化工热力学答案3章

合集下载

化工热力学马沛生第一版第三章习题答案

化工热力学马沛生第一版第三章习题答案

习题3-1. 单组元流体的热力学基本关系式有哪些? 答:单组元流体的热力学关系包括以下几种:(1)热力学基本方程:它们适用于封闭系统,它们可以用于单相或多相系统。

V p S T U d d d -= p V S T H d d d += T S V p A d d d --= T S p V G d d d -=(2)Helmholtz 方程,即能量的导数式pV S H S U T ⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂= T S V A V U p ⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫⎝⎛∂∂=- TS p G p H V ⎪⎪⎭⎫ ⎝⎛∂∂=⎪⎪⎭⎫ ⎝⎛∂∂= p V T G T A S ⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂=- (3)麦克斯韦(Maxwell )关系式 V S S p V T ⎪⎭⎫⎝⎛∂∂-=⎪⎭⎫⎝⎛∂∂ p S S V p T ⎪⎭⎫ ⎝⎛∂∂=⎪⎪⎭⎫ ⎝⎛∂∂ TV V S T p ⎪⎭⎫⎝⎛∂∂=⎪⎭⎫⎝⎛∂∂ Tp p S T V ⎪⎪⎭⎫ ⎝⎛∂∂-=⎪⎭⎫⎝⎛∂∂ 3-2. 本章讨论了温度、压力对H 、S 的影响,为什么没有讨论对U 的影响?答:本章详细讨论了温度、压力对H 、S 的影响,由于pV H U -=,在上一章已经讨论了流体的pVT 关系,根据这两部分的内容,温度、压力对U 的影响便可以方便地解决。

3-3. 如何理解剩余性质?为什么要提出这个概念?答:所谓剩余性质,是气体在真实状态下的热力学性质与在同一温度、压力下当气体处于理想气体状态下热力学性质之间的差额,即:),(),(p T M p T M M ig R -=M 与M i g 分别表示同温同压下真实流体与理想气体的广度热力学性质的摩尔量,如V 、U 、H 、S 和G 等。

需要注意的是剩余性质是一个假想的概念,用这个概念可以表示出真实状态与假想的理想气体状态之间热力学性质的差额,从而可以方便地算出真实状态下气体的热力学性质。

化工热力学第3章解答

化工热力学第3章解答

化工热力学第3章解答第3章均相封闭体系热力学原理及其应用一、是否题1. 体系经过一绝热可逆过程,其熵没有变化。

(对。

dS Q 0 rev)(错。

如一个吸热的循环,熵2. 吸热过程一定使体系熵增,反之,熵增过程也是吸热的。

变为零)(错。

不需要可逆条件,适用于只 3. 热力学基本关系式dH=TdS+VdP只适用于可逆过程。

有体积功存在的封闭体系)(错。

能于任4. 象dU=TdS-PdV等热力学基本方程只能用于气体,而不能用于液体或固相。

何相态)5. 当压力趋于零时,M T,P Mig。

=V时,不恒T,P 0(M是摩尔性质)6.S Sig7. G G0RTln8. 程。

9. 当P10. 因为(错。

从积分0。

RTP T TB(对)11. 逸度与压力的单位是相同的。

ig(错G(T,P) G(T, 12. 吉氏函数与逸度系数的关系是G T,P G T,P 1 RTln 。

igP 1) RTlnf)故不可能用偏离函数来计算性质随着温度的13. 由于偏离函数是两个等温状态的性质之差,变化。

(错。

因为:M T2,P2 M T1,P1 M T2,P2 MigT2,P0 M T1,P1 M T1,P0 M T2,P0 M T1,P0igigig)故我们不能用偏离函数来计算汽化过程的热14. 由于偏离函数是在均相体系中引出的概念,力学性质的变化。

(错。

可以解决组成不变的相变过程的性质变化)(错。

还15. 由一个优秀的状态方程,就可以计算所有的均相热力学性质随着状态的变化。

ig需要CP T 模型)二、选择题1. 对于一均匀的物质,其H和U的关系为(B。

因H=U+PV)A. H UB. HUC. H=UD. 不能确定2. 一气体符合P=RT/(V-b)的状态方程从V1等温可逆膨胀至V2,则体系的S为(C。

V2SV1SdV V TV2V1PdV T VV2V1VR bRlnV2 bV1 b )A.RTlnV2 bB. 0C. RlnV2 b3.P VT T V P4.)A.V TB.T VC.T SD.PT Vigx5. 吉氏函数变化与P-V-T关系为G T,P G RTlnP,则Gx的状态应该为(C。

化工热力学第三版(完全版)课后习题答案

化工热力学第三版(完全版)课后习题答案

化工热力学课后答案第1章 绪言一、是否题1. 封闭体系的体积为一常数。

(错)2. 封闭体系中有两个相βα,。

在尚未达到平衡时,βα,两个相都是均相敞开体系;达到平衡时,则βα,两个相都等价于均相封闭体系。

(对)3. 理想气体的焓和热容仅是温度的函数。

(对)4. 理想气体的熵和吉氏函数仅是温度的函数。

(错。

还与压力或摩尔体积有关。

)5. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相等,初态和终态的温度分别为T 1和T 2,则该过程的⎰=21T T V dT C U ∆;同样,对于初、终态压力相等的过程有⎰=21T T P dT C H ∆。

(对。

状态函数的变化仅决定于初、终态与途径无关。

)二、填空题1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。

2. 封闭体系中,温度是T 的1mol 理想气体从(P i ,V i )等温可逆地膨胀到(P f ,V f ),则所做的功为()f i rev V V RT W ln =(以V 表示)或()i f rev P P RT W ln = (以P 表示)。

3. 封闭体系中的1mol 理想气体(已知igP C ),按下列途径由T 1、P 1和V 1可逆地变化至P 2,则A 等容过程的 W = 0 ,Q =()1121T P P R C igP ⎪⎪⎭⎫ ⎝⎛--,U =()1121T PPR C igP ⎪⎪⎭⎫⎝⎛--,H =1121T P P C ig P ⎪⎪⎭⎫ ⎝⎛-。

B 等温过程的 W =21lnP P RT -,Q =21ln P PRT ,U = 0 ,H = 0 。

C 绝热过程的 W =()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛--11211igPC RigPP P R V P R C ,Q = 0 ,U =()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛-11211ig P C R igPP P R V P R C ,H =1121T P P C igP C R ig P ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛。

《化工热力学》详细课后习题标准答案(陈新志)

《化工热力学》详细课后习题标准答案(陈新志)

- 1 - / 1052习题第1章 绪言一、是否题1. 孤立体系的热力学能和熵都是一定值。

(错。

和,如一体积等于2V 的绝热刚性容器,被一理想的隔板一分为二,左侧状态是T ,P 的理想气体,右侧是T 温度的真空。

当隔板抽去后,由于Q =W =0,,,,故体系将在T ,2V ,0.5P 状态下达到平衡,,,)2. 封闭体系的体积为一常数。

(错)3. 封闭体系中有两个相。

在尚未达到平衡时,两个相都是均相敞开体系;达到平衡时,则两个相都等价于均相封闭体系。

(对)4. 理想气体的焓和热容仅是温度的函数。

(对)5. 理想气体的熵和吉氏函数仅是温度的函数。

(错。

还与压力或摩尔体积有关。

)6. 要确定物质在单相区的状态需要指定两个强度性质,但是状态方程 P=P (T ,V )的自变量中只有一个强度性质,所以,这与相律有矛盾。

(错。

V 也是强度性质)7. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相等,初态和终态的温度分别为T 1和T 2,则该过程的;同样,对于初、终态压力相等的过程有。

