C5~C8单体烃的沸点及辛烷值
C5物化性质
碳五介绍轻烃又名碳五、拨头油、石脑油、凝析液,我国年产近千万吨,但轻烃的有效利用一直是一个难题。
深圳日研的成果对于重组分较多的轻烃,添加油公后轻烃可直接供车使用;对于中等组分为主的轻烃则添加油公后,轻烃以适当比例掺入汽油中使用;对于轻组分较多的轻烃,则在汽车上另外安装一套从液态轻烃转化成气态轻烃进入发动机汽缸作功的转化系统。
中文名:碳五外观与性状:无色、易挥发液体稳定性:稳定聚合危害:聚合经使用证明,车用轻烃油与汽油相比,动力不下降、与汽油相当,单耗比汽油下降3%~5%,尾气下降90%以上,排放达欧Ⅱ、欧Ⅲ标准。
成品车用轻烃油零售价比汽油便宜0。
50元/升以上,与液化气价格相当.具有经济效益和环保效益,可使石油资源得以充分利用,具有广阔的市场前景乙烯副产裂解碳五可得到多种高附加值化工产品,如异戊二烯、环戊二烯、间戊二烯、异戊烯、1-戊烯、2—丁炔、3—甲基—1-丁烯、环戊烷、环戊烯、异戊烷、正戊烷等;其中异戊二烯、环戊二烯(双环戊二烯)和间戊二烯这3种双烯烃含量约占一半左右。
碳五烃类中含有三种双烯烃类:环戊二烯15~17%,异戊二烯15%~20%,间戊二烯10~20%,近年来,碳五馏分的利用已由初期的混合利用转向分离单组分的利用,同时向制备精细化工产品方向发展.三种双烯烃类的主要用途有、(1)环戊二烯(CPD):能进行聚合、氢化、卤化、加成、缩合和还原等反应,用途广泛。
环戊二烯的活性高,已成为有机合成工业的重要原料。
主要用途有:①生产多种橡胶,如顺式聚环戊烯橡胶和乙丙橡胶等,尤其是降冰片烯橡胶可用于减震防震领域中;②合成石油树脂,产品性能良好,可用作干性油、增粘剂、固化剂、增塑剂、防腐剂、油墨或其他高分子掺合改性.也可制备硫化水泥,用于建筑和铺路。
环戊二烯聚合产物有双环、三环、四环和五环结构,其中以双环戊二烯(DCPD)用途最大.由双环戊二烯与乙烯、丙烯共聚得到的三元乙丙橡胶,具有很好的耐候、耐老化、耐酸、耐热、耐化学品等性能,广泛用于汽车零部件和工业品配件。
加氢汽油产品中C5组分超标问题分析及对策
摘 要:裂解汽油加氢装置工艺流程改变为前脱C5、C9流程后,加氢汽油产品中C5组分超标,其主要原因是在脱辛烷塔内出现C5组分的增量。
经过分析和计算查找出脱辛烷塔在负压操作下,较高的塔釜操作温度提供了双环戊二烯等不饱和烃分解为戊二烯的转化环境和必要条件,通过实施避免稳定塔内C5组分积累的技术改造,解决了加氢汽油产品中C5组分超标的问题,改造后效果良好,完善了前脱C5、C9后加氢工艺流程的不足。
关键词:裂解汽油加氢装置 双环戊二烯分解 C5组分超标 技术改造加氢汽油产品中C5组分超标问题分析及对策张晓,李元明,张勇,刘国刚(中国石油抚顺石化公司,辽宁抚顺 113004)收稿日期:2020-11-26作者简介:张晓,高级工程师,学士。
2006年毕业于沈阳工业大学化学工程与工艺专业,现从事乙烯联合生产技术管理工作。
裂解汽油加氢装置作为石油化工生产流程中的重要组成部分在乙烯裂解装置和芳烃抽提、C5、 C9+深加工装置间起到承上启下的作用。
设置裂解汽油加氢装置的目的是将乙烯装置产生的粗裂解汽油经过精馏分离得到一定纯度的C5和C9+产品,并通过加氢的方式脱除粗裂解汽油中的不饱和烃和硫化物,最终得到芳烃纯度>85%的加氢汽油产品(C6~C8馏分),为芳烃抽提装置提供原料。
其加工工艺流程的设定取决于生产企业对各产品的需求和物料平衡,一般分为先分离后加氢和先加氢后分离(全馏分加氢)两种工艺。
