x f x x x f x f x x f x x f g μλ.413.2100046332564)6004635390076852(3)39.045.06245.06708.05330.039.05477.06245.052(3])()(53)()(52[3]),[],[(3232312123222122=⨯+⨯=⨯+⨯⨯=--⨯+--⨯⨯=--+--=+=x x x f x f x x x f x f x x f x x f g μλ.0814.27001457140011894634)8004727360046374(3)45.053.06708.07280.07339.045.06245.06708.074(3])()(73)()(74[3]),[],[(3343423234333233==⨯+⨯=⨯+⨯⨯=--⨯+--⨯⨯=--+--=+=x x x f x f x x x f x f x x f x x f g μλ.进而1)矩阵形式为:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⨯-⨯-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡7871.1413.21112.26868.0730814.2413.20000.11497541.227405325201452321m m m ,解得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡6570.08278.09078.0321m m m ,进而∑=+=nj j j j j x m x y x S 0)]()([)(βα.2)此为自然鸿沟条件,故862.2500477325.030.05000.05477.03)()(3],[30101100=⨯=--⨯=--⨯==x x x f x f x x f g ;145.2800572345.053.06708.07280.03)()(3],[3111=⨯=--⨯=--⨯==---n n n n n n n x x x f x f x x f g ,矩阵形式为:⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡145.20814.2413.27541.2862.227400732740005325200014521490001243210m m m m m ,不妨解得⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡43210m m m m m ,进而∑=+=nj j j j j x m x y x S 0)]()([)(βα.25、若],[)(2b a C x f ∈,)(x S 是三次样条函数,道明 1)⎰⎰⎰⎰''-''''+''-''=''-''babababadx x S x f x S dx x S x f dx x S dx x f )]()()[(2)]()([)]([)]([222;2)若),,1,0()()(n i x S x f i i ==,式中ix 为插值节面,且b x x x a n =<<<= 10则)]()()[()]()()[()]()()[(a S a f a S b S b f b S dx x S x f x S ba '-'''-'-'''=''-''''⎰.[解]1)⎰⎰⎰⎰⎰⎰⎰⎰''-''=''-''=''-''''+''=''-''''+''-''=''-''''+''-''=''-''''+''-''bababab a ba b ababadxx S dx x f dxx S x f dx x S x f x S x f dxx S x f x S x S x f dxx S x f x S x S x f dxx S x f x S dx x S x f 222222)]([)]([)]([)]([)]()()][()([)]()()}[(2)]()({[)]()()[(2)]()([)]()()[(2)]()([.2)由题意可知,[]b a x A x S ,,)(∈=''',所以)]()()[()]()()[()]()([)]()()[()]()()[()]()([)]()()[()]()()[()()]()([)]}()()[({)]()()[(a S a f a S b S b f b S x S x f A a S a f a S b S b f b S dx x S x f A a S a f a S b S b f b S dxx S x S x f x S x f x S dx x S x f x S b a b ab ab aba'-'''-'-'''=--'-'''-'-'''='-'-'-'''-'-'''=''''-'-'-'''=''-''''⎰⎰⎰.补充题:1、令00=x ,11=x ,写出x e x y -=)(的一次插值多项式)(1x L ,并预计插值余项.[解]由1)(000===-e x y y ,111)(-==e x y y 可知,xe x e x x e x x x x x y x x x x y x L )1(1)1(0101011)(111010110101-+=+--=--⨯+--⨯=--+--=---,余项为()1,0),1(2))((!2)()(101∈-=--''=-ξξξx x e x x x x f x R , 故8141121)1(max max 21)(10101=⨯⨯=-⨯⨯≤≤≤-≤≤x x e x R x ξξ. 2、设4)(x x f =,试利用推格朗日插值余项定理写出以2,1,0,1-为插值节面的三次插值多项式. [解]由插值余项定理,有x x x x x x x x x x x x x x x x x x x f x R 22)1)(2()2)(1()1(!4!4))()()((!4)()(234223210)4(3+--=--=--+=----=ξ,进而x x x x x x x x x R x f x L 22)22()()()(23234433-+=+---=-=.3、设)(x f 正在[]b a ,内有二阶连绝导数,供证:)(max )(81)]()()()([)(max 2x f a b a x a b a f b f a f x f b x a bx a ''-≤---+-≤≤≤≤.