山东建筑大学概率统计2012作业纸第三章小结及作业

合集下载

概率论与数理统计第三章习题及答案

概率论与数理统计第三章习题及答案

概率论与数理统计习题 第三章 多维随机变量及其分布习题3-1 盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球.以X 表示取到黑球的只数,以Y 表示取到红球的只数,求X 和Y 的联合分布律.(X ,Y )的可能取值为(i , j ),i =0,1,2,3, j =0,12,i + j ≥2,联合分布律为 P {X=0, Y=2 }=351472222=C C C P {X=1, Y=1 }=35647221213=C C C C P {X=1, Y=2 }=35647122213=C C C C P {X=2, Y=0 }=353472223=C C C P {X=2, Y=1 }=351247121223=C C C C P {X=2, Y=2 }=353472223=C C C P {X=3, Y=0 }=352471233=C C C P {X=3, Y=1 }=352471233=C C C P {X=3, Y=2 }=0习题3-2 设随机变量),(Y X 的概率密度为⎩⎨⎧<<<<--=其它,0,42,20),6(),(y x y x k y x f(1) 确定常数k ; (2) 求{}3,1<<Y X P (3) 求{}5.1<X P ; (4) 求{}4≤+Y X P . 分析:利用P {(X , Y)∈G}=⎰⎰⎰⎰⋂=oD G Gdy dx y x f dy dx y x f ),(),(再化为累次积分,其中⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<<<<=42,20),(y x y x D o解:(1)∵⎰⎰⎰⎰+∞∞-+∞∞---==2012)6(),(1dydx y x k dy dx y x f ,∴81=k (2)83)6(81)3,1(321⎰⎰=--=<<dy y x dxY X P (3)3227)6(81),5.1()5.1(425.10=--=∞<≤=≤⎰⎰dy y x dx Y X P X P (4)32)6(81)4(4020=--=≤+⎰⎰-dy y x dxY X P x习题3-3 将一枚硬币掷3次,以X 表示前2次出现H 的次数,以Y 表示3次中出现H 的次数,求Y X ,的联合分布律以及),(Y X 的边缘分布律。

概率论与数理统计第三章课后习题答案

概率论与数理统计第三章课后习题答案

习题三1.将一硬币抛掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与出现反面次数之差的绝对值.试写出X 和Y 的联合分布律. 222⨯⨯222⨯⨯2.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X 表示取到黑球的只数,以Y 表示取到红球的只数.求X 和Y 的联合分布律. 247C 3C 35= 247C 2C 35= 2247C C 6C 35=112247C C 12C 35=1247C 2C 35= 27C /C =212247C C 6C 35=2247C 3C 35=3.设二维随机变量(X ,Y )的联合分布函数为F (x ,y )=⎪⎩⎪⎨⎧≤≤≤≤.,020,20,sin sin 其他ππy x y x求二维随机变量(X ,Y )在长方形域⎭⎬⎫⎩⎨⎧≤<≤<36,40πππy x 内的概率. 【解】如图πππ{0,}(3.2)463P X Y <≤<≤公式 ππππππ(,)(,)(0,)(0,)434636F F F F --+ππππππsin sinsin sin sin 0sin sin 0sin 4346361).4=--+=题3图说明:也可先求出密度函数,再求概率。

