Heparin层析填料说明书
肝素(Heparin)亲和层析在蛋白纯化中的应用
肝素(Heparin)亲和层析在蛋白纯化中的应用
肝素(Heparin)是一种天然产生的粘多糖,以此形式作为一个亲和配基和离子交换配基作用于宽范围的生物分子,包括凝血因子、其他血浆蛋白质、脂蛋白、蛋白质合成因子以及对核酸和类固醇受体作用的酶类。
将肝素固定在琼脂糖微球上制备的Heparin Focurose 6FF,也可以用来纯化DNA 聚合酶,低盐上样,高盐洗脱,洗脱后酶液可通过透析,超滤或者Focudex G-25凝胶过滤的方式除研。
肝素亲和填料性能参数
应用案例
样品:DNA聚合酶(大肠胞内可溶表达)
填料:汇研生物Heparin Focurose 6FF
平衡:用5CV的平衡缓冲液(50mM Tris,pH8.0平衡层析柱,至流出液电导和pH不变(与平衡液一致)。
上样:菌体重悬破碎液同平衡液。
为了避免堵塞层析柱,样品应经离心或微滤处理。
淋洗:上样完毕后继续用平衡缓冲液淋洗至基线。
洗脱:用洗脱缓冲液(50 mM Tris+1M KCl,pH8.0,KCl浓度需要根据目标蛋白的结合力进行适当调整)洗脱,收集流出液。
可采用线性梯度或阶越式梯度洗脱。
taq酶经肝素亲和层析一步纯化后,纯度95%。
heparin sepharose 6FF 说明书
Contents1. Medium characteristics 32. Packing columns 43. Evaluation of packing 144. Operation 175. Maintenance 186. Ordering information 20 p. 2Table 1. Characteristics of Heparin Sepharose 6 Fast Flow.Ligand density approx 4 mg heparin/ml drained medium Average particle size 90 μm (45–165 μm)Bead structure 6% highly cross-linked spherical agarose, Flow rate ≥300 cm/h at 100 kPa (XK 50/60 column, bedheight 25-cm, eluent distilled water, 20 °C) Recommended pHworking and long term 4–12short term, (cleaning in place) 4–13Chemical stability (1 week, 40 °C) 0.01 M NaOH0.05 M sodium acetate, pH 4.0MNaCl4ureaM86 M guanidine hydrochloride(1 week, 20 °C) 0.1 M NaOHAutoclavable 121 °C for 20 minutes in distilled waterDelivery and storage conditions Supplied in 0.05 M sodium acetate containingethanol20%2. Packing columnsHeparin Sepharose 6 Fast Flow is supplied pre-swollen. Decant the 20% ethanol solution and replace it with binding buffer before use. Recommended columnsLab-scale columns• Tricorn TM 5/20 (5 mm i.d.) for bed volumes up to 0.55 ml at bed heights up to 2.8 cm• Tricorn 5/50 (5 mm i.d.) for bed volumes up to 1.14 ml at bed heights up to 5.8 cm• Tricorn 10/20 (10 mm i.d.) for bed volumes up to 2.2 ml at bed heights up to 2.8 cm• Tricorn 10/50 (10 mm i.d.) for bed volumes up to 4.56 ml at bed heights up to 5.8 cmp. 4• Tricorn 10/100 (10 mm i.d.) for bed volumes up to 8.48 ml at bed heights up to 10.8 cm• XK 16/20 (16 mm i.d.) for bed volumes up to 30 ml at bed heights up to15 cm.• XK 26/20 (26 mm i.d.) for bed volumes up to 80 ml at bed heights up to15 cm.• XK 50/20 (50 mm i.d.) for bed volumes up to 275 ml at bed heights up to15 cm.Large scale columns• BPG TM variable bed, glass columns. Inner diameters from 100–450 mm, bed volumes from 2.4–131 litres; bed height max 83 cm.• BioProcess TM Stainless Steel (BPSS) fixed bed columns. Inner diameters from 400–1400 mm; bed volumes from 12–1500 litres, bed height10–100 cm.• I NdEX TM variable bed columns. Inner diameters from 70–200 mm; bed volumes up to 24.8 litres; bed heights of max 79 cm.• CHROMAFLOW TM variable bed columns. Inner diameters from 280–2000 mm.Packing lab-scale columns1. Assemble the column (and packing reservoir if necessary).2. Remove air from the column dead spaces by flushing the end-pieceand adaptor with packing buffer. Make sure no air has been trappedunder the column bed support. Close the column outlet leaving the bedsupport covered with packing buffer.3. Resuspend medium stored in its container by shaking (avoid stirring thesedimented medium). Mix the packing buffer with the medium to form50–70% slurry (sedimented bed volume/slurry volume = 0.5–0.7).4. Pour the slurry into the column in a single continuous motion. Pouringthe slurry down a glass rod held against the column wall will minimizethe introduction of air bubbles.p. 55. If using a packing reservoir, immediately fill the remainder of thecolumn and reservoir with packing buffer. Mount the adaptor or lid ofthe packing reservoir and connect the column to a pump. Avoidtrapping air bubbles under the adaptor or in the inlet tubing.6. Open the bottom outlet of the column and set the pump to run at thedesired flow rate. Ideally, Sepharose 6 Fast Flow based media arepacked at a constant pressure of approximately 1.5 bar (0.15 MPa). If the packing equipment does not include a pressure gauge, use a packingflow velocity of approximately 500 cm/h (10 cm bed height, 25 °C, lowviscosity buffer).If the recommended pressure or flow rate cannot be obtained, usethe maximum flow rate the pump can deliver. This should also give areasonably well-packed bed.Note:Do not exceed 75% of the packing flow velocity in subsequent chromatographic procedures using the same pump.7. When the bed has stabilized, close the bottom outlet and stop the pump.8. If using a packing reservoir, disconnect the reservoir and fit the adaptorto the column.9. With the adaptor inlet disconnected, push down the adaptorapproximately 2 mm into the bed, allowing the packing solution to flush the adaptor inlet.10. Connect the pump, open the bottom outlet and continue packing. Thebed will be further compressed at this point and a space will be formed between