[证]果为)()()()(a x ab a f b f a f ---+是以a ,b 为插值节面的)(x f 的线性插值多项式,利用插值多项式的余项定理,得到:))()((21)]()()()([)(b x a x f a x a b a f b f a f x f --''=---+-ξ,进而)(max )(81)(41)(max 21))((max )(max 21)]()()()([)(max 22x f a b a b f b x a x f a x a b a f b f a f x f b x a b a b x a ba b x a ''-=-⋅''=--⋅''≤---+-≤≤≤≤≤≤≤≤≤≤ξξξξ.4、设15)(37++=x x x f ,供好商]2,2[10f ,]2,2,2[210f ,]2,,2,2[710 f 战]2,,2,2[810 f .[解]果为7)1()2(0==f f ,1691252)2()2(371=+⨯+==f f ,167051454)4()2(372=+⨯+==f f ,所以162716912)1()2(]2,2[10=-=--=f f f ,826821691670524)2()4(]2,2[21=-=--=f f f ,27023162826822]2,2[]2,2[]2,2,2[02102121=-=--=f f f , 1!7!7!7)(]2,,2,2[)7(71===ξf f ,0!80!8)(]2,,2,2[)8(810===ξf f .5、给定数据表:5,4,3,2,1=i ,供4次牛顿插值多项式,并写出插值余项. [解]由好商表可得4次牛顿插值多项式为:)6)(4)(2)(1(1801)4)(2)(1(607)2)(1(65)1(34)6)(4)(2)(1(1801)4)(2)(1(607)2)(1(65)1(34)(4----+------+--=----+------+--=x x x x x x x x x x x x x x x x x x x x x N ,插值余项为()7,1),7)(6)(4)(2)(1(!5)()()5(4∈-----=ξξx x x x x f x R .6、如下表给定函数:4,3,2,1,0=i ,试预计出此列表函数的好分表,并利用牛顿背前插值公式给出它的插值多项式. [解]构制好分表:由好分表可得插值多项式为:32)1(3322)1(332)1()(2020004++=-++=⨯-++=+∆-+∆+=+t t t t t t t t f t t f t f th x N .第三章 函数迫近与预计(80-82)1、(a )利用区间变更推出区间为[]b a ,的伯恩斯坦多项式;(b )对付x x f sin )(=正在⎥⎦⎤⎢⎣⎡2,0π上供1次战3次伯恩斯坦多项式并绘出图形,并与相映的马克劳林级数部分战缺面搞出比较. [解](a )令t a b a x )(-+=,则[]1,0∈t ,进而伯恩斯坦多项式为∑=-=nk k n x P n k a b f x f B 0)())((),(,其中kn k k x a b x k n x P ---⎪⎪⎭⎫ ⎝⎛=)()(. (b )令t x 2π=,则[]1,0∈t ,进而伯恩斯坦多项式为∑==nk k n x P n kf x f B 0)()2(),(π,其中k n k k x x k n x P --⎪⎪⎭⎫ ⎝⎛=)2()(π. xx x x x x x f x x f x P kf x f B k k =+⎪⎭⎫⎝⎛-⨯=⨯+⎪⎭⎫ ⎝⎛-⨯=⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛==∑=202sin 20sin 211)2(201)0()()2(),(010101πππππππ;3223323223223223312213033)533(21)32(4383)2(233)4(23)2(233)2(232sin )2(33sin )2(36sin 20sin )2(33)2()2(23)3()2(13)6()2(03)0()()6(),(x x x x x x x x x x x x x x x x x x x x x x f x x f x x f x x f x P kf x f B k k ----=+-++-=+-+-=⨯+-⨯+-⨯+⎪⎭⎫⎝⎛-⨯=-⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛==∑=πππππππππππππππππππππ.2、供证:(a )当Mx f m ≤≤)(时,M x f B m n ≤≤),(;(b )当x x f =)(时,x x f B n =),(.[道明](a )由∑==nk k n x P nk f x f B 0)()(),(及Mx f m ≤≤)(可知,∑∑∑∑====≤≤≤≤nk k nk k n n k k n k k x P M x MP x f B x mP x P m 0)()(),()()(,而1)]1([)1()(00=-+=-⎪⎪⎭⎫⎝⎛=∑∑=-=nnk k n k nk k x x x x k n x P ,进而得证. (b )当x x f =)(时,xx x x x x k n k n x x xx k n k n x x k n k n n k x x k n n k f x P n k f x f B n n k k n k n k k n k nk kn k f nk kn k nk k n =-+=----=------=--⨯==-⎪⎪⎭⎫ ⎝⎛==--=--=----=-==-=∑∑∑∑∑110)1(1)1()1(110)0(00)]1([)1()!1(!)