4.设随机变量(X ,Y )的分布密度f (x ,y )=⎩⎨⎧>>+-.,0,0,0,)43(其他y x A y x e求:(1) 常数A ;(2) 随机变量(X ,Y )的分布函数; (3) P {0≤X <1,0≤Y <2}. 【解】(1) 由-(34)0(,)d d e d d 112x y Af x y x y A x y +∞+∞+∞+∞+-∞-∞===⎰⎰⎰⎰得 A =12 (2) 由定义,有 (,)(,)d d y xF x y f u v u v -∞-∞=⎰⎰(34)340012ed d (1e )(1e )0,0,0,0,y yu v x y u v y x -+--⎧⎧-->>⎪==⎨⎨⎩⎪⎩⎰⎰其他(3) {01,02}P X Y ≤<≤<12(34)3800{01,02}12e d d (1e )(1e )0.9499.x y P X Y x y -+--=<≤<≤==--≈⎰⎰5.设随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<<<--.,0,42,20),6(其他y x y x k(1) 确定常数k ;(2) 求P {X <1,Y <3}; (3) 求P {X <1.5}; (4) 求P {X +Y ≤4}. 【解】(1) 由性质有242(,)d d (6)d d 81,f x y x y k x y y x k +∞+∞-∞-∞=--==⎰⎰⎰⎰故 18R =(2) 13{1,3}(,)d d P X Y f x y y x -∞-∞<<=⎰⎰130213(6)d d 88k x y y x =--=⎰⎰ (3) 11.5{ 1.5}(,)d d a (,)d d x D P X f x y x y f x y x y <<=⎰⎰⎰⎰如图1.542127d (6)d .832x x y y =--=⎰⎰(4) 24{4}(,)d d (,)d d X Y D P X Y f x y x y f x y x y +≤+≤=⎰⎰⎰⎰如图b240212d (6)d .83x x x y y -=--=⎰⎰题5图6.设X 和Y 是两个相互独立的随机变量,X 在(0,0.2)上服从均匀分布,Y 的密度函数为f Y (y )=⎩⎨⎧>-.,0,0,55其他y y e求:(1) X 与Y 的联合分布密度;(2) P {Y ≤X }.题6图【解】(1) 因X 在(0,0.2)上服从均匀分布,所以X 的密度函数为1,00.2,()0.20,.X x f x ⎧<<⎪=⎨⎪⎩其他 而55e ,0,()0,.y Y y f y -⎧>=⎨⎩其他 所以(,),()()X Y f x y X Y f x f y 独立 5515e25e ,00.20,0.20,0,yy x y --⎧⎧⨯<<>⎪==⎨⎨⎩⎪⎩且其他. (2) 5()(,)d d 25e d d y y xDP Y X f x y x y x y -≤≤=⎰⎰⎰⎰如图0.20.2-550-1d 25e d (5e 5)d =e 0.3679.xyx x y x-==-+≈⎰⎰⎰7.设二维随机变量(X ,Y )的联合分布函数为F (x ,y )=⎩⎨⎧>>----.,0,0,0),1)(1(24其他y x y x e e求(X ,Y )的联合分布密度.【解】(42)28e ,0,0,(,)(,)0,x y x y F x y f x y x y -+⎧>>∂==⎨∂∂⎩其他. 8.设二维随机变量(X ,Y )的概率密度为f (x ,y )= 4.8(2),01,0,0,.y x x y x -≤≤≤≤⎧⎨⎩其他求边缘概率密度. 【解】()(,)d X f x f x y y +∞-∞=⎰x204.8(2)d 2.4(2),01,=0,.0,y x y x x x ⎧⎧--≤≤⎪=⎨⎨⎩⎪⎩⎰其他 ()(,)dY f y f x y x +∞-∞=⎰12y 4.8(2)d 2.4(34),01,=0,.0,y x x y y y y ⎧-⎧-+≤≤⎪=⎨⎨⎩⎪⎩⎰其他题8图 题9图9.设二维随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<-.,0,0,其他e y x y求边缘概率密度. 【解】()(,)d X f x f x y y +∞-∞=⎰e d e ,0,=0,.0,y x x y x +∞--⎧⎧>⎪=⎨⎨⎩⎪⎩⎰其他 ()(,)d Y f y f x y x +∞-∞=⎰0e d e ,0,=0,.0,yy x x y y --⎧⎧>⎪=⎨⎨⎩⎪⎩⎰其他题10图10.设二维随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧≤≤.,0,1,22其他y x y cx(1) 试确定常数c ;(2) 求边缘概率密度. 【解】(1)(,)d d (,)d d Df x y x y f x y x y +∞+∞-∞-∞⎰⎰⎰⎰如图2112-14=d d 1.21xx cx y y c ==⎰⎰ 得214c =. (2) ()(,)d X f x f x y y +∞-∞=⎰212422121(1),11,d 840,0,.x x x x x y y ⎧⎧--≤≤⎪⎪==⎨⎨⎪⎪⎩⎩⎰其他 ()(,)d Y f y f x y x +∞-∞=⎰5227d ,01,20,0, .x y x y y ⎧⎧≤≤⎪⎪==⎨⎨⎪⎪⎩⎩其他 11.设随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<<.,0,10,,1其他x x y求条件概率密度f Y |X (y |x ),f X |Y (x |y ).题11图【解】()(,)d X f x f x y y +∞-∞=⎰1d 2,01,0,.x x y x x -⎧=<<⎪=⎨⎪⎩⎰其他111d 1,10,()(,)d 1d 1,01,0,.y Y y x y y f y f x y x x y y -+∞-∞⎧=+-<<⎪⎪⎪===-≤<⎨⎪⎪⎪⎩⎰⎰⎰其他所以|1,||1,(,)(|)2()0,.Y X X y x f x y f y x xf x ⎧<<⎪==⎨⎪⎩其他|1, 1,1(,)1(|),1,()10,.X Y Y y x y f x y f x y y x f y y⎧<<⎪-⎪⎪==-<<⎨+⎪⎪⎪⎩其他12.袋中有五个号码1,2,3,4,5,从中任取三个,记这三个号码中最小的号码为X ,最大的号码为Y .(1) 求X 与Y 的联合概率分布; (2) X 与Y 是否相互独立? 【解】(1) X 与Y 的联合分布律如下表(2) 因6161{1}{3}{1,3},101010010P X P Y P X Y ===⨯=≠=== 故X 与Y 不独立(2) X 与Y 是否相互独立?(2) 因{2}{0.4}0.20.8P X P Y ===⨯0.160.15(2,0.4),P X Y =≠=== 故X 与Y 不独立14.设X 和Y 是两个相互独立的随机变量,X 在(0,1)上服从均匀分布,Y 的概率密度为f Y (y )=⎪⎩⎪⎨⎧>-.,0,0,212/其他y y e (1)求X 和Y 的联合概率密度;(2) 设含有a 的二次方程为a 2+2Xa +Y =0,试求a 有实根的概率.【解】(1) 因1,01,()0,X x f x <<⎧==⎨⎩其他; 21e ,1,()20,yY y f y -⎧>⎪==⎨⎪⎩其他.故/21e01,0,(,),()()20,.y X Y x y f x y X Y f x f y -⎧<<>⎪=⎨⎪⎩独立其他题14图(2) 方程220a Xa Y ++=有实根的条件是2(2)40X Y ∆=-≥故 X 2≥Y ,从而方程有实根的概率为:22{}(,)d d x yP X Y f x y x y ≥≥=⎰⎰21/2001d e d 21(1)(0)]0.1445.x y x y-==-Φ-Φ=⎰⎰15.设X 和Y 分别表示两个不同电子器件的寿命(以小时计),并设X 和Y 相互独立,且服从同一分布,其概率密度为f (x )=⎪⎩⎪⎨⎧>.,0,1000,10002其他x x求Z =X /Y 的概率密度.【解】如图,Z 的分布函数(){}{}Z XF z P Z z P z Y=≤=≤ (1) 当z ≤0时,()0Z F z =(2) 当0<z <1时,(这时当x =1000时,y =1000z)(如图a) 3366102222101010()d d d d yz Z zx y zF z x y y x x y x y +∞≥==⎰⎰⎰⎰ 33610231010=d 2z zy yzy +∞⎛⎫-= ⎪⎝⎭⎰题15图(3) 当z ≥1时,(这时当y =103时,x =103z )(如图b )3366222210101010()d d d d zy Z xy zF z x y y x x yx y +∞≥==⎰⎰⎰⎰ 336231010101=d 12y y zy z +∞⎛⎫-=- ⎪⎝⎭⎰即 11,1,2(),01,20,.Z z z zf z z ⎧-≥⎪⎪⎪=<<⎨⎪⎪⎪⎩其他故 21,1,21(),01,20,.Z z z f z z ⎧≥⎪⎪⎪=<<⎨⎪⎪⎪⎩其他 16.设某种型号的电子管的寿命(以小时计)近似地服从N (160,202)分布.随机地选取4 只,求其中没有一只寿命小于180的概率.【解】设这四只寿命为X i (i =1,2,3,4),则X i ~N (160,202),从而123412{min(,,,)180}{180}{180}i P X X X X X P X P X ≥≥≥之间独立34{180}{180}P X P X ≥≥ 1234[1{180}][1{180}][1{180}][1{180}]P X P X P X P X =-<-<-<-< 44144180160[1{180}]120[1(1)](0.158)0.00063.P X ⎡-⎤⎛⎫=-<=-Φ ⎪⎢⎥⎝⎭⎣⎦=-Φ== 17.设X ,Y 是相互独立的随机变量,其分布律分别为P {X =k }=p (k ),k =0,1,2,…, P {Y =r }=q (r ),r =0,1,2,….证明随机变量Z =X +Y 的分布律为P {Z =i }=∑=-ik k i q k p 0)()(,i =0,1,2,….【证明】因X 和Y 所有可能值都是非负整数,所以 {}{}Z i X Y i ==+={0,}{1,1}{,0}X Y i X Y i X i Y =====-==于是0{}{,},i k P Z i P X k Y i k X Y =====-∑相互独立0{}{}ik P X k P Y i k ===-∑()()ik p k q i k ==-∑18.设X ,Y 是相互独立的随机变量,它们都服从参数为n ,p 的二项分布.证明Z =X +Y 服从参数为2n ,p 的二项分布.【证明】方法一:X +Y 可能取值为0,1,2,…,2n .{}{,}ki P X Y k P X i Y k i =+====-∑00202(){}2ki ki n i k i n k ii k k n k i k n kP X i P Y k i n n p q p q i k i n n p qi k i n p q k =---+=-=-===-⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭⎛⎫⎛⎫= ⎪⎪-⎝⎭⎝⎭⎛⎫= ⎪⎝⎭∑∑∑方法二:设μ1,μ2,…,μn ;μ1′,μ2′,…,μn ′均服从两点分布(参数为p ),则X =μ1+μ2+…+μn ,Y =μ1′+μ2′+…+μn ′, X +Y =μ1+μ2+…+μn +μ1′+μ2′+…+μn ′,所以,X +Y 服从参数为(2n ,p )的二项分布.(1) 求P {X =2|Y =2},P {Y =3|X =0}; (2) 求V =max (X ,Y )的分布律; (3) 求U =min (X ,Y )的分布律; (4) 求W =X +Y 的分布律. 【解】(1){2,2}{2|2}{2}P X Y P X Y P Y ======5{2,2}0.051,0.252{,2}i P X Y P X i Y ========∑ {3,0}{3|0}{0}P Y X P Y X P X ======3{0,3}0.011;0.033{0,}j P X Y P X Y j ========∑ (2){}{max(,)}{,}{,}P V i P X Y i P X i Y i P X i Y i =====<+≤=10{,}{,},i ik k P X i Y k P X k Y i -=====+==∑∑ 0,1,2,3,4,i =所以V 的分布律为(3) {}{min(,)}P U i P X Y i ===351{,}{,}{,}{,}k ik i P X i Y i P X i Y i P X i Y k P X k Y i ==+==≥+>====+==∑∑0,1,2,3i = 于是(1) 求P {Y >0|Y >X };(2) 设M =max{X ,Y },求P {M >0}.题20图【解】因(X ,Y )的联合概率密度为22221,,(,)π0,.x y R f x y R⎧+≤⎪=⎨⎪⎩其他 (1){0,}{0|}{}P Y Y X P Y Y X P Y X >>>>=>0(,)d (,)d y y xy xf x y f x y σσ>>>=⎰⎰⎰⎰π2π/405π42π/401d d π1d d πRR r rR r rR θθ=⎰⎰⎰⎰3/83;1/24== (2) {0}{max(,)0}1{max(,)0}P M P X Y P X Y >=>=-≤00131{0,0}1(,)d 1.44x y P X Y f x y σ≤≤=-≤≤=-=-=⎰⎰21.设平面区域D 由曲线y =1/x 及直线y =0,x =1,x=e 2所围成,二维随机变量(X ,Y )在区域D 上服从均匀分布,求(X ,Y )关于X 的边缘概率密度在x =2处的值为多少?题21图【解】区域D 的面积为 22e e 0111d ln 2.S x x x===⎰(X ,Y )的联合密度函数为211,1e ,0,(,)20,.x y f x y x ⎧≤≤<≤⎪=⎨⎪⎩其他(X ,Y )关于X 的边缘密度函数为1/2011d ,1e ,()220,.x X y x f x x⎧=≤≤⎪=⎨⎪⎩⎰其他 所以1(2).4X f =22.设随机变量X 和Y 相互独立,下表列出了二维随机变量(X ,Y )联合分布律及关于X 和【解】因21{}{,}j j iji P Y y P P X x Y y ======∑,故11121{}{,}{,},P Y y P X x Y y P X x Y y ====+== 从而11111{,}.6824P X x Y y ===-=而X 与Y 独立,故{}{}{,}i j i i P X x P Y y P X x Y y =====,从而11111{}{,}.624P X x P X x Y y =⨯==== 即:1111{}/.2464P X x === 又1111213{}{,}{,}{,},P X x P X x Y y P X x Y y P X x Y y ====+==+==即1,3111{},4248P X x Y y =++== 从而131{,}.12P X x Y y === 同理21{},2P Y y == 223{,}8P X x Y y ===又31{}1jj P Y y ===∑,故3111{}1623P Y y ==--=. 同理23{}.4P X x == 从而23313111{,}{}{,}.3124P X x Y y P Y y P X x Y y ====-===-=23.设某班车起点站上客人数X 服从参数为λ(λ>0)的泊松分布,每位乘客在中途下车的概率为p (0<p <1),且中途下车与否相互独立,以Y 表示在中途下车的人数,求:(1)在发车时有n 个乘客的条件下,中途有m 人下车的概率;(2)二维随机变量(X ,Y )的概率分布.【解】(1) {|}C (1),0,0,1,2,m m n mn P Y m X n p p m n n -===-≤≤=.(2) {,}{}{|}P X n Y m P X n P Y m X n ======e C (1),,0,1,2,.!mm n mnnp p n m n n n λλ--=-≤≤=24.设随机变量X 和Y 独立,其中X 的概率分布为X ~⎪⎪⎭⎫⎝⎛7.03.021,而Y 的概率密度为f (y ),求随机变量U =X +Y 的概率密度g (u ).【解】设F (y )是Y 的分布函数,则由全概率公式,知U =X +Y 的分布函数为(){}0.3{|1}0.7{|2}G u P X Y u P X Y u X P X Y u X =+≤=+≤=++≤=0.3{1|1}0.7{2|2}P Y u X P Y u X =≤-=+≤-=由于X 和Y 独立,可见()0.3{1}0.7{2}G u P Y u P Y u =≤-+≤-0.3(1)0.7(2).F u F u =-+-由此,得U 的概率密度为()()0.3(1)0.7(2)g u G u F u F u '''==-+-0.3(1)0.7(2).f u f u =-+-25. 25. 设随机变量X 与Y 相互独立,且均服从区间[0,3]上的均匀分布,求P {max{X ,Y }≤1}.解:因为随即变量服从[0,3]上的均匀分布,于是有1, 03,()30, 0,3;x f x x x ⎧≤≤⎪=⎨⎪<>⎩ 1, 03,()30, 0, 3.y f y y y ⎧≤≤⎪=⎨⎪<>⎩ 因为X ,Y 相互独立,所以1, 03,03,(,)90, 0,0,3, 3.x y f x y x y x y ⎧≤≤≤≤⎪=⎨⎪<<>>⎩ 推得 1{max{,}1}9P X Y ≤=. 26. 设二维随机变量(X ,Y )的概率分布为其中a ,b ,c 为常数,且X 的数学期望E (X )= -0.2,P {Y ≤0|X ≤0}=0.5,记Z =X +Y .求: (1) a ,b ,c 的值; (2) Z 的概率分布; (3) P {X =Z }.解 (1) 由概率分布的性质知,a+b+c +0.6=1 即 a+b+c = 0.4. 由()0.2E X =-,可得0.1a c -+=-.再由 {0,0}0.1{00}0.5{0}0.5P X Y a b P Y X P X a b ≤≤++≤≤===≤++,得 0.3a b +=.解以上关于a ,b ,c 的三个方程得0.2,0.1,0.1a b c ===.(2) Z 的可能取值为-2,-1,0,1,2,{2}{1,1}0.2P Z P X Y =-==-=-=,{1}{1,0}{0,1}0.1P Z P X Y P X Y =-==-=+==-=,{0}{1,1}{0,0}{1,1}0.3P Z P X Y P X Y P X Y ===-=+==+==-=,{1}{1,0}{0,1}0.3P Z P X Y P X Y ====+===,{2}{1,1}0.1P Z P X Y =====,即Z 的概率分布为(3) {}{0}0.10.20.10.10.20.4P X Z P Y b ====++=++=.习题四1.设随机变量X 的分布律为求E (X ),E (X ),E (2X +3). 【解】(1) 11111()(1)012;82842E X =-⨯+⨯+⨯+⨯= (2) 2222211115()(1)012;82844E X =-⨯+⨯+⨯+⨯=(3) 1(23)2()32342E X E X +=+=⨯+=2.已知100个产品中有10个次品,求任意取出的5个产品中的次品数的数学期望、方差. 【解】设任取出的5个产品中的次品数为X ,则X 的分布律为故 ()0.58300.34010.07020.0073E X =⨯+⨯+⨯+⨯+⨯+⨯0.501,= 52()[()]iii D X x E XP ==-∑222(00.501)0.583(10.501)0.340(50.501)00.432.=-⨯+-⨯++-⨯=3.设随机变量且已知E (X )=0.1,E (X )=0.9,求P 1,P 2,P 3. 【解】因1231P P P ++=……①,又12331()(1)010.1E X P P P P P =-++=-=……②,222212313()(1)010.9E X P P P P P =-++=+=……由①②③联立解得1230.4,0.1,0.5.P P P ===4.袋中有N 只球,其中的白球数X 为一随机变量,已知E (X )=n ,问从袋中任取1球为白球的概率是多少?【解】记A ={从袋中任取1球为白球},则(){|}{}Nk P A P A X k P X k ===∑全概率公式1{}{}1().NNk k k P X k kP X k N Nn E X N N========∑∑5.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧≤≤-<≤.,0,21,2,10,其他x x x x求E (X ),D (X ).【解】1221()()d d (2)d E X xf x x x x x x x +∞-∞==+-⎰⎰⎰21332011 1.33x x x ⎡⎤⎡⎤=+-=⎢⎥⎢⎥⎣⎦⎣⎦122232017()()d d (2)d 6E X x f x x x x x x x +∞-∞==+-=⎰⎰⎰ 故 221()()[()].6D XE X E X =-=6.设随机变量X ,Y ,Z 相互独立,且E (X )=5,E (Y )=11,E (Z )=8,求下列随机变量的数学期望.(1) U =2X +3Y +1; (2) V =YZ -4X .【解】(1) [](231)2()3()1E U E X Y E X E Y =++=++ 25311144.=⨯+⨯+=(2) [][4][]4()E V E YZ X E YZ E X =-=- ,()()4()Y Z E Y E Z E X -因独立1184568.=⨯-⨯= 7.设随机变量X ,Y 相互独立,且E (X )=E (Y )=3,D (X )=12,D (Y )=16,求E (3X -2Y ),D (2X -3Y ). 【解】(1) (32)3()2()3323 3.E X Y E X E Y -=-=⨯-⨯=(2) 22(23)2()(3)412916192.D X Y D X DY -=+-=⨯+⨯= 8.设随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<<<.,0,0,10,其他x y x k试确定常数k ,并求E (XY ). 【解】因11(,)d d d d 1,2xf x y x y x k y k +∞+∞-∞-∞===⎰⎰⎰⎰故k =2 1()(,)d d d 2d 0.25xE XY xyf x y x y x x y y +∞+∞-∞-∞===⎰⎰⎰⎰.9.设X ,Y 是相互独立的随机变量,其概率密度分别为f X (x )=⎩⎨⎧≤≤;,0,10,2其他x x f Y (y )=(5)e ,5,0,.y y --⎧>⎨⎩其他求E (XY ).【解】方法一:先求X 与Y 的均值 12()2d ,3E X x x x==⎰5(5)5()ed5e d e d 51 6.z y y zzE Y y y z zz +∞+∞+∞=-----=+=+=⎰⎰⎰令 由X 与Y 的独立性,得2()()()6 4.3E XY E X E Y ==⨯=方法二:利用随机变量函数的均值公式.因X 与Y 独立,故联合密度为(5)2e ,01,5,(,)()()0,,y X Y x x y f x y f x f y --⎧≤≤>==⎨⎩其他 于是11(5)2(5)552()2e d d 2d e d 6 4.3y y E XY xy x x y x xy y +∞+∞----===⨯=⎰⎰⎰⎰10.设随机变量X ,Y 的概率密度分别为f X (x )=⎩⎨⎧≤>-;0,0,0,22x x x e f Y (y )=⎩⎨⎧≤>-.0,0,0,44y y y e 求(1) E (X +Y );(2) E (2X -3Y 2). 【解】22-200()()d 2e d [e ]e d x x xX X xf x x x x x x +∞+∞+∞--+∞-∞==-⎰⎰⎰201e d .2x x +∞-==⎰401()()d 4e d y .4yY E Y y f y yy +∞+∞--∞==⎰⎰22242021()()d 4e d .48y Y E Y y f y y y y +∞+∞--∞====⎰⎰从而(1)113()()().244E X Y E X E Y +=+=+=(2)22115(23)2()3()23288E X Y E X E Y -=-=⨯-⨯=11.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧<≥-.0,0,0,22x x cx xke求(1) 系数c ;(2) E (X );(3) D (X ). 【解】(1) 由222()d e d 12k x cf x x cx x k+∞+∞--∞===⎰⎰得22c k =. (2) 2220()()d()2e dk x E X xf x x x k x x +∞+∞--∞==⎰⎰222202e d 2k x kx x k +∞-==⎰(3) 222222201()()d()2e .kxE X x f x x x k x k+∞+∞--∞==⎰⎰故2222214π()()[()].4D X E X E X k k -=-=-=⎝⎭12.袋中有12个零件,其中9个合格品,3个废品.安装机器时,从袋中一个一个地取出(取出后不放回),设在取出合格品之前已取出的废品数为随机变量X ,求E (X )和D (X ). 【解】设随机变量X 表示在取得合格品以前已取出的废品数,则X 的可能取值为0,1,2,3.为求其分布律,下面求取这些可能值的概率,易知9{0}0.750,12P X === 39{1}0.204,1211P X ==⨯= 329{2}0.041,121110P X ==⨯⨯= 3219{3}0.005.1211109P X ==⨯⨯⨯=由此可得()00.75010.20420.04130.0050.301.E X =⨯+⨯+⨯+⨯=22222222()075010.20420.04130.0050.413()()[()]0.413(0.301)0.322.E X D X E X E X =⨯+⨯+⨯+⨯==-=-=13.一工厂生产某种设备的寿命X (以年计)服从指数分布,概率密度为f (x )=⎪⎩⎪⎨⎧≤>-.0,0,0,414x x xe为确保消费者的利益,工厂规定出售的设备若在一年内损坏可以调换.若售出一台设备,工厂获利100元,而调换一台则损失200元,试求工厂出售一台设备赢利的数学期望. 【解】厂方出售一台设备净盈利Y 只有两个值:100元和 -200元/41/411{100}{1}e d e4x P Y P X x +∞--==≥==⎰1/4{200}{1}1e.P Y P X -=-=<=- 故1/41/41/4()100e (200)(1e )300e 20033.64E Y ---=⨯+-⨯-=-= (元).14.设X 1,X 2,…,X n 是相互独立的随机变量,且有E (X i )=μ,D (X i )=σ2,i =1,2,…,n ,记∑==n i i S X n X 12,1,S 2=∑=--n i i X X n 12)(11. (1) 验证)(E =μ,)(D =n2σ;(2) 验证S 2=)(11122∑=--ni i X n X n ;(3) 验证E (S 2)=σ2.【证】(1) 1111111()()().n nn i i i i i i E X E X E X E X nu u n n n n ===⎛⎫===== ⎪⎝⎭∑∑∑22111111()()n nni i i ii i i D X D X D X X DX n nn ===⎛⎫== ⎪⎝⎭∑∑∑之间相互独立2221.n n nσσ==(2) 因222221111()(2)2nnnniii ii i i i i XX X X X X X nX X X ====-=+-=+-∑∑∑∑2222112nnii i i X nX X nX X nX ===+-=-∑∑故22211()1ni i S X nX n ==--∑.(3) 因2(),()i i E X u D X σ==,故2222()()().i i i E X D X EX u σ=+=+ 同理因2(),()E X u D X nσ==,故222()E X u nσ=+.从而222221111()()[()()]11n ni i i i E s E X nX E X nE X n n ==⎡⎤=-=-⎢⎥--⎣⎦∑∑221222221[()()]11().1ni i E X nE X n n u n u n n σσσ==--⎡⎤⎛⎫=+-+=⎢⎥ ⎪-⎝⎭⎣⎦∑15.对随机变量X 和Y ,已知D (X )=2,D (Y )=3,Cov(X ,Y )= -1,计算:Cov (3X -2Y +1,X +4Y -3) 【解】Cov(321,43)3()10Cov(,)8()X Y X Y D X X Y D Y -++-=+- 3210(1)8328=⨯+⨯--⨯=- (因常数与任一随机变量独立,故Cov(X ,3)=Cov(Y ,3)=0,其余类似). 16.设二维随机变量(X ,Y )的概率密度为f (x ,y )=221,1,π0,.x y ⎧+≤⎪⎨⎪⎩其他试验证X 和Y 是不相关的,但X 和Y 不是相互独立的. 【解】设22{(,)|1}D x y x y =+≤.2211()(,)d d d d πx y E X xf x y x y x x y +∞+∞-∞-∞+≤==⎰⎰⎰⎰ 2π1001=cos d d 0.πr r r θθ=⎰⎰ 同理E (Y )=0. 而 C o v (,)[()][()](,X Y x E x y E Y f x y x y+∞+∞-∞-∞=--⎰⎰222π1200111d d sin cos d d 0ππx y xy x y r r r θθθ+≤===⎰⎰⎰⎰, 由此得0XY ρ=,故X 与Y 不相关. 下面讨论独立性,当|x |≤1时,1()X f x y 当|y |≤1时,1()Y f y x 显然()()(,).X Y f x f y f x y ≠故X 和Y 不是相互独立的.17.验证X 和Y 是不相关的,但X 和Y 不是相互独立的.【解】联合分布表中含有零元素,X 与Y 显然不独立,由联合分布律易求得X ,Y 及XY 的分布律,其分布律如下表由期望定义易得E(X)=E(Y)=E(XY)=0.从而E(XY)=E(X)·E(Y),再由相关系数性质知ρXY=0, 即X与Y的相关系数为0,从而X和Y是不相关的.又331{1}{1}{1,1}888P X P Y P X Y =-=-=⨯≠==-=-从而X与Y不是相互独立的.18.设二维随机变量(X,Y)在以(0,0),(0,1),(1,0)为顶点的三角形区域上服从均匀分布,求Cov(X,Y),ρXY.【解】如图,S D=12,故(X,Y)的概率密度为题18图2,(,),(,)0,x y Df x y∈⎧=⎨⎩其他.()(,)d dDE X xf x y x y=⎰⎰11001d2d3xx x y-==⎰⎰22()(,)d dDE X x f x y x y=⎰⎰112001d2d6xx x y-==⎰⎰从而222111 ()()[()].6318 D X E X E X⎛⎫=-=-=⎪⎝⎭同理11 (),().318 E Y D Y==而 1101()(,)d d 2d d d 2d .12xDDE XY xyf x y x y xy x y x xy y -====⎰⎰⎰⎰⎰⎰所以1111Cov(,)()()()123336X Y E XY E X E Y =-=-⨯=-. 从而112)()XY D Y ρ-===-19.设(X ,Y )的概率密度为f (x ,y )=1ππsin(),0,0,2220.x y x y ,⎧+≤≤≤≤⎪⎨⎪⎩其他求协方差Cov (X ,Y )和相关系数ρXY . 【解】π/2π/21π()(,)d d d sin()d .24E X xf x y x y x xx y y +∞+∞-∞-∞==+=⎰⎰⎰⎰ππ2222201ππ()d sin()d 2.282E X x x x y y =+=+-⎰⎰从而222ππ()()[()] 2.162D XE X E X =-=+-同理 2πππ(),() 2.4162E Y D Y ==+- 又 π/2π/2π()d sin()d d 1,2E XY x xy x y x y =+=-⎰⎰故 2ππππ4C o v (,)()()()1.2444X Y E X Y E X E Y -⎛⎫⎛⎫=-=--⨯=- ⎪ ⎪⎝⎭⎝⎭222222π4(π4)π8π164.πππ8π32π8π32)()2162XY D Y ρ-⎛⎫- ⎪--+⎝⎭===-=-+-+-+- 20.已知二维随机变量(X ,Y )的协方差矩阵为⎥⎦⎤⎢⎣⎡4111,试求Z 1=X -2Y 和Z 2=2X -Y 的相关系数.【解】由已知知:D (X )=1,D (Y )=4,Cov(X ,Y )=1.从而12()(2)()4()4Cov(,)1444113,()(2)4()()4Cov(,)414414,D Z D X Y D X D Y X Y D Z D X Y D X D Y X Y =-=+-=+⨯-⨯==-=+-=⨯+-⨯=12Cov(,)Cov(2,2)Z Z X Y X Y =--2Cov(,)4Cov(,)Cov(,)2Cov(,)2()5Cov(,)2()215124 5.X X Y X X Y Y Y D X X Y D Y =--+=-+=⨯-⨯+⨯=故122)()Z Z D Z ρ===21.对于两个随机变量V ,W ,若E (V 2),E (W 2)存在,证明:[E (VW )]2≤E (V 2)E (W 2).这一不等式称为柯西许瓦兹(Couchy -Schwarz )不等式. 【证】令2(){[]},.g t E V tW t R =+∈显然22220()[()][2]g t E V tW E V tVW t W ≤=+=++222[]2[][],.E V t E VW t E W t R =++∀∈可见此关于t 的二次式非负,故其判别式Δ≤0, 即2220[2()]4()()E VW E W E V ≥∆=- 2224{[()]()()}.E VW E V E W =-故222[()]()()}.E VW E V E W ≤22.假设一设备开机后无故障工作的时间X 服从参数λ=1/5的指数分布.设备定时开机,出现故障时自动关机,而在无故障的情况下工作2小时便关机.试求该设备每次开机无故障工作的时间Y 的分布函数F (y ).【解】设Y 表示每次开机后无故障的工作时间,由题设知设备首次发生故障的等待时间X ~E (λ),E (X )=1λ=5.依题意Y =min(X ,2).对于y <0,f (y )=P {Y ≤y }=0. 对于y ≥2,F (y )=P (X ≤y )=1.对于0≤y <2,当x ≥0时,在(0,x )内无故障的概率分布为 P {X ≤x }=1 -e -λx ,所以F (y )=P {Y ≤y }=P {min(X ,2)≤y }=P {X ≤y }=1 -e -y/5.。