the bed surface and the adaptor.11. Close the bottom outlet. Disconnect the column inlet and lower theadaptor approximately 2 mm into the bed. Connect the pump. Thecolumn is now ready to use.Packing large scale columnsGeneral packing recommendationsColumns can be packed in different ways depending on the type ofcolumn and equipment used. Always read and follow the relevant column instruction manual carefully.p. 6To determine the optimal packing flow rate, proceed as follows:1. Calculate the exact amount of medium needed for the slurry (this isespecially important for columns with fixed bed heights). The quantityof medium required per litre packed bed is approximately 1.15 litresedimented medium.2. Prepare the column exactly as for column packing.3. Begin running the column at a low flow rate (e.g. 30% of the expectedmax flow rate) and record the flow rate and back pressure when the bed is packed and the pressure has stabilized.4. Increase the flow rate in small steps and record the flow rate andpressure at each step after the pressure has stabilized.5. Continue recording flow and pressure until the maximum flow ratehas been reached, i.e. when the flow rate levels off at a plateauindicating bed compression or when the pressure reaches the pressure specification of the column used.6. Plot pressure against flow rate as indicated in Figure 3. The optimalpacking flow rate/pressure is 70–100% of the maximum flow rate/pressure.The operational flow rate/pressure should be <70% of the packing flowrate/pressure.Note: For BPSS columns, first pack the column by suction packing at a low flow rate. Then determine the flow/pressure characteristics asabove by pumping buffer downwards through the column.Packing CHROMAFLOW columnsProcedure1. Prepare the column for packing as described in the User Manual.Packing from the top1. Set the top nozzle to the pack position (mid-position).2. Fully retract the bottom nozzle (run position).p. 83. Ensure that the top mobile phase is closed.4. Open the bottom mobile phase.5. Open Inlet C and start the packing pump. Adjust the flow to achieve therequired packing conditions for the selected medium. Monitor columnpressure and the outlet flow rate in order to record column packingparameters. (Remember to stir the medium slurry during packing toprevent it from settling.)6. Continue pumping until the column is fully packed and the pump stallsdue to build-up of medium in its pipelines. Turn off the packing pump.7. Fully retract the top nozzle to its run position. Close Outlet (C). Open Inlet(B) from the water/buffer tank and open Outlet (D). The pump shouldnow be restarted to rinse the top slurry lines. (If the nozzle is full of liquid when in the packing position, make sure that the waste slurry outlet isopen before retracting the nozzle.)8. To clean-in-place, exchange the buffer tank for wash/buffer tankcontaining cleaning solution.Packing from belowTo pack from the bottom, carry out the same procedure for the connections and flow path via the bottom nozzle. The column is now ready to equilibrate and test.Note:It is also possible to use a slightly different packing method where the amount of medium is predetermined. In this case the completeamount of medium is packed into the column causing compressionof the bed. When all medium has entered the column the pump isstopped, the top nozzle is retracted, the bottom mobile phase valveclosed and the medium is allowed to decompress within the column.p. 9SLURRY INLET/OUTLET (C)MOBILE PHASEMOBILE PHASE (D)MOBILE PHASE (B)BUFFERWASTE SLURRYWASTE SLURRYBUFFERPrinciple of operation – CHROMAFLOW columns.BPG Columns are supplied with a movable adaptor. They are packed by conventional pressure packing by pumping the packing solution through the chromatographic bed at a constant flow rate (or back pressure).1. Pour some water (or packing buffer) into the column. Make sure thatthere is no air trapped under the bottom bed support. Leave about 2 cm of liquid in the column.2. Mix the packing buffer with the medium to form a 50–70% slurry.(sedimented bed volume/slurry volume = 0.5–0.7). Pour the slurry into the column. Insert the adaptor and lower it to the surface of the slurry, making sure no air is trapped under the adaptor. Secure the adaptor in place.3. Seal the adaptor O-ring and lower the adaptor a little into the slurry,enough to fill the adaptor inlet with packing solution.4. Connect a pump and a pressure meter and start packing at thepredetermined packing flow rate (or pressure). Keep the flow rate (or pressure) constant during packing and check the pressure at thecolumn inlet. Never exceed the pressure limit for column or medium.5. When the bed has stabilized, close the bottom valve and stop the pump.The bed starts rising in the column. Loosen the