第二学期初二数学期中测试试卷及答案

合集下载

江苏省南京市2023-2024学年八年级下学期期中数学试题(解析版)

江苏省南京市2023-2024学年八年级下学期期中数学试题(解析版)

2023-2024学年度第二学期期中练习卷八年级数学一、选择题(本大题共8小题,每小题2分,共16分)1. 下列图形中,是中心对称图形但不是轴对称图形的是()A. B. C.D.【答案】A【解析】【分析】考查图形分类及其各类图形的特点定义等,轴对称有对称轴,中心对称则有对称中心经旋转180°仍可以重合.【详解】AB项是轴对称图形不是中心对称图形,不符合题意,C项是轴对称图形也是中心对称图形,不符合题意,D项既是轴对称图形又是中心对称图形,不符合题意.故选:A【点睛】本题直接以四个图考查了图形这一章节的两个定义:轴对称图形的定义和中心对称图形的的定义.2. 以下调查中,适合普查的是()A. 了解一批钢笔的使用寿命B. 了解公民保护环境的意识C. 了解长江水质情况D. 了解班级每位学生校服的尺码【答案】D【解析】【分析】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A.了解一批钢笔的使用寿命适合抽样调查;B.了解公民保护环境的意识适合抽样调查;C.了解长江水质情况适合抽样调查;D.了解班级每位学生校服的尺码适合全面调查;故选D.3. 下列事件中的必然事件是()A. 地球绕着太阳转B. 射击运动员射击一次,命中靶心C. 天空出现三个太阳D. 经过有交通信号灯的路口,遇到红灯【答案】A【解析】【分析】根据必然事件、不可能事件、随机事件的概念,可得答案.【详解】解∶ A、地球绕着太阳转是必然事件,故A正确;B、射击运动员射击一次,命中靶心是随机事件,故B错误;C、天空出现三个太阳是不可能事件,故C错误;D、经过有交通信号灯的路口,遇到红灯是随机事件,故D错误;故选∶ A.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4. 一个不透明的袋子中装有2个白球和1个黑球,这些球除颜色外都相同,从中摸出1个球,下列说法正确的是()A. 摸出的球一定是白球B. 摸出的球一定是黑球C. 摸出黑球的可能性大D. 摸出白球的可能性大【答案】D【解析】【分析】本题考查了概率公式,熟练掌握概率公式计算是解题的关键;根据概率公式想算出摸出白球和黑球的概率,在进行比较判定即可.【详解】 不透明的袋子中装有2个白球和1个黑球,共有3个 ,∴摸出白球的概率为23,摸出黑球的概率为13, 2133>, ∴摸出白球的可能性大,A 、摸出的球不一定是白球,故该选项说法错误,不符合题意;B 、摸出的球不一定是黑球,故该选项说法错误,不符合题意;C 、摸出白球的可能性大,故该选项说法错误,不符合题意;D 、摸出白球的可能性大,故该选项说法正确,符合题意;故选:D .5. 能判定四边形ABCD 为平行四边形的条件是( )A. AB CD ∥,B D ∠=∠B. AB AD =,CB CD =C. AB CD ∥,AD BC =D. A B ∠=∠,C D ∠=∠ 【答案】A【解析】【分析】本题考查了平行四边形的判定定理,熟练掌握和运用平行四边形的判定定理是解决本题的关键.【详解】解:如图所示,A 、∵AB CD ∥,∴180B C ∠+∠=°∵B D ∠=∠∴180D C ∠+∠=°∴AD BC ∥∴四边形ABCD 为平行四边形,故此选项符合题意;B 、AB AD =,CB CD =不能判定四边形ABCD 平行四边形,故此选项不符合题意;C 、AB CD ∥,AD BC =不能判定四边形ABCD 为平行四边形,故此选项不符合题意;D 、A B ∠=∠,C D ∠=∠不能判定四边形ABCD 为平行四边形,故此选项不符合题意;为故选:A .6. 