山东建筑大学概率论第三章作业及答案

山东建筑大学概率论第三章作业及答案

E (XY )= 4/9
E( X )
,则 EX =
1/3
1/6
3. 随机变量的分布率为 P 0.4 0.3 0.3 ,则 E ( X ) -0.2 E (3 X 2 +5)= 13.4 4. 已知随机变量的分布列为P(X=m)=1/10, m=2,4,…,18,20, 则 EX = 11 5. 对两台仪器进行独立测试,已知第一台仪器发生故障的概率 为 p1 ,第二台仪器发生故障的概率为 p2 .令X表示测试中发生 故障的仪器数,则 EX p1 p2
x EX

2
f ( x )dx
2
有关方差的定理: 定理1
推论:Db 0;
DaX b a 2 DX
D X b DX ; D(aX ) a 2 DX .
6
定理2: 若X与Y 独立, D X Y DX DY
n n 推论:D X i D X i i 1 i 1


7
二维随机变量的方差:
D X xi EX p X xi xi EX p xi , y j ,
2
离散型随机变量 X ,Y ,
i
DY yi EY pY
2
y y EY px , y .
特别的,1 0; 2 DX

i

x k f ( x )dx
k ( X ) [ xi E ( X )]k p( xi ) 对于离散随机变量:
i
对于连续随机变量: k ( X )
x E ( X )

k
f ( x )dx

概率统计第三章答案

概率统计第三章答案

概率论与数理统计作业8(§3.1~§3.3)一、填空题 1. Y X ,独立同分布323110//PX ,则()().XY E ,Y X P 94951==≤+2. 设X 的密度函数为2(1)01()0x x f x -<<⎧=⎨⎩其它,则()E X 31/,2()E X =61/.3. 随机变量X 的分布率为303040202...P X-,则()E X = -0.2 ,2(35)E X += 13.4 。

4. 已知随机变量X 的分布列为P (X m =)=101, m =2,4,…,18,20,,则 ()E X = 115. 对两台仪器进行独立测试,已知第一台仪器发生故障的概率为1p ,第二台仪器发生故障的概率为2p .令X 表示测试中发生故障的仪器数,则()=X E 21p p + 二、计算题1. 连续型随机变量X 的概率密度为01(,0)()0akx x k a f x ⎧<<>=⎨⎩其它又知()0.75E X =,求k 和a 的值。

解:由(),dx kx dx x f a 11==⎰⎰+∞∞-得,a k11=+ 又 ()0.75E X =,则有(),.dx kx x dx x xf a 75010=⋅=⎰⎰+∞∞-得,.a k7502=+ 故由上两式解得k =3,a =2.2. 对某工厂的每批产品进行放回抽样检查。