!1()1()]!1()1[()!1()!1()1()!(!!)1()()()(),(.3、正在次数不超出6的多项式中,供x x f 4sin )(=正在[]π2,0的最佳普遍迫近多项式.[解]由[]π2,0,4sin ∈x x 可知,14sin 1≤≤-x ,进而最小偏偏好为1,接错面为ππππππππ815,813,811,89,87,85,83,8,此即为6)(H x P ∈的切比雪妇接错面组,进而)(x P 是以那些面为插值节面的推格朗日多项式,可得0)(=x P .4、假设)(x f 正在[]b a ,上连绝,供)(x f 的整次最佳普遍迫近多项式.[解]令)(infx f m bx a ≤≤=,)(sup x f M bx a ≤≤=,则2)(mM x f +=正在[]b a ,上具备最小偏偏好2m M -,进而为整次最佳迫近一次多项式.5、采用常数a ,使得ax x x -≤≤310max 达到极小,又问那个解是可唯一?[解]果为ax x -3是奇函数,所以ax x ax x x x -=-≤≤-≤≤311310max max ,再由定理7可知,当)34(4141333x x T ax x -==-时,坐即43=a ,偏偏好最小.6、供x x f sin )(=正在⎥⎦⎤⎢⎣⎡2,0π上的最佳一次迫近多项式,并预计缺面.[解]由πππ22sin 2sincos )()()(221=--=='=--=x x f ab a f b f a 可得π2arccos2=x ,进而最佳一次迫近多项式为ππππππππππππ2arccos1242)2arccos 21(224)22arccos0(2)]2sin(arccos 0[sin 21)2()]()([2122212--+=-+-=+-++=+-++=x x x x a x a x f a f y 7、供x e x f =)(正在[]1,0上的最佳一次迫近多项式.[解]由101)()()(01212-=--=='=--=e e e e xf a b a f b f a x 可得)1ln(2-=e x ,进而最佳一次迫近多项式为)1ln(212)1()]1ln(21)[1(2)2)1ln(0)(1(][21)2()]()([21)1ln(0212---+-=---+=-+--++=+-++=-e e e x e e x e e e x e e e x a x a x f a f y e .8、怎么样采用r ,使r x x p +=2)(正在[]1,1-上与整偏偏好最小?r 是可唯一?[解]由r r x x p x x +=+=≤≤-≤≤-1)(max )(max 21111,r r x x p x x =+=≤≤-≤≤-)(min )(min 21111可知当与整偏偏好最小时,r r =+1,进而21-=r .另解:由定理7可知,正在[]1,1-上与整偏偏好最小的二次多项式为21)12(21)(21222-=-=x x x T ,进而21-=r .9、设13)(34-+=x x x f ,正在[]1,0上供三次最佳迫近多项式. [解]设所供三次多项式为)(3x P ,则由定理7可知81)188(81)(21)()(2424433+-=+-==-x x x x x T x P x f ,进而893)81()13()81()()(232434243-+=+---+=+--=x x x x x x x x x f x P .10、令[]1,0),12()(∈-=x x T x T n n ,供)(*0x T 、)(*1x T 、)(*2x T 、)(3x T . [解]由[]1,0),12()(∈-=x x T x T n n 可知,令[]1,1,211-∈+=t t x ,则[]1,1),()121(-∈=+t t T t T n n ,进而⎪⎪⎩⎪⎪⎨⎧⎥⎦⎤⎢⎣⎡∈+⎥⎦⎤⎢⎣⎡-∈=1,21),121(21,1),()(00*x x T x x T x T n . 11、试证{})(*x T n 是正在[]1,0上戴权21xx -=ρ的正接多项式.?12、正在[]1,1-上利用插值极小化供x x f arctan )(=的三次近似最佳迫近多项式.[解]由题意可知,插值节面为)3,2,1(,812cos =-k k π,即ππππ87cos ,85cos ,83cos ,81cos 4321====x x x x ,则可供得)(3x L .13、设x e x f =)(正在[]1,1-上的插值极小化近似最佳迫近多项式为)(x L n ,若∞-nL f 有界,道明对付所有1≥n ,存留常数n n βα,,使得)11()()()()(11≤≤-≤-≤++x x T x L x f x T n n n n n βα.[道明]由题意可知,[]1,1),()!1(2)()()(1)1(-∈+=-++ξξx T n f x L x f n n n n ,进而与)!1(2)(min )1(11+=+≤≤-n x f nn x n α,)!1(2)(max )1(11+=+≤≤-n x f n n x n β,则可得供证.14、设正在[]1,1-上543238401653841524381211)(x x x x x x -----=ϕ,试将)(x ϕ落矮到3次多项式并预计缺面.[解]果为x x T x 16545161355-+=,8181244-+=x T x ,所以323232307254510241234096199310241029)16545(3840165)81(3841524381211)(~x x x x x x x x x x ---=-------=ϕ,缺面为0056.040962381384016516138415)(~)(≈=+≤-x x ϕϕ.15、正在[]1,1-利用幂级数项数俭朴供x x f sin )(=的3次迫近多项式,使缺面不超出0.005.