1 装置工艺流程抚顺石化40万t/a 裂解汽油加氢装置采用埃克森斯(AXENS )两段加氢工艺技术,设置有前脱C5后加氢;前加氢后脱C5;前脱C5、C9后加氢三种操作流程,操作弹性60%~130%。
自装置开工以来一直按前脱C5后加氢流程操作,各项指标操控稳定,产品合格。
为满足工业用裂解C9国标要求,加氢装置由原工艺流程改变为前脱C5、C9后加氢流程。
流程改变后,C9+产品中关键组分双环戊二烯质量分数≥10%,满足出厂要求和下游用户需求。
常用溶剂的沸点、溶解性和毒性
常用溶剂的沸点、溶解性和毒性溶剂名称沸点溶解性毒性(101.3kPa)液氨33.35℃特殊溶解性:能溶解碱金属和碱土金属剧毒性、腐蚀性液态二氧化硫10.08溶解胺、醚、醇苯酚、有机酸、芳香烃、溴、二硫化碳,多数饱和烃不溶剧毒甲胺6.3是多数有机物和无机物的优良溶剂,液态甲胺与水、醚、苯、丙酮、低级中等毒性,易燃醇混溶,其盐酸盐易溶于水,不溶于醇、醚、酮、氯仿、乙酸乙酯二甲胺7.4是有机物和无机物的优良溶剂,溶于水、低级醇、醚、低极性溶剂强烈刺激性石油醚不溶于水,与丙酮、乙醚、乙酸乙酯、苯、氯仿及甲醇以上高级醇混溶与低级烷相似乙醚34.6微溶于水,易溶与盐酸.与醇、醚、石油醚、苯、氯仿等多数有机溶剂混溶麻醉性戊烷36.1与乙醇、乙醚等多数有机溶剂混溶低毒性二氯甲烷39.75与醇、醚、氯仿、苯、二硫化碳等有机溶剂混溶低毒,麻醉性强二硫化碳46.23微溶与水,与多种有机溶剂混溶麻醉性,强刺激性溶剂石油脑与乙醇、丙酮、戊醇混溶较其他石油系溶剂大丙酮56.12与水、醇、醚、烃混溶低毒,类乙醇,但较大1,1二氯乙烷57.28与醇、醚等大多数有机溶剂混溶低毒、局部刺激性氯仿61.15与乙醇、乙醚、石油醚、卤代烃、四氯化碳、二硫化碳等混溶中等毒性,强麻醉性甲醇64.5与水、乙醚、醇、酯、卤代烃、苯、酮混溶中等毒性,麻醉性,四氢呋喃66优良溶剂,与水混溶,很好的溶解乙醇、乙醚、脂肪烃、芳香烃、氯化烃吸入微毒,经口低毒己烷68.7甲醇部分溶解,比乙醇高的醇、醚丙酮、氯仿混溶低毒。
麻醉性,刺激性三氟代乙酸71.78与水,乙醇,乙醚,丙酮,苯,四氯化碳,己烷混溶,溶解多种脂肪族,芳香族化合物1,1,1三氯乙烷74.0与丙酮、、甲醇、乙醚、苯、四氯化碳等有机溶剂混溶低毒类溶剂四氯化碳76.75与醇、醚、石油醚、石油脑、冰醋酸、二硫化碳、氯代烃混溶氯代甲烷中,毒性最强乙酸乙酯77.112与醇、醚、氯仿、丙酮、苯等大多数有机溶剂溶解,能溶解某些金属盐低毒,麻醉性乙醇78.3与水、乙醚、氯仿、酯、烃类衍生物等有机溶剂混溶微毒类,麻醉性丁酮79.64与丙酮相似,与醇、醚、苯等大多数有机溶剂混溶低毒,毒性强于丙酮苯80.10难溶于水,与甘油、乙二醇、乙醇、氯仿、乙醚、、四氯化碳、二硫化碳、丙酮、甲苯、二甲苯、冰醋酸、脂肪烃等大多有机物混溶强烈毒性环己烷80.72与乙醇、高级醇、醚、丙酮、烃、氯代烃、高级脂肪酸、胺类混溶低毒,中枢抑制作用乙睛81.60与水、甲醇、乙酸甲酯、乙酸乙酯、丙酮、醚、氯仿、四氯化碳、氯乙烯及各种不饱和烃混溶,但是不与饱和烃混溶中等毒性,大量吸入蒸气,引起急性中毒异丙醇82.40与乙醇、乙醚、氯仿、水混溶微毒,类似乙醇1,2二氯乙烷83.48与乙醇、乙醚、氯仿、四氯化碳等多种有机溶剂混溶高毒性、致癌乙二醇二甲醚85.2溶于水,与醇、醚、酮、酯、烃、氯代烃等多种有机溶剂混溶。
气相色谱法计算汽油的研究法辛烷值