如果发现次品,则立即停止检查而认为这批产品不合格;如果连续检查5个产品,都是合格品,则也停止检查而认为这批产品合格。

设每批产品的次品率为p ,求每批产品抽查样品的平均数。

解:设随机变量X 表示每批产品抽查的样品数,则:∴X 的概率分布表如下:3.设二维随机变量()Y X ,的联合密度函数为()⎪⎩⎪⎨⎧≤≤=其它,0142122y x y x y x f1)求()X E ,()Y E 及()XY E ; 2)求X 与Y 的边缘密度函数; 解:1)()();dx x x dy y x x dx dxdy y ,x xf EX x0821421117312112=-=⋅==⎰⎰⎰⎰⎰--+∞∞-+∞∞-()();dx x x dy y x y dx dxdy y ,x yf EY x9747421118212112=-=⋅==⎰⎰⎰⎰⎰--+∞∞-+∞∞-()()();dx x x dy y x xy dx dxdy y ,x xyf XY E x047421119312112=-=⋅==⎰⎰⎰⎰⎰--+∞∞-+∞∞-2)当时,1≤x ()()();x x ydy x dy y ,x f x f x X 62218214212-===⎰⎰+∞∞- 当时,1≥x ().x f X 0=当时,10≤≤y ()();y ydx x dx y ,x f y f yy Y 25227421===⎰⎰-∞+∞- 当时,或01<>y y ().y f Y 0=X )m X (P =4q 521ppq432pq 3pq ;),,,m (pq )m X (P m 43211===-)q p (1=+4545q q pq )X (P =+==4324325101055432p p p p q pq pq pq p EX +-+-=++++=∴()()⎪⎩⎪⎨⎧>≤-=∴.x ,;x ,x x x f X 10182162概率论与数理统计作业9(§3.4~§3.7)一、填空题1. 设随机变量1X ,2X ,3X 相互独立,其中1X 在[0,6]上服从均匀分布,2X 服从1()2e ,3X 服从参数为λ=3的泊松分布,记12323Y X X X =-+,则()D Y = 462. 随机变量Y X ,相互独立,又()⎪⎭⎫ ⎝⎛41,8~,2~B Y P X 则()=-Y X E 2 --2 ,()=-Y X D 2 8 .3. 随机变量~(10,0.6),~(0.6),X B Y P 相关系数1(,)4R X Y =,(,)Cov X Y =__0.3__ . 4、若X ~(,)B n p ,且()12E X =,()8D X =,则n = 36 ,p =31. 二、选择题1. 设随机变量X 和Y 的方差存在且不等于0,则()()()D X Y D X D Y +=+是X 和Y 的 BA )不相关的充分条件,但不是必要条件;B )独立的必要条件,但不是充分条件;C )不相关的必要条件,但不是充分条件;D )独立的充分必要条件 2. 设)(~λP X ,且()(1)21E X X --=⎡⎤⎣⎦,则λ= A A )1, B )2, C )3, D )0 3. 设123,,X X X 相互独立同服从参数3λ=的泊松分布,令1231()3Y X X X =++,则 2()E Y = CA )1.B )9.C )10.D )6. 4. 将一枚硬币重复掷n 次,以X 和Y 分别表示正面向上和反面向上的次数,则X 与Y 的相关系数等于( A )。