如图,将ABC 绕点A 逆时针旋转到ADE ,旋转角为()0180αα°<<°,点B 的对应点D 恰好落在BC 边上,若24DE AC CAD ⊥∠=°,,则旋转角α的度数为( )A. 24°B. 28°C. 48°D. 66°【答案】C【解析】 【分析】先求出66ADE ∠=°,再利用旋转的性质求出66B ∠=°,AB AD =,然后利用等边对等角求出66ADB ∠=°,最后利用三角形的内角和定理求解即可. 【详解】解:如图,,∵DE AC ⊥,∴90AFD ∠=°,∵24CAD ∠=°,∴18066ADE CAD AFD ∠=°−∠−∠=°,∵旋转,∴66B ADE ∠=∠=°,AB AD =,∴66ADB B ∠=∠=°,∴18048BAD B ABD ∠=°−∠−∠=°,即旋转角α的度数是48°.故选:C .【点睛】本题考查了旋转的性质,等腰三角形的性质,三角形内角和定理等,掌握等边对等角是解题的关键.7. 如图,过平行四边形ABCD 对角线BD 的中点O 作两条互相垂直的直线,分别交AB BC CD DA,,,于E ,F ,G ,H 四点,则下列说法错误的是( )A. EH HG =B. BD 与EG 互相平分C. EH FG ∥D. BD 平分ABC ∠【答案】D【解析】 【分析】本题考查了平行四边形的性质与判定,菱形的判定与性质,全等三角形的判定与性质等知识;熟练掌握平行四边形的性质与判定,证明三角形全等是解题的关键.证明BOE DOG ≌,得出OE OG =, BD 与 EG 互相平分,证四边形EFGH 是菱形,得出,EH GH EH FG = . 进而得出结论.【详解】解:∵四边形ABCD 是平行四边形,∴AB CD∴OBE ODG ∠=∠∵O 是BD 的中点∴OB OD =又∵BOE DOG ∠=∠∴()ASA BOE DOG ≌∴OE OG =,∴BD 与 EG 互相平分,同理可得OF OH =,∴四边形EFGH 是平行四边形,∵EG FH ⊥,∴四边形EFGH 是菱形,∴,EH GH EH FG = . 选项A B C 、、不符合题意;当四边形ABCD 是菱形时, BD 平分ABC ∠,没有条件证出四边形ABCD 是菱形,选项D 符合题意;故选: D .8. 如图,以钝角三角形ABC 的最长边BC 为边向外作矩形BCDE ,连结,AE AD ,设AED △,ABE ,ACD 的面积分别为12,,S S S ,若要求出12S S S −−的值,只需知道( )A. ABE 的面积B. ACD 的面积C. ABC 的面积D. 矩形BCDE 的面积【答案】C【解析】 【分析】过点A 作FG BC ∥,交EB 的延长线于点F ,DC 的延长线于点G ,易得:,,FG BC AF BE AG CD =⊥⊥,利用矩形的性质和三角形的面积公式,可得1212BCDE S S S +=矩形,再根据1212ABC ABC BCDE BCDES S S S S S S −=+−=+ 矩形矩形,得到12ABC S S S S −=− ,即可得出结论. 【详解】解:过点A 作FG BC ∥,交EB 的延长线于点F ,DC 的延长线于点G ,∵矩形BCDE ,∴,,BC BE BC CD BE CD ⊥⊥=, ∴,FG BE FG CD ⊥⊥,∴四边形BFGC 为矩形,∴,,FG BC AF BE AG CD =⊥⊥, ∴1211,22S BE AF S CD AG =⋅=⋅, ∴()12111222BCDEBE AF AG BE B S C S S =+=⋅=+矩形, 又1212ABC ABC BCDE BCDE S S S S S S S −=+−=+ 矩形矩形, ∴121122ABC ABC BCDE BCDE S S S S S S S =+−−−= 矩形矩形,∴只需要知道ABC 面积即可求出12S S S −−的值;故选C . 【点睛】本题考查矩形的性质,求三角形的面积.解题的关键是得到1212BCDE S S S +=矩形 二、填空题(本大题共10小题,每小题2分,共20分)9. 