[解]果为 ++-+++-=+)!12()1(!5!3sin 1253n x x x x x n n ,与前三项,得到!5!3)(535x x x x L +-=,缺面为0002.0!71)(sin 5≈≤-x L x ,又果为 x x T x 16545161355-+=,所以3次迫近多项式为3333227384383)16545(!51!3sin x x x x x x x +-=-+-=,此时缺面为005.010986.71611201!714<⨯≈⨯+-. 16、)(x f 是[]a a ,-上的连绝奇(奇)函数,道明不管n 是奇数大概奇数,)(x f 的最佳迫近多项式n n H x F ∈)(*也是奇(奇)函数. [解])(x f 的最佳迫近多项式是由切比雪妇多项式得到的,再由切比雪妇多项式的本量4即得.17、供a 、b 使⎰-+202]sin [πdx x b ax 为最小,并与1题及6题的一次迫近多项式缺面做比较. [解]由2120ππ=⎰dx ,8220ππ=⎰dx x ,243202ππ=⎰dx x ,1sin 200==⎰πxdx d ,1cos |)cos (sin 2020201=---==⎰⎰πππxdx x x xdx x d ,可得⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1124882322a b ππππ,解得⎪⎪⎩⎪⎪⎨⎧=-==-=1148.0)3(86644.0)4(2423ππππb a . 18、],[)(),(1b a C x g x f ∈,定义 (a )()⎰''=aadx x g x f g f )()(,;(b )())()()()(,a g a f dx x g x f g f aa+''=⎰. 问它们是可形成内积?[解](a )果为()0)(0)]([,0)(2='⇔='=⇒=⎰x f dx x f f f x f ba ,然而反之不可坐,所以不形成内积. (b )形成内积.19、用许瓦兹不等式(4.5)预计⎰+161dx xx 的上界,并用积分中值定理预计共一积分的上下界,并比较其截止. [解]1961.026113121)131()11()()11(110131012612106≈==+-=+≤+⎰⎰⎰x x dxx dx xdx x x .果为[]1,0,12666∈≤+≤x x xx x ,所以7112141106106106=≤+≤=⎰⎰⎰dx x dx x x dx x . 20、采用a ,使下列积分与最小值:⎰-1022)(dx ax x ,⎰--112dx ax x .[解]481)45(51512131)2()(22142321022+-=+-=+-=-⎰⎰a a a dx x a ax x dx ax x ,进而45=a .当0=a 时,12121100111112=+=+-==-⎰⎰⎰⎰---xdx xdx dx x dx ax x ,当0≠a 时,由02=-ax x ,可得接面为ax 1=,若1>a ,则1323121316161)2131()2131()3121()2131()()()(222012310321123012102112112>+=++++-=-+-+-=-+-+-=----⎰⎰⎰⎰a a a aa a x ax ax x x ax dxx ax dx ax x dx x ax dx ax x a aa a,若01>≥a ,则1)2131()3121()()(012102112=----=-+-=-⎰⎰⎰--a a dx x ax dx ax x dx ax x .共理可知,当01<≤-a 时,1112=-⎰-dx ax x ,当1-<a 时,1112>-⎰-dx ax x ,进而当1≤a 时,积分博得最小.21、设{}x span ,11=ϕ,{}1011002,x x span =ϕ,分别正在21,ϕϕ上供一元素,使其为]1,0[2C x ∈的最佳仄圆迫近,并比较其截止.[解]由1110=⎰dx ,2110=⎰xdx ,31102=⎰dx x ,41103=⎰dx x 可知,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡41313121211b a ,解得⎪⎩⎪⎨⎧=-=161b a ,即正在1ϕ上为⎪⎭⎫ ⎝⎛-1,61. 由201110100100=⋅⎰dx x x ,202110101100=⋅⎰dx x x ,203110101101=⋅⎰dx x x ,1031102100=⋅⎰dx x x ,1041102101=⋅⎰dx x x 可知, ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡104110312031202120212011b a ,解得⎪⎪⎩⎪⎪⎨⎧-≈⨯⨯⨯-=≈⨯⨯⨯=148.37510310420320298243.37510410320220199b a ,即正在2ϕ上为()148.375,243.375-.22、x x f =)(正在[]1,1-上,供正在{}421,,1x x span =ϕ上的最佳仄圆迫近.[解]由1100111=+-=⎰⎰⎰--xdx xdx dx x ,2113013112=+-=⎰⎰⎰--dx x dx x dx x x ,。
数值分析课程第五版课后习题答案(李庆扬等)(OCR)
根是x,,2…,x-,且V。x,x…·,x)=V,Cx6,x…·)(x-x)…(x-x)。
V,(xo,x,…x-x)=11】 -x,)用a-x,)
[证明]由
可得求证。
=V,(Cx8,x,…,xX))11(x-x)
2、当x=1-1,2时,f(x)=0,-3.4,求f(x)的二次插值多项式。
L,(x)=y%((xx6--xx,)((xx-2x-x22))
y=f(x)=f0.5)=-0.693147,y2=f(x)=f(0.6)=-0.510826,则
L2(x)=y。 (x-x)(x-x2)
(x6-x)x-x)
(x-x)(x-x)
(x-x)(x-x2)
(x-xo)(x-x) (x2-xo)(x2-x)
=-0.916291×.(0(.x4-0-.05.)5()x(-00..64)-0.6-.