概率论与数理统计第三章课后习题及参考答案

概率论与数理统计第三章课后习题及参考答案

概率论与数理统计第三章课后习题及参考答案1.设二维随机变量),(Y X 只能取下列数组中的值:)0,0(,)1,1(-,31,1(-及)0,2(,且取这几组值的概率依次为61,31,121和125,求二维随机变量),(Y X 的联合分布律.解:由二维离散型随机变量分布律的定义知,),(Y X 的联合分布律为2.某高校学生会有8名委员,其中来自理科的2名,来自工科和文科的各3名.现从8名委员中随机地指定3名担任学生会主席.设X ,Y 分别为主席来自理科、工科的人数,求:(1)),(Y X 的联合分布律;(2)X 和Y 的边缘分布律.解:(1)由题意,X 的可能取值为0,1,2,Y 的可能取值为0,1,2,3,则561)0,0(3833====C C Y X P ,569)1,0(381323====C C C Y X P ,569)2,0(382313====C C C Y X P ,561)3,0(3833====C C Y X P ,283)0,1(382312====C C C Y X P ,289)1,1(38131312====C C C C Y X P ,283)2,1(382312====C C C Y X P ,0)3,1(===Y X P ,563)0,2(381322====C C C Y X P ,563)1,2(381322====C C C Y X P ,0)2,2(===Y X P ,0)3,2(===Y X P .),(Y X 的联合分布律为:(2)X 的边缘分布律为X 012P1452815283Y 的边缘分布律为Y 0123P285281528155613.设随机变量),(Y X 的概率密度为⎩⎨⎧<<<<--=其他.,0,42,20),6(),(y x y x k y x f 求:(1)常数k ;(2))3,1(<<Y X P ;(3))5.1(<Y P ;(4))4(≤+Y X P .解:方法1:(1)⎰⎰⎰⎰--==∞+∞-∞+∞-422d d )6(d d ),(1yx y x k y x y x f ⎰--=42202d |)216(y yx x x k k y y k 8d )210(42=-=⎰,∴81=k .(2)⎰⎰∞-∞-=<<31d d ),()3,1(y x y x f Y X P ⎰⎰--=32102d d )216(yx yx x x ⎰--=32102d |)216(81y yx x x 83|)21211(81322=-=y y .(3)),5.1()5.1(+∞<<=<Y X P X P ⎰⎰∞+∞-∞---=5.1d d )6(81yx y x ⎰⎰--=425.10d d )6(81y x y x y yx x x d )216(81422⎰--=3227|)43863(81422=-=y y .(4)⎰⎰≤+=≤+4d d ),()4(y x y x y x f Y X P ⎰⎰---=2042d )6(d 81x y y x x ⎰+-⋅=202d )812(2181x x x 32|)31412(1612032=+-=x x x .方法2:(1)同方法1.(2)20<<x ,42<<y 时,⎰⎰∞-∞-=yxv u v u f y x F d d ),(),(⎰⎰--=y xv u v u 20d d )6(81⎰--=y xv uv u u 202d |)216(81⎰--=y v xv x x 22d )216(81y xv v x xv 222|)21216(81--=)1021216(81222x xy y x xy +---=,其他,0),,(=y x F ,∴⎪⎩⎪⎨⎧<<<<+---=其他.,0,42,20),1021216(81),(222y x x x xy y x xy y x F 83)3,1()3,1(==<<F Y X P .(3))42,5.1(),5.1()5.1(<<<=+∞<<=<Y X P Y X P X P )2,5.1()4,5.1(<<-<<=Y X P Y X P 3227)2,5.1()4,5.1(=-=F F .(4)同方法1.4.设随机变量),(Y X 的概率密度为⎩⎨⎧>>=--其他.,0,0,0,e ),(2y x A y x f y x 求:(1)常数A ;(2)),(Y X 的联合分布函数.解:(1)⎰⎰⎰⎰∞+∞+--∞+∞-∞+∞-==02d d e d d ),(1yx A y x y x f y x ⎰⎰∞+∞+--=02d e d e y x A y x2|)e 21(|)e (020A A y x =-⋅-=∞+-∞+-,∴2=A .(2)0>x ,0>y 时,⎰⎰∞-∞-=y xv u v u f y x F d d ),(),(⎰⎰--=yxv u vu 02d d e 2yv x u 020|)e 21(|)e (2---⋅-=)e 1)(e 1(2y x ----=,其他,0),(=y x F ,∴⎩⎨⎧>>--=--其他.,0,0,0),e 1)(e 1(),(2y x y x F y x .5.设随机变量),(Y X 的概率密度为⎩⎨⎧≤≤≤≤=其他.,0,10,10,),(y x Axy y x f 求:(1)常数A ;(2)),(Y X 的联合分布函数.解:(1)2121d d d d ),(11010⋅⋅===⎰⎰⎰⎰∞+∞-∞+∞-A y y x x A y x y x f ,∴4=A .(2)10≤≤x ,10≤≤y 时,⎰⎰∞-∞-=y xv u v u f y x F d d ),(),(⎰⎰=yxv u uv 0d d 4220202||y x v u yx =⋅=,10≤≤x ,1>y 时,⎰⎰∞-∞-=yx v u v u f y x F d d ),(),(⎰⎰=100d d 4xv u uv 210202||x v u x =⋅=,10≤≤y ,1>x 时,⎰⎰∞-∞-=yx v u v u f y x F d d ),(),(⎰⎰=100d d 4yu v uv 202102||y v u y =⋅=,1>x ,1>y 时,⎰⎰∞-∞-=yx v u v u f y x F d d ),(),(⎰⎰=101d d 4v u uv 1||102102=⋅=v u ,其他,0),(=y x F ,∴⎪⎪⎪⎩⎪⎪⎪⎨⎧>>≤≤>>≤≤≤≤≤≤=其他.,0,1,1,1,10,1,,1,10,,10,10,),(2222y x y x y y x x y x y x y x F .6.把一枚均匀硬币掷3次,设X 为3次抛掷中正面出现的次数,Y 表示3次抛掷中正面出现次数与反面出现次数之差的绝对值,求:(1)),(Y X 的联合分布律;(2)X 和Y 的边缘分布律.解:由题意知,X 的可能取值为0,1,2,3;Y 的可能取值为1,3.易知0)1,0(===Y X P ,81)3,0(===Y X P ,83)1,1(===Y X P ,0)3,1(===Y X P 83)1,2(===Y X P ,0)3,2(===Y X P ,0)1,3(===Y X P ,81)3,3(===Y X P 故),(Y X 得联合分布律和边缘分布律为:7.在汽车厂,一辆汽车有两道工序是由机器人完成的:一是紧固3只螺栓;二是焊接2处焊点,以X 表示由机器人紧固的螺栓紧固得不牢的数目,以Y 表示由机器人焊接的不良焊点的数目,且),(Y X 具有联合分布律如下表:求:(1)在1=Y 的条件下,X 的条件分布律;(2)在2=X 的条件下,Y 的条件分布律.解:(1)因为)1,3()1,2()1,1()1,0()1(==+==+==+====Y X P Y X P Y X P Y X P Y P 08.0002.0008.001.006.0=+++=,所以43)1()1,0()1|0(=======Y P Y X P Y X P ,81)1()1,1()1|1(=======Y P Y X P Y X P ,101)1()1,2()1|2(=======Y P Y X P Y X P ,401)1()1,3()1|3(=======Y P Y X P Y X P ,故在1=Y 的条件下,X 的条件分布律为X 0123P4381101401(2)因为)2,2()1,2()0,2()2(==+==+====Y X P Y X P Y X P X P 032.0004.0008.002.0=++=,所以85)2()0,2()2,0(=======X P Y X P X Y P ,41)2()1,2()2,1(=======X P Y X P X Y P ,81)2()2,2()2,2(=======X P Y X P X Y P ,故在2=X 的条件下,Y 的分布律为:Y 012P8541818.设二维随机变量),(Y X 的概率密度函数为⎩⎨⎧>>=+-其他.,0,0,0,e ),()2(y x c y x f y x 求:(1)常数c ;(2)X 的边缘概率密度函数;(3))2(<+Y X P ;(4)条件概率密度函数)|(|y x f Y X ,)|(|x y f X Y .解:(1)⎰⎰⎰⎰∞+∞++-∞+∞-∞+∞-==0)2(d d e d d ),(1yx c y x y x f y x⎰⎰∞+∞+--=02d e d ey x c y x2|)e (|)e 21(002c c y x =-⋅-=∞+-∞+-,∴2=c .(2)0>x 时,⎰∞+∞-=y y x f x f X d ),()(⎰∞++-=0)2(d e 2y y x x y x 202e 2|)e (e 2-+∞--=-=,0≤x 时,0)(=x f X ,∴⎩⎨⎧≤>=-.0,0,0,e 2)(2x x x f x X ,同理⎩⎨⎧≤>=-.0,0,0,e )(y y y f y Y .(3)⎰⎰<+=<+2d d ),()2(y x y x y x f Y X P ⎰⎰---=20202d d e 2xy x yx 422202e e 21d e d e 2-----+-==⎰⎰xy x y x .(4)由条件概率密度公式得,当0>y 时,有⎩⎨⎧>=⎪⎩⎪⎨⎧>==----其他.其他.,0,0,e 2,0,0,e e 2)(),()|(22|x x y f y x f y x f xy y x Y Y X ,同理,当0>x 时,有⎩⎨⎧>=⎪⎩⎪⎨⎧>==----其他.其他.,0,0,e ,0,0,2e e 2)(),()|(22|y y x f y x f x y f yx y x X X Y .9.设二维随机变量),(Y X 的概率密度函数为⎩⎨⎧<<<<=其他.,0,0,10,3),(x y x x y x f 求:(1)关于X 、Y 的边缘概率密度函数;(2)条件概率密度函数)|(|y x f Y X ,)|(|x y f X Y .解:(1)10<<x 时,⎰∞+∞-=y y x f x f X d ),()(203d 3x y x x==⎰,其他,0)(=x f X ,∴⎩⎨⎧<<=其他.,0,10,3)(2x x x f X ,密度函数的非零区域为}1,10|),{(}0,10|),{(<<<<=<<<<x y y y x x y x y x ,∴10<<y 时,⎰∞+∞-=x y x f y f Y d ),()()1(23d 321y x x y-==⎰,其他,0)(=y f Y ,∴⎪⎩⎪⎨⎧<<-=其他.,0,10),1(23)(2y y y f Y .(2)当10<<y 时,有⎪⎩⎪⎨⎧<<-=⎪⎪⎩⎪⎪⎨⎧<<-==其他.其他.,0,1,12,0,1,)1(233)(),()|(22|x y y x x y y xy f y x f y x f Y Y X .当10<<x 时,有⎪⎩⎪⎨⎧<<=⎪⎩⎪⎨⎧<<==其他.其他.,0,0,1,0,0,33)(),()|(2|x y x x y x x x f y x f x y f X X Y .10.设条件密度函数为⎪⎩⎪⎨⎧<<<=其他.,0,10,3)|(32|y x y x y x f Y X Y 的概率密度函数为⎩⎨⎧<<=其他.,0,10,5)(4y y y f Y 求21(>X P .解:⎩⎨⎧<<<==其他.,0,10,15)|()(),(2|y x y x y x f y f y x f Y X Y ,则6447d )(215d d 15d d ),(21(121421211221=-===>⎰⎰⎰⎰⎰>x x x x y y x y x y x f X P xx .11.设二维随机变量),(Y X 的概率密度为⎪⎩⎪⎨⎧<<<<+=其他.,0,20,10,3),(2y x xyx y x f 求:(1)),(Y X 的边缘概率密度;(2)X 与Y 是否独立;(3))),((D Y X P ∈,其中D 为曲线22x y =与x y 2=所围区域.解:(1)10<<x 时,x x y xy x y y x f x f X 322d )3(d ),()(222+=+==⎰⎰∞+∞-,其他,0)(=x f X ,∴⎪⎩⎪⎨⎧<<+=其他.,0,10,322)(2x x x x f X ,20<<y 时,⎰∞+∞-=x y x f y f Y d ),()(316)d 3(12+=+=⎰y x xy x ,其他,0)(=y f Y ,∴⎪⎩⎪⎨⎧<<+=其他.,0,20,316)(y y y f Y .(2)∵),()()(y x f y f x f Y X ≠,∴X 与Y 不独立.(3)}22,10|),{(2x y x x y x D ≤≤<<=,∴⎰⎰+=∈102222d d 3()),((xxx y xy x D Y X P 457d )32238(10543=--=⎰x x x x .12.设二维随机变量),(Y X 的概率密度为⎪⎩⎪⎨⎧>>+=-其他.,0,0,0,e )1(),(2y x y xy x f x试讨论X ,Y 的独立性.解:当0>x 时,xx x X x yx y y x y y x f x f -∞+-∞+-∞+∞-=+-=+==⎰⎰e |11e d )1(e d ),()(002,当0≤x 时,0)(=x f X ,故⎩⎨⎧≤>=-.0,0,0,e )(x x x x f x X ,同理,可得⎪⎩⎪⎨⎧≤>+=.0,0,0,)1(1)(2y y y y f Y ,因为)()(),(y f x f y x f Y X =,所以X 与Y 相互独立.13.设随机变量),(Y X 在区域}|),{(a y x y x g ≤+=上服从均匀分布,求X 与Y 的边缘概率密度,并判断X 与Y 是否相互独立.解:由题可知),(Y X 的联合概率密度函数为⎪⎩⎪⎨⎧≤+=其他.,0,,21),(2a y x a y x f ,当0<<-x a 时,有)(1d 21d ),()(2)(2x a a y a y y x f x f xa x a X +===⎰⎰++-∞+∞-,当a x <≤0时,有)(1d 21d ),()(2)(2x a a y a y y x f x f x a x a X -===⎰⎰---∞+∞-,当a x ≥时,0d ),()(==⎰+∞∞-y y x f x f X ,故⎪⎩⎪⎨⎧≥<-=.a x a x x a a x f X ,0,),(1)(2,同理,由轮换对称性,可得⎪⎩⎪⎨⎧≥<-=.a y a y y a a y f Y ,0,),(1)(2,显然)()(),(y f x f y x f Y X ≠,所以X 与Y 不相互独立.14.设X 和Y 时两个相互独立的随机变量,X 在)1,0(上服从均匀分布,Y 的概率密度为⎪⎩⎪⎨⎧≤>=-.0,0,0,e 21)(2y y y f yY (1)求X 和Y 的联合概率密度;(2)设含有a 的二次方程为022=++Y aX a ,试求a 有实根的概率.解:(1)由题可知X 的概率密度函数为⎩⎨⎧<<=其他.,0,10,1)(x x f X ,因为X 与Y 相互独立,所以),(Y X 的联合概率密度函数为⎪⎩⎪⎨⎧><<==-其他.,0,0,10,e 21)()(),(2y x y f x f y x f y Y X ,(2)题设方程有实根等价于}|),{(2X Y Y X ≤,记为D ,即}|),{(2X Y Y X D ≤=,设=A {a 有实根},则⎰⎰=∈=Dy x y x f D Y X P A P d d ),()),(()(⎰⎰⎰---==1021002d )e 1(d d e 2122xx y x x y⎰--=12d e12x x ⎰--=12d e 21212x x ππππ23413.01)]0()1([21-=Φ-Φ-=.15.设i X ~)4.0,1(b ,4,3,2,1=i ,且1X ,2X ,3X ,4X 相互独立,求行列式4321X X X X X =的分布律.解:由i X ~)4.0,1(b ,4,3,2,1=i ,且1X ,2X ,3X ,4X 相互独立,易知41X X ~)84.0,16.0(b ,32X X ~)84.0,16.0(b .因为1X ,2X ,3X ,4X 相互独立,所以41X X 与32X X 也相互独立,又32414321X X X X X X X X X -==,则X 的所有可能取值为1-,0,1,有)1()0()1,0()1(32413241======-=X X P X X P X X X X P X P 1344.016.084.0=⨯=,)1,1()0,0()0(32413241==+====X X X X P X X X X P X P )1()1()0()0(32413241==+===X X P X X P X X P X X P 7312.016.016.084.084.0=⨯+⨯=,)0()1()0,1()1(32413241=======X X P X X P X X X X P X P 1344.084.016.0=⨯=,故X 的分布律为X 1-01P1344.07312.01344.016.设二维随机变量),(Y X 的概率密度为⎩⎨⎧>>=+-其他.,0,0,0,e 2),()2(y x y x f y x 求Y X Z 2+=的分布函数及概率密度函数.解:0≤z 时,若0≤x ,则0),(=y x f ;若0>x ,则0<-=x z y ,也有0),(=y x f ,即0≤z 时,0),(=y x f ,此时,0d d ),()2()()(2==≤+=≤=⎰⎰≤+zy x Z y x y x f z Y X P z Z P z F .0>z 时,若0≤x ,则0),(=y x f ;只有当z x ≤<0且02>-=xz y 时,0),(≠y x f ,此时,⎰⎰≤+=≤+=≤=zy x Z yx y x f z Y X P z Z P z F 2d d ),()2()()(⎰⎰-+-=zx z y x y x 020)2(d e 2d z z z ----=e e 1.综上⎩⎨⎧≤>--=--.0,0,0,e e 1)(z z z z F z z Z ,所以⎩⎨⎧≤<='=-.0,0,0,e )()(z z z z F z f z Z Z .17.设X ,Y 是相互独立的随机变量,其概率密度分别为⎩⎨⎧≤≤=其他.,0,10,1)(x x f X ,⎩⎨⎧≤>=-.0,0,0,e )(y y y f y Y 求Y X Z +=的概率密度.解:0<z 时,若0<x ,则0)(=x f X ;若0≥x ,则0<-=x z y ,0)(=-x z f Y ,即0<z 时,0)()(=-x z f x f Y X ,此时,0d )()()(=-=⎰∞+∞-x x z f x f z f Y X Z .10≤≤z 时,若0<x ,则0)(=x f X ;只有当z x ≤≤0且0>-=x z y 时0)()(≠-x z f x f Y X ,此时,z zx z Y X Z x x x z f x f z f ---∞+∞--==-=⎰⎰e 1d e d )()()(0)(.1>z 时,若0<x ,0)(=x f X ;若1>x ,0)(=x f X ;若10≤≤x ,则0>-=x z y ,此时,0)()(≠-x z f x f Y X ,z x z Y X Z x x x z f x f z f ---∞+∞--==-=⎰⎰e )1e (d e d )()()(1)(.综上,⎪⎩⎪⎨⎧<>-≤≤-=--.0,0,1,e )1e (,10,e 1)(z z z z f z z Z .18.设随机变量),(Y X 的概率密度为⎪⎩⎪⎨⎧>>+=+-其他.,0,0,0,e)(21),()(y x y x y x f y x (1)X 和Y 是否相互独立?(2)求Y X Z +=的概率密度.解:(1)),()()(y x f y f x f Y X ≠,∴X 与Y 不独立.(2)0≤z 时,若0≤x ,则0)(=x f X ;若0>x ,则0<-=x z y ,0),(=y x f ,此时,0d ),()(=-=⎰∞+∞-x x z x f z f Z .0≥z 时,若0≤x ,则0)(=x f X ;只有当z x <<0且0>-=x z y 时0),(≠y x f ,此时,⎰∞+∞--=x x z x f z f Z d ),()(⎰+-+=zy x x y x 0)(d e)(21⎰-=z z x z 0d e 21z z -=e 212,所以⎪⎩⎪⎨⎧≤>=-.0,0,0,e 21)(2z z z z f zZ .19.设X 和Y 时相互独立的随机变量,它们都服从正态分布),0(2σN .证明:随机变量22Y X Z +=具有概率密度函数⎪⎩⎪⎨⎧<≥=-.0,0,0,e )(2222z z z z f z Z σσ.证:因为X 与Y 相互独立,均服从正态分布),0(2σN ,所以其联合密度函数为2222)(2e 121),(σσπy x y x f +-⋅=,(+∞<<∞-y x ,)当0≥z 时,有⎰⎰≤+=≤+=≤=zy x Z yx y x f z Y X P z Z P z F 22d d ),()()()(22⎰⎰≤++-⋅=zy x y x y x 22222d e 1212)(2σσπ⎰⎰-⋅=πσθσπ2022d ed 12122zr r r ⎰-=zr r r 022d e122σσ,此时,2222e)(σσz Z z z f -=;当0<z 时,=≤+}{22z Y X ∅,所以0)()()(22=≤+=≤=z Y X P z Z P z F Z ,此时,0)(=z f Z ,综上,⎪⎩⎪⎨⎧<≥=-.0,0,0,e )(2222z z z z f z Z σσ.20.设),(Y X 在矩形区域}10,10|),{(≤≤≤≤=y x Y X G 上服从均匀分布,求},min{Y X Z =的概率密度.解:由题可知),(Y X 的联合概率密度函数为⎪⎩⎪⎨⎧≤≤≤≤=其他.,0,20,10,21),(y x y x f ,易证,X ~]1,0[U ,Y ~]2,0[U ,且X 与Y 相互独立,⎪⎩⎪⎨⎧≥<≤<=.1,1,10,,0,0)(x x x x x F X ,⎪⎪⎩⎪⎪⎨⎧≥<≤<=.2,1,20,2,0,0)(y y yy y F Y ,可得)](1)][(1[1)(z F z F z F Y X Z ---=)()()()(z F z F z F z F Y X Y X -+=⎪⎪⎩⎪⎪⎨⎧≥<≤-<=.1,1,10,223,0,02z z z z z ,求导,得⎪⎩⎪⎨⎧<<-=其他.,0,10,23)(z z z f Z .21.设随机变量),(Y X 的概率密度为⎩⎨⎧+∞<<<<=+-其他.,0,0,10,e ),()(y x b y x f y x (1)试确定常数b ;(2)求边缘概率密度)(x f X 及)(y f Y ;(3)求函数},max{Y X U =的分布函数.解:(1)⎰⎰⎰⎰∞++-∞+∞-∞+∞-==01)(d d e d d ),(1yx b y x y x f y x⎰⎰∞+--=1d e d e y x b y x )e 1(|)e (|)e (1102-+∞---=-⋅=b b y x ,∴1e11--=b .(2)10<<x 时,1)(1e1e d e e 11d ),()(--∞++--∞+∞--=-==⎰⎰x y x X y y y x f x f ,其他,0)(=x f X ,∴⎪⎩⎪⎨⎧<<-=--其他.,0,10,e 1e )(1x x f xX ,0>y 时,⎰∞+∞-=x y x f y f Y d ),()(y y x x -+--=-=⎰e d e e1110)(1,0≤y 时,0)(=y f Y ,∴⎩⎨⎧≤>=-.0,0,0,e )(y y y f y Y .(3)0≤x 时,0)(=x F X ,10<<x 时,101e 1e 1d e 1e d )()(----∞---=-==⎰⎰xxt xX X t t t f x F ,1≥x 时,1)(=x F X ,∴⎪⎪⎩⎪⎪⎨⎧≥<<--≤=--.1,1,10,e1e1,0,0)(1x x x x F x X ;0≤y 时,0)(=y F Y ,0>y 时,y yv y Y Y v v v f y F --∞--===⎰⎰e 1d e d )()(0,∴⎩⎨⎧≤>-=-.0,0,0,e 1)(y y y F y Y ,故有)()()(y F x F u F Y X U =⎪⎪⎩⎪⎪⎨⎧≥-<≤--<=---.1,e 1,10,e1e1,0,01u u u uu .。