为了调查某品牌护眼灯的使用寿命,比较适合的调查方式是________(填“普查”或“抽样调查”).【答案】抽样调查【解析】【分析】根据全面调查得到的结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的结果比较近似进行解答即可.【详解】解:调查某品牌护眼灯的使用寿命,具有破坏性,适合采用的调查方式是抽样调查, 故答案为:抽样调查.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.10. 某班开展“梦想未来、青春有我”主题班会,第一小组有3位男同学和2位女同学,现从中随机抽取1位同学分享个人感悟,则抽到男同学的概率是______. 【答案】35##0.6 【解析】【分析】本题考查了根据概率公式求概率,熟知概率公式是解题的关键.【详解】解:抽到的同学总共有5种等可能情况,抽到男同学总共有3种可能情况, 故抽到男同学的概率是35, 故答案为:35. 11. 一个样本的50个数据分别落在5个组内,第1~4组数据的频数分别是2、8、15、10,则第5组的频数为______,频率为______.【答案】 ①. 15 ②. 0.3【解析】【分析】本题考查频率、频数的关系:频率=频数,同时考查频数的定义即样本数据出现数据总数的次数.总数减去其它四组的数据就是第5组的频数,用频数除以数据总数就是频率.的【详解】解:根据题意可得:第1、2、3、4组数据的个数分别是2、8、15、10,共()28151035+++=, 样本总数为50,故第5小组的频数是503515−=,频率是150.350=. 故答案为15,0.3.12. 如图,在四边形ABCD 中,AC ⊥BD ,垂足为O ,AB CD ,要使四边形ABCD 为菱形,应添加的条件是______________.(只需写出一个条件即可)【答案】AB =CD 或AD //BC 或OA =OC 或OB =OD 等(只需写出一个条件即可)【解析】【分析】由菱形的判定方法进行判断即可.=CD ,理由如下:∵AB CD ,∴四边形ABCD 是平行四边形,∵AC ⊥BD ,∴四边形ABCD 是菱形;也可以添加条件是:AD BC ∥,理由如下:∵AB CD ,∴四边形ABCD 是平行四边形,∵AC ⊥BD ,∴四边形ABCD 是菱形;也可以添加的条件是OA =OC ,理由如下:∵AB CD ,∴OAB OCD ∠=∠,OBA ODC ∠=∠, ∴OAB OCD ∆∆≌(AAS ), ∴AB =CD ,∴四边形ABCD 是平行四边形,∵AC ⊥BD ,∴四边形ABCD 是菱形;也可以添加的条件是OB =OD ,理由如下:∵AB CD ,∴OAB OCD ∠=∠,OBA ODC ∠=∠, ∴OAB OCD ∆∆≌(AAS ), ∴AB =CD ,∴四边形ABCD 是平行四边形,∵AC ⊥BD ,∴四边形ABCD 是菱形.故答案为:AB =CD 或AD //BC 或OA =OC 或OB =OD 等.(只需写出一个条件即可)【点睛】本题考查了菱形的判定、平行四边形的判定与性质等知识,熟练掌握平行四边形的判定,熟记“对角线互相垂直的平行四边形为菱形”,是解题的关键.13.根据以上信息,估计掷一枚这样的图钉,落地后钉尖着地的概率为_______(精确到0.01).【答案】0.39【解析】【分析】大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.【详解】解:观察表格发现:随着实验次数的增多,顶尖着地的频率逐渐稳定到0.39附近,所以估计掷一枚这样的图钉,落地后钉尖着地的概率为0.39,故答案为:0.39.【点睛】本题考查了利用频率估计概率,当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.14. 