30—+2—9.x9583x31 ̄02'=0.8336×104
14、试用消元法解方程x组1+10"x=100
x+x2=2
,假定只有三位数计算,问结果是否
可靠?
[解]精确解为x1=0100-*1 10"-2 ,当使用三位数运 算时,得到
x =1,x2=1,结果可靠。
15、已知三角形面积s=s去= absinc,其中c为弧度,0<c< 且测量a,b,c
位有效数字;x=56.430有5位有效数字;x=7×10有2位有效数字。 4、利用公式(3.3)求下列各近似值的误差限,其中x,x;,x,x;均为第3题所给
的数。
(1)x+x2+x:
e(x+x写+x)=>
[解]
E(x)=E(x)+E(x)+E(x;)
3+tx10=1.05×103
(2)xxx;
数值分析课程第五版课后习题答案李庆扬等
数值分析课程第五版课后习题答案李庆扬等数值分析作为一门重要的数学课程,对于许多理工科学生来说是必须掌握的知识。
李庆扬等编著的《数值分析》第五版教材备受青睐,而课后习题的答案则成为了同学们检验自己学习成果、加深对知识理解的重要参考。
在学习数值分析的过程中,课后习题起到了巩固和拓展知识的关键作用。
通过完成这些习题,我们能够更加深入地理解数值分析中的各种算法和概念,如插值法、数值积分、常微分方程数值解法等。
而准确的答案则能够帮助我们及时发现自己的错误和不足,从而有针对性地进行改进和提高。
以插值法这一章节的习题为例,我们可能会遇到要求用拉格朗日插值多项式、牛顿插值多项式等方法来构造插值函数,并计算给定节点处的函数值。
在解答这类问题时,需要我们熟练掌握插值公式的推导和计算过程,同时要注意误差的分析和控制。
答案中会详细展示每一步的计算过程,让我们能够清晰地看到如何从给定的节点数据得到最终的插值结果。
对于数值积分部分的习题,可能会涉及到梯形公式、辛普森公式等不同的数值积分方法。
在求解过程中,需要准确确定积分区间和节点,计算相应的系数,并最终得到积分的近似值。
答案会给出具体的计算步骤和结果,同时还会对不同方法的精度和误差进行比较和分析,帮助我们更好地理解各种数值积分方法的特点和适用范围。
常微分方程数值解法的习题则通常要求我们运用欧拉方法、改进的欧拉方法、龙格库塔方法等求解给定的初值问题。
这需要我们对这些方法的原理和公式有深入的理解,并能够正确地进行编程实现或手算求解。
答案中会详细讲解每一种方法的应用过程,以及如何根据给定的精度要求选择合适的解法。
在求解课后习题的过程中,我们不能仅仅满足于得到答案的结果,更要注重理解答案背后的思路和方法。
比如,在遇到错误答案时,要认真分析自己的解题过程,找出错误的原因,并通过与正确答案的对比,加深对知识点的理解。
同时,我们还可以尝试对答案进行拓展和延伸,思考如何将所学的知识应用到实际问题中,提高自己解决实际问题的能力。
精品数值分析第五版课后习题完整答案(李庆扬等)
第一章 绪论(12)1、设0>x ,x 的相对误差为δ,求x ln 的误差。
[解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=*****1)()(ln )(ln x xx x x , 相对误差为****ln ln )(ln )(ln x x x x rδεε==。
2、设x 的相对误差为2%,求n x 的相对误差。
[解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而nx 的误差为nn x x nxn x x n x x x **1***%2%2)()()()(ln *⋅=='=-=εε,相对误差为%2)()(ln )(ln ***n x x x nr==εε。
3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x 。
[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。
4、利用公式(3.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。
(1)*4*2*1x x x ++;[解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫ ⎝⎛∂∂=++∑x x x x x f x x x e nk k k εεεε;(2)*3*2*1x x x ;[解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e n k k kεεεε;(3)*4*2/x x 。
数值分析课程课后习题答案(李庆扬等)1
第一章 绪论1、设0>x ,x 的相对误差为δ,求x ln 的误差。
[解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=*****1)()(ln )(ln x x x x x , 相对误差为****ln ln )(ln )(ln x x x x rδεε==。
2、设x 的相对误差为2%,求n x 的相对误差。
[解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而n x 的误差为nn x x nxn x x n x x x **1***%2%2)()()()(ln *⋅=='=-=εε,相对误差为%2)()(ln )(ln ***n x x x nr==εε。
3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x 。
[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。
4、利用公式(3.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。