山东建筑大学概率论作业及答案_图文

山东建筑大学概率论作业及答案_图文

1. 设随机变量
的分布律为
试求:(1)
(2) 在 的条件下,
的分布律;
(3)

(4)
的分布律.
解 (3)
012 0 1/8 1/4 0 1 1/8 1/4 1/4
的分布律;
(4)
40
2. (X , Y)只取下列数组中的值:
且相应的概率依次为 , , , , 列出(X , Y)的概率分
布表, 并
求出的分布律
求 和

的联合密度函数
以及条件密度函数

时,

时,
38
概率论与数理统计作业8(§2.9)
1. 设随机变量
的分布律为
试求:(1)
(2) 在 的条件下,
的分布律;
012 0 1/8 1/4 0 1 1/8 1/4 1/4
(3)

的分布律;
(4)
的分布律.
解 (1)
(2) 在 的条件下, 的分布律;
39
解 取偶数的概率为
X 服从几何分布
4
2.将一颗骰子抛掷两次,以 表示两次所得点数之和,以 表示两次中得到的较小的点数,试分别求 和
的分布律. 解
5
3.一批零件中有9个合格品与3个废品。安装机器时从中任取1个 。如果每次取出的废品不再放回去,求在取得合格品以前已 取出的废品数的概率分布和分布函数,并作出分布函数的图
)可以成为
(A)
( 是任意实数)(B)
的分布律
(C) 2. 设 与
(D) 分别为随机变量 与 的分布函数,为使
是某一随机变量的分布函数,在下列给定的各组数值中应取(A)
(A)
; (B)(C)源自; (D)3三、计算题 1. 进行某种试验,已知试验成功的概率为3/4,失败的概率为 1/4,以 表示首次成功所需试验的次数,试写出 的分布律 ,并计算出 取偶数的概率.

山东建筑大学概率论与数理统计作业纸答案解析(完整版)

山东建筑大学概率论与数理统计作业纸答案解析(完整版)
(3)下列事件分别表示什么事件?并把它们表示为样本点的集合。
解(1)样本点 i : 出现 i 点,则样本空间为:
1,2 ,3 ,4 ,5 ,6
(2)A 2 ,4 ,6; B 3 ,6. (3)A 1,3 ,5 表示“出现奇数点”;
B 1 ,2 ,4 ,5 表示“出现点数不能被3整除”; A B 2 ,3 ,4 ,6 表示“出现点数能被2或3整除”; AB 6 表示“出现点数能被2和3整除”。
设事件A 表示指定的3本放在一起,
则A所包含的基本事件的数: M A33 A88

P( A) M N

8!3! 10!

1 1153

0.067
三、将C、C、E、E、I、N、S等7个字母随机的排成一行, 求恰好排成英文单词SCIENCE的概率。

P( A) 2 2 1 0.000794
解 设Bi= “取出的零件由第 i 台加工” (i 1,2)
PA PB1PA B1 PB2 PA B2
2 0.97 1 0.98 0.973
3
3
19
十四、发报台分别以概率 0.6 及 0.4 发出信号“·”及“-”,由于通 信系统受到干扰,当发出信号“·”时,收报台以概率 0.8 及 0.2 收 到信号“·”及“-”;又当发出信号“-”时,收报台以概率 0.9 及 0.1 收 到信号“-”及 “·” ,求 (1)当收报台收到信号“·”时,发报台确系发出信号“·”的概率; (2)当收报台收到信号“-”时,发报台确系发出信号“-”的概率。
解 用Ai 表示第i次取到白球,(i 1,2)
则,所求事件的概率为
P( A) P( A1 A2 A1 A2 ) P( A1 A2 ) P( A1 A2 ) P( A1 )P( A2 | A1 ) P( A1 )P( A2 | A1 )

概率论与数理统计作业(山东建筑大学作业纸)

概率论与数理统计作业(山东建筑大学作业纸)

概率论与数理统计作业(山东建筑大学作业纸)概率论与数理统计作业(山东建筑大学作业纸)概率论与数理统计作业4(§2.1~§2.3)一、填空题b(其中k 1,2,...)可以作为离散型随机变量的概率分布.k(k 1)12. 同时掷3枚质地均匀的硬币,则至多有1枚硬币正面向上的概率为.2-23. X~P(2),则P(X 2) 0.594 1-3e1. 常数b=时,pk二、选择题设随机变量X是离散型的,则可以成为X的分布律0 x2x3x4x5 1 x1(A) (是任意实数)(B) pp1 p0.10.30.30.2 0.2e 33ne 33n(C) P{X n} (n 1,2,.....) (D) P{X n} (n 0,1,2,...)n!n!三、计算题1.一批零件中有9个合格品与3个废品。

安装机器时从中任取1个。

如果每次取出的废品不再放回去,求在取得合格品以前已取出的废品数的概率分布。

解:设X表示取得合格品以前已取出的废品数,P3kP91则X=0,1,2,3;P(X k) k 1P12.2.解:设X表示射击次数,则X=1,2,3;P(X.k) p 1 p1 k3.20个产品中有4个次品,(1)不放回抽样,抽取6个产品,求样品中次品数的概率分布;(2)放回抽样,抽取6个产品,求样品中次品数的概率分布。

解:(1) 不放回抽样,设X表示样品中次品数,则X=0,1,2,3, 4;X~H(6,4,20)k4 kC4C16P(X k) 6C20.(1) 放回抽样,设X表示样品中次品数,则X=0,1,2,3, 4;X~B (6,0.2)k0.2 0.8 P(X k) C6k6 k.概率分布表如下概率论与数理统计作业(山东建筑大学作业纸)4. 一批产品分一,二,三级, 其中一级品是二级品的两倍, 三级品是二级品的一半, 从这批产品中随机地抽取一个检验质量, 设X表示抽出产品的级数,写出它的概率函数. 解:X=1,2,3;一、填空题~§2.7)1.设随机变量X的密度函数0 x 1 xf(x) 2 x1 x 2,则P X 1.50其它0.875 ;PX 1.50 . 2. 设随机变量X的密度函数为1k 1 2 1 x 2f x x其它0则k 2 .二、判断题1可否是连续随机变量X的分布函数,如果X的可能值充满区间:1 x2(1), ;10 1. 解:不可以. 因F limx 1 x2(2),0 .函数解:可以.110;F0 lim 1.x 1 x2x 01 x2且F(x)在,0 上单调非减,F lim1 ,x 0故令F x 1 x2可以是连续随机变量X的分布函数x 0 1三、计算题1.已知随机变量1)确定常数X只能取-1,0,1,2四个值,相应概率依次为c;__解:1, c .2c4c8c16c162)计算P(X 1|X 0);P X 1 X 0 P X 1 解:P X 1X 0PX 0PX 1 PX 1 PX 21357,,,,2c4c8c16c概率论与数理统计作业(山东建筑大学作业纸) 1=8 25.2c 8c 16c3)求X的分布函数并做出其图像x 8137 1 x 0 解:F x 200 x 137 30 1 x 2 37 1x 2 0x 1 1 x 12. 设离散型随机变量X的分布函数为F(x) 0.4 0.71 x 3,求X的分布列。

山东建筑大学概率论与数理统计试卷(含答案)

山东建筑大学概率论与数理统计试卷(含答案)

H 考场 班级 姓名 学号 订线 装订线 装订线姓名 学号 订线 装订线 装订线的最大似然估计量;姓名 学号 订线 装订线 装订线2013-2014学年第二学期《概率论与数理统计》A 卷参考答案与评分标准一、填空题(每空3分,共24分) 1、4.0;2、221-e ;3、6;4、2()3X y F -;5、0.4;6、(5)t ;7、nλ;8、0.0212u 二、选择题(每题3分,共18分)1、A ;2、A ;3、D ;4、C ;5、A ;6、C 三、计算和应用题(58分)1、(8分)解:A :患病,B :测试结果呈阳性,则B A AB B +=(1))|()()|()()(B P P A B P A P B P +=24.005.08.02.0=⨯+=…………5分 (2)6524.02.0)()|()()|(===B P A B P A P B A P …………8分2、(10分)解:(I )⎩⎨⎧≥=-其它0)(x xe x f x …………3分 (II ))1|(|>X P (1)P X =>1(1)F =-12-=e …………6分(III ))(XeE -20x xe dx +∞-=⎰…………8分41=…………10分 3、(10分)解:X 的概率密度为1, 11()20, X x f x ⎧-≤≤⎪=⎨⎪⎩其它…………2分(Ⅰ)()()Y F y P Y y =≤2()P X y =≤(P X =≤≤当0y ≤时,()0Y F y =当1y >时,()1Y F y =…………3分当01y <≤时,()Y Fy 0122dx ==5分01()0, Y y f y ≤<=⎩其他…………6分(Ⅱ)()0E X =,21()()3E Y E X ==,3()()0E XY E X ==,Cov(,)0X Y =;…………8分 (Ⅲ)21111115,(,)()34342312F P X X P X ⎛⎫=≤≤=-≤≤= ⎪⎝⎭…………10分 4、(10分)解:(I )…………6分 (II )1()3E X =,2()3E Y =,2()15E XY =…………9分 cov(,)X Y =454-…………10分 5、(10分)解:①()(,)X f x f x y dy +∞-∞==⎰, 00, 0x xe x x -⎧>⎨≤⎩…………3分|(|)Y X f y x (,)()X f x y f x =10y x x ⎧<<⎪=⎨⎪⎩其他,…………6分 (1,1)P X Y ≤≤10010xx x ydx e dydy e dx-+∞-=⎰⎰⎰⎰21e e -=-…………10分 6、(10分)解:1)()(,)E X x f x dx θ+∞-∞=⎰…………1分22x e dx xθθ-+∞=⎰θ=…………4分ˆx θ=…………5分2)似然函数1()(,)nii L f x θθ==∏…………6分231inx i i e x θθ-==∏112312()nii nx n ex x x θθ=-∑=⋅…………7分ln ()L θ1112ln 3ln nni i i in x x θθ===--∑∑…………8分 ln ()0d L d θθ=得1210n i in x θ=-=∑,…………9分 12ˆ1ni inx θ==∑…………10分。

《概率论与数理统计答案》第三章

《概率论与数理统计答案》第三章
第三章
习题参考答案与提示
第三章 随机变量的数字特征习题参考答案与提示
1.设随机变量 X 的概率分布为
X
-3 0.1
0 0.2
1 0.3
5 0.4
pk 试求 EX 。
答案与提示: EX = 2 。 2.已知随机变量 X 的分布列为
X
0 0.1
1
p
2 0.4
3 0.2
Pk
答案与提示:(1)由归一性, p = 0.3 ; (2) EX = 1.7 ; (3) DX = 0.81 3.已知随机变量 X 的分布列为


D X −Y = 1−
26.设灯管使用寿命 X 服从指数分布,已知其平均使用寿命为 3000 小时,现有
—5—

若一周 5 个工作日里无故障可获利 10 万元,发生一次故障仍获利 5 万元,发生二次2π网

ww w
3 ; 2
.k
hd a
EZ =
1 , DZ = 3 ; 2
w. c
解:(1)由数学期望、方差的性质及相关系数的定义( ρ XY =
第三章
习题参考答案与提示
求:(1) Y = 2 X 的数学期望;(2) Y = e −2 X 的数学期望。 答案与提示:(1) EY = E 2 X = 2 ;(2) EY = Ee −2 X = 1/ 3 。
1 11.试证明事件在一次试验中发生的次数的方差不超过 。 4
答案与提示:事件在 n 次独立重复试验中发生的次数服从参数为 n , p 的二项分 布 B ( n, p ) ,当然在一次试验中发生的次数应服从 B (1, p ) ,即为(0-1)分布。
f ( x) = 1 − x− β e 2α

概率论与数理统计第三、四章答案

概率论与数理统计第三、四章答案

概率论与数理统计第三、四章答案第三章 习题参考答案1.计算习题二第2题中随机变量的期望值。

解:由习题二第2题计算结果112{0}={1}=33pp p p ξξ====,得12201333E ξ=⨯+⨯=一般对0-1分布的随机变量ξ有{1}E p p ξξ===2.用两种方法计算习题二第30题中周长的期望值,一种是利用矩形长与宽的期望计算,另一种是利用周长期望的分布计算。