如图,把含30°角的直角三角板PMN 放置在正方形ABCD 中,30PMN ∠=°,直角顶点P 在正方形ABCD 的对角线BD 上,点M ,N 分别在边AB 和CD 上,MN 与BD 交于点O ,且点O 为MN 的中点,则AMP ∠的度数为______.【答案】75°##75度【解析】【分析】先利用AAS 证OBM ODN ≌ ,再根据直角三角形斜边上的中线等于斜边的一半得到OM OP =,从而得出30MPO PMO ∠=∠=°,利用三角形外角性质得到AMP MPO MBP ∠=∠+∠,即可求解.【详解】解:∵四边形ABCD 是正方形,BD 是对角线,∴45ABD CDB ∠=∠=°,∵O 为MN 的中点,∴OM ON =,又∵BOM DON ∠=∠,∴()AAS OBM ODN ≌,∴OM ON =,在Rt PMN △中,90MPN ∠=°,∵O 为MN 的中点, ∴12OP MN OM ==, ∵30PMN ∠=°,∴30MPO PMN ∠=∠=°,∴304575AMP MPO MBP ∠=∠+∠=°+°=°,故答案为:75°.【点睛】本题考查了正方形的性质,根据直角三角形斜边上的中线等于斜边的一半,发现OP OM =是解题的关键.15. 如图,在平行四边形ABCD 中,2,AB ABC =∠的平分线与BCD ∠的平分线交于点E ,若点E 恰好在边AD 上,则22BE CE +的值为______.【答案】16【解析】【分析】根据平行线的性质和角平分线的性质,得到∠BEC=90°,然后利用勾股定理,即可求出答案.【详解】解:如图,在平行四边形ABCD 中,∴2AB CD ==,AD=BC ,AD ∥BC ,AB ∥CD ,∴∠AEB=∠CBE ,∠DEC=∠ABC+∠DCB=180°∵BE 、CE 分别是∠ABC 和∠DCB 的角平分线,∴∠ABE=∠CBE ,∠DCE=∠BCE ,∴∠AEB=∠ABE ,∠DEC =∠DCE ,∠CBE+∠BCE=90°∴AB=AE=2,DE=DC=2,∠BEC=90°,∴AD=2+2=4,∴BC=AD=4,在Rt △BCE 中,由勾股定理,得2222416B BE CE C ===+;故答案为:16.【点睛】本题考查了平行四边形的性质,勾股定理,平行线的性质,角平分线的性质,解题的关键是熟练掌握所学的性质,正确求出角之间的关系进行解题.16. 如图,在平面直角坐标系中,菱形ABCD 的顶点A ,B 在x 轴上,2AB =,()1,0A ,60DAB ∠=°.若将菱形ABCD 绕点A 逆时针旋转90°后得到菱形111AB C D ,则点1C 的坐标是______.【答案】()1##()1,3【解析】【分析】此题考查了菱形的性质,直角三角形30度角所对的直角边等于斜边的一半,旋转的性质,正确理解菱形的性质及旋转的性质是解题的关键. 延长11C D 交x 轴于点F ,首先得到130D AF ∠=°,然后利用直角三角形30度角的性质求出11112FD AD ==,进而求解即可. 【详解】如图,延长11C D 交x 轴于点F ,∵60DAB ∠=°,190B AB ∠=°, ∴130D AF ∠=°, ∵菱形ABCD 中AB CD ∥,2CD AD AB ===,∴11120AD C ADC ∠=∠=°, ∴160AD F ∠=°,190AFD ∠=°, ∴11112FD AD ==,∴AF =,∴()11C −.故答案为:()1−.17. 矩形ABCD 中,M 为对角线BD 的中点,点N 在边AD 上,且1AN AB ==.当以点D ,M ,N 为顶点的三角形是直角三角形时,AD 的长为______.【答案】21+【解析】【分析】分两种情况:当90MND ∠=°时和当90NMD ∠=°时,分别进行讨论求解即可. 