(对。

状态函数的变化仅决定于初、终态与途径无关。

)8. 描述封闭体系中理想气体绝热可逆途径的方程是(其中),而一位学生认为这是状态函数间的关系,与途径无关,所以不需要可逆的条件。

(错。

) 9. 自变量与独立变量是一致的,从属变量与函数是一致的。

(错。

有时可能不一致)10. 自变量与独立变量是不可能相同的。

(错。

有时可以一致)三、填空题1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。

2. 单相区的纯物质和定组成混合物的自由度数目分别是 2 和 2 。

3. 封闭体系中,温度是T 的1mol 理想气体从(P ,V )等温可逆地膨胀到(P ,V ),则所做的功为i i f f(以V 表示)或 (以P 表示)。

4. 封闭体系中的1mol 理想气体(已知),按下列途径由T 1、P 1和V 1可逆地变化至P,则mol ,温度为 和水 。

《化工热力学》通用型第二、三章答案精品文档34页

《化工热力学》通用型第二、三章答案精品文档34页

习题:2-1.为什么要研究流体的pVT 关系?答:在化工过程的分析、研究与设计中,流体的压力p 、体积V 和温度T 是流体最基本的性质之一,并且是可以通过实验直接测量的。

而许多其它的热力学性质如内能U 、熵S 、Gibbs 自由能G 等都不方便直接测量,它们需要利用流体的p –V –T 数据和热力学基本关系式进行推算;此外,还有一些概念如逸度等也通过p –V –T 数据和热力学基本关系式进行计算。

因此,流体的p –V –T 关系的研究是一项重要的基础工作。

2-2.理想气体的特征是什么?答:假定分子的大小如同几何点一样,分子间不存在相互作用力,由这样的分子组成的气体叫做理想气体。

严格地说,理想气体是不存在的,在极低的压力下,真实气体是非常接近理想气体的,可以当作理想气体处理,以便简化问题。

理想气体状态方程是最简单的状态方程:2-3.偏心因子的概念是什么?为什么要提出这个概念?它可以直接测量吗?答:纯物质的偏心因子ω是根据物质的蒸气压来定义的。

实验发现,纯态流体对比饱和蒸气压的对数与对比温度的倒数呈近似直线关系,即符合:⎪⎪⎭⎫ ⎝⎛-=r srTp 11log α 其中,cs s r p p p = 对于不同的流体,α具有不同的值。

但Pitzer 发现,简单流体(氩、氪、氙)的所有蒸气压数据落在了同一条直线上,而且该直线通过r T =0.7,1log -=s r p 这一点。

对于给定流体对比蒸气压曲线的位置,能够用在r T =0.7的流体与氩、氪、氙(简单球形分子)的s r p log 值之差来表征。

Pitzer 把这一差值定义为偏心因子ω,即任何流体的ω值都不是直接测量的,均由该流体的临界温度c T 、临界压力c p 值及r T =0.7时的饱和蒸气压s p 来确定。

2-4.纯物质的饱和液体的摩尔体积随着温度升高而增大,饱和蒸气的摩尔体积随着温度的升高而减小吗?答:正确。

由纯物质的p –V 图上的饱和蒸气和饱和液体曲线可知。

《化工热力学》(第二、三版_陈新志)课后习题答案

《化工热力学》(第二、三版_陈新志)课后习题答案

《化⼯热⼒学》(第⼆、三版_陈新志)课后习题答案第1章绪⾔⼀、是否题3. 封闭体系中有两个相。

在尚未达到平衡时,两个相都是均相敞开体系;达到平衡时,则两个相都等价于均相封闭体系。

(对)4. 理想⽓体的焓和热容仅是温度的函数。

(对)5. 理想⽓体的熵和吉⽒函数仅是温度的函数。

(错。

还与压⼒或摩尔体积有关。

)第2章P-V-T关系和状态⽅程⼀、是否题2. 纯物质由蒸汽变成液体,必须经过冷凝的相变化过程。

(错。

可以通过超临界流体区。

)3. 当压⼒⼤于临界压⼒时,纯物质就以液态存在。

(错。

若温度也⼤于临界温度时,则是超临界流体。

)4. 由于分⼦间相互作⽤⼒的存在,实际⽓体的摩尔体积⼀定⼩于同温同压下的理想⽓体的摩尔体积,所以,理想⽓体的压缩因⼦Z=1,实际⽓体的压缩因⼦Z<1。

(错。

如温度⼤于Boyle温度时,Z>1。

)7. 纯物质的三相点随着所处的压⼒或温度的不同⽽改变。

(错。

纯物质的三相平衡时,体系⾃由度是零,体系的状态已经确定。

)8. 在同⼀温度下,纯物质的饱和液体与饱和蒸汽的热⼒学能相等。

(错。

它们相差⼀个汽化热⼒学能,当在临界状态时,两者相等,但此时已是汽液不分)9. 在同⼀温度下,纯物质的饱和液体与饱和蒸汽的吉⽒函数相等。

(对。

这是纯物质的汽液平衡准则。

)10. 若⼀个状态⽅程能给出纯流体正确的临界压缩因⼦,那么它就是⼀个优秀的状态⽅程。

(错。

)11. 纯物质的平衡汽化过程,摩尔体积、焓、热⼒学能、吉⽒函数的变化值均⼤于零。

(错。

只有吉⽒函数的变化是零。

)12. ⽓体混合物的virial系数,如B,C…,是温度和组成的函数。

(对。

)13. 三参数的对应态原理较两参数优秀,因为前者适合于任何流体。

(错。

三对数对应态原理不能适⽤于任何流体,⼀般能⽤于正常流体normal fluid)14. 在压⼒趋于零的极限条件下,所有的流体将成为简单流体。

(错。

简单流体系指⼀类⾮极性的球形流,如Ar等,与所处的状态⽆关。

化工热力学第三版(完全版)课后习题答案解析

化工热力学第三版(完全版)课后习题答案解析

化工热力学课后答案第1章 绪言一、是否题1. 封闭体系的体积为一常数。

(错)2. 封闭体系中有两个相βα,。

在尚未达到平衡时,βα,两个相都是均相敞开体系;达到平衡时,则βα,两个相都等价于均相封闭体系。

(对)3. 理想气体的焓和热容仅是温度的函数。

(对)4. 理想气体的熵和吉氏函数仅是温度的函数。

(错。

还与压力或摩尔体积有关。

)5. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相等,初态和终态的温度分别为T 1和T 2,则该过程的⎰=21T T V dT C U ∆;同样,对于初、终态压力相等的过程有⎰=21T T P dT C H ∆。

(对。

状态函数的变化仅决定于初、终态与途径无关。

)二、填空题1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。

2. 封闭体系中,温度是T 的1mol 理想气体从(P i ,V i )等温可逆地膨胀到(P f ,V f ),则所做的功为()f i rev V V RT W ln =(以V 表示)或()i f rev P P RT W ln = (以P 表示)。

3. 封闭体系中的1mol 理想气体(已知igP C ),按下列途径由T 1、P 1和V 1可逆地变化至P 2,则A 等容过程的 W = 0 ,Q =()1121T P P R C igP⎪⎪⎭⎫ ⎝⎛--,错误!未找到引用源。

U =()1121T PP R C igP⎪⎪⎭⎫⎝⎛--,错误!未找到引用源。

H = 1121T P P C ig P ⎪⎪⎭⎫ ⎝⎛-。

B 等温过程的 W =21lnP P RT -,Q =21ln P PRT ,错误!未找到引用源。

U = 0 ,错误!未找到引用源。

H = 0 。

C 绝热过程的 W =()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛--11211igPC RigPP P R V P R C ,Q = 0 ,错误!未找到引用源。

化工热力学第三版(完全版)课后习题答案(I).doc

化工热力学第三版(完全版)课后习题答案(I).doc

化工热力学课后答案第1章 绪言一、是否题1. 封闭体系的体积为一常数。

(错)2. 封闭体系中有两个相βα,。

在尚未达到平衡时,βα,两个相都是均相敞开体系;达到平衡时,则βα,两个相都等价于均相封闭体系。

(对)3. 理想气体的焓和热容仅是温度的函数。

(对)4. 理想气体的熵和吉氏函数仅是温度的函数。

(错。

还与压力或摩尔体积有关。

)5. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相等,初态和终态的温度分别为T 1和T 2,则该过程的⎰=21T T V dT C U ∆;同样,对于初、终态压力相等的过程有⎰=21T T P dT C H ∆。