O-ring and lower theadaptor to 0.5–1.0 cm above the bed surface.6. Seal the O-ring, start the pump and continue packing. Repeat steps5 and6 until there is a maximum of 1 cm between bed surface andadaptor when the bed has stabilized. Mark the bed height on the column tube.7. Close the bottom valve, stop the pump, disconnect the column inlet and,without loosening the adaptor O-ring, push the adaptor down toapproximately 3 mm below the mark on the column tube. The packing solution will flush the adaptor inlet. Remove any trapped air by pumping liquid from the bottom (after the inlet tubing and the bottom valve have been properly filled).BioProcess Stainless Steel Columns are supplied with fixed end pieces. They are packed by suction, i.e. by sucking packing solution through the chroma-tographic bed at a constant flow rate.1. Fit a packing device on top of the column tube.2. Pour some water (or packing buffer) into the column. Make sure thatthere is no air trapped under the bottom bed support. Leave about2–3 cm of liquid in the column.3. Mix the packing buffer with the medium to form a 50% slurry(sedimented bed volume/slurry = 0.5). Pour the slurry into the column.Stir gently to make sure it is homogeneous.4. Connect the column outlet valve to the suction side of a pump and startpacking the bed by suction through the bed at the predetermined flow rate. Keep the flow rate constant during packing.5. When the bed has stabilized, the top of the bed should be just below thejunction between the column and the packing device.If, when stabilized, the level of the bed is incorrect, add or remove slurry.Always stir the slurry thoroughly before packing.6. Just before the last of the solution has entered the packed bed (beforethe surface starts to dry), close the valve at the column outlet, stop the pump, quickly remove the packing device and replace it with the lid.Note:This final operation should be completed as quickly as possible because the bed will expand when the flow stops.7. Start pumping buffer with upward flow through the column to removeany air bubbles trapped under the lid.Hydraulic packing (INdEX Columns)INdEX Columns are supplied with a hydraulic function which allows an extremely simple, rapid and reproducible packing procedure. The medium is packed at the same time as the adaptor is lowered into position at the correct pressure.The adaptor is pushed down by a constant hydraulic pressure, forcing water or packing buffer through the slurry and compressing it so that a packed bed is gradually built up. The hydraulic pressure can be generated using a pump and a pressure relief valve.When the adaptor reaches the surface of the settled medium, it continues downwards under hydraulic pressure compressing the medium. The extent to which the medium is compressed depends upon the pressure from the adaptor and the elasticity of the medium. The quantity of medium required when packing Sepharose 6 Fast Flow based media by hydraulic pressure is approximately 1.2 litre sedimented medium per litre packed bed.1. Pour some water (or packing solution) into the column. Make sure thatthere is no air trapped under the bottom bed support. Leave about 2 cm of liquid in the column.2. Pour the 75% slurry into the column. Fill the column with packingsolution up to the top of the glass tube and mix the slurry. Allow themedium to sediment to just below the bevel of the glass tube (G), seeFigure 4.3. Put the adaptor in a resting position against the bevel of the glass tube.Avoid trapping air bubbles under the adaptor by slightly tilting theadaptor while mounting.4. Lower the lid and secure it in place.5. Connect a pump to the inlet of the hydraulic chamber (A), with amanometer and a pressure reliefe valve in-line between the pump and the hydraulic chamber. The manometer should be placed after the valve in the direction of the flow.6. Open the hydraulic inlet (A), and the hydraulic outlet (C). Start thepump and flush the hydraulic chamber (E) free of air and any residual medium.7. Close (C) and open the elution inlet/outlet (B) to allow trapped air in theadaptor bed support to escape.8. Close (B) and open the elution inlet/outlet (D) to start the packing,applying a predefined constant hydraulic packing pressure. Whenpacking Sepharose 6 Fast Flow based media in an INdEX column to a bedfactor, As. These values are easily determined by applying a sample such as 1% (v/v) acetone solution to the column. Sodium chloride can also be used as a test substance. Use a concentration of 2.0 M NaCl in water with 0.5 M NaCl in water as eluent.The calculated plate number will vary depending on the test conditions and it should therefore be used as a reference value only. It is alsoimportant that conditions and equipment are kept constant so