【详解】解:当90MND ∠=°时,∵四边形ABCD 矩形,∴90A ∠=°,则∥MN AB , 由平行线分线段成比例可得:ANBMND MD =,又∵M 为对角线BD 的中点,∴BM MD =, ∴1AN BMND MD ==,即:1ND AN ==,∴2AD AN ND =+=,当90NMD ∠=°时,∵M 为对角线BD 的中点,90NMD ∠=°∴MN 为BD 的垂直平分线,∴BN ND =,∵四边形ABCD 矩形,1AN AB ==∴90A ∠=°,则BN ==∴BN ND ==∴1AD AN ND =+,综上,AD 的长为21+,故答案为:21.【点睛】本题考查矩形的性质,平行线分线段成比例,垂直平分线的判定及性质等,画出草图进行分类讨论是解决问题的关键.18. 如图,在矩形ABCD 中,12AB =,5BC =,E ,F ,G ,H 四点分别在长方形ABCD 的各边上,且AE CG =,BF DH =,则四边形EFGH 周长的最小值为______.【答案】26【解析】【分析】作点E 关于BC E ′,连接E G ′交BC 于点F ,此时四边形EFGH 周长取最小值,过点G 作GG AB ′⊥于点G ′,由轴对称的性质可知,BE BE ′=,EF E F ′=,再利用矩形的性质,证明()SAS AEH CGF ≌、()SAS BEF DGH ≌,得到EH GF =、EF HG E F ′==,然后利用勾股定理求出E G ′的长,即可得到四边形EFGH 周长的最小值.【详解】解:如图,作点E 关于BC 的对称点E ′,连接E G ′交BC 于点F ,此时四边形EFGH 周长取最小值,过点G 作GG AB ′⊥于点G ′,由轴对称的性质可知,BE BE ′=,EF E F ′=,四边形ABCD 是矩形,90A ABC C D ∴∠=∠=∠=∠=°,5AD BC ==,12AB CD ==,AE CG = ,BF DH =,BE DG ∴=,AH CF =,在AEH △和CGF △中,AE CG A C AH CF = ∠=∠ =, ()SAS AEH CGF ∴ ≌,EH GF ∴=,同理可证,()SAS BEF DGH ≌,EF HG E F ′∴==,GG AB ′⊥ ,90GG B ′∴∠=°,∴四边形BCGG ′是矩形,CG BG ′∴=,5BC GG ′==, AE CG = ,AE BG ′∴=,5GG AD ′==,AE BE BG BE ′′∴+=+,12AB E G ′′∴==,13E G ′∴=,∴四边形EFGH 周长为226EH HG GF EF GF E F GF E F E G ′′′+++=+++==,即四边形EFGH 周长的最小值为26,故答案为:26.【点睛】本题考查了轴对称的性质,矩形的判定和性质,全等三角形的判定和性质,勾股定理等知识,利用作轴对称图形解决最值问题是解题关键.三、解答题(本大题共8小题,共64分.)19. 已知:如图,在ABCD 中,点E 、F 分别在BC 、AD 上,且BE DF =.求证:AC 、EF 互相平分.【答案】详见解析【解析】【分析】本题考查平行四边形的判定和性质.连接AE 、CF ,证明四边形AECF 为平行四边形即可.掌握平行四边形的判定和性质,是解题的关键.【详解】证明:连接AE 、CF ,∵四边形ABCD 为平行四边形,∴AD BC ∥,AD BC =,又∵BE DF =,∴AF CE =,又∵AF CE ∥,∴四边形AECF 为平行四边形,∴AC 、EF 互相平分.20. 某校计划成立学生体育社团,为了解学生对不同体育项目的喜爱情况,学校随机抽取了部分学生进行“我最喜爱的一个体育项目”问卷调查,规定每人必须并且只能在“篮球”“足球”“乒乓球”“健美操”“跑步”题:(1)在这次调查中,该校一共抽样调查了______名学生,扇形统计图中“跑步”项目所对应的扇形圆心角的度数是______°;(2)请补全条形统计图;(3)若该校共有2000名学生,试估计该校学生中最喜爱“篮球”项目的人数.【答案】(1)200,72(2)见详解 (3)300【解析】【分析】本题考查了条形统计图及扇形统计图,用样本估计总体,从条形统计图及扇形统计图获取相关信息是解题关键.