(对。

状态函数的变化仅决定于初、终态与途径无关。

)二、填空题1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。

2. 封闭体系中,温度是T 的1mol 理想气体从(P i ,V i )等温可逆地膨胀到(P f ,V f ),则所做的功为()f i rev V V RT W ln =(以V 表示)或()i f rev P P RT W ln = (以P 表示)。

3. 封闭体系中的1mol 理想气体(已知igP C ),按下列途径由T 1、P 1和V 1可逆地变化至P 2,则A 等容过程的 W = 0 ,Q =()1121T P P R C igP⎪⎪⎭⎫ ⎝⎛--,错误!未找到引用源。

U =()1121T PP R C igP⎪⎪⎭⎫⎝⎛--,错误!未找到引用源。

H = 1121T P P C ig P ⎪⎪⎭⎫ ⎝⎛-。

B 等温过程的 W =21lnP P RT -,Q =21ln P PRT ,错误!未找到引用源。

U = 0 ,错误!未找到引用源。

H = 0 。

C 绝热过程的 W =()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛--11211igPC RigPP P R V P R C ,Q = 0 ,错误!未找到引用源。

化工热力学课后答案

化工热力学课后答案

化工热力学课后答案(填空、判断、画图)第1章 绪言一、是否题1. 封闭体系的体积为一常数。

(错)2. 封闭体系中有两个相βα,。

在尚未达到平衡时,βα,两个相都是均相敞开体系;达到平衡时,则βα,两个相都等价于均相封闭体系。

(对)3. 理想气体的焓和热容仅是温度的函数。

(对)4. 理想气体的熵和吉氏函数仅是温度的函数。

(错。

还与压力或摩尔体积有关。

)5. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相等,初态和终态的温度分别为T 1和T 2,则该过程的⎰=21T T V dT C U ∆;同样,对于初、终态压力相等的过程有⎰=21T T P dT C H ∆。

(对。

状态函数的变化仅决定于初、终态与途径无关。

)二、填空题1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。

2. 封闭体系中,温度是T 的1mol 理想气体从(P i ,V i )等温可逆地膨胀到(P f ,V f ),则所做的功为()f i rev V V RT W ln =(以V 表示)或()i f rev P P RT W ln = (以P 表示)。

3. 封闭体系中的1mol 理想气体(已知igP C ),按下列途径由T 1、P 1和V 1可逆地变化至P 2,则A 等容过程的 W = 0 ,Q =()1121T P P R C igP⎪⎪⎭⎫ ⎝⎛--,U =()1121T PP R C igP⎪⎪⎭⎫⎝⎛--,H =1121T P P C ig P ⎪⎪⎭⎫ ⎝⎛-。

B 等温过程的 W =21lnP P RT -,Q =21ln P PRT ,U = 0 ,H = 0 。

第2章P-V-T关系和状态方程一、是否题1. 纯物质由蒸汽变成液体,必须经过冷凝的相变化过程。

(错。

可以通过超临界流体区。

)2. 当压力大于临界压力时,纯物质就以液态存在。

(错。

若温度也大于临界温度时,则是超临界流体。

化工热力学答案(3章)

化工热力学答案(3章)

化⼯热⼒学答案(3章)3-1. 物质的体积膨胀系数β和等温压缩系数k 的定义分别为:1P V V T β=,1TV k V P =- ?。

试导出服从Vander Waals 状态⽅程的β和k 的表达式。

解:Van der waals ⽅程2 RT a P V b V=--由Z=f(x,y)的性质1y x z z x y x y z =- ? ?得 1T P VP V T V T P=- ? ? ???? ⼜ ()232TP a RTV VV b =-- VP R T V b= ?-所以 ()2321P a RT V V b V T RV b -??-??=-??-()()3232P RV V b V T RTV a V b -= ?-- 故 ()()22312PRV V b V V T RTV a V b β-==--()()222312T V V b V k V P RTV a V b -=-= ?-- 3-2. 某理想⽓体借活塞之助装于钢瓶中,压⼒为,温度为93℃,反抗⼀恒定的外压⼒ MPa ⽽等温膨胀,直到两倍于其初始容积为⽌,试计算此过程之U ?、H ?、S ?、A ?、G ?、TdS ?、pdV ?、Q和W 。

解:理想⽓体等温过程,U ?=0、H ?=0∴ Q =-W =21112ln 2V V V V RTpdV pdV dV RT V==== J/mol ∴ W = J/mol⼜ PP dT V dSC dP T T=- ?理想⽓体等温膨胀过程dT =0、P V R T P= ? ∴ R dS dP P=-∴ 222111ln ln ln2S P P P S P SdS R d P R PR ?==-=-=??=(mol·K)A U T S ?=?-?=-366×= J/(mol·K)G H T S A ?=?-?=?= J/(mol·K)TdS T S A =?=??= J/(mol·K)21112ln 2V V V V RTpdV pdV dV RT V==== J/mol 3-3. 试求算1kmol 氮⽓在压⼒为、温度为773K 下的内能、焓、熵、V C 、p C 和⾃由焓之值。

化工热力学第二章第三章习题答案

化工热力学第二章第三章习题答案

思考题3-1气体热容,热力学能和焓与哪些因素有关?由热力学能和温度两个状态参数能否确定气体的状态?答:气体热容,热力学能和焓与温度压力有关,由热力学能和温度两个状态参数能够确定气体的状态。

3-2 理想气体的内能的基准点是以压力还是温度或是两者同时为基准规定的? 答:理想气体的内能的基准点是以温度为基准规定的。

3-3 理想气体热容差R p v c c -=是否也适用于理想气体混合物?答:理想气体热容差R p v c c -=不适用于理想气体混合物,因为混合物的组成对此有关。

3-4 热力学基本关系式d d d H T S V p =+是否只适用于可逆过程? 答:否。

热力学基本关系式d d d H T S V p =+不受过程是否可逆的限制3-5 有人说:“由于剩余函数是两个等温状态的性质之差,故不能用剩余函数来计算性质随着温度的变化”,这种说法是否正确?答:不正确。

剩余函数是针对于状态点而言的;性质变化是指一个过程的变化,对应有两个状态。

3-6 水蒸气定温过程中,热力学内能和焓的变化是否为零?答:不是。

只有理想气体在定温过程中的热力学内能和焓的变化为零。

3-7 用不同来源的某纯物质的蒸气表或图查得的焓值或熵值有时相差很多,为什么?能否交叉使用这些图表求解蒸气的热力过程?答:因为做表或图时选择的基准可能不一样,所以用不同来源的某纯物质的蒸气表或图查得的焓值或熵值有时相差很多。