that results are comparable. Changes in solute, solvent, eluent, sample volume, flow rate, liquid pathway, temperature, etc., will influence the results.For optimal results, the sample volume should be at max. 2.5% of the column volume and the flow velocity between 15 and 30 cm/h.If an acceptance limit is defined in relation to column performance, the column plate number can be used as part of the acceptance criteria for column use.Method for measuring HETP and A sTo avoid dilution of the sample, apply it as close to the column inlet as possible.Conditions Sample volume: 2.5% of the bed volumeSample conc.: 1.0% (v/v) acetone Flow velocity: 15 cm/hUV:280 nm, 1 cm, 0.1 AUCalculate HETP and As from the UV curve (or conductivity curve if NaCl is used as sample) as follows: HETP = L/NN = 5.54(V e /W h )2 where L = Bed height (cm)N = number of theoretical plates V e = Peak elution distanceW h = Peak width at half peak heightV e and W h are in the same units.4. OperationBindingImmobilized heparin has two main modes of interaction with proteins. Heparin Sepharose 6 Fast Flow can be used as an affinity chromatography media; e.g. for purification of coagulation factors or nucleic binding proteins. Different substances may differ in their affinity for Heparin Sepharose 6 Fast Flow. The binding capacity of a particular protein will depend upon parameters such as buffer composition, pH, flow rate and temperature. Heparin Sepharose 6 Fast Flow might also function as a cation exchanger due to the negatively charged sulphate and carboxylate groups on the immobilized heparin ligand.A commonly used binding buffer for the purification of plasma proteinsis 10–20 mM sodium citrate buffer, pH 7.4. Since the heparin ligand actsas an affinity ligand in these cases, it may be advisable to include low concentration of NaCl in order to eliminate unspecific ionic interactions.In other applications 10 mN sodium phospate, pH 7.0 or 20 mM Tris-HCl,pH 8.0 are often recommended as binding buffers.ElutionElution is commonly performed by increasing the ionic strength of the buffer. Elution using a continuous linear gradient or step gradient withNaCl, KCl or (NH4)SO4up to 1.5–2 M is most frequently used.Recommended cleaning-in-place procedures are summarized in Table 2. Always wash the column thoroughly with equilibration buffer after cleaning-in-place.Table 2. CIP protocol.For removal of time Wash with Column volumes Contact Ionically bound proteins 2 M NaCl 0.5 10–15 min Precipitated or 0.1 M NaOH 4 1–2 h denatured proteins or 6 M guanidine-HCl approx. 2 30 min–1 hor 8 M urea approx. 2 30 min–1 h Hydrophobically 0.1–0.5% non-ionic 4 1–2 h bound proteins detergentA specific CIP protocol should be designed for each process according to the type of contaminants present. The frequency of CIP depends of the nature and the condition of the starting material, but one CIP cycle is generally recommended every 5 separation cycles.SanitizationFor inactivation of microbial contaminants, equilibrate the column with buffer consisting of 0.1 M NaOH and 20% ethanol and allow to stand for 1 h. Note:Alternatively, equilibrate with 70% ethanol and allow to stand for12 h if working in an explosion-proof environment.Wash the column thoroughly with running buffer after sanitization. SterilizationAutoclaving is the only recommended sterilization treatment. Equilibrate the medium with 0.5 M NaCl, pH 7. Dismantle the column and autoclave the medium at 120 °C for 30 minutes. Sterilize the column parts according to the instructions in the column manual. Re-assemble the column, then pack and test it as recommended.StorageStore Heparin Sepharose 6 Fast Flow at +4 to 30°C in 0.05 M sodium acetate containing 20% ethanol as preservative.6. Ordering informationNo.CodesizeProduct PackHeparin Sepharose 6 Fast Flow 50 ml 17-0998-01Heparin Sepharose 6 Fast Flow 250 ml 17-0998-25Heparin Sepharose 6 Fast Flow 1 L 17-0998-03Heparin Sepharose 6 Fast Flow 5 L 17-0998-04Related productsLab scale columns:Tricorn 5/20 column (5 mm i.d.) 1 18-1163-08Tricorn 5/50 column (5 mm i.d.) 1 18-1163-09Tricorn 10/20 column (10 mm i.d.) 1 18-1163-13Tricorn 10/50 column (10 mm i.d.) 1 18-1163-14Tricorn 10/100 column (10 mm i.d.) 1 18-1163-15XK 16/20 (16 mm i.d.) 1 18-8773-01XK 26/20 (26 mm i.d.) 1 18-1000-72XK 50/20 (50 mm i.d.) 1 18-1000-71Prepacked columns:HiTrap TM Heparin HP, 1 ml 5x1 ml 17-0406-01HiTrap Heparin HP, 5 ml 1x5 ml 17-0407-01HiPrep TM 16/10 Heparin FF 1 (20 ml) 17-5189-01Large scale columns:Data File CHROMAFLOW columns 18-1138-92Data File BPG columns 18-1115-23Data File BPG 450 columns 18-1060-59Data File INdEX columns 18-1115-61Data File Bio Process Stainless Steel columns 18-1121-08Reference literatureFor general advice on lab scale use check the Affinity Chromatography Handbook from GE Healthcare, Code no. 18-1022-29.For general advice on optimization, scaling up and other aspects relating to process chromatography we recommend:Handbook of Process Chromatography: A Guide to optimization, scale-up and validation. Academic Press, pp 188-214 (1997). Sofer G. and Hagel, L.p. 21p. 22p. 23。