(1)用选择乒乓球的人数除以它所占的百分比得到调查的总人数,再用360°乘以选择跑步的人数所占的百分比得到扇形统计图中“跑步”项目所对应的扇形圆心角的度数;(2)然后计算出选择足球的人数后补全条形统计图;(3)用2000乘以样本中选择篮球的人数所占的百分比即可;【小问1详解】解:调查的总人数为6030%200÷=(名),扇形统计图中“跑步”项目所对应的扇形圆心角的度数为4036072200°×=°;故答案为:200,72;【小问2详解】选择“足球”的人数为2003060204050−−−−=(名),补全条形统计图为:【小问3详解】302000300200×=(名),所以估计该校学生中最喜爱“篮球”项目的人数为300名.21. 在一个不透明的盒子里装着只有颜色不同的黑、白两种球共30个,小丽做摸球试验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,如图是“摸到白球”的频率折线统计图.(1)当n很大时,摸到白球的频率将会接近______(精确到0.1),估计盒子里白球有______个,假如摸一次,摸到白球的概率为______;(2)如果要使摸到白球的概率为23,需要往盒子里再放入多少个白球? 【答案】(1)0.5;15;12(2):需要往盒子里再放入15个白球【解析】【分析】本题考查了利用频率估计概率、概率公式的运用.解题时注意:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.(1)根据“摸到白色球”的概率折线统计图,得出摸到白球的频率;由300.515×=,即可得出结果;用频率的稳定值得出摸到白球的概率即可;(2)设需要往盒子里再放入x 个白球;根据题意得出方程,解方程即可.【小问1详解】由摸到白色球”的概率折线统计图可得,摸到白球的频率将会接近0.5,300.515×= , ∴盒子里白球为15,随实验次数的增多,频率的值稳定于0.50,∴摸到白球的概率12, 故答案为:0.5,15,12;【小问2详解】设需要往盒子里再放入x 个白球; 根据题意得:310253x x +=+, 解得15x =;经检验,15x =是原方程的解,且符合实际意义,故需要往盒子里再放入15个白球.22. 如图,方格纸中每个小正方形边长都是1个单位长度,Rt △ABC 的三个顶点A (-2,2),B (0,5),C (0,2) .(1)将△ABC 以点C 为旋转中心旋转180°,得到△A 1B 1C ,请画出△A 1B 1C 的图形.(2)平移△ABC ,使点A 的对应点A 2坐标为(-2,-6),请画出平移后对应的△A 2B 2C 2的图形.(3)若将△A 1B 1C 绕某一点旋转可得到△A 2B 2C 2,请直接写出旋转中心的坐标. 的【答案】(1)画图见解析;(2)画图见解析;(3)(0,-2)【解析】【分析】(1)利用旋转的性质得出对应点坐标进而得出答案;(2)利用平移规律得出对应点位置,进而得出答案;(3)利用旋转图形的性质,连接对应点,即可得出旋转中心的坐标.【详解】解:(1)如图所示:△A 1B 1C 即为所求;(2)如图所示:△A 2B 2C 2即为所求;(3)旋转中心坐标(0,﹣2).作图-旋转变换;作图-平移变换.【点睛】本题考查作图一旋转变换,平移变换等知识,解题的关键是掌握旋转变换,平移变换的性质,属于中考常考题型.23. 如图,将一张矩形纸片ABCD 沿DE 折叠,使A 落在点F 处,且10AD =,8AB =.(1)图①中,若点F 落在边BC 上,求BE 的长度;(2)图②中,若点E 为AB 中点,DF 的延长线交BC 于G ,则CG 的长度为______.【答案】(1)3BE =(2)425【解析】【分析】(1)根据矩形的性质和折叠的性质,得到90,8,B C CD AB ∠=∠=°== ,10AE FE DF BC ===,由勾股定理求得6CF =,进而得到4,BF =然后在Rt BEF △中,利用勾股定理即可求出BE 的长度;(2)连接EG ,根据矩形和折叠的性质,证()Rt Rt HL EFG EBG ≌,得到10FGCG =−,进而得到20DG CG =−,在Rt DCG △中,利用勾股定理列方程求解即可得到答案.