不能够交叉使用这些图表求解蒸气的热力过程。

3-8 氨蒸气在进入绝热透平机前,压力为2.0 MPa ,温度为150℃,今要求绝热透平膨胀机出口液氨不得大于5%,某人提出只要控制出口压力就可以了。

你认为这意见对吗?为什么?请画出T -S 图示意说明。

答:可以。

因为出口状态是湿蒸汽,确定了出口的压力或温度,其状态点也就确定了。

3-9 很纯的液态水,在大气压力下,可以过冷到比0℃低得多的温度。

假设1kg 已被冷至-5℃的液体。

现在,把一很小的冰晶(质量可以忽略)投入此过冷液体内作为晶种。

化工热力学课后答案

化工热力学课后答案

化工热力学课后答案(填空、断定、绘图)之羊若含玉创作第1章 绪言一、是否题1.封闭体系的体积为一常数.(错) 2.封闭体系中有两个相βα,.在尚未达到平衡时,βα,两个相都是均相封闭体系;达到平衡时,则βα,两个相都等价于均相封闭体系.(对)3.幻想气体的焓和热容仅是温度的函数.(对)4.幻想气体的熵和吉氏函数仅是温度的函数.(错.还与压力或摩尔体积有关.)5.封闭体系的1mol 气体进行了某一进程,其体积总是变更着的,但是初态和终态的体积相等,初态和终态的温度分离为T1和T2,则该进程的⎰=21T T V dT C U ∆;同样,对于初、终态压力相等的进程有⎰=21T T P dT C H ∆.(对.状态函数的变更仅决议于初、终态与途径无关.) 二、填空题1.状态函数的特点是:状态函数的变更与途径无关,仅决议于初、终态 .2.封闭体系中,温度是T 的1mol 幻想气体从(Pi ,Vi)等温可逆地膨胀到(Pf ,Vf),则所做的功为()f i rev V V RT W ln =(以V 暗示)或()i f revP P RT W ln = (以P 暗示).3.封闭体系中的1mol 幻想气体(已知ig P C ),按下列途径由T1、P1和V1可逆地变更至P2,则A 等容进程的 W= 0 ,Q=()1121T P P R C igP ⎪⎪⎭⎫⎝⎛--,∆U=()1121T P P R C ig P ⎪⎪⎭⎫ ⎝⎛--,∆H=1121T PP C ig P ⎪⎪⎭⎫⎝⎛-. B 等温进程的 W=21ln P P RT -,Q=21ln P P RT ,∆U= 0 ,∆H=0 .第2章P-V-T关系和状态方程一、是否题1.纯物质由蒸汽变成液体,必须经由冷凝的相变更进程.(错.可以通过超临界流体区.)2.当压力大于临界压力时,纯物质就以液态存在.(错.若温度也大于临界温度时,则是超临界流体.)3.由于分子间相互作用力的存在,实际气体的摩尔体积一定小于同温同压下的幻想气体的摩尔体积,所以,幻想气体的压缩因子Z=1,实际气体的压缩因子Z<1.(错.如温度大于Boyle 温度时,Z >1.)4.纯物质的三相点随着所处的压力或温度的不合而转变.(错.纯物质的三相平衡时,体系自由度是零,体系的状态已经确定.)5.在同一温度下,纯物质的饱和液体与饱和蒸汽的吉氏函数相等.(对.这是纯物质的汽液平衡准则.)6.纯物质的平衡汽化进程,摩尔体积、焓、热力学能、吉氏函数的变更值均大于零.(错.只有吉氏函数的变更是零.)7.气体混杂物的virial 系数,如B ,C…,是温度和组成的函数.(对.)C 绝热进程的 W=()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛--11211igPC RigPP P R V P R C ,Q= 0 ,∆U=()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛-11211ig P C R igPP P R V P R C ,∆H=1121T P P C igP C R ig P ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛. 4.1MPa=106Pa=10bar=9.8692atm=7500.62mmHg.5.普适气体常数R=8.314MPa cm3 mol-1 K-1=83.14bar cm3 mol-1 K-1=8.314J mol-1 K-1=1.980cal mol-1 K-1.三、填空题1.表达纯物质的汽平衡的准则有()()()()sl sv sl sv V T G V T G T G T G ,,==或(吉氏函数)、vapvap s V T H dT dP ∆∆=(Claperyon 方程)、()⎰-=svslV V slsv s V V P dV V T P ),((Maxwell 等面积规矩).它们能(能/不克不及)推广到其它类型的相平衡.2.Lydersen 、Pitzer 、Lee-Kesler 和Teja 的三参数对应态原理的三个参数分离为c r r Z P T ,,、ω,,r r P T 、ω,,r r P T 和ω,,r r P T .3.对于纯物质,一定温度下的泡点压力与露点压力相同的(相同/不合);一定温度下的泡点与露点,在P -T 图上是重叠的(重叠/离开),而在P-V 图上是离开的(重叠/离开),泡点的轨迹称为饱和液相线,露点的轨迹称为饱和汽相线,饱和汽、液相线与三相线所包抄的区域称为汽液共存区.纯物质汽液平衡时,压力称为蒸汽压,温度称为沸点.4.对于三混杂物,展开PR 方程常数a 的表达式,∑∑==-=3131)1(i j ij jj ii jik a a yy a =其中,下标相同的相互作用参数有332211,k k k 和,其值应为1;下标不合的相互作用参数有),,(,,123132232112123132232112处理已作和和和k k k k k k k k k k k k ===,通常它们值是如何得到?从实验数据拟合得到,在没有实验数据时,近似作零处理. .5.正丁烷的偏幸因子ω2435.0101==--ωc s P P MPa.五、图示题1.试定性画出纯物质的P-V 相图,并在图上指出 (a)超临界流体,(b)气相,(c )蒸汽,(d )固相,(e )汽液共存,(f )固液共存,(g )汽固共存等区域;和(h)汽-液-固三相共存线,(i)T>Tc 、T<Tc 、T=Tc 的等温线.2.试定性讨论纯液体在等压平衡汽化进程中,M (= V 、S 、G )随T 的变更(可定性作出M-T 图上的等压线来说明).六、证明题1.由式2-29知,流体的Boyle 曲线是关于0=⎪⎭⎫ ⎝⎛∂∂TP Z 的点的轨迹.证明vdW 流体的Boyle 曲线是()0222=+--ab abV V bRT a证明:001=⎪⎭⎫ ⎝⎛∂∂+=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂+=⎪⎭⎫ ⎝⎛∂∂T T T V P V P V P P V RT P Z 得由由vdW 方程得整理得Boyle 曲线第3章 均相封闭体系热力学原理及其应用一、是否题1.热力学根本关系式dH=TdS+VdP 只适用于可逆进程.(错.不需要可逆条件,适用于只有体积功存在的封闭体系)2.当压力趋于零时,()()0,,≡-P T M P T M ig (M 是摩尔性质).(错.当M =V 时,不恒等于零,只有在T =TB 时,才等于零)3.纯物质逸度的完整界说是,在等温条件下,f RTd dG ln =.(错.应该是=-igG G 0()0ln P f RT 等)4.当0→P 时,∞→P f.(错.当0→P 时,1→P f )5. 因为⎰⎪⎭⎫ ⎝⎛-=PdP P RT V RT 01ln ϕ,当0→P 时,1=ϕ,所以,0=-PRT V .(错.从积分式看,当0→P 时,PRT V -为任何值,都有1=ϕ;实际上,0lim 0=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-=→BTT P P RT V6.吉氏函数与逸度系数的关系是()()ϕln 1,,RT P T G P T G ig ==-.(错,(),(T G P T G ig -fRT P ln )1==)7.由于偏离函数是两个等温状态的性质之差,故不成能用偏离函数来盘算性质随着温度的变更.(错.因为:()()()()[]()()[]()()[]0102011102221122,,,,,,,,P T M P T M P T M P T M P T MP T M P T M P T M igigigig-+---=-)三、填空题1.状态方程P Vb R T()-=的偏离焓和偏离熵分离是bP dP P R T b P RTdP T V T V HH PP P ig=⎥⎦⎤⎢⎣⎡-+=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂-=-⎰⎰00和0ln 0000=⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂-=+-⎰⎰dP P R P R dP T V P R P P R S S PP P ig;若要盘算()()1122,,P T H P T H -和()()1122,,P T S P T S -还需要什么性质?ig P C ;其盘算式分离是()()1122,,P T H P T H -()()[]()()[]()()[]()dTC P P b dTC bP bP T H T H T H P T H T H P T H T T igP T T igP ig ig ig ig ⎰⎰+-=+-=-+---=2121121212111222,,和()()1122,,P T S P T S -()()[]()()[]()()[]dTTC P P R dT T C P P R P P R P T S P T S P T S P T S P T S P T S TT igP T T ig P ig ig ig ig ⎰⎰+-=++-=-+---=2121120102010201110222ln ln ln ,,,,,,.2.对于混杂物体系,偏离函数中参考态是与研究态同温.同组成的幻想气体混杂物.五、图示题1.将下列纯物质阅历的进程暗示在P-V ,lnP-H ,T-S 图上 (a)过热蒸汽等温冷凝为过冷液体; (b)过冷液体等压加热成过热蒸汽; (c)饱和蒸汽可逆绝热膨胀;(d)饱和液体恒容加热;(e)在临界点进行的恒温膨胀.解:第4章 非均相封闭体系热力学一、是否题1.偏摩尔体积的界说可暗示为{}{}ii x P T i n P T i i x V n nV V ≠≠⎪⎪⎭⎫⎝⎛∂∂=⎪⎪⎭⎫ ⎝⎛∂=,,,,∂.(错.因对于一个均相封闭系统,n 是一个变数,即(){}0,,≠∂∂≠i n P T i n n )2.对于幻想溶液,所有的混杂进程性质变更均为零.(错.V ,H ,U ,CP ,CV 的混杂进程性质变更等于零,对S ,G ,A 则不等于零)3.对于幻想溶液所有的逾额性质均为零.(对.因is E M M M -=)4.体系混杂进程的性质变更与该体系相应的逾额性质是相同的.(错.同于4)5.幻想气体有f=P ,而幻想溶液有i i ϕϕ=ˆ.(对.因i i i i i i is iis i Pf Px x f Px f ϕϕ====ˆˆ) 6.温度和压力相同的两种幻想气体混杂后,则温度和压力不变,总体积为原来两气体体积之和,总热力学能为原两气体热力学能之和,总熵为原来两气体熵之和.(错.总熵不等于原来两气体的熵之和)7.因为GE(或活度系数)模子是温度和组成的函数,故理论上i γ与压力无关.(错.理论上是T ,P ,组成的函数.只有对低压下的液体,才近似为T 和组成的函数)8.纯流体的汽液平衡准则为f v=f l.(对)9.混杂物体系达到汽液平衡时,总是有l iv i l v l i v i f f f f f f ===,,ˆˆ.(错.两相中组分的逸度、总体逸度均不一定相等)10. 幻想溶液一定相符Lewis-Randall 规矩和Henry 规矩.(对.)、填空题1.填表2.有人提出了一定温度下二元液体混杂物的偏摩尔体积的模子是)1(),1(122211bx V V ax V V +=+=,其中V1,V2为纯组分的摩尔体积,a ,b 为常数,问所提出的模子是否有问题?由Gibbs-Duhem 方程得, b V x V x a 1122=, a,b 不成能是常数,故提出的模子有问题;若模子改为)1(),1(21222211bx V V ax V V +=+=,情况又如何?由Gibbs-Duhem 方程得, b V V a 12=,故提出的模子有一定的合理性_.3.常温、常压条件下二元液相体系的溶剂组分的活度系数为32221ln x x βαγ+=(βα,是常数),则溶质组分的活度系数表达式是=2ln γ3121232x x ββα-+. 解: 由0ln ln 2211=+γγd x d x ,得从()1021==γ此时x 至任意的1x 积分,得五、图示题1.下图中是二元体系的对称归一化的活度系数21,γγ与组成的关系部分曲线,请补全两图中的活度系数随液相组成变更的曲线;指出哪一条曲线是或12~x γ;曲线两头点的含意;体系属于何种误差.21,γγ化条件而得到的.第5章 非均相体系热力学性质盘算一、是否题1.在一定压力下,组成相同的混杂物的露点温度和泡点温度不成能相同.(错,在共沸点时相同)2.在(1)-(2)的体系的汽液平衡中,若(1)是轻组分,(2)是重组分,则11x y >,22x y <.(错,若系统存在共沸点,就可以出现相反的情况)3.在(1)-(2)的体系的汽液平衡中,若(1)是轻组分,(2)是重组分,若温度一定,则体系的压力,随着1x 的增大而增大.(错,来由同6)4.纯物质的汽液平衡常数K 等于1.(对,因为111==y x ) 5.下列汽液平衡关系是错误的i i Solvent i v i i x H Py *,ˆγϕ=.(错,若i 组分采取不合错误称归一化,该式为正确)6.对于幻想体系,汽液平衡常数Ki(=yi/xi),只与T 、P 有关,而与组成无关.(对,可以从幻想体系的汽液平衡关系证明)7.对于负误差体系,液相的活度系数总是小于1.(对) 8.能知足热力学一致性的汽液平衡数据就是高质量的数据.(错)9.逸度系数也有归一化问题.(错)10. EOS +γ法既可以盘算混杂物的汽液平衡,也能盘算纯物质的汽液平衡.(错)、填空题1.说出下列汽液平衡关系适用的条件(1) l iv i f f ˆˆ= ______无限制条件__________;(2)i l i i v i x y ϕϕˆˆ= ______无限制条件____________; (3)ii s i i x P Py γ= _________低压条件下的非幻想液相__________.2.丙酮(1)-甲醇(2)二元体系在98.66KPa 时,恒沸组成x1=y1=0.796,恒沸温度为327.6K ,已知此温度下的06.65,39.9521==s s P P kPa则 van Laar 方程常数是 (已知van Laar 方程为221112212112x A x A x x A A RT G E+=) 1.组成为x1=0.2,x2=0.8,温度为300K 的二元液体的泡点组成y1的为(已知液相的3733,1866),/(75212121==+=s sE t P P n n n n G Pa)___0.334____________.2.若用EOS +γ法来处理300K 时的甲烷(1)-正戊烷(2)体系的汽液平衡时,主要艰苦是MPa P s4.251=饱和蒸气压太高,不容易简化;( EOS+γ法对于高压体系需改正).3.EOS 轨则盘算混杂物的汽液平衡时,需要输入的主要物性数据是ij Ci Ci Ci k P T ,,,ω,通常如何得到相互作用参数的值?_从混杂物的实验数据拟合得到.4.由Wilson 方程盘算常数减压下的汽液平衡时,需要输入的数据是Antoine 常数Ai,Bi,Ci; Rackett 方程常数α,β;能量参数),2,1,)((N j i ii ij =-λλ,Wilson 方程的能量参数是如何得到的?能从混杂物的有关数据(如相平衡)得到.五、图示题 1描写下列二元y x T --图中的变更进程D C B A →→→:这是一个等压定(总)组成的降温进程.A 处于汽相区,降温到B 点时,即为露点,开端有液滴冷凝,随着温度的持续下降,产生的液相量增加,而汽相量削减,当达到C 点,即泡点时,汽相消失,此时,液相的组成与原始汽相组成相同.持续降温到达D 点.描写下列二元y x P --图中的变更进程D C B A →→→:这是一等温等压的变组成进程.从A 到B ,是液相中轻组分1的含量增加,B 点为泡点,即开端有汽泡出现.B 至C 的进程中,系统中的轻组分增加,汽相相对于液相的量也在不竭的增加,C点为露点,C点到D点是汽相中轻组分的含量不竭增加.T=常数1.将下列T-x-y图的变更进程A→B→C→D→E和P-x-y图上的变更进程F→G→H→I→J暗示在P-T图(组成=0.4)上.。