气相色谱法计算汽油的研究法辛烷值黄水望;赵晓锋;郭振;王世聪【摘要】采用气相色谱法分析汽油的详细组分,将详细组分结果根据样品的类型分成32组,通过偏最小二乘法进行数学模型的建立,得出汽油研究法辛烷值与汽油组分的数学公式.研究结果表明,通过模型计算出的辛烷值与标准方法测定的结果最大偏差在1.1个单位,最小偏差在0.0个单位.实际样品的测定计算表明,该方法具有其良好的预测性能和较高的精度,可用于生产中间过程控制分析,为汽油调和提供一定的指导帮助.【期刊名称】《广州化工》【年(卷),期】2018(046)001【总页数】3页(P145-146,186)【关键词】气相色谱法;汽油;研究法辛烷值【作者】黄水望;赵晓锋;郭振;王世聪【作者单位】中化泉州石化有限公司质检中心, 福建泉州 362000;中化泉州石化有限公司质检中心, 福建泉州 362000;中化泉州石化有限公司质检中心, 福建泉州362000;中化泉州石化有限公司质检中心, 福建泉州 362000【正文语种】中文【中图分类】O657.7汽油的研究法辛烷值(RON)是GB 17930-2016《车用汽油》产品标准里的重要指标,汽油研究法辛烷值检测的常规方法是根据GB/T 5487-2015《汽油辛烷值测定法(研究法)》进行测定。
通常采用美国Waukesha制造的CFR F-1研究法辛烷测定设备进行测定。
该标准试验方法所需的辛烷值试验机价格非常昂贵,需经常维护保养,实验室进行的大修工作一般为运行300小时左右,以便于维持发动机的正常运行性能以及基于标准燃油实现精确的测定值,维护成本相当高,而且测定时样品需用量大,测试周期长,同时需要依赖于专业人员来操作。
因此,国内外研究人员采用多种方法来取代马达法与研究法。
近年来,根据样品的其他测定数据关联计算样品的辛烷值在实际中已获得应用,如近红外光谱、拉曼光谱、气相色谱[1-4]。
从分子水平看,汽油是由不同的烃类和含氧化合物组成,以及少量的添加剂,其辛烷值必然与汽油的详细组成有关系。
C5物化性质
碳五介绍轻烃又名碳五、拨头油、石脑油、凝析液,我国年产近千万吨,但轻烃的有效利用一直是一个难题。
深圳日研的成果对于重组分较多的轻烃,添加油公后轻烃可直接供车使用;对于中等组分为主的轻烃则添加油公后,轻烃以适当比例掺入汽油中使用;对于轻组分较多的轻烃,则在汽车上另外安装一套从液态轻烃转化成气态轻烃进入发动机汽缸作功的转化系统。
中文名:碳五外观与性状:无色、易挥发液体稳定性:稳定聚合危害:聚合经使用证明,车用轻烃油与汽油相比,动力不下降、与汽油相当,单耗比汽油下降3%〜5%,尾气下降90%以上,排放达欧□、欧川标准。
成品车用轻烃油零售价比汽油便宜0.50元/升以上,与液化气价格相当。
具有经济效益和环保效益,可使石油资源得以充分利用,具有广阔的市场前景乙烯副产裂解碳五可得到多种高附加值化工产品,如异戊二烯、环戊二烯、间戊二烯、异戊烯、1-戊烯、2- 丁炔、3-甲基-1- 丁烯、环戊烷、环戊烯、异戊烷、正戊烷等;其中异戊二烯、环戊二烯(双环戊二烯)和间戊二烯这3种双烯烃含量约占一半左右。
碳五烃类中含有三种双烯烃类:环戊二烯15〜17%,异戊二烯15%〜20% ,间戊二烯10〜20% ,近年来,碳五馏分的利用已由初期的混合利用转向分离单组分的利用,同时向制备精细化工产品方向发展。
三种双烯烃类的主要用途有、(1 )环戊二烯(CPD ):能进行聚合、氢化、卤化、加成、缩合和还原等反应,用途广泛。
环戊二烯的活性高,已成为有机合成工业的重要原料。
主要用途有:①生产多种橡胶,如顺式聚环戊烯橡胶和乙丙橡胶等,尤其是降冰片烯橡胶可用于减震防震领域中;②合成石油树脂,产品性能良好,可用作干性油、增粘剂、固化剂、增塑剂、防腐剂、油墨或其他高分子掺合改性。
也可制备硫化水泥,用于建筑和铺路。
环戊二烯聚合产物有双环、三环、四环和五环结构,其中以双环戊二烯(DCPD )用途最大。