(1)*4*2*1x x x ++; [解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫ ⎝⎛∂∂=++∑x x x x x f x x x e nk k k εεεε;(2)*3*2*1x x x ;[解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e n k k kεεεε;(3)*4*2/x x 。
数值分析教材第五版习题答案(李庆扬等)
数值分析教材第五版习题答案(李庆扬等)本文档是《数值分析》(第五版)的题答案,由李庆扬等人编写。
共分为13章,每章包括了若干题和题答案。
第一章介绍了数值分析的基本概念和一些数学基础知识。
其中的题主要涉及数值计算的舍入误差和截断误差的计算。
第二章讨论了插值与拟合问题,题主要集中在各种插值方法和曲线拟合问题的应用。
第三、四章分别介绍了数值积分和数值微分的计算。
这些章节提供了多种数值积分、数值微分算法的细节,以及贯穿其中的误差分析。
第五章是线性方程组的数值解法,主要介绍了直接法、迭代法以及常见的一些稀疏矩阵的解法。
第六章涉及到了非线性方程的求解,重点探讨了二分法、牛顿法、割线法等解法的理论和应用。
第七、八章介绍了特征值与特征向量、矩阵的奇异值与奇异向量的计算。
这两章的题主要考察了特征值的计算方法和矩阵奇异值分解的原理和实现。
第九章讲解了最小二乘问题,包括线性最小二乘问题的求解、非线性最小二乘问题的求解、以及曲线拟合的一些应用。
第十章介绍了常微分方程数值解的一些方法,包括欧拉法、龙格-库塔法等。
第十一章是偏微分方程数值解的方法。
该章节中的题除了基于差分格式的显式解法外,还包括了一些基于有限元方法、谱方法的数值求解思路。
第十二章讨论了随机数与随机过程的数值模拟方法。
这一章节的题较为简单,主要考察了生成随机数的方法和统计性质。
第十三章介绍了复数及其函数的数值计算方法。
题主要涵盖了复数函数的解析和逼近,以及量子力学中常用的算符的数值求解。
本文档共收录了近1000道习题及其答案,对于求解数值分析问题的读者来说有很好的参考作用。
需要注意的是,本文档中的答案仅供参考,读者应该结合自身的情况进行判断和验证。
数值分析课程第五版课后习题答案(李庆扬等)
第一章 绪论(12)1、设0>x ,x 的相对误差为δ,求x ln 的误差。
[解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=*****1)()(ln )(ln x x x x x , 相对误差为****ln ln )(ln )(ln x x x x rδεε==。
2、设x 的相对误差为2%,求n x 的相对误差。
[解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而n x 的误差为nn x x nxn x x n x x x **1***%2%2)()()()(ln *⋅=='=-=εε,相对误差为%2)()(ln )(ln ***n x x x nr==εε。
3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x 。
[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。
4、利用公式(3.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。
(1)*4*2*1x x x ++; [解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫ ⎝⎛∂∂=++∑x x x x x f x x x e nk k k εεεε;(2)*3*2*1x x x ;[解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e n k k kεεεε;(3)*4*2/x x 。
数值分析课程第五版课后习题答案(李庆扬等)
第一章 绪论(12)1、设0>x ,x 的相对误差为δ,求x ln 的误差。
[解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=*****1)()(ln )(ln x xx x x , 相对误差为****ln ln )(ln )(ln x x x x rδεε==。
2、设x 的相对误差为2%,求n x 的相对误差。
[解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而nx 的误差为nn x x nxn x x n x x x **1***%2%2)()()()(ln *⋅=='=-=εε,相对误差为%2)()(ln )(ln ***n x x x nr==εε。
3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x 。
[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。
4、利用公式(3.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。
(1)*4*2*1x x x ++;[解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫ ⎝⎛∂∂=++∑x x x x x f x x x e nk k k εεεε;(2)*3*2*1x x x ;[解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e n k k kεεεε;(3)*4*2/x x 。
数值分析课程第五版课后习题答案(李庆扬等)
第一章 绪论(12)1、设0>x ,x 的相对误差为δ,求x ln 的误差。