化工热力学课后习题答案

化工热力学课后习题答案
dP s =
sv sl sv sl 1、表达纯物质的汽平衡的准则有 G (T ) = G (T )或G T ,V = G T ,V (吉氏函数) 、 dT
V sv
(
)
(
)
∆H vap T∆V vap
(Claperyon
(Maxwell 等面积规则) 。它们能(能/不能)推广到其它类型的相平衡。 方程) 、V 2、对于纯物质,一定温度下的泡点压力与露点压力相同的(相同/不同) ;一定温度下的泡点与露点,在 P -T 图上是重叠的(重叠/分开),而在 P-V 图上是分开的(重叠/分开),泡点的轨迹称为饱和液相线,露点 的轨迹称为饱和汽相线,饱和汽、液相线与三相线所包围的区域称为汽液共存区。纯物质汽液平衡时,压 力称为蒸汽压,温度称为沸点。
s 汽化曲线方程是 P = 610.62 + 2.4688(T − 273.15)
2508 = 2.4688 8.314 × 273.15 273.15 × -1 610.62 PaK
解两直线的交点,得三相点的数据是: Pt = 615.09 Pa, Tt = 273.1575 K 2. 试由饱和蒸汽压方程(见附录 A-2) ,在合适的假设下估算水在 25℃时的汽化焓。
T2 T 终态的温度分别为 T1 和 T2,则该过程的 ;同样,对于初、终态压力相等的过程有 (对。状态函数的变化仅决定于初、终态与途径无关。 )
1
∆U = CV dT