蓝晓生物科技 Q Large Scale HP 层析介质说明书
Q Large Scale HP说明书1.产品介绍Q Large Scale HP层析介质是蓝晓科技自主研发的一种新型高度交联的琼脂糖层析介质,是将三甲胺基烷基季铵基团键合在小粒度高流速琼脂糖微球上形成的一种强阴离子交换介质,其具有高流速、高分辨率、高动态载量、良好的化学稳定性和机械性能,非特异性吸附低,回收率高,方便进行规模放大,可缩短生产时间,提高生产效率。
广泛用于生物制药和生物工程下游蛋白质、核酸及多肽的离子交换制备。
2.性能介绍产品牌号Q Large Scale HP外观白色球状,无臭无味种类强阴离子交换填料基质Large Scale HP微球配基三甲胺基烷基季铵基团形态氯型粒径d50v(μm)~36-44pH稳定性2~12(长期),2~14(短期,在位清洗[CIP])在以下液体中稳定:所有常用的水相缓冲液;1mol/L 氢氧化钠;化学稳定性8mol/L 尿素;6mol/L 盐酸胍;70% 乙醇;30%异丙醇;1M 醋酸动态载量,Q B,10% >50mgBSA /ml离子交换量(mmol /ml)0.15~0.18Cl-工作温度4~30℃耐热性121℃,水中30min流速*柱床高20cm,压力0.3MPa,流速大于220cm/h应用用于生物制药和生物工程下游蛋白质、核酸及多肽的离子交换层析纯化3.使用方法3.1 装柱装柱按照标准操作规程操作。
必须保证每种材料都处于工作温度,凝胶装柱前需要脱气。
3.2平衡使用2~5倍柱床体积的上样平衡液平衡柱子,务必使流出液的电导和pH同上样缓冲液的电导和pH完全一致。
平衡液是低浓度的缓冲溶液,如T ris、PBS等。
3.3上样(1)样品用平衡液配制,浑浊的样品要离心和过滤后上样。
盐浓度太大的样品处理后再配。
(2)一般情况是让目标产品结合在柱子上,用平衡液洗去杂质,再选择一种洗脱液洗下目标产品。
(3)介质对样品组分吸附的程度取决于样品的带电性质、流动相的离子强度和pH值。
rProtein A层析填料说明书
rProtein A Sepharose Fast Flow原理蛋白质A来自金黄色葡萄球菌属,包含5个区域,可以用来结合IgG的Fc区域。
作为一个亲和配基,蛋白质A偶联到Sepharose上,似的这些区域可以结合游离的IgG分子。
一份子的蛋白质A可以至少结合两分子的IgG。
尽管蛋白质A主要是与人类免疫球蛋白IgG进行结合,一些其他类型的免疫球蛋白也显示出能够结合蛋白质A。
蛋白质A能够与人初乳IgA发生相互作用,同时也可以和人类的骨髓瘤IgA2发生反应,但是不能与IgA1发生反应。
一些人类的单抗IgMs和一些来自正常的和巨球蛋白血症血清中的IgMs能够结合蛋白质A。
进行一个分离操作结合缓冲液:20mM磷酸纳,pH7.0洗脱缓冲液:100mM柠檬酸-柠檬酸钠,pH3~6中和缓冲液:1M Tris-HCl,pH9.01,用5倍柱体积的蒸馏水冲洗柱子。
2,用5倍柱体积的结合缓冲液平衡柱子。
3,上样,流速为1-4ml/min(1ml的柱子),或者5ml/min(5ml的柱子)。
收集流穿片段。
4,用5-10倍柱体积的结合缓冲液平衡分离柱,直到基线,即所有未结合物质都被冲洗出柱子(紫外检测器在280nm波长检测)。
5,用5倍柱体积的洗脱缓冲液进行洗脱。
洗脱液立即用中和缓冲液(0.06ml~0.2ml 1M Tris-HCl,pH9.0每毫升馏分)中和至中性。
6,立即用5-10倍体积的结合缓冲液重新平衡柱子。
使用注意1,样品需要离心(10000g/20min)去除细胞和细胞碎片。
离心下来的上清经过一个0.45μm 的滤膜过滤。
2,来自多数物种的IgGs和亚类,在接近生理pH值和离子强度的条件下,可以结合到蛋白质A上。
如果蛋白质和配基之间的互相作用较弱,应该避免过度冲洗,因为这样可能会减少最终的产量。
3,对于一些抗体,比如小鼠IgG,当使用蛋白质A进行纯化时,可能需要向结合缓冲液中加入3M的氯化钠,达到最有效的结合,例如1.5M的甘氨酸和3M的氯化钠,pH为8.9。
肝素(Heparin)亲和层析在蛋白纯化中的应用
肝素(Heparin)亲和层析在蛋白纯化中的应用
肝素(Heparin)亲和层析在蛋白纯化中的应用
肝素(Heparin)是一种天然产生的粘多糖,以此形式作为一个亲和配基和离子交换配基作用于宽范围的生物分子,包括凝血因子、其他血浆蛋白质、脂蛋白、蛋白质合成因子以及对核酸和类固醇受体作用的酶类。
将肝素固定在琼脂糖微球上制备的Heparin Focurose 6FF,也可以用来纯化DNA 聚合酶,低盐上样,高盐洗脱,洗脱后酶液可通过透析,超滤或者Focudex G-25凝胶过滤的方式除研。
肝素亲和填料性能参数
应用案例
样品:DNA聚合酶(大肠胞内可溶表达)
填料:汇研生物Heparin Focurose 6FF
平衡:用5CV的平衡缓冲液(50mM Tris,pH8.0平衡层析柱,
至流出液电导和pH不变(与平衡液一致)。
上样:菌体重悬破碎液同平衡液。
为了避免堵塞层析柱,样品应经离心或微滤处理。
淋洗:上样完毕后继续用平衡缓冲液淋洗至基线。
洗脱:用洗脱缓冲液(50 mM Tris+1M KCl,pH8.0,KCl浓度需要根据目标蛋白的结合力进行适当调整)洗脱,收集流出液。
可采用线性梯度或阶越式梯度洗脱。
taq酶经肝素亲和层析一步纯化后,纯度95%。
Heparin Beads 6FF
Heparin Beads6FF目录1.产品介绍 (1)2.纯化流程 (1)3.填料清洗 (2)4.订购信息及相关产品 (3)1.产品介绍Heparin Beads6FF是一种用于纯化肝素依赖性生物分子的亲和层析介质,包括抗凝血酶III、凝血因子和其他血浆蛋白、DNA结合蛋白、脂蛋白、蛋白合成因子、核酸作用酶和类固醇受体。
Heparin Beads6FF采用高度交联的6%琼脂糖介质,可耐受较高的流速及化学稳定性,适合大规模纯化。
具体性能见表1。
表1.Heparin Beads6FF产品性能性能指标基质高度交联的6%琼脂糖微球配体肝素钠配体密度>4mg/ml介质粒径(μm)45-165最大流速0.3MPa,3barpH稳定范围4-12储存缓冲液含20%乙醇的1XPBS储存温度2°C-8°C2.纯化流程2.1缓冲液的准备所用水和缓冲液在使用之前建议用0.22μm或0.45μm滤膜过滤。
平衡液:10-100mM Tris-HCl,10mM柠檬酸钠,pH7.4洗杂液:10-100mM Tris-HCl,10mM柠檬酸钠,pH7.4洗脱液:10-100mM Tris-HCl,10mM柠檬酸钠,1M NaCl,pH7.4注:平衡液和洗脱液可根据样品性质进行适当改变,原则是低盐上样高盐洗脱。
2.2样品准备样品在上样前建议离心或用0.22μm或0.45μm滤膜过滤,减少杂质,提高蛋白纯化效率和防止堵塞柱子。
2.3Heparin Beads6FF装填Heparin Beads6FF被广泛应用于工业纯化,因此,涉及到各种中压色谱层析柱的填装,下面介绍使用Heparin Beads6FF填装层析柱的方法。
层析柱的装填(使用储液器装填)1)用去离子水冲洗层析柱底筛板与接头,确保柱底筛板上无气泡,关闭柱底出口,并在柱底部留出1-2cm的去离子水。
2)将树脂悬浮起来,小心的将浆液连续地倒入层析柱中。
第十二章层析柱和填料
高通量筛选 ● ● ˉ
40 mg/column
ˉ
40 mg/column
ˉ
1000 µg/well
●
800 µg/well
●
750 µg/column
ˉ
N/A
ˉ
N/A
ˉ
N/A
ˉ
N/A
ˉ
N/A
●
N/A
●
N/A
●
微量提取 ˉ ˉ ●
ˉ ˉ ˉ ˉ ● ● ● ● ● ˉ ˉ ˉ
重力流 ˉ ˉ ˉ
● ● ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ
694
脱盐 凝胶过滤 新 Superdex 200 短层析柱
585
新 MaxCell Process-Scale
589
中空纤维滤柱
698
594
新 ProCell 中空纤维滤柱
700
新 凝胶过滤标准试剂盒 LMW 和 HMW
601
新 在线蒸汽灭菌系列中空纤维滤柱 701
离子交换 新 MacroCap SP 层析聚焦
602
Kvick 盒式过滤器和支架
702
619
新 Kvick Flow 盒式过滤器
706
620
新 Kvick Pilot 和 Process 盒式过滤器 707
疏水作用
623
新 Kvick Lab packet 和
新 HiTrap HIC 选择试剂盒
625
Kvick Lab packet 支架
708
填料类型
应用
色谱聚焦
基于蛋白质的不同等电点的快速纯化
色谱聚焦
基于蛋白质的不同等电点的快速纯化,非常高的分辨力,能够分辨低于
填料应用指南(一)小分子肝素的纯化pdf
达替肝素 帕肝素 依诺肝素 那曲肝素
二、小分子肝素的纯化流程
大分子肝素
层析介质应用
乙醇沉淀 图 1 低分子肝素的纯化流程图
三、采用 CaptoDEAE 纯化达替肝素的工艺目标 MW<3000 含量: <13% MW>8000含量: 15-25% 重均分子量: 5600-6400 层析纯化工艺产品收率: >50%
五、采用 Capto DEAE 纯化达替肝素的工艺
1.将达替肝素原料粉用平衡缓冲液(20mMTris, pH7.5)按照 10mg/ml 的浓度溶解。
2.将 CaptoDEAE 装填的 10cm 高度的层析柱用平衡 缓冲液以 300cm/hr 的浓度平衡 8CV
3.将样品以 200cm/hr 的流速按照 15mg 肝素/ml 填 料的量上样
产品信息
产品
Capto DEAE Capto Q HiTrap Capto DEAE HiTrap Capto DEAE HiTrap Capto Q HiTrap Capto Q HiScreen Capto DEAE
数量
货号
2 5 ml 17-5443-10 2 5 ml 17-5316-10 5 × 1 ml 2 8-9165-37 5 × 5 ml 2 8-9165-40 5 × 1 ml 11-0013-02 5 × 5 ml 11-0013-03 1X 4.7 ml 28-9269-82
GE Healthcare Life sciences
达替肝素的纯化
王济源 GE 生命科学部 Fastrak
简介