[解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=*****1)()(ln )(ln x x x x x , 相对误差为****ln ln )(ln )(ln x x x x rδεε==。
2、设x 的相对误差为2%,求n x 的相对误差。
[解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而n x 的误差为nn x x nxn x x n x x x **1***%2%2)()()()(ln *⋅=='=-=εε,相对误差为%2)()(ln )(ln ***n x x x nr==εε。
3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x 。
[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。
4、利用公式(3.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。
(1)*4*2*1x x x ++; [解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫ ⎝⎛∂∂=++∑x x x x x f x x x e nk k k εεεε;(2)*3*2*1x x x ;[解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e n k k kεεεε;(3)*4*2/x x 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第7章复习与思考题求f (X )= 0的零点就等价于求(x )的不动点,选择一个初始近似值X 0,将它代入X =「(X ) 的右端,可求得X 1 h%X °),如此反复迭代有 X k 1 二(X k ), k =0,1,2,..., (X)称为迭代函数,如果对任何X 。
• [a,b],由x k 卜h%x k ),k =0,1,2,...得到的序列〈X k 1有极限则称迭代方程收敛,且X* =®(x*)为®(X )的不动点 故称X k q 二(X k ), k =0,1,2,...为不动点迭代法。
5•什么是迭代法的收敛阶?如何衡量迭代法收敛的快慢?如何确定X k 1 二「(X k )(k =0,1,2,...)的收敛阶P219设迭代过程X k 1'h%X k )收敛于 (X)的根X*,如果当k > 时,迭代误差e k = x k - x *满足渐近关系式—t C,C =const 式 0 e/则称该迭代过程是 p 阶收敛的,特别点,当 p=1时称为线性收敛,P>1时称为超线性收敛, p=2时称为平方收敛。
以收敛阶的大小衡量收敛速度的快慢。
6•什么是求解f(x)=0的牛顿法?它是否总是收敛的?若 f(X*) =0,X*是单根,f 是光 滑,证明牛顿法是局部二阶收敛的。
牛顿法:当| f (X k )卜J 时收敛。
7•什么是弦截法?试从收敛阶及每步迭代计算量与牛顿法比较其差别。
在牛顿法的基础上使用 2点的的斜率代替一点的倒数求法。
就是弦截法。
收敛阶弦截法1.618小于牛顿法2 计算量弦截法 <牛顿法(减少了倒数的计算量)8•什么是解方程的抛物线法?在求多项式全部零点中是否优于牛顿法? P229X-mX k 1 =X kf (X k ) f (X k )设已知方程f (x) = 0的三个近似根,X k,X k^,X k^2,以这三点为节点构造二次插值多项式p(x),并适当选取p2(x)的一个零点X k卅作为新近似根,这样确定的迭代过程称为抛物线法。
抛物线法的收敛阶1.840大于弦截法1.618,小于牛顿法2可用于所想是的实根和复根的求解。
9•什么是方程的重根?重根对牛顿法收敛阶有何影响?试给出具有二阶收敛的计算重根方法。
10. 什么是求解n维非线性方程组的牛顿法?它每步迭代要调用多少次标量函数(计算偏导数与计算函数值相当)11. 判断下列命题是否正确:(1)非线性方程(或方程组)的解通常不唯一(正确)(2)牛顿法是不动点迭代的一个特例(正确)(3 )不动点迭代法总是线性收敛的(错误)(4)任何迭代法的收敛阶都不可能高于牛顿法(正确)(5 )求多项式p(x)的零点问题一定是病态的问题(错误)(7)二分法与牛顿法一样都可推广到多维方程组求解(错误)(8)牛顿法有可能不收敛(正确)(9)不动点迭代法X k 1 =「(X k),其中八(x*),若|「(X*)卜:1则对任意处置x0迭代都收敛。
(对)(10)弦截法也是不动点迭代法的特例(正确)习题1、用二分法求方程x2_x-1=0的正根,要求误差::0.05。
[解]令 f(x)=x —X-1,则 f(0) = -1,f(2)=1,所以有根区间为 0,2 ; 又因为,所以有根区间为1,2 ;f(1.5) =1.52 -1.5 -1 - -0.25,所以有根区间为 1.5,2 ;f(1.75) M752 -1.75 -1 =5 • 0,所以有根区间为 1.5,1.75 ;161f(1.625) =1.6252 -1.625 -1 0,所以有根区间为 1.5,1.625 ;64 f(1_L) =(1_L)2 —1_L —1 =_旦 c0,所以有根区间为 V 9 ,1.625 i ;16 16 16 256 < 16 丿取 x 、1 (1 915) J 9 =1.59375 ,2 16 8 321 9 1这时它与精确解的距离:::(1.625 -1 9 ) = < 0.05。
2 16 322. 为求方程x 3 -X 2 -1 =0在X 。
=1.5附近的一个根,设将方程改写成下列等价形 式,并建立相应的迭代公式: 1)X=11/x 2,迭代公式 X k1 =1 1/x";2) x 3 =1 x 2,迭代公式 X k 1 =3、1 • X :; 3) x 2 -——,迭代公式 X k 1 = 1/ •: X k -1 ;x T试分析每种迭代公式的收敛性,并选取一种公式求出具有四位有效数字的近似 值。