T2
∆H = C P dT
T1


二、填空题 1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。 2. 封闭体系中,温度是 T 的 1mol 理想气体从 (Pi , Vi) 等温可逆地膨胀到 (Pf , Vf) ,则所做的功为 W = RT ln Pf Pi Wrev = RT ln Vi V f (以 V 表示)或 rev (以 P 表示)。

化工热力学课后答案

化工热力学课后答案

第1章 绪言一、是否题1. 封闭体系的体积为一常数。

(错)2. 封闭体系中有两个相βα,。

在尚未达到平衡时,βα,两个相都是均相敞开体系;达到平衡时,则βα,两个相都等价于均相封闭体系。

(对)3. 理想气体的焓和热容仅是温度的函数。

(对)4. 理想气体的熵和吉氏函数仅是温度的函数。

(错。

还与压力或摩尔体积有关。

)5. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相等,初态和终态的温度分别为T 1和T 2,则该过程的⎰=21T T V dT C U ∆;同样,对于初、终态压力相等的过程有⎰=21T T P dT C H ∆。

(对。

状态函数的变化仅决定于初、终态与途径无关。

) 二、填空题1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。

2. 封闭体系中,温度是T 的1mol 理想气体从(P i ,V i )等温可逆地膨胀到(P f ,V f ),则所做的以V 表示)(以P 表示)。

3. 封闭体系中的1mol 理想气体(已知igP C ),按下列途径由T 1、P 1和V 1可逆地变化至P 2,则A 等容过程的 W = 0 ,Q =()1121T P P R C ig P ⎪⎪⎭⎫ ⎝⎛--,∆U =()1121T P P R C igP ⎪⎪⎭⎫ ⎝⎛--,∆H =1121T P P C ig P ⎪⎪⎭⎫ ⎝⎛-。

B 等温过程的 W =21lnP P RT -,Q =21ln P PRT ,∆U = 0 ,∆H = 0 。

C 绝热过程的 W =()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛--11211igPC RigPP P R V P R C ,Q = 0 ,∆U =()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛-11211PC RigPP P R V P R C ,∆H =1121T P P C igPC R ig P ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛。

化工热力学(第三版)答案与例题--陈新志等

化工热力学(第三版)答案与例题--陈新志等

化工热力学课后习题答案第1章 绪言一、是否题1. 封闭体系中有两个相βα,。

在尚未达到平衡时,βα,两个相都是均相敞开体系;达到平衡时,则βα,两个相都等价于均相封闭体系。

(对) 2. 理想气体的焓和热容仅是温度的函数。

(对)3. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相等,初态和终态的温度分别为T 1和T 2,则该过程的⎰=21T T V dT C U ∆;同样,对于初、终态压力相等的过程有⎰=21T T P dT C H ∆.(对。

状态函数的变化仅决定于初、终态与途径无关.)二、填空题1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 .2. 封闭体系中,温度是T 的1mol 理想气体从(P i ,V i )等温可逆地膨胀到(P f ,V f ),则所做的功为()f i rev V V RT W ln =(以V 表示)或()i f rev P P RT W ln = (以P 表示)。

3. 封闭体系中的1mol 理想气体(已知igP C ),按下列途径由T 1、P 1和V 1可逆地变化至P 2,则A 等容过程的 W = 0 ,Q =()1121T P P R C ig P ⎪⎪⎭⎫ ⎝⎛--,∆U =()1121T P P R C igP ⎪⎪⎭⎫ ⎝⎛--,∆H =1121T P P C ig P ⎪⎪⎭⎫ ⎝⎛-。

B 等温过程的 W =21lnP P RT -,Q =21ln P PRT ,∆U = 0 ,∆H = 0 .C 绝热过程的 W =()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛--11211igPC RigPP P R V P R C ,Q = 0 ,∆U =()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛-11211ig PC RigPP P R V P R C ,∆H =1121T P P C ig P C R ig P⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛. 4. 1MPa=106Pa=10bar=9。

化工热力学第三版(完全版)课后习题答案解析

化工热力学第三版(完全版)课后习题答案解析

化工热力学课后答案第1章 绪言一、是否题1. 封闭体系的体积为一常数。

(错)2. 封闭体系中有两个相βα,。

在尚未达到平衡时,βα,两个相都是均相敞开体系;达到平衡时,则βα,两个相都等价于均相封闭体系。

(对) 3. 理想气体的焓和热容仅是温度的函数。

(对) 4. 理想气体的熵和吉氏函数仅是温度的函数。

(错。

还与压力或摩尔体积有关。

) 5. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相等,初态和终态的温度分别为T 1和T 2,则该过程的⎰=21T T V dT C U ∆;同样,对于初、终态压力相等的过程有⎰=21T T P dT C H ∆。

(对。

状态函数的变化仅决定于初、终态与途径无关。

)二、填空题1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。

2. 封闭体系中,温度是T 的1mol 理想气体从(P i ,V i )等温可逆地膨胀到(P f ,V f ),则所做的功为()f i rev V V RT W ln =(以V 表示)或()i f rev P P RT W ln = (以P 表示)。

3. 封闭体系中的1mol 理想气体(已知igP C ),按下列途径由T 1、P 1和V 1可逆地变化至P 2,则A 等容过程的 W = 0 ,Q =()1121T P P R C igP ⎪⎪⎭⎫ ⎝⎛--,错误!未找到引用源。

U =()1121T PPR C igP ⎪⎪⎭⎫⎝⎛--,错误!未找到引用源。

H = 1121T P P C ig P ⎪⎪⎭⎫ ⎝⎛-。

B 等温过程的 W =21lnP P RT -,Q =21ln P PRT ,错误!未找到引用源。

U = 0 ,错误!未找到引用源。

H = 0 。

C 绝热过程的 W =()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫⎝⎛--11211igPC RigPP P R V P R C ,Q = 0 ,错误!未找到引用源。

化工热力学第三版(完全版)课后习题答案

化工热力学第三版(完全版)课后习题答案

化工热力学课后答案第1章 绪言一、是否题1. 封闭体系的体积为一常数。

(错)2. 封闭体系中有两个相βα,。

在尚未达到平衡时,βα,两个相都是均相敞开体系;达到平衡时,则βα,两个相都等价于均相封闭体系。

(对)3. 理想气体的焓和热容仅是温度的函数。

(对)4. 理想气体的熵和吉氏函数仅是温度的函数。

(错。

还与压力或摩尔体积有关。

)5. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相等,初态和终态的温度分别为T 1和T 2,则该过程的⎰=21T T V dT C U ∆;同样,对于初、终态压力相等的过程有⎰=21T T P dT C H ∆。

(对。

状态函数的变化仅决定于初、终态与途径无关。

)二、填空题1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。

2. 封闭体系中,温度是T 的1mol 理想气体从(P i ,V i )等温可逆地膨胀到(P f ,V f ),则所做的功为()f i rev V V RT W ln =(以V 表示)或()i f rev P P RT W ln = (以P 表示)。

3. 封闭体系中的1mol 理想气体(已知igP C ),按下列途径由T 1、P 1和V 1可逆地变化至P 2,则A 等容过程的 W = 0 ,Q =()1121T P P R C igP⎪⎪⎭⎫ ⎝⎛--,错误!未找到引用源。