由双环戊二烯与乙烯、丙烯共聚得到的三元乙丙橡胶,具有很好的耐候、耐老化、耐酸、耐热、耐化学品等性能,广泛用于汽车零部件和工业品配件。
石油产品种类
PS:蒸气压过大,说明轻组分太多,易形成气阻,中断供油, 发动机停止工作。
2、良好的安定性
➢ 判断汽油在使用过程中在进气管道和进气阀上可能生成 沉积物的倾向。直馏汽油馏分安定性很好,二次加工生 成的汽油馏分(如裂化汽油等)安定性较差。
PS:目前作为萃取剂最广泛的应用为国内大豆油主流生产技术: 浸出油技术。浸出油技术操作方法为将大豆在6号轻汽油中浸泡 后再榨取油脂,然后经过一系列加工过后形成大豆食用油。
➢汽油发动机工作原理
⑴、进气(空气和油气) 活塞向下运动→产生真空→空气、汽油吸
入的汽化器→汽化、混合→进入气缸、继续汽化。
⑵ 压缩 活塞经下止点向上运动→混合气被压缩升温。
➢ 测定方法:马达法和研究法。
马达法的试验工况规定为:转速900r/min,冷却水温 度100℃,混合气温度150℃。
研究法的试验工况规定为:转速600r/min,冷却水温 度100℃,混,不容易发生爆震,因此研 究法辛烷值(RON)比马达法辛烷值(MON)高5~10个单位, RON- MON称为汽油的敏感度,它反映汽油的抗爆性随发动机 工况改变而变化的程度。
②硫还能降低汽油的辛 烷值及汽油对四乙基铅 的感受性(即减弱加入四 乙基铅对于汽油辛烷值 的提高幅度)。
➢硫含量:存在于油品中的硫及其衍生物(硫化氢、硫醇、二硫 化物等)的含量,是保证用油的机械不受腐蚀和操作人员不致损 害健康以及防止环境污染的指标。燃料中硫含量较多时,活性 硫可以腐蚀油品的储运设备和机械的供油系统;非活性硫燃烧 后形成SO2和SO3,遇水形成亚硫酸和硫酸而腐蚀机械,而SO2和 SO3排入大气会造成污染。
有机化学资料
有机化学烷烃常见烷烃烷烃即饱和烃(saturated group),是只有碳碳单键的链烃,是最简单的一类有机化合物。
烷烃分子里的碳原子之间以单键结合成链状(直链或含支链)外,其余化合价全部为氢原子所饱和。
烷烃分子中,氢原子的数目达到最大值。
烷烃的通式为CnH2n+2。
分子中每个碳原子都是sp3杂化。
最简单的烷烃是甲烷。
烷烃中,每个碳原子都是四价的,采用sp3杂化轨道,与周围的4个碳或氢原子形成牢固的σ键。
连接了1、2、3、4个碳的碳原子分别叫做伯、仲、叔、季碳;伯、仲、叔碳上的氢原子分别叫做伯、仲、叔氢。
为了使键的排斥力最小,连接在同一个碳上的四个原子形成四面体(tetrahedron)。
甲烷是标准的正四面体形态,其键角为109°28′(准确值:arccos(-1/3))。
理论上说,由于烷烃的稳定结构,所有的烷烃都能稳定存在。
但自然界中存在的烷烃最多不超过50个碳,最丰富的烷烃还是甲烷。
由于烷烃中的碳原子可以按规律随意排列,所以烷烃的结构可以写出无数种。
直链烷烃是最基本的结构,理论上这个链可以无限延长。
在直链上有可能生出支链,这无疑增加了烷烃的种类。
所以,从4个碳的烷烃开始,同一种烷烃的分子式能代表多种结构,这种现象叫同分异构现象。
随着碳数的增多,异构体的数目会迅速增长烷烃还可能发生光学异构现象。
当一个碳原子连接的四个原子团各不相同时,这个碳就叫做手性碳,这种物质就具有光学活性。
烷烃失去一个氢原子剩下的部分叫烷基[1],一般用R-表示。
因此烷烃也可以用通式RH来表示。
烷烃最早是使用习惯命名法来命名的。
但是这种命名法对于碳数多,异构体多的烷烃很难使用。
于是有人提出衍生命名法,将所有的烷烃看作是甲烷的衍生物,例如异丁烷叫做2-一甲基丙烷。