解:方法一:先按定义计算长的数学期望290.3300.5310.229.9E ξ=⨯+⨯+⨯=和宽的数学期望190.3200.4210.320E η=⨯+⨯+⨯=再利用数学期望的性质计算周长的数学期望(22)229.922099.8E E ζξη=+=⨯+⨯=方法二:利用习题二地30题的计算结果(见下表),按定义计算周长的数学期望ξ96 98 100 102 104p0.090.270.350.230.06960.09980.271000.351020.231040.0698.8E ξ=⨯+⨯+⨯+⨯+⨯=3.对习题二第31题,(1)计算圆半径的期望值;(2)(2)E R π是否等于2ER π?(3)能否用2()ER π来计算远面积的期望值,如果不能22||201()2x x D E x e dx x e dx ξξ+∞+∞---∞===⎰⎰20|22x x x e xe dx +∞-+∞-=-+=⎰6题目略解 (1)15辆车的里程均值为1274(9050150)91.33153++⋅⋅⋅+=≈ (2) 记ξ为从188辆汽车中任取一辆记录的里程数,则ξ的分布表如下表所示(a=188)ξ10 30 50 70 90 110 130 150 170p 5/a11/a 16/a 25/a 34/a 46/a 33/a 16/a 2/a故51124520103017096.1718818818847E ξ=⨯+⨯+⋅⋅⋅+⨯=≈ 7题目略解 记ξ为种子甲的每公顷产量,η为种子乙的每公顷产量,则45000.1248000.3851000.454000.14944E ξ=⨯+⨯+⨯+⨯= 45000.2348000.2451000.354000.234959E η=⨯+⨯+⨯+⨯=8.一个螺丝钉的重量是随机变量,期望值10g,标准差为1g,100个一盒的同型号螺丝钉重量的期望值和标准差个为多少(假设每个螺丝钉的重量都部首其他螺丝钉重量的影响)?解 设i ξ为一盒中第i 个螺丝钉的重量(1,2,,100)i =⋅⋅⋅,则 题设条件为101,i i E g D g ξξ==且12100,,,ξξξ⋅⋅⋅相互独立。

概率论与数理统计第三、四章答案

概率论与数理统计第三、四章答案

第三章 习题参考答案1.计算习题二第2题中随机变量的期望值。

解:由习题二第2题计算结果0112{0}={1}=33p p p p ξξ====,得12201333E ξ=⨯+⨯= 一般对0-1分布的随机变量ξ有{1}E p p ξξ===2.用两种方法计算习题二第30题中周长的期望值,一种是利用矩形长与宽的期望计算,另一种是利用周长期望的分布计算。

解:方法一:先按定义计算长的数学期望290.3300.5310.229.9E ξ=⨯+⨯+⨯=和宽的数学期望190.3200.4210.320E η=⨯+⨯+⨯=再利用数学期望的性质计算周长的数学期望(22)229.922099.8E E ζξη=+=⨯+⨯=方法二:利用习题二地30题的计算结果<见下表>,按定义计算周长的数学期望960.09980.271000.351020.231040.0698.8E ξ=⨯+⨯+⨯+⨯+⨯=3.对习题二第31题,〔1〕计算圆半径的期望值;〔2〕(2)E R π是否等于2ER π?〔3〕能否用2()ER π来计算远面积的期望值,如果不能用,又该如何计算?其结果是什么?解〔1〕100.1110.4120.3130.211.6ER =⨯+⨯+⨯+⨯= 〔2〕由数学期望的性质有(2)223.2E R ER πππ==〔3〕因为22()()E R E R ππ≠,所以不能用2()E R π来计算圆面积的期望值。

利用随机变量函数的期望公式可求得222222()()(100.1110.4120.3130.2)135.4E R E R ππππ==⨯+⨯+⨯+⨯= 或者由习题二第31题计算结果,按求圆面积的数学期望1000.11210.41440.31690.2)135.4E ηπππ=⨯+⨯+⨯+⨯=4. 连续随机变量ξ的概率密度为,01(,0)()0,a kx x k a x ϕ⎧<<>=⎨⎩其它又知0.75E ξ= ,求k 和a 的值 解 由1010()11324a a kx dx kx dx a k E kx x dx a ϕξ+∞-∞===+=⋅==+⎰⎰⎰解得2,3a k ==5.计算服从拉普拉斯分布的随机变量的期望和方差〔参看习题二第16题〕。

概率论与数理统计第三章多维随机变量及其分布习题解答

概率论与数理统计第三章多维随机变量及其分布习题解答

习题3-11、设(,)X Y 的分布律为求a 。

解:由分布律的性质,得1,0iji jp a =>∑∑,即111111691839a +++++=,0a >, 解得,29a =。

注:考察分布律的完备性和非负性。

2、设(,)X Y 的分布函数为(,)F x y ,试用(,)F x y 表示:(1){,}P a X b Y c ≤≤<;(2){0}P Y b <<;(3){,}P X a Y b ≥<。

解:根据分布函数的定义(,){,}F x y P X x Y y =≤≤,得(1){,}{,}{,}(,)(,)P a X b Y c P X b Y c P X a Y c F b c F a c ---≤≤<=≤<-<<=-; (2){0}{,}{,0}(,)(,0)P Y b P X Y b P X Y F b F -<<=≤+∞<-≤+∞≤=+∞-+∞; (3){,}{,}{,}(,)(,)P X a Y b P X Y b P X a Y b F b F a b ---≥<=≤+∞<-<<=+∞-。

3、设二维随机变量(,)X Y 的分布函数为(,)F x y ,分布律如下:试求:(1)13{,04}22P X Y <<<<;(2){12,34}P X Y ≤≤≤≤;(3)(2,3)F 。

解:由(,)X Y 的分布律,得 (1)1311{,04}{1,1}{1,2}{1,3}002244P X Y P X Y P X Y P X Y <<<<===+==+===++=; (2){12,34}{1,3}{1,4}{2,3}{2,4}P X Y P X Y P X Y P X Y P X Y ≤≤≤≤===+==+==+==1150016416=+++=;(3)(2,3){2,3}{1,1}{1,2}{1,3}F P X Y P X Y P X Y P X Y =≤≤===+==+==1119{2,1}{2,2}{2,3}000416416P X Y P X Y P X Y +==+==+===+++++=。

经济概率统计作业参考答案(第三章)

经济概率统计作业参考答案(第三章)

p{X
k} a , p{Y k} b , (k 1,2 ,3), 且
k
k2
X
与Y
相互独立,则
( D )。
( A) a 1, b 1;
(B) 11a 49 b 1 ; 6 36
(C) a, b 为任意实数 ;
(D) a 6 , b 36 。 11 49
三、计算
1、一盒子中装有 3 个黑球、2 个白球、2 个红球。在其中任意取四球,以 X 表示取到黑球 的个数,以Y 表示取到红球的个数,求( X , Y )的联合分布列。
1 0 x 1
f
X
(x)
0
其他
fY ( y)
f (x, y)dx
当0
y
2
时,
f Y
( y)
11
0 2
dx
1 2
当 y 0 或 y 2 时, fY ( y) 0
1 / 2
f Y
( y)
0
0 y2 其他
5、已知随机变量 X 和 Y 的联合分布为:
(x , y) (0,0) (0,1) (1,0) (1,1) (2,0) (2,1)
答案: F(b, c) F(a, c) , F(, a) F(,0) , F(,b) F(a,b)
2、设二维随机变量的密度函数为
p(x)
4xy
0
,0 x 1, 0 y 1
,
其他

则 p(0 X 0.5)

答案: 1 4
3、随机变量 (X ,Y ) 的分布率如下表,则, 应满足的条件是
1/ 6
3
1/12 1/ 6
0
2. 二维随机变量( X ,Y )的联合密度函数为:

《概率论》数学3章课后习题详解

《概率论》数学3章课后习题详解

概率论第三章习题参考解答1. 如果ξ服从0-1分布, 又知ξ取1的概率为它取0的概率的两倍, 求ξ的期望值 解:由习题二第2题算出ξ的分布率为ξ0 1 P1/32/3因此有E ξ=0×P (ξ=0)+1×P (ξ=1)=2/3+2η, ξ与η的分布律如下表所示:: 求周长的期望值, 用两种方法计算, 一种是利用矩形长与宽的期望计算, 另一种是利用周长的分布计算.解: 由长和宽的分布率可以算得E ξ=29×P (ξ=29)+30×P (ξ=30)+31×P (ξ=31) =29×0.3+30×0.5+31×E η=19×P (η=19)+20×P (η=20)+21×P (η=21) =19×0.3+20×0.4+21×0.3=20 由期望的性质可得 E ζ=2(E ξ+E η)=2×而如果按ζ的分布律计算它的期望值, 也可以得 E ζ=96×0.09+98×0.27+100×0.35+102×0.23+104× 验证了期望的性质.4. 连续型随机变量ξ的概率密度为⎩⎨⎧><<=其它)0,(10)(a k x kx x aϕ又知Eξ=0.75, 求k 和a 的值。