U =()1121T PP R C igP⎪⎪⎭⎫⎝⎛--,错误!未找到引用源。

H = 1121T P P C ig P ⎪⎪⎭⎫ ⎝⎛-。

B 等温过程的 W =21lnP P RT -,Q =21ln P PRT ,错误!未找到引用源。

U = 0 ,错误!未找到引用源。

H = 0 。

C 绝热过程的 W =()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛--11211igPC RigPP P R V P R C ,Q = 0 ,错误!未找到引用源。

化工热力学课后答案

化工热力学课后答案

化工热力学课后答案(填空、判断、画图)第1章 绪言一、是否题1. 封闭体系的体积为一常数。

(错)2.封闭体系中有两个相βα,。

在尚未达到平衡时,βα,两个相都是均相敞开体系;达到平衡时,则βα,两个相都等价于均相封闭体系。

(对)3. 理想气体的焓和热容仅是温度的函数。

(对)4.理想气体的熵和吉氏函数仅是温度的函数。

(错。

还与压力或摩尔体积有关。

)5.封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相等,初态和终态的温度分别为T 1和T 2,则该过程的;同样,对于初、终态压力相等的过程有。

(对。

状态函数的变化仅决定于初、终态与途径无关。

)二、填空题1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。

2.封闭体系中,温度是T 的1mol 理想气体从(P i ,V i )等温可逆地膨胀到(P f ,V f ),则所做的功为()f i rev V V RT W ln =(以V 表示)或()i f rev P P RT W ln =(以P 表示)。

3.封闭体系中的1mol 理想气体(已知ig P C ),按下列途径由T 1、P 1和V 1可逆地变化至P 2,则A 等容过程的W= 0 ,Q=,U=,H= 。

B 等温过程的W=,Q=,U= 0 ,H= 0 。

第2章P-V-T关系和状态方程一、是否题1.纯物质由蒸汽变成液体,必须经过冷凝的相变化过程。

(错。

可以通过超临界流体区。

)2.当压力大于临界压力时,纯物质就以液态存在。

(错。

若温度也大于临界温度时,则是超临界流体。

)3.由于分子间相互作用力的存在,实际气体的摩尔体积一定小于同温同压下的理想气体的摩尔体积,所以,理想气体的压缩因子Z=1,实际气体的压缩因子Z<1。

(错。

如温度大于Boyle温度时,Z>1。

)4.纯物质的三相点随着所处的压力或温度的不同而改变。

(错。

纯物质的三相平衡时,体系自由度是零,体系的状态已经确定。

化工热力学(第三版)第3章答案

化工热力学(第三版)第3章答案

化工热力学(第三版)习题解答集朱自强、吴有庭、李勉编著前言理论联系实际是工程科学的核心。

化工热力学素以概念抽象、难懂而深深印在学生的脑海之中。

特别使他们感到困惑的是难以和实际问题进行联系。

为了学以致用,除选好教科书中的例题之外,很重要的是习题的安排。

凭借习题来加深和印证基本概念的理解和运用,补充原书中某些理论的推导,更主要的是使学生在完成习题时能在理论联系实际的锻炼上跨出重要的一步。

《化工热力学》(第三版)的习题就是用这样的指导思想来安排和编写的。

《化工热力学》自出版以来,深受国内同行和学生的关注和欢迎,但认为习题有一定的难度,希望有一本习题集问世,帮助初学者更有效地掌握基本概念,并提高分析问题和解决问题的能力。

为此我们应出版社的要求把该书第三版的习题解撰并付印,以飨读者。

在编写过程中除详尽地进行习题解答外,还对部分习题列出了不同的解题方法,便于读者进一步扩大思路,增加灵活程度;对部分有较大难度的习题前加上“*”号,如果教学时间较少,可以暂时不做,但对能力较强的学生和研究生也不妨一试。

使用本题解的学生,应该先对习题尽量多加思考,在自学和独自完成解题的基础上加以利用和印证,否则将与出版此书的初衷有悖。

参加本习题题解编写的人员是浙江大学化工系的朱自强教授、南京大学化工系的吴有庭教授、以及李勉博士等,浙江大学的林东强教授、谢荣锦老师等也对本习题编写提供了有益的帮助。

在此深表感谢。

由于编写时间仓促,有些地方考虑不周,习题题解的写作方法不善,甚至尚有解题不妥之处,希望读者能不吝赐教,提出宝贵意见,以便再版时予以修改完善。

第二章 流体的压力、体积、浓度关系:状态方程式2-1 试分别用下述方法求出400℃、4.053MPa 下甲烷气体的摩尔体积。

(1) 理想气体方程;(2) RK 方程;(3)PR 方程;(4) 维里截断式(2-7)。

其中B 用Pitzer 的普遍化关联法计算。

[解] (1) 根据理想气体状态方程,可求出甲烷气体在理想情况下的摩尔体积idV 为33168.314(400273.15)1.381104.05310id RT V m mol p --⨯+===⨯⋅⨯ (2) 用RK 方程求摩尔体积将RK 方程稍加变形,可写为0.5()()RT a V b V b p T pV V b -=+-+ (E1)其中2 2.50.427480.08664c c ccR T a p RT b p ==从附表1查得甲烷的临界温度和压力分别为c T =190.6K, c p =4.60MPa ,将它们代入a, b 表达式得2 2.56-20.560.427488.314190.6 3.2217m Pa mol K 4.6010a ⨯⨯==⋅⋅⋅⨯ 53160.086648.314190.6 2.9846104.6010b m mol --⨯⨯==⨯⋅⨯ 以理想气体状态方程求得的idV 为初值,代入式(E1)中迭代求解,第一次迭代得到1V 值为5168.314673.15 2.9846104.05310V -⨯=+⨯⨯350.563353.2217(1.38110 2.984610)673.15 4.05310 1.38110(1.38110 2.984610)-----⨯⨯-⨯-⨯⨯⨯⨯⨯⨯+⨯ 3553311.381102.984610 2.1246101.389610m mol -----=⨯+⨯-⨯=⨯⋅第二次迭代得2V 为353520.563353553313.2217(1.389610 2.984610)1.381102.984610673.154.05310 1.389610(1.389610 2.984610)1.381102.984610 2.1120101.389710V m mol ------------⨯⨯-⨯=⨯+⨯-⨯⨯⨯⨯⨯⨯+⨯=⨯+⨯-⨯=⨯⋅1V 和2V 已经相差很小,可终止迭代。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Vander Waals 状态方程的和k 的表达式 解: Van der waals 方程 p 一V b V 2pdV 、Q 和 W 。

S =-366 X 5.763-2109.26 J/(mol • K) S A =-2109.26 J/(mol • K)3-1.物质的体积膨胀系数 和等温压缩系数 k 的定义分别为:丄丄,k丄丄。

试导出服从V T P V P T由 Z=f(x,y) 的性质 z x 丄 1得 p VT 1xyy zV TTpP V又P2a RTpRV T V 3V b 2TV V b所以2a RTV V b 1V 32V b T P RV RV 3 V bT PRTV 32a V2b故1 VRV 2 V bV T P RTV 32a V b 2k1 V V 2V2bV3P T RTV 2aV2b3-2.某理想气体借活塞之助装于钢瓶中,压力为 TdS A =-2109.26 J/(mol • K)pdV V 2pdV2V 1RTdV RTln 2 =2109.2 J/molV1V3-3.试求算1kmol 氮气在压力为 10.13MPa 温度为773K 下的内能、焓、熵、C V 、 C p 和自由焓之值。

假34.45MPa,温度为93 'C,反抗一恒定的外压力3.45 MPa而等温膨胀,直到两倍于其初始容积为止,试计算此过程之U 、 H 、 S 、 A 、G 、 TdS 、解:理想气体等温过程, U =0、 H =0Q =-W = pdVV 2RTdV RTl n2 =2109.2 J/mol VW =-2109.2 J/mol又 dSCP "V P dP理想气体等温膨胀过程 dT =0、dSdPPS2dSS|P2R dl n PPRln P P 2P 1Rln2 =5.763J/(mol -K)T r = T 1/ T <=300/417=0.7190.422B 00.083 T :60.63240.172B 10.139T r 4.20.5485H RdB 0j 十dB 1P r B T rB 1T rf RT c又 cdT rdT r芽.675可6 1,592dB0.722 T r 5.2 4.014dT rS Rf dB 0dB 1 P rRdT rdT r设氮气服从理想气体定律。