现在的命名法使用IUPAC命名法,烷烃的系统命名规则如下:找出最长的碳链当主链,依碳数命名主链,前十个以天干(甲、乙、丙、丁、戊、己、庚、辛、壬、癸)代表碳数,碳数多于十个时,以中文数字命名,如:十一烷。
C5馏分主要成分是环戊二烯
C5馏分主要成分是环戊二烯、间戊二烯和异戊二烯。
主要指石油裂解制乙烯过程中副产的含有五个碳原子的烃类混合物。
以石脑油裂解制乙烯时,副产的碳五馏分(约占乙烯量的15%)链烷烃含量少,双烯烃含量高,其中异戊二烯、环戊二烯各占15%左右,间戊二烯约占10%。
碳五馏分可直接制石油树脂,广泛用于黏结剂、涂料、印刷油墨、纸张上胶剂等方面,也可用萃取精馏法、吸收法等分离出的异戊二烯、环戊二烯、间戊二烯、异戊烯、正戊烯等,广泛用于制取合成橡胶、涂料以及其他石油化工产品和精细化工产品。
异戊烷可经脱氢成异戊二烯。
异戊二烯用于制合成橡胶和其他聚合物。
环戊二烯用于制杀虫剂等。
碳五馏分亦可作为燃料和制取炭黑的原料。
C5主要来自石油烃高温裂解制乙烯过程的副产C5馏分和石油炼厂催化裂化装置。
然而,两种不同来源的C5馏分的组成和用途有着很大的差别。
炼厂催化裂化装置来的C5馏分中的烯烃主要是单烯烃,在化工利用中价值较高的组分为异戊烯。
裂解制乙烯过程的副产C5馏分中利用价值较高的组分是异戊二烯、环戊二烯和间戊二烯。
利用裂解制乙烯过程的副产C5馏分,经分离后,生产异戊二烯、环戊二烯、双环戊二烯和石油树脂。
异戊二烯是极其重要的C5双烯烃,主要用途是生产聚异戊二烯橡胶、SIS 共聚物和丁基橡胶。
其化学性质活泼,通过各种化学反应可以合成香料、农药、医药及其它精细化工产品。
双环戊二烯含有多个不饱和双键,化学性质非常活泼,可与多种化合物反应,生成种类繁多的衍生物。
主要用于生产C5脂环族石油树脂、不饱和聚酯树脂、聚双环戊二烯和乙丙橡胶。
C5烯烃主要来源于石油烃高温裂解制取乙烯过程及石油炼制催化裂化过程的副产物中。
含量较为丰富,利用价值较高的组分为异戊二烯、环戊二烯和间戊二烯,三者约占C5裂解馏分的40%-50%。
裂解C5馏分中还含有大约15%-25%的单烯烃,即,1-戊烯、顺二戊烯和反二戊烯、2-甲基-1-丁烯、2-甲基-2-丁烯、3-甲基-1-丁烯。
单体香料
OH
O
2、2,3-丁二酮 该香料分子式C4H6O2 ,分子量86.09, 沸点 88℃,d(20/4℃)0.8931, nD(18.5℃)1.393。 结构式: 丁二酮是许多水果和食品的一种香气成分, 也是人们熟知的奶油的香气成分。调香中主 要用于奶油和烘烤香韵中,大量用于人造奶 油的调味,少量用于某些香水的调制。
庚酸乙酯
辛酸乙酯 庚酸烯丙酯 2-trans一4-cis一庚二烯酸乙酯
似康酿克的酒香、果香
酒香、杏子香 苹果香韵 梨香
癸酸乙酯
月桂酸甲酯 月桂酸乙酯 十四酸乙酯
似康酿克的果香
油质、似酒香的花香 花果香气 似鸢尾香气
2一己烯羧酸甲酯
2一辛炔羧酸甲酯 2一辛炔羧酸乙酯 2一壬炔羧酸甲酯
青香、酿香、霉及甜的水果味
不愉快的干椰子油气味 酸带甜的后味和焦糖气味,高浓度时有 辣味 微酸的奶油气味 无气味、特有的酸味道
4-戊烯酸
乳酸 酒石酸
柠檬酸
苹果酸
无气味、令人愉快的酸味道
无气味、有酸口味、无刺激性
2、脂肪酸酯类