解: 由性质⎰+∞∞-=1)(dx x ϕ得111)(|10110=+=+==++∞∞-⎰⎰a kx a k dx kx dx x a aϕ即k =a +1(1)又知75.022)(|10211=+=+===+++∞∞-⎰⎰a kx a k dx kx dx x x E a a ϕξ得ka +1.5(2)由(1)与(2)解得a =0.5, 即a =2, k =36. 下表是某公共汽车公司的188辆汽车行驶到发生一次引擎故障的里程数的分布数列.若表中各以组中值为代表. 从188辆汽车中, 任意抽选15辆, 得出下列数字: 90, 50, 150, 110, 90, 90, 110, 90, 50, 110, 90, 70, 50, 70, 150. (1)求这15个数字的平均数; (2) 计算表3-9中的期望并与(1)相比较.解: (1) 15个数的平均数为(2) 按上表计算期望值为(10×5+30×11+50×16+70×25+90×34+110×46+130×33+150×16+170×2)/1887. 两种种子各播种300公顷地, 调查其收获量, 如下表所示, 分别求出它们产量的平均值解: 假设种子甲的每公顷产量数为, 种子乙的每公顷产量数为, 则 E ξ=(4500×12+4800×38+5100×40+5400×10)/100=4944 E η=(4500×23+4800×24+5100×30+5400×23)/100=49598. 一个螺丝钉的重量是随机变量, 期望值为10g , 标准差为1g . 100个一盒的同型号螺丝钉重量的期望值和标准差各为多少?(假设各个螺丝钉的重量相互之间独立) 解: 假设这100个螺丝钉的重量分别为ξ1, ξ2,…, ξ100, 因此有E ξi =10, Dξi =102=12=1, (i =1,2,…,100), 设ξ为这100个螺丝钉的总重量,因此∑==1001i i ξξ,则ξ的数学期望和标准差为gD D D kgg E E E i ii i i i i i 1011001)(1000101001001100110011001=⨯==⎪⎭⎫⎝⎛====⨯==⎪⎭⎫ ⎝⎛=∑∑∑∑====ξξξσξξξξ9. 已知100个产品中有10个次品,求任意取出的5个产品中次品数的期望值.解: 假设ξ为取出5个产品中的次品数, 又假设ξi 为第i 次取出的次品数, 即, 如果第i 次取到的是次品, 则ξi =1否则ξi =0, i =1,2,3,4,5, ξi 服从0-1分布,而且有 P {ξi =0}=90/100, P {ξi =1}=10/100, i =1,2,3,4,5因此, E ξi =10/100=1/10, 因为∑==51i iξξ因此有5.010155151=⨯==⎪⎭⎫ ⎝⎛=∑∑==i i i i E E E ξξξ10. 一批零件中有9个合格品和3个废品, 在安装机器时, 从这批零件中任取一个, 如果取出的是废品就不再放回去. 求取得第一个合格品之前, 已经取出的废品数的数学期望和方差. 解: 假设在取到第一个合格品之前已取出的废品数为ξ, 则可算出0045.02201101112123}3{041.02209109112123}2{2045.0119123}1{75.0129}0{==⋅⋅====⋅⋅===⋅=====ξξξξP P P P因此有319.009.0409.0)(409.090045.04041.02045.03.030045.02041.02045.0222===-==⨯+⨯+==⨯+⨯+=ξξξξξE E D E E11. 假定每人生日在各个月份的机会是同样的, 求3个人中生日在第一个季度的平均人数. 解: 设三个随机变量ξi ,(i =1,2,3), 如果3个人中的第i 个人在第一季度出生, 则ξi =1, 否则ξi =0, 则ξi 服从0-1分布, 且有 P (ξi =1)=1/4, 因此E ξi =1/4, (i =1,2,3)设ξ为3个人在第一季度出生的人数, 则ξ=ξ1+ξ2+ξ3, 因此Eξ=E (ξ1+ξ2+ξ3)=3Eξi12. ξ有分布函数⎩⎨⎧>-=-其它1)(x e x F xλ, 求E ξ及D ξ. 解: 因ξ的概率密度为⎩⎨⎧>='=-其它)()(x e x F x xλλϕ, 因此 ()λλλϕξλλλλλ11)(0=-=+-=-===∞+-∞+-∞+-+∞-+∞-+∞∞-⎰⎰⎰⎰xx xxxe dx e xe e xd dx ex dx x x E()22020222222)(|λξλλϕξλλλλ==+-=-===⎰⎰⎰⎰∞+-∞+-+∞-+∞-+∞∞-E dx xe e x e d x dx ex dx x x E x x x x22222112)(λλλξξξ=-=-=E E D13. ⎪⎩⎪⎨⎧<-=其它1||11)(~2x x x πϕξ, 求E ξ和D ξ.解: 因φ(x )是偶函数, 因此Eξ=0,则D ξ=Eξ2-(Eξ)2=Eξ2 因此有⎰⎰-===+∞∞-1222212)(dx xx dx x x E D πϕξξ令θθθd dx x cos ,sin ==则上式=2112sin 21212cos 2sin 12||20202022=+=+=⎰⎰ππππθπθπθθπθθπd d 即D ξ16. 如果ξ与η独立, 不求出ξη的分布直接从ξ的分布和η的分布能否计算出D (ξη), 怎样计算?解: 因ξ与η独立, 因此ξ2与η2也独立, 则有[]()()222222)()()(ηξηξξηξηξηE E E E E E D -=-=17. 随机变量η是另一个随机变量ξ的函数, 并且η=e λξ(λ>0), 若E η存在, 求证对于任何实数a 都有λξλξEe ea P a⋅≤≥-}{.证: 分别就离散型和连续型两种情况证. 在ξ为离散型的情况: 假设P (ξ=x i )=p i , 则λξλξλλλξEe e e E p e p ep a P a a i i a x ax i a x ax i i i i i --∞=-≥-≥==≤≤=≥∑∑∑][){)(1)()(在ξ为连续型的情况假设ξ的概率密度为φ(x ), 则λξλξλλλϕϕϕξEe e Ee dx x e dx x edx x a P a a a x aa x a--+∞∞--+∞-+∞==≤≤=≥⎰⎰⎰)()()()()()(}{证毕.18. 证明事件在一次试验中发生次数的方差不超过1/4.证: 设ξ为一次试验中事件A 发生的次数, 当然最多只能发生1次, 最少为0次, 即ξ服从0-1分布, P {ξ=1}=P (A )=p , P {ξ=0}=1-p =q ,则4121412124141)1(222≤⎪⎭⎫ ⎝⎛--=-⋅+-=-=-=p p p p p p p D ξ19. 证明对于任何常数c , 随机变量ξ有 D ξ=E (ξ-c )2-(Eξ-c )2证: 由方差的性质可知D (ξ-c )=Dξ, 而2222)()()]([)()(c E c E c E c E c D ---=---=-ξξξξξ证毕.20. (ξ,η)的联合概率密度φ(x ,y )=e -(x +y )(x ,y >0), 计算它们的协方差cov (ξ,η). 解: 由φ(x ,y )=e -(x +y )(x ,y >0)可知ξ与η相互独立, 因此必有cov (ξ,η)=0.21. 袋中装有标上号码1,2,2的3个球, 从中任取一个并且不再放回, 然后再从袋中任取一球, 以ξ, η分别记为第一,二次取到球上的号码数, 求ξ与η的协方差.,P {ξ=2}=P {η=2}=2/3, P {ξ=1}=P {η=1}=1/3, E ξ=E η=35322311=⨯+⨯38314312312},{)(2121=⨯+⨯+⨯====∑∑==i j j i ijP E ηξξη则913538)(),cov(22-=-=⋅-=ηξξηηξE E E22. (ξ , η)只取下列数组中的值:)0,2()31,1()1,1()0,0(--且相应的概率依次为1/6, 1/3, 1/12, 5/12. 求ξ与η的相关系数ρ, 并判断ξ与η是否独立? 解: ξ与的联合分布表及各边缘分布计算表如下表所示: 因此1212260121=⨯+⨯+⨯-=ξE 1225125412512=⨯+⨯=ξE144275144251225)(22=-=-=ξξξE E D3613311121311270=⨯+⨯+⨯=ηE1083731121912=+⨯=ηE129627512961691237129616910837)(22=-⨯=-=-=ηηηE E D36133112131)(-=-⨯-=ξηE则4322211236171336131253613)(),cov(-=⨯⨯-=⋅--=⋅-=ηξξηηξE E E 相关系数804.027522127543236122211296275144275432221),cov(-=-=⨯⨯⨯-=⨯-==ηξηξρD D, 计算ξ与η的相关系数ρ, 并判断ξ与η是否独立? 解: 由上表的数据的对称性可知与η的边缘分布一样, 算出为 P (ξ=-1)=P (η=-1)=3/8 P (ξ=0)=P (η=-0)=2/8P (ξ=1)=P (η=1)=3/8 由对称性可知Eξ=Eη=0831831=⨯+⨯-. 081818181)(=+--=ξηE 因此cov (ξ,η)=E (ξη)-E (ξ)E (η)=0 则ρ=0而P (ξ=0,η=0)=0≠P {ξ=0}P {η=0}=1/16因此ξ与η不独立. 这是一个随机变量间不相关也不独立的例子.24. 两个随机变量ξ与η, 已知Dξ=25, Dη=36, ρξη=0.4, 计算D (ξ+η)与D (ξ-η). 解:374.065236252),cov(2)]()[()]([)(854.065236252),cov(2)]()[()]([)(2222=⨯⨯⨯-+=-+=-+=---==---=-=⨯⨯⨯++=++=++=-+-==+-+=+ξηξηρηξηξηξηξηηξξηξηξηξρηξηξηξηξηηξξηξηξηξD D D D D D E E E E E D D D D D D D E E E E E D《概率论》期中测试题参考解答1、(10分)设A B C 、、表示三个随机事件,试用事件A B C 、、的运算分别表示下列各事件:(1)A 不发生而B C 、都发生; 表示为:ABC(2)A B C 、、三个事件至少有一个发生; 表示为:AB C ;或表示为:ABC ABC ABC ABC ABC ABC ABC(3)A B C 、、三个事件至多有一个发生; 表示为:ABCABC ABC ABC(4)A B C 、、恰有两个不发生; 表示为:ABCCAB BAC ;(5)A B C 、、都不发生; 表示为:ABC(6)A B C 、、三个事件不少于两个发生; 表示为:ABBC AC ;或表示为:ABC ABC ABC ABC(7)A B C 、、同时发生; 表示为:ABC(8)A B C 、、三个事件不多于两个发生; 表示为:AB C ;或表示为:ABC 或表示为:ABCABC ABC ABC ABC ABC ABC(9)A B C 、、不全发生; 表示为:AB C ;或表示为:ABC 或表示为:ABCABC ABC ABC ABC ABC ABC(10)A B C 、、恰有一个发生.或表示为:ABC ABC ABC2、(14分)已知()0.6,()0.3,()0.6,P A P AB P B ===求:(1)()P AB ;(2)()P A B -;(3)()P AB ;(4)()P AB ;(5)()P A B ;(6)()P B A ;(7)()P A B A .解:(1)因为0.3()()()()P AB P A B P A P AB ==-=-,所以有()()0.3[1()]0.30.40.30.1P AB P A P A =-=--=-=;(2)()()()[1()]()(10.6)0.10.3P A B P A P AB P A P AB -=-=--=--= (3)()()()()0.40.60.10.9P AB P A P B P AB =+-=+-=;(4)()()1()10.90.1P AB P A B P A B ==-=-=;(5)()0.11()()0.66P AB P A B P B ===; (6)()()0.33()()1()0.44P AB P A B P B A P A P A -====-;(7)[()]()()()()()()P A B A P AB AA P A B A P B A P B P A P BA ==+- ()()()[()()]P AB P B P A P B P AB =+--()0.11()()0.60.17P AB P A P AB ===++3、(8分)一个盒子中有10个球,其中4个黑球6个红球,求下列事件的概率:(1)A =“从盒子中任取一球,这个球是黑球”;(2)B =“从盒子中任取两球,刚好一黑一红”;(3)C =“从盒子中任取两球,都是红球”;(4)D =“从盒子中任取五球,恰好有两个黑球”.解:(1)141102()5C P A C ==;(2)11462108()15C C P B C ==;(3)262101()3C P C C ==; (4)234651010()21C C P C C ==4、(3分)设甲、乙、丙三人同时独立地向同一目标各射击一次,命中率分别为112,,323,求目标被命中的概率.解:设1A =“甲命中目标”;2A =“乙命中目标”;3A =“丙命中目标”;A =“目标被击中”。

概率论与数理统计第三章课后习题答案

概率论与数理统计第三章课后习题答案

概率论与数理统计第三章课后习题答案习题二1■将一硬币抛掷二次,以X表示在二次中出现正面的次数,以Y表示三次中出现正面次数与出现反面次数之差的绝对值.试写出X和丫的联合分布律.【解】X和丫的联合分布律如表:2.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X表示取到黑球的只数,以Y表示取到红球的只数.求X和Y的联合分布律.【解】X和丫的联合分布律如表:3•设二维随机变量(X, F)的联合分布函数为求二维随机变量(x, y)在长方形域内的概率.4 6 3J【解】如图叫眈怎<今空^求:(1)常数/;F (x, y)sin xsiny,0,0"岁詣其他.・Tt ■兀・兀■兀=sin —_sin ——sin —_sin ——4 3 4 6二#(dl).斗sin OLfeinK ■八■兀—+sinIksin —3 6JT7说明:也可先求出密度函数,再求概率。

4•设随机变量(X, Y)的分布密度f(兀,y)j e-(3.r+4y)x >0, y >0, 其他.(2) 随机变量(X, Y)的分布函数;(3) P{0 «1, 0之<2}.【解】(1)由 f(x,y)dxdy° °Ae(3x4y)dxdy £ 1得A = 12(2) 由定义,有y xF (x, y)f (u, v)dudvy y(3u 4v)12e dudvo o0,(3) P{0 X 1,0 Y 2}P{0 X 1,0 Y 2}5. 设随机变量(X, Y )的概率密度为(1 e 3x )(1 e 4y ) y 0,x 0,0,其他212e (3x 04y)dxdy(1 e 3)(1 e 8)0.9499.f(x ,y)=k(6 x y), 0,x 2,2 y 4,其他.(1)确定常数k ;(2)求 P{X v 1, Y v 3};(3)求 P{X<1.5};(4)求 P{X+Y W 4}.【解】(1)由性质有2 4f(x, y)dxdy ° 2 k(6 x y)dydx 8k 1,31-k(6 x y)dydx86.设X和丫是两个相互独立的随机变量,X在(0,0.2)上服从均匀分布,Y的密度函数为求:(1) X与Y的联合分布密度;(2)P{YN}.(2) P{X 1,Y 3} f (x, y)dydx(3)P{X(4)P{X1.5}x 1.5f (x, y)dxdy 如图 a f (x,y)dxdy1.5 4 10 dx -(6 x y)dy82732Y 4}Xf (x, y)dxdy如图 b f (x,y)dxdy(61 ) y)f Y( y)5e5y, y 0,0, 其他.【解】(1)因X 在(0, 0.2) 上服从均匀分布,所以X 的密度函数为f x (X)10 x 0.2,0.2,0,其他.而f/y)5e 5y , y 0,0,其他.所以f (x, y)X,丫独立 fx(x)gf Y (y)⑵ P(Y X) f (x, y)dxdy 如图 25e 5y dxdyy xD丄 0.2 5e 5y0,25e 5y, 0 x 0.2且 y 0, 0, 其他•0.2 0dx25e -5ydy0.2 5x0 ( 5e5)dx■1=e 0.3679.7.设二维随机变量(X, Y )的联合分布函数为F ( x ,y )(1 e 4x)(1 e 2y), x 0,y 0,0,其他.求(X ,Y )的联合分布密度2[解] f(x,y)x y8e(4x 2y), x 0,y 0,0, 其他.8.设二维随机变量(X, Y )的概率密度为f (x, y)=4.8y(2 x), 0 0,x 1,0 y x,其他.求边缘概率密度.【解】f x(x) f (x,y)dyx0 4.8y(2x)dy0,2.4X2(2 x), 0 x 1,0, 其他.f y(y) f (x,y)dx1=y4-8y(2x)dx 2.4y(3 4y y2), 0 y 1,0, 其他.,题8图9.设二维随机变量题9图X, Y)的概率密度为f (x, y) e y, 0 x y,0, 其他.求边缘概率密度.【解】f x(X) f (x, y)d yx0,e y dy xe , x 0,0, 其他.f Y(y) f (x,y)dxy e y dx0,ye x, y 0,0, 其他.y\i■v=xw p题10图10.设二维随机变量(X, Y)2f (x, y)= J试确定常数c;求边缘概率密度的概率密度为x2y 1,其他.(1)(2)【解】(1)f (x, y)dxdy如图Df (x,y)dxdy1 12-1dx x2cx ydy4c211.214f x(X) f(x,y)dy1 212 , xydyx 40, 212。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档