中国是世界最大肝素粗品出口国,2010年占据一球 市场份额约60%,出口总量约114吨。目前临床应 用的小分子肝素产品生产工艺掌握在国外制药企业 中,而从肝素粗品制备得到临床用药,产品升值10 倍以上。肝素粗品经NaNO2降解以后,小分子肝 素分子量分布在0-13KD之间.目前欧盟和美国药典 对于小分子肝素的分子量分布和平均分子量有严格 的限制。国内目前有采用膜分离和分子筛的方法来 控制小分子肝素的分子量分布,但收率一般只有20% 以下,具生产能力有限。开发高生产能力,高收率 的小分子肝素生产工艺,可以有效提高国内 肝素企业的出口竞争力。 GE公司在纯化方面拥有丰富的经验,采用新一代的 离子交换填料Capto DEAE成功开发出纯化达替肝素 的新方法,分子量分布范围符合欧洲药典的要求, 并且回收率在60%以上,与传统方法相比具有操作 方便快速易于放大的特点,具有极强的使用价值。 其他的小分子肝素也可参考该工艺进行纯化。
Heparin层析填料说明书
Heparin Sepharose 6 Fast Flow原理肝素是一种含硫酸酯的酸性多糖,将它偶联到交联及活化的琼脂糖凝胶上,该填料具有很高的物理化学稳定性。
肝素能和抗凝血因子Ⅲ、凝血因子、蛋白合成因子、脂蛋白、干扰素、核酸结合蛋白、限制内切酶、凝血酶及类凝血酶等生物大分子结合,所以肝素琼脂糖凝胶可以用于这类物质的纯化。
*图为含有交互转换的抗坏血酸的肝磷脂多糖的结构(A)和D-葡萄糖残基(B)分离操作结合缓冲液:20mM Tris-HCl, pH 8.0或者10mM 磷酸钠, pH7.0洗脱缓冲液:20mM Tris-HCl, 1~2M NaCl, pH 8.0或者10mM 磷酸钠,1~2M NaCl, pH7.01,用10倍柱体积的结合缓冲液平衡柱子。
2,上样。
3,用5-10倍柱体积的结合缓冲液平衡分离柱,直到基线,即所有未结合物质都被冲洗出柱子。
紫外吸光A280nm处监测。
4,用5-10倍柱体积的洗脱缓冲液进行洗脱。
使用连续的或者阶梯式的梯度洗脱,洗脱缓冲液的浓度从0%-100%。
使用注意1,通过改变缓冲液的pH值或者离子强度来修饰肝磷脂的选择性。
洗脱时使用连续的或者阶梯式的洗脱方式,用NaCl,KCl或者硫酸铵溶液,浓度可以高达1.5~2M。
2,对于凝血因子而言,肝磷脂作为亲和配基,在结合缓冲液中含有一个低浓度的0.1M的NaCl是合适的。
3,如果增加盐离子浓度的梯度产生一个令人不满意的结果,使用肝磷脂(1~5mg/ml)在洗脱缓冲液中作为一个竞争性试剂。
净化1,用0.5个柱体积的2M的NaCl冲洗10分钟去除离子键结合蛋白。
2,通过用4倍柱体积的0.1M NaOH溶液冲洗柱子1~2小时去除沉淀物或变性蛋白或用2倍的柱体积的6M的盐酸胍冲洗柱子30~60分钟,或者用2倍柱体积的6M的尿素冲洗30~60分钟。
3,用4倍柱体积的0.1%~0.5%的TritonX-100冲洗1~2小时,去除疏水键结合的蛋白质。
凝胶柱层析关键的一环——如何选择凝胶填料
15.脱盐、小分子去除
使用凝胶过滤介质Sephadex G10,G15,G25,G50等去除小分子,效率高,处理量可达床体积30%。只需在进样后收集首1/3-1/2柱体积的洗脱液,就可以去除该填料分离范围上限以下的小分子,简单直接。由于只是去除小分子,柱高10cm以上即可。整个过程一般可于数分钟至半小时完成。Sephadex G25系列介质专为蛋白质脱盐而设计,预装柱HiTrap Desalting(5ml)可用针筒操作。HiPrep Desalting(26ml)可在数分钟为多至10ml样品脱盐。
2.选择------层析方法
若对目标蛋白的特性或样品成分不太了解,可尝试几种不同的纯化方法:
一] 使用最通用的凝胶过滤方法,选择分离范围广阔的介质如Superose、Sephacryl HR依据分子量将 样品分成不同组份。
二] 用含专一配体或抗体的亲和层析介质结合目标蛋白。亦可用各种活化偶联介质偶联目标蛋白的底物、受体等自制亲和介质,再用以结合目标蛋白。一步即可得到高纯度样品。
凝胶柱层析关键的一环——如何选择凝胶填料
如何选择凝胶
做分离纯化工作的人都知道,选择合适的填料是至关重要的。
1.测定------分子量、PI
当目标蛋白的物理特性如分子量、PI等都不清楚时,可用PAGE电泳方法或层析方法加以测定。分离范围广阔的Superose HR预装柱很适合测定未知蛋白的分子量。用少量离子交换介质在多个含不同PH缓冲液的试管中,可简易地测出PI,并选择纯化用缓冲液的最佳PH。
*HiTrap IgM是用来纯化融合瘤细胞培养的单抗IgM,结合量达5mg IgM。HiTrap IgY是专门用来纯化IgY,结合量达100mg纯IgY。
8.纯化------重组蛋白
层析树脂和填料操作手册
柱径有关,而线速度与柱径无关。
请记住不同柱内径的最佳流量:
柱内径
流量
线速度
粗粒
A
u(1mm/sec)
北京慧德易科技有限责任公司
-4– 电话:010-51528296/97/98
树脂和填料操作手册
5 mm
1.0 mL/min
1 mm/sec
2 mm 1 mm
提取方法:用溶剂提取中草药成分,、常用浸渍法、渗漉法、煎煮法、回流提取法及连续回 流提取法等。同时,原料的粉碎度、提取时间、提取温度、设备条件等因素也都能影响提取 效率,必须加以考虑。
近年来,超临界流体萃取(SFE)技术广泛应用于天然产物的提取过程中。该方法尤其 适用于对热及化学不稳定的化合物提取,并主要用于从混合物中提取低极性的组分。
lnk’
甲
lnk’
CAB
乙 Cb
A AD A
Cb
北京慧德易科技有限责任公司
-5– 电话:010-51528296/97/98
树脂和填料操作手册
A 点甲、乙二溶质分不开,B 点比 C点冲洗剂浓度高,但k’小,省时 间,所以选 B 点好。
A 点分不开,要寻找不是交叉点的 D点的Cb浓度为分离条件
作为一种初步的纯化方法,沉淀经常被用于皂苷的研究中。将含有皂苷的提取物(如经 过丁醇-水分配之后)的浓缩甲醇液倾入大量的乙醚中,利用过滤或离心的方法收集沉淀的 皂苷。反复利用这种沉淀法可达到更好的效果。
调整保留时间:tR’= tR-t0
调整保留体积:VR’= VR-VR0=tR’ •FC
⑸选择性指标“α’”和相对保留值“α”
α’可以更直观和方便地反映色谱峰分离的好坏:
α'= tR(2) tR (1)
TOYOPEARL AF-Heparin HC-650M使用说明书
亲和填料TOYOPEARL AF-Heparin HC-650M使用说明书东曹株式会社安全注意事项[注意标签]■远离火源使用易燃溶剂时,请务必小心。
否则可能会导致火灾、爆炸或中毒。
■使用环境必须通风良好如果通风不良,易燃或有毒溶剂可能会导致火灾、爆炸或中毒。
■请勿喷洒溶剂溶剂发生喷洒或泄露可能会导致火灾、触电、中毒、受伤以及腐蚀。
清除漏出的溶剂时,请佩戴合适的护具。
■请佩戴护目镜和防护手套有机溶剂和酸属于有害物质,切勿直接接触皮肤。
■请小心处理包装处理不当可能会导致产品破裂或溶剂飞溅。
■请勿将本产品用于其他目的本产品仅可用于分离和提纯,请勿用于其他用途。
■请用适当的压力装填层析柱压力过大可能会导致层析柱破裂或填料飞溅。
装柱时,请佩戴适当的护具。
■请确认化合物的安全性请确认分离和提纯后的化合物和溶剂安全可靠。
■正确废弃请根据当地法律法规正确废弃。
注■请妥善保管本说明书,以便日后参阅。
注意事项:出厂溶剂TOYOPEARL AF-Heparin-650M填料出厂时保存于20 %乙醇水溶液中。
注意事项:Toyopearl填料Toyopearl产品含甲基丙烯酸聚合物易燃性填料。
目录1. 简介 (1)2. 装填层析柱 (1)3. 使用步骤 (2)4. 保存 (3)1. 简介TOYOPEARL AF-Heparin-650M是一款基团特异性亲和填料,在TOYOPEARL HW-65引入了病毒灭活后猪粘膜肝素,可用于凝血因子、DNA或RNA聚合酶、脂蛋白等分子的分离。
TOYOPEARL AF-Heparin HC-650M对人抗凝血酶III的吸附载量超过5 g/L-gel。
本款填料既可以小量使用,也可以批量用于蛋白质的大规模层析制备。
2. 装填层析柱2-1 匀浆液的配制使用倾析法去除小颗粒。
将层析柱体积1.2倍的匀浆液倒入玻璃砂芯漏斗中。
使用层析柱体积4倍的纯水清洗填料3~5次清除乙醇。
然后将填料转移至烧杯,倒入装填溶液(通常使用洗脱溶液)制成约30~50 %(V/V)的匀浆液。
GE公司的葡聚糖凝胶填料LH-20的使用说明
equilibration
sample injection volume
wash
5–10 CV
5–10 CV
non-bound molecules elute before
gradient begins
gradient elution
10–20 CV
salt-free elution buffer
2–5 CV
Highly hydrophobic proteins bind tightly to highly hydrophobic ligands. Screen several hydrophobic media. Begin with a medium of low hydrophobicity if the sample has very hydrophobic components. Select the medium which gives the best resolution and loading capacity at a low salt concentration.
Weak ion exchangers DEAE and ANX (anion exchange) and CM (cation exchange): fully charged over a narrower pH range (pH 2 to 9 and pH 6 to 10, respectively), but give alternative selectivities for separations.
Choice of ion exchanger Begin with a strong exchanger, to allow work over a broad pH range during method development .
层析填料的选择及其装柱技术介绍幻灯片
理想的基质应符合下面的要求: 1.极低的非特异性吸附。 2.高度的亲水性。 3.较好的理化稳定性。 4.大量的化学基团能被有效地活化,而且容易和配体结合。 5.适当的多孔性。
一般亲和吸附剂采用的基质有纤维素、聚丙烯酰胺凝胶、交联 葡聚糖、琼脂糖、交联琼脂糖、多孔玻璃珠等。
常用亲和吸附剂采用的基质
反相层析填料的选择原则
考虑样品组分的种类和性质、分离的规模及对分辨率 的要求、流动相条件:
待分离物分子量,对介质孔径的选择提供指导; 样品组分的疏水性质决定采用何种配基; 分离的规模及对分辨率的要求也是须考虑的因素,通
常分离规模和分辨率的关系是负相关的 ; 反相层析时的流动相条件很大程度上影响反相介质基
层析填料的选择 及装柱技术介绍
佳辰公司生物中心 陈阶
2012-04-18
如何选择填料?