已知: (1) 在 0.1013 MPa 时氮的 C p 与温度的关系为 C p 27.22 0.004187TJ/ mol K ; (2) 假定在0'C 及0.1013 MPa 时氮的焓为零; (3) 在 298K 及 0.1013 MPa 时氮的熵为 191.76J/(mol • K)。

3-4.设氯在27C 、0.1 MPa 下的焓、熵值为零,试求 227C 、10 MPa 下氯的焓、熵值。

已知氯在理想气体状 态下的定压摩尔热容为 C pg 31.696 10.144 10 3T 4.038 10 6T 2J/ mol K 解:分析热力学过程 300K ,0.1 MPa真实气体H=0, S=0 -H 1R-S 1R1 F300K ,.1 MPa理想气体500K ,0 MPa真实气体 H 2RS 2RH 1、Si 500K ,10 MPa理想气体查附录二得氯的临界参数为:T c =417K 、P c =7.701MPa 、3=0.073••• (1)300K、0.1MPa 的真实气体转换为理想气体的剩余焓和剩余熵H R代入数据计算得H1=-91.41J/mol 、=-0.2037 J/( mol •K ) P r = P 1/ P c =0.1/7.701=0.013 —利用普维法计(2) 理想气体由300K 、O.IMPa 到500K 、1OMPa 过程的焓变和熵变T 250036 2H iT !Cp dT300 31・696 10.144 10 T 4.038 10 T dT=7.02kJ/mol=-20.39 J/( mol • K )(3) 500K 、10MPa 的理想气体转换为真实气体的剩余焓和剩余熵R= P 2/ P C =10/7.701=1.299 —利用普维法计算3-5.试用普遍化方法计算二氧化碳在 473.2K 、30 MPa 下的焓与熵。

已知在相同条件下,二氧化碳处于理想 状态的焓为 8377 J/mol ,熵为-25.86 J/(mol .• K) 解:查附录二得二氧化碳的临界参数为: T C =304.2K 、P c =7.376MPa 、沪0.225/•T r = T/ T C =473.2/304.2=1.556P r = P/ P <=30/7.376=4.067 —利用普压法计算查表,由线性内插法计算得岀:H R 01.741H R 10.04662R 01S RS R 0.8517 RR0.296RT cRT cHRR 0HRHR 1S RS Ro SR 1由RTcRT cRT ;、RRR 计算得:H R =-4.377 KJ/molS^-7.635 J/( mol - K )H = H R+ H ig=-4.377+8.377=4 KJ/molS= 9+ S g=-7.635-25.86=-33.5 J/( mol • K )3-8.试估算纯苯由0.1013 MPa 80C 的饱和液体变为1.013 MPa 180C 的饱和蒸汽时该过程的V 、 H 和S 。

已知纯苯在正常沸点时的汽化潜热为3.733 J/mol;饱和液体在正常沸点下的体积为95.7 cnf/mol ;定压摩尔热容 Cp 16.036 0.2357TJ/ mol K ;第二维里系数 B=-78丄1032.4cm 3/mol o解:1.查苯的物性参数: T c =562.1K 、P c =4.894MPa 、3=0.271S 1 T 2C!dT RlnP 2T1 TP500 30010.144 10 3 4.038 10 6TdTRln10 0.1T r = T 2/ T c =500/417=1.1990.083 04220.2326dB 00.675 T ;6 0.42110 172 B 1 °139 丁。

05874理 0.722 T r 5.20.281dT r £ P B 0 T 型rrRT CdT rB 1S RdB 0dB 1代入数据计算得=-3.41K J/mol 、 S R=-4.768 J/( mol • K )=H 2-H 1= H 2=H +H1+ H 2R =91.41+7020-3410=3.701KJ/molS= S 2-S 1= S 2=-S R+ S1+ SR=0.2037-20.39-4.768=-24.95J/( mol • K )2.求A V 由两项维里方程t饱和 03站只3.(1)饱和液体(恒 T 、P 汽化)-饱和蒸汽 △H v =30733KJ/Kmol△S= A H V /T=30733/353=87.1 KJ/Kmol •K(2)饱和蒸汽(353K 、0.1013MPa —理想气体点(T r 、P r )落在图2-8图曲线左上方,所以,用普遍化维里系数法进行计算。

由式(3-61)、(3-62)计算dB 1 B 1dT r T r2.2626 1.2824 0.271 8.1124 1.7112T 353T C562.1 0.628 P rP F C0.1013 4.8940.0207ZRT PV 1 V 2V 2PV‘ BP ,P2.4c 1 —31 1 -78 10RTRT RTT1.013 100.8597 8.3141.0133196.16 95.7 8.314 1064534533196.16 cm 3 mol2.478 — 1034530.85973100.5 cm 3molRid idRH H V (- H 1) H P H T H 2R"d"dRSS ( 3 ) S : S S分析,具体过程MWH.AS饱和恳汽iJJUMPa 4?3K¥,.日…圈H 1R-pT 理亘RT cr rdT r T r-0.0207 0.628=-0.0807Z 26RH i 0398%rJ3Kmo562.1S R DdB 0dB 1 R dT rd 「-0.0207 2.2626 0.271 8.1124-0.09234RS R-0.09234 8.3140.7677 KJ. Kmol ?K(3)理想气体(353K 、0.1013MPa —理想气体(453K 、1.013MPQ^C^dT45316.036 0.235T dT35316.036 453 353 0.23574532 3532211102.31 KJ Kmol45316.036ln 3538.47 KJ. Kmol ? K(4)理想气体(453K 、1.013MPa —真实气体(453K 、1.013MPa )点(T r 、P r )落在图2-8图曲线左上方,所以,用普遍化维里系数法进行计算。

由式(3-61)、(3-62)计算H R“ dB 0B 0dB 1B 1-「RRT cdT rT rdT rT r-0.806 0.2070 1.1826 0.5129 0.271 2.2161 -0.3961 S R f dB 0 dB 1 -RRdT rdT r-0.2070 1.18260.271 2.2161-0.3691S idT 1453 16.0363531 0130.2357 dT 8.314ln0.1013 0.2357 453 35319.1T r 空3 0.806562.11.013 4.8940.20700.2863TH R 1850.73 KJ Kmol S;R 3.0687 KJ KmolxH g 10.00577 2778.1 1 0.00577 672.81 774.44kJ / kg RK 方程求算在227°C 、 解:查附录得正丁烷的临界参数: T c =425.2K 、P c =3.800MPa 、3=0.193 3-13.试采用 5 MPa 下气相正丁烷的剩余焓和剩余熵。

又R-K 方程: RTP V b T 0.5V V b R 2T 2.5 0.42748 — P C2 2.5 8.314 425.2 0.42748 6 29.04 Pa 3.8 10 m 6 K 0.5 mol 20.08664 空 0.086648.314 42f.2 8.06 10 5m 3 P c 3.8 106mol 15 10629.04 试差求得: 8.314 500.15 V 8.06 105 500.15°.5V V 8.06 105V =5.61 x 1m 3/mol B 迪理 0.1438 V 56.1 10 a bRT 1.58.06529.04乔 3.87410 5 8.314 500.1E••• Z1 h B 1 h1 0.14383.8740.14380.6811 0.1438H V H 2403617KJ KmolS V ( S i R)S p? S i dS 2R93.269 KJ Kmol3-10. 一容器内的液体水和蒸汽在 1MPa 压力下处于平衡状态, 半体积,试求容器内的液体水和蒸汽的总焓。

相关文档
最新文档