脂肪族羧酸是一类重要的香料,它们存在于几乎所有的 水果和许多食品中。酯类的香气大体上可以分为三大类型 ,即果香、酒香和花香。某些酯类甚至有特定的果香。 自然界中存在的酯类大部分是直链羧酸的乙醇酯,它们 都是重要的香味成分,其中许多低级脂肪酸酯赋予香精的 头香香气。除直链的酯外,尚有一些带支链的酯和不饱和 酯也是重要的香味物质(表3一6)。 低碳原子数的羧酸酯是典型的果香,随着碳原子数的增 加,酯类香气向脂肪-皂香转化,甚至向金属气味转变。 由表3一6可见,Cl至C6的羧酸乙酯主要用于果香韵,C7、 C8 的羧酸乙酯具有酒香韵,C8 、Cl0 和C12 的羧酸酯有花香 味,可用于花香韵。Cl2的月桂酸酯也可用于松柏香韵中。 令人注意的是几个2一炔羧酸甲酯,它具有类似于紫罗兰 的花香气味,可以用于花香及青香香韵的香精中。
单体烃的沸点及辛烷值
乙基环己烷脱氢甲苯67->100
正辛烷125异构-19->100
80.8
83
C7
2-甲基己烷
90.1
42
正庚烷
98.8
0
甲基环己烷
100.9
74.8
乙基环戊烷
91.3
甲苯
110.6
>100
C8
异辛烷(三甲基戊烷)
99.2
100
乙基环己烷
103
67
正辛烷
125.7
-19
乙苯
136.5
>100
对二甲苯
138.5
>100
重整反应
80~180生产高辛烷值汽油
切除苯的ห้องสมุดไป่ตู้身C6C6环成苯
单体烃的沸点及辛烷值
单体烃
沸点℃
实测辛烷值(RON)
实测辛烷值(RON)
C5
异戊烷
92.3
正戊烷
61.7
环戊烷
101.7
C6
2,2-二甲基丁烷
91.8
2,3-二甲基丁烷
103.6
2-乙基丁烷
73.4
3-乙基丁烷
74.5
异己烷
60.3
73.4
正己烷
68.7
26
甲基环戊烷
71.8
91
苯
80.1
98
环己烷
沸点RON变化
异己烷:60.3环化成苯26-98
正己烷:68.7环化成苯73.4-98
甲基环戊烷:71.8芳构脱氢91-98
环己烷:80.8芳构脱氢成苯83-98
苯80.1
生产芳烃60~130C6环成苯、C7环成甲苯、C8环成二甲苯
烷烃、环烷烃
烷烃、环烷烃烷烃烷烃即饱和烃(saturated group),是只有碳碳单键的链烃,是最简单的⼀类有机化合物。
烷烃分⼦⾥的碳原⼦之间以单键结合成链状(直链或含⽀链)外,其余化合价全部为氢原⼦所饱和。
烷烃分⼦中,氢原⼦的数⽬达到最⼤值,它的通式为CnH2n+2。
分⼦中每个碳原⼦都是sp3杂化。
最简单的烷烃是甲烷。
烷烃中,每个碳原⼦都是四价的,采⽤sp3杂化轨道,与周围的4个碳或氢原⼦形成牢固的σ键。
连接了1、2、3、4个碳的碳原⼦分别叫做伯、仲、叔、季碳;伯、仲、叔碳上的氢原⼦分别叫做伯、仲、叔氢。
为了使键的排斥⼒最⼩,连接在同⼀个碳上的四个原⼦形成四⾯体(tetrahedro n)。
甲烷是标准的正四⾯体形态,其键⾓为109°28′(准确值:arccos(-1/3))。
理论上说,由于烷烃的稳定结构,所有的烷烃都能稳定存在。
但⾃然界中存在的烷烃最多不超过50个碳,最丰富的烷烃还是甲烷。
由于烷烃中的碳原⼦可以按规律随意排列,所以烷烃的结构可以写出⽆数种。
直链烷烃是最基本的结构,理论上这个链可以⽆限延长。
在直链上有可能⽣出⽀链,这⽆疑增加了烷烃的种类。
所以,从4个碳的烷烃开始,同⼀种烷烃的分⼦式能代表多种结构,这种现象叫同分异构现象。
随着碳数的增多,异构体的数⽬会迅速增长烷烃还可能发⽣光学异构现象。
当⼀个碳原⼦连接的四个原⼦团各不相同时,这个碳就叫做⼿性碳,这种物质就具有光学活性。
烷烃失去⼀个氢原⼦剩下的部分叫烷基[1],⼀般⽤R-表⽰。
因此烷烃也可以⽤通式RH来表⽰。
烷烃最早是使⽤习惯命名法来命名的。
但是这种命名法对于碳数多,异构体多的烷烃很难使⽤。
于是有⼈提出衍⽣命名法,将所有的烷烃看作是甲烷的衍⽣物,例如异丁烷叫做2-⼀甲基丙烷。