一、依据所纯化的对象的各物理和化学特性。
(一般包括蛋白、酶、重组蛋白、单抗、抗体及抗原、肽类、病毒、 核酸等)
二、纯化所要达到的目的(粗提?中度纯化? 精细纯化?)。
三、所要选择的层析方法
1. 凝胶过滤 ( Gf)
易脱落。 4) 配体自身应具有较好的稳定性。
根据配体对待分离物质的亲和性的不同,可以将其分为 两类:特异性配体(specific ligand)和通用性配体 (general ligand)
亲和吸附介质的配基
(1)酶的抑制剂 (2)抗体 (3)A蛋白 A蛋白(protein A)为分子量约42KD的蛋白质,
Sephadex LH-20 同时具备亲水和亲脂双重性质, 且被分离物质的极性在分离过程中起着重要作 用。
Pharmadex LH-20同时适用于分子类别非常相似 的物质的分离和工业规模的制备,既可用于初 步纯化步骤,也可用于最终精制步骤,如非对 映同分异构体的分离。
亲和柱层析操作规程(包涵体蛋白)
亲和柱层析操作规程(包涵体蛋白)1.装柱:1.1 取出层析柱,用去离子水冲洗干净,连接好管子后固定柱子;1.2用水冲洗层析柱3-5次,每次10ml去离子水;1.3取出填料,静止至室温后,根据需要用移液器取出3-5ml的填料进行装柱,1.4用去离子水冲洗填料5个柱体积;2.柱的平衡与上样:2.1用0.02M PB bufferB 缓冲液(PH8.0)平衡Ni柱,直至流出液的pH为8.0;2.2对处理的样品进行过滤后,缓慢上样让蛋白充分结合;3洗杂蛋白:3.1用0.02M PB bufferB 缓冲液(PH8.0)过柱,清洗没有结合到层析柱上的杂蛋白,至流出液与缓冲液的OD值接近为止,流出液取20ul做SDS-PAGE检测;3.2用含5mM咪唑的PB bufferB 缓冲液(pH8.0)过柱,共洗约30ml,至流出液与含5mM咪唑的PB bufferB 缓冲液的OD值接近为止,流出液取20ul做SDS-PAGE检测;3.3用含10mM咪唑的PB bufferB 缓冲液(pH8.0)过柱,共洗约30ml,至流出液与含10mM咪唑的PB bufferB 缓冲液的OD值接近为止,流出液取20ul做SDS-PAGE检测;3.4用含20mM咪唑的PB bufferB 缓冲液(pH8.0)过柱,共洗约30ml,至流出液与含20mM咪唑的PB bufferB 缓冲液的OD值接近为止,流出液取20ul做SDS-PAGE检测;3.5用含40mM咪唑的PB bufferB 缓冲液(pH8.0)过柱,共洗约30ml,至流出液与含40mM咪唑的PB bufferB 缓冲液的OD值接近为止,流出液取20ul做SDS-PAGE检测;3.6用含50mM咪唑的PB bufferB 缓冲液(pH8.0)过柱,共洗约30ml,至流出液与含50mM咪唑的PB bufferB 缓冲液的OD值接近为止,流出液取20ul做SDS-PAGE检测;3.2用含100mM咪唑的PB bufferB 缓冲液(pH8.0)过柱,共洗约30ml,至流出液与含100mM咪唑的PB bufferB 缓冲液的OD值接近为止,流出液取20ul做SDS-PAGE检测;(具体的洗脱梯度需根据实验自行调整)4解离目的蛋白:4.1用含100mM咪唑的PB bufferB 缓冲液(pH8.0)过柱,共洗约30ml,至流出液与含100mM咪唑的PB bufferB 缓冲液的OD值接近为止,流出液取20ul做SDS-PAGE检测;4.2 用含200mM咪唑的PB bufferB 缓冲液(pH8.0)过柱,共洗约30ml,至流出液与含200mM咪唑的PB bufferB 缓冲液的OD值接近为止,流出液取20ul做SDS-PAGE检测;4.3 用含500mM咪唑的PB bufferB 缓冲液(pH8.0)过柱,共洗约30ml,至流出液与含500mM咪唑的PB bufferB 缓冲液的OD值接近为止,流出液取20ul做SDS-PAGE检测;4.4用含1000mM咪唑的PB bufferB 缓冲液(pH8.0)过柱,共洗约30ml,至流出液与含1000mM咪唑的PB bufferB 缓冲液的OD值接近为止,流出液取20ul 做SDS-PAGE检测;(具体的洗脱梯度需根据实验自行调整)5.柱的清洗与保存:5.1用含500mM咪唑的缓冲液B(pH8.0)以冲洗层析柱,共冲洗30ml;5.2用浓度为1.5M的NaCl溶液冲洗层析柱,共冲洗30ml;5.3用过滤去离子水冲洗50ml;5.4用20%乙醇冲洗30ml后于4℃20%乙醇中保存。
14.01 肝素结合蛋白测定试剂盒(荧光免疫层析法)说明书20210917
肝素结合蛋白测定试剂盒(荧光免疫层析法)说明书【产品名称】通用名称:肝素结合蛋白测定试剂盒(荧光免疫层析法)【包装规格】型号G:1人份/盒,2人份/盒,3人份/盒,5人份/盒,10人份/盒,20人份/盒,25人份/盒,30人份/盒,40人份/盒,50人份/盒,100人份/盒,200人份/盒。
型号Q:1人份/盒,2人份/盒,3人份/盒,5人份/盒,10人份/盒,20人份/盒,25人份/盒,30人份/盒,40人份/盒,50人份/盒,100人份/盒,200人份/盒。
【预期用途】用于体外定量测定人全血/血浆样本中肝素结合蛋白的浓度。
肝素结合蛋白(heparine-binding protein,HBP)是激活的中性粒细胞嗜天青颗粒释放的一种蛋白分子。
作为中性粒细胞分泌的重要颗粒蛋白,其可以激活单核细胞和巨噬细胞,有显著的抗菌活性、趋化特性及调节炎症反应作用。
实验研究表明该蛋白还可以修饰内皮细胞,导致血管泄漏,促进白细胞从毛细血管迁移到感染部位,并可以增加血管通透性。
有研究报道,HBP 可辅助疾病诊断,如呼吸循环衰竭、严重脓毒症、儿童尿路感染、细菌性皮肤感染、急性细菌性脑膜炎等。
【检验原理】肝素结合蛋白测定试剂盒(荧光免疫层析法)采用双抗体夹心荧光免疫层析法。
试纸条含有预先固定于NC膜上测试区(T)的鼠抗HBP单克隆包被抗体及质控区(C)的羊抗鸡IgY多抗,标记垫上含有鼠抗HBP单克隆标记抗体和鸡IgY抗体标记的荧光颗粒。
当检测样本时,样本在层析作用下沿样本垫、标记垫和NC膜向吸水纸方向流动。
当样本中含有HBP抗原时,HBP抗原与标记中的鼠抗HBP 单克隆标记抗体结合形成复合物,复合物经过检测区(T)时被包被的鼠抗HBP单克隆包被抗体捕获结合而形成“抗HBP单克隆包被抗体—HBP抗原—抗HBP单克隆标记抗体—荧光颗粒”复合物,经过质控区(C)时被包被的羊抗鸡IgY多抗捕获结合而形成“羊抗鸡IgY多抗—鸡IgY抗体—荧光颗粒”。
大小型层析柱的装填实践介绍中文优质课件
TOSOH BIOSCIENCE GmbH
TOYOPEARL-经典旳装填缓冲溶液
SEC HW-40, HW-50, HW-55, HW-65 and HW-75
IEC DEAE-650, QAE-550C, Super-Q-650, CM-650, SP-550C, MegaCap II SP-550EC and SP-650
0.1M Na2SO4, NaNO3, or NaCL in 50mM phosphate or Tris buffer. Organic solvents may be applied to HW-40 as adsorption chromatography like Sephadex LH-20.