[解]1 )设®(x) =1 + $,则®(X )= ~~3,从而 I®(1.5)1 =|-了23 =盘 * 1,所以 迭代方法局部收敛。
2) 设(x) = 3 1 X 2,则:(x)二彳 x(1 x 2) 3,从而3)设④(x) ,则® "(X )= -^(x T) 2,从而I® "(1.5)1 =-如―12珥1.5)| = 22 2 — 一勺.5(1 +1.52) 33O 1,所以迭代方法局部收敛。
1(0.5)_2 2所以迭代方法发散。
3J4)设「(X)= x 3— 1,则:(x) x 2 (x 3 — 1) 2,从而3 19 丄 94(1.5)|= 3".5(号)=住>1,所以迭代方法发散。
2 8 <383. 比较求e x • 10x — 2 = 0的根到三位小数所需的计算量:1)在区间0,1内用二分法;2 )用迭代法X k.1 =(2—e x k)/10,取初值X 0 =07. 用下列方法求f (x) = x 3 -3x 「1 = 0在x 0 = 2附近的根。
根的准确值 X *=1.87938524…,要求计算结果准确到四位有效数字。
4 牛顿法J 3?弋32 - 17 丸.035780,16有根区间为_1* 16,32 ; f(-e 64 - 39 <0,有根区间为32一64,32吧)二 e 128 - 73 ::: 0,64有根区间为□ 3 ;_128'3223f(23^e--141 256 128 :0, 有根区间为 _256,32 f(:2) 47 = e 512 277 256 有根区间为蠢5:; f( 93 1024) 931024559 512 有根区间为 国]. _256,1024 '5 弦截法,取x0=2“ =1.9(3)抛物线法,取X0 =1必=3,x2 =2f(X k)二X k [解]1 ) X k X k - v、f (X k)x;_3x k_1 2x3+13xk-3「2x“2,3x:-3 'X i32 2 13 22 -3J7 =1.888889 ,9105555616「.87945,迭代停止。
X k 1 二X kf(X k)2)(X kf (X k) - f (X k」)xk - 3x k - 1-3x k _ 1) _ (x k」3x k J_1严")X k X kj(X k - X kj) - 12 2X k X k X kj X k」-3X i = 1.9, x21.9 2 (1.9 2) ■ 1-2 2~1.9 1.9 2 2 -315.828.411582841= 1.881094X 31582汉1.9沢(--- +1.9) +1841 841(1582)2 1582 1.9 . 1.92_3841 84129558143.42 8411582迭代停止。
"158221582 1.9 841 0.61 8412J026542442=1.879411 5462043213)X k 1 二X k _ f (X k).2 ,其中灼士普—4f (X k)f[X k,X k』X k』=f [ x k , x k 4] f [ x k , x k x k』(x k - x k 4 ) , X o =人X1 = 3,X2 = 2f(X0)=-3 , f(X1)=17 , f(X2)=1 , f [ X0, X1 ]:X1 —X0 17十—0 ,3 -1f[X2, X1]戸f(X2)- f (xjX2 _X1一仃吨,2 -3f[X o,X1,X2】f [X1,X2]- f[X o,X1]X2 _Xo 16一10 =6 , 0 =16+6(2-3)=10 , 2-110 102 -4 1 6 21-1.9465745,下略。
10 、768.分别用二分法和牛顿法求x-tanx=0的最小正根。
解:0是函数的一个根,0〜二时,x 单调递增,tanx 单调递减,趋于负无穷。
2在此区间内,函数没有根。
所以,最小正根大于 -.2当x 接近且大于二时,函数值为正,当x 接近且大于时,函数值为负。
因此, 2 2最小正根区间为(二,),选择x 仁2,函数值为-0.185<0,选择x2=4.6,函数 2 2 值为 4.260>0按二分法计算,略,x * =4.493424。
按牛顿迭代法,其迭代公式为f(&)轨—ta nx/X k 1 — XkXk …f (x k )(1-ctanxk ),取初始值 x=4.6,得 x ^ 4.4934249. 研究求/a 的牛顿公式X k1」(x k • a ), X 。
.0,证明对一切k =1,2,…,2X kx k _ a 且序列x 1, x 2/是递减的。
证:减的。
10. 对于f(x) =0的牛顿公式x k 厂x k - f(x k )/f (x k ),证明r\**、 .*R k =(X k -X k 」)/(X k 丄「X k R 收敛到- f (x )/(2 f (x )),这里 x 为 f (x) =0 的根。
证:2 R k =(& -X k4)/(X k4 -XkQ =-f (X kJ / f (X k4) -(-f(X2)/f (X k 』22R 1 二区 1 -X k )/(X k -X k" _ -f (xj/f "(xj「(-f(x 」/f D 2显然,X k A 0, 又因为 X" - ja =l(X k +旦)—Ua =(Xk- '_0,所以X k2X k忑一 a k=1,2,,又I -忑=抽a)-x X k2X k2k兰0,所以序列是递R k 1 -R k-f (xQ / f "(xQ (-f (x 」/ f (X 」)2-f(X k4)/ f (X k 4)(-f (X k® / f (X k 』)2、211. 用牛顿法(4.13)和求重根迭代法(4.14)计算方程f (x“ sinx —2 的 一个近似根,准确到10^,初始值X o 二二 2牛顿法(4.13), m=2需要计算到 10出,取二=3.1415926。