现在的命名法使⽤IUPAC命名法,烷烃的系统命名规则如下:找出最长的碳链当主链,依碳数命名主链,前⼗个以天⼲(甲、⼄、丙、丁、戊、⼰、庚、⾟、壬、癸)代表碳数,碳数多于⼗个时,以中⽂数字命名,如:⼗⼀烷。
烷烃性质资料重点
2、甲烷的氯代
CH4 + Cl2 hv or
CH3Cl + HCl 氯甲烷
CH3Cl + Cl2
CH2Cl2 + HCl 二氯甲烷
CH2Cl + Cl2
CHCl3 + HCl 三氯甲烷
CHCl3 + Cl2
CCl4 + HCl 四氯甲烷
3、其他烷烃的卤代
原因(1)几率因素
(2)氢的活泼性:叔>仲>伯
CH C H bond
四、烷烃分子结构的写法: 1、碳架式 2、楔形式
第四节、烷烃的构象
构象:有一定构造的分子通过单键的旋转,形成各原子和原 子团的空间排布。
一、乙烷的构象: 1、重叠式(顺叠式):H距离最近,斥力最大,E高不稳定。 2、交叉式(反叠式):H距离最远,斥力最小,E低稳定。 3、表示方法: (1)透视式: (2)纽曼投影式:
第二章 烷烃(Alkanes)
烃定义:只由C,H元素组成的化合物叫做碳氢化合物,又称烃。 烃的分类: 开链的饱和烃称为烷烃。
第一节 烷烃的同序列和同分异构现象
一、同系列
1、定义:具有一个通式,结构相似,分子式相差一个或几个CH2的这样 一系列化合物。 CH2称为系列差。
二、同分异构
1、定义:化学式相同,结构不同,性质也不尽相同。
SAWHO RSE / ANDIRO N FO RMULA
H
H
HH HH
H
s tagge re d
HH H
HH
e cl i ps e d
NEWMAN PRO JECTIO NS
H
HH
H
H
H
H
H
单体香料
某些脂肪酸和羟基酸的气味 化合物 气味
乙酸
n-丁酸 Iso-丁酸
刺激性酸味
持久的、刺鼻的、酸败奶油气味 类似于n-丁酸的气味 刺鼻辛辣的奶酪气味,低浓度时有甜的 水果气味 似丁酸的气味 刺激性的辛辣气味,酸气味
2-甲基丁酸
异戊酸 2-甲基戊酸 3-甲基戊酸 n -己酸
酸、药草微带青香、低浓度时有甜和酸 的气味
1.4451(20℃) 1.4412(20℃)
γ一癸内酯
γ一十一内酯
28l
162(13毫米)
1.4610(21.5℃)
1.4512(20℃)
γ一十二内酯
α一当归内酯
130(5.1毫米)
170
0.9383
1.084
1.4522(20℃)
1.4476(20℃)
某些γ-内酯的香气特征
R H CH3 C2H4 n-C3H7 n-C4H9 淡奶油 甜,香豆素一焦糖 麦芽,焦糖香 欧莳萝,微茴香 椰子香 欧莳萝 欧莳萝,琥波香 当归一琥波香 杏一琥波香 桃一麝香 桃一麝香 桃一麝香 桃一麝香
某些γ-内酯化合物的物理常数
化合物 γ一丁丙酯 γ一戊内酯 γ一已内酯 γ一庚内酯 γ一辛内酯 γ一壬内酯 206
Bp(℃) 206.5 220
D4(20℃) 1.1286 l.0678
nD(20℃) 1.4341 1.4301
127(16毫米) 136(13毫米)
0.9796 0.9672 0.9494
某些酯类物质及其香气特征
酯类物质 甲酸乙酯 稍辣的果香 香 气
甲酸叶醇酯
乙酸乙酯 乙酸丙酯 乙酸丁酯 乙酸异戊酯 乙酸(3,5,5一三甲基己烯)酯
青香一果香
辛烷值详解
辛烷值详解爆震(震爆Knocking)汽车用油主要成分是C5H12~C12H26之烃类混合物,当汽油蒸气在汽缸内燃烧时(活塞将汽油与空气混合压缩后,火星塞再点火燃烧),常因燃烧急速而发生引擎不正常燃爆现象,称为爆震(震爆) 。