Flow Packed Columns (Millipore-QuikScale+Moduline, GE Healthcare-BPG, Götec-Superformance, BioRad-
Geltec, etc.)
措施简介:
– 将柱底筛板用装填缓冲液润湿(赶走气泡)
– 任何时候,均需确保浆液在注入层析柱迈进行过匀浆操作
o Thin frit keeps the resin together – it is not used as flow distributor –> a barrier of only ~60um – negligible influence on pressure generation
TOSOH BIOSCIENCE GmbH
恒压装填措施
Radial Flow - “Self Packer” - preset column volume (Proxcys-CRIO)
汇妍生物 Butyl Focurose HP蛋白填料说明书
Butyl Focurose HP为确保产品的性能和无忧的操作,使用前请仔细阅读本手册,有任何疑问请咨询本公司售后技术支持或当地的销售人员(联系方式见附录)。
1.产品介绍Butyl Focurose HP 偶联的疏水性配基在高离子强度条件下(高离子强度会增加配基和疏水性基团的相互作用)可以与蛋白质或抗体表面的一些疏水性基团进行相互作用,从而达到分离纯化的目的。
Butyl Focurose HP 主要用于中度纯化和精细纯化。
特点:a.快速、简单(一步纯化)。
b.与反相层析相比,疏水作用层析介质上的配基浓度低,洗脱条件温和,有助于保持分子的生物活性。
c.应用广,可以单独进行中度纯化和精细纯化,又可以和离子交换介质组合使用。
d.分辨率高。
表1:性能参数基质高度交联6%琼脂糖粒径范围25-45µm 平均粒径35±5µm配基浓度≈50umol/ml(介质)pH 稳定性2-14(短期)3-13(长期)化学稳定性所有常用缓冲溶液,1M 乙酸、1M 氢氧化钠、8M 尿素、6M 盐酸胍、30%异丙醇、70%乙醇流速≥150cm/h 贮存溶液20%乙醇贮存温度4-30℃表2:影响疏水层析的因素影响因素作用机理处理建议配基结构不同的配基与蛋白的结合能力强弱不同建议预实验筛选合适的介质配基浓度配基浓度越高结合能力越强建议预实验选择最优配基浓度样品性质蛋白质的疏水性强弱取决于其表面疏水基团的分布/盐的浓度盐浓度越高,配基和蛋白质结合的越牢固,但过高的盐浓度会导致蛋白沉淀检测不同盐浓度下蛋白的溶解性和稳定性盐的种类不同类型的盐会产生不同的结合效果优先选择(NH 4)2SO 4和NaCl温度温度越高,蛋白疏水性越强必须要维持同样的温度,建议维持室温pH过高的或过低的pH 会影响蛋白质的溶解性和稳定性,并且pH 会影响结合效果在保证蛋白的溶解性和稳定的前提下,建议pH 范围在5.0-8.52.溶液制备平衡液:0.05M PB、1.70M (NH 4)2SO 4,pH 7.0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Heparin Sepharose 6 Fast Flow
原理
肝素是一种含硫酸酯的酸性多糖,将它偶联到交联及活化的琼脂糖凝胶上,该填料具有很高的物理化学稳定性。
肝素能和抗凝血因子Ⅲ、凝血因子、蛋白合成因子、脂蛋白、干扰素、核酸结合蛋白、限制内切酶、凝血酶及类凝血酶等生物大分子结合,所以肝素琼脂糖凝胶可以用于这类物质的纯化。
*图为含有交互转换的抗坏血酸的肝磷脂多糖的结构(A)和D-葡萄糖残基(B)
分离操作
结合缓冲液:20mM Tris-HCl, pH 8.0或者10mM 磷酸钠, pH7.0
洗脱缓冲液:20mM Tris-HCl, 1~2M NaCl, pH 8.0或者10mM 磷酸钠,1~2M NaCl, pH7.0
1,用10倍柱体积的结合缓冲液平衡柱子。
2,上样。
3,用5-10倍柱体积的结合缓冲液平衡分离柱,直到基线,即所有未结合物质都被冲洗出柱子。
紫外吸光A280nm处监测。
4,用5-10倍柱体积的洗脱缓冲液进行洗脱。
使用连续的或者阶梯式的梯度洗脱,洗脱缓冲液的浓度从0%-100%。
使用注意
1,通过改变缓冲液的pH值或者离子强度来修饰肝磷脂的选择性。
洗脱时使用连续的或者阶梯式的洗脱方式,用NaCl,KCl或者硫酸铵溶液,浓度可以高达1.5~2M。
2,对于凝血因子而言,肝磷脂作为亲和配基,在结合缓冲液中含有一个低浓度的0.1M的NaCl是合适的。
3,如果增加盐离子浓度的梯度产生一个令人不满意的结果,使用肝磷脂(1~5mg/ml)在洗脱缓冲液中作为一个竞争性试剂。
净化
1,用0.5个柱体积的2M的NaCl冲洗10分钟去除离子键结合蛋白。
2,通过用4倍柱体积的0.1M NaOH溶液冲洗柱子1~2小时去除沉淀物或变性蛋白或用2倍的柱体积的6M的盐酸胍冲洗柱子30~60分钟,或者用2倍柱体积的6M的尿素冲洗30~60分钟。
3,用4倍柱体积的0.1%~0.5%的TritonX-100冲洗1~2小时,去除疏水键结合的蛋白质。
0.1M NaOH(1周在+20℃),0.05M醋酸钠,pH4.0,4M NaCl,8M尿素,6M盐酸胍。
储存
用5个柱体积的0.05M醋酸钠并且含有20%的乙醇冲洗介质和柱子,在4℃~8℃条件下储存。