在燃烧过程中如果火焰传播速度或火焰波之波形发生突变,如引起燃烧室其它地方自动着火(非火星塞点火漫延),燃烧室内之压力突然增高此压力碰击四周机件而产生类如金属的敲击声,有如爆炸,故称为爆震(震爆)。
汽油一旦辛烷值过低,将使引擎内产生连续震爆现象,造成机件伤害连续的震爆容易烧坏气门,活塞等机件。
爆震之原因:(1) 汽油辛烷值太低。
(2)压缩比过高。
(3)点火时间太早。
(4)燃烧室局部过热。
(5)混合汽温度或压力太高。
(6)混合汽太稀。
(7)预热。
(8)汽缸内部积碳。
(9)其他如冷却系或故障等。
减少爆震方法:(1) 提高汽油辛烷值。
(2)减低压缩比。
(3)校正点火正时。
(4)降低进汽温度.(5) 减少燃烧室尾部混合汽量。
(6)增加进汽涡流。
(7)缩短火焰路程。
(8)保持冷却系作用良好。
辛烷值爆震时大大减低引擎动力,实验显示,烃类的化学结构在震爆上有极大的影响。
燃烧的抗震程度以辛烷值表示,辛烷值越高表示抗震能力愈高。
其中燃烧正庚烷 CH3(CH2)5CH3的震爆情形最严重,定义其辛烷值为0。
异辛烷(2,2,4-三甲基戊烷) 的辛烷值定义为100。
辛烷值可为负,也可以超过100。
当某种汽油之震爆性与90%异辛烷和10%正庚烷之混合物之震爆性相当时,其辛烷值定为90。
如环戊烷之辛烷值为85,表示燃烧环戊烷时与燃烧85%异辛烷和15%正庚烷之混合物之震爆性相当。
此为无铅汽油标示来源,目前有辛烷值为92,95,98等级之无铅汽油,此类汽油含有高支链成分及更多芳香族成分之烃类,如苯,芳香烃,硫合物等。
例如95无铅汽油的抗震爆强度相当于标准油中含有百分之九十五的异辛烷及百分之五的正庚烷的抗震爆强度。
化学工艺学知识点总结
化学工艺学第一章绪论1、化学工业:运用化学工艺、化学工程及设备,通过各种化工单元操作,高效、节能、经济、环保和安全地将原料生产成化工产品的特定生产部门。
2、化学工艺即化工生产技术,是指将各种原料主要经过化学反应转变为产品的方法和过程,包括实现这种转变的全部化学的和物理的措施。
3、化学工艺学是根据化学、物理和其他科学的成就,研究综合利用各种原料生产化学产品的方法原理、操作条件、流程和设备,以创立技术先进、经济上合理、生产上安全的化工生产工艺的学科。
4、21世纪,化学工业的发展趋势答:(1)产品结构精细化和功能化;(2)生产装置微型化和柔性化;(3)生产过程绿色化和高科技化;(4)市场经营国际化、信息化。
5、绿色化工就是用先进的化工技术和方法减少或消除对人类健康、社区安全、生态环境有害的各种物质的一种技术手段。
6、化学工业的基础原料指可以用来加工生产化工基本原料或产品的在自然界天然存在的资源。
7、化工产品一般是指由原料经化学反应、化工单元操作等加工方法生产出来的新物料(品)。
8.煤化工:以煤为原料,经过化学加工转化为气体、液体和固体燃料及化学品的工业。
9.煤的干馏:是指在隔绝空气条件下将煤加热,使其分解生成焦炭、煤焦油、粗苯和焦炉气的过程。
10.一次加工方法主要包括一次加工和二次加工,一次加工方法主要包括常压蒸馏和减压蒸馏。
11.蒸馏是一种利用液体混合物中各组分挥发度的差别(沸点不同)进行分离的方法,是一种没有化学反应的传质、传热物理过程,主要设备是蒸馏塔。
12.常用的二次加工方法主要有催化重整、催化裂化、催化加氢裂化和烃类热裂解四种。
13.催化重整:是在铂催化剂作用下加热汽油馏分(石脑油),使其中的烃类分子重新排列形成新分子的工艺过程。
14.催化重整的原料是石脑油,以生产高辛烷值汽油为目的时一般采用80~180℃馏分。
15.催化加氢裂化是在催化剂及高氢压下加热重质油,使其发生一系列加氢和裂化反应,转变成航空煤油、柴油、汽油和气体等产品的加工过程。