【小问1详解】∵矩形,10,8ABCDAD AB == ∴90,10,8B C BC AD CD AB ∠=∠=°==== 由折叠的性质可知,AEFE =,10DF AD == 在Rt CDF △中,6CF =,∴4BF BC CF =−=∵8AB =∴8AE FE BE ==−在Rt BEF △中,222,4EF BE BF BF =+= ()22284BE BE ∴−=+∴3BE =;【小问2详解】如图,连接EG ,的∵矩形ABCD ,10,8AD AB ==, ∴90B C ∠=∠=°,10BC AD ==,8CD AB ==,∵点E 为AB 的中点, ∴4AE BE ==,由折叠的性质可知,90DFE A ∠=∠=°,4,10EF AE DF AD ====, ∴4EF BE ==,在Rt EFG △和Rt EBG △中,EG EG EB EF ==, ∴()Rt Rt HL EFG EBG ≌, ∴10FG BG BC CG CG ==−=−, ∵10DF =,()101020DG DF FG CG CG ∴=+=+−=−,在 Rt DCG △中,222=+DG CD CG()222208CG CG ∴−=+,解得:425CG =, 故答案为:425. 【点睛】本题考查了矩形的性质,折叠的性质,全等三角形的判定和性质,勾股定理等知识,熟练掌握相关性质是解题关键.24. 用两种方法证明“直角三角形斜边上的中线等于斜边的一半”.已知:如图1,在Rt ABC 中,90ACB ∠=°,CD 是斜边AB 上的中线. 求证:12CD AB =.证法1:如图2,在ACB ∠的内部作BCE B ∠=∠,CE 与AB 相交于点E .BCE B ∠=∠ ,∴ ______ .90BCE ACE ∠+∠=° , 90B ACE ∴∠+∠=°.又 ______ , ACE A ∴∠=∠. EA EC ∴=. EA EB EC ∴==,即CE 是斜边AB 上的中线,且12CE AB =. 又CD 是斜边AB 上的中线,即CD 与CE 重合,12CD AB ∴=.请把证法1补充完整,并用不同的方法完成证法2. 【答案】见解析 【解析】【分析】证法1:在ACB ∠的内部作BCE B ∠=∠,证明CE 与CD 重合即可;证法2:延长CD 至点E ,使得DE CD =,连接AE 、.BE 证明四边形ACBE 是平行四边形.再证出四边形ACBE 是矩形.得出AB CE =,即可得出结论.【详解】解:证法1:如图,在ACB ∠的内部作BCE B ∠=∠,CE 与AB 相交于点E .BCE B ∠=∠ ,EC EB ∴=,90BCE ACE ∠+∠=° , 90B ACE ∴∠+∠=°.又90A B ∠+∠=° , ACE A ∴∠=∠. EA EC ∴=. EA EB EC ∴==,即CE 是斜边AB 上的中线,且12CE AB =. 又CD 是斜边AB 上的中线,即CD 与CE 重合,12CD AB ∴=.故答案为:EC EB =;A B ∠∠=°+90;证法2:延长CD 至点E ,使得DE CD =,连接AE 、.BE 如图所示:AD DB = ,DE CD =.∴四边形ACBE 是平行四边形.又90ACB ∠=° ,∴四边形ACBE 是矩形.AB CE ∴=,又12CD CE =, 12CD AB ∴=.【点睛】本题考查了矩形的判定与性质、等腰三角形的性质、直角三角形的性质;熟练掌握矩形的判定与性质是解决问题的关键.25. 已知AOB ∠,按要求完成下列作图(要求:用直尺和圆规作图,保留作图痕迹,写出必要的文字说明).(1)如图①,C ,D 分别在射线OA 、OB 上,求作OCED ;(2)如图②,P 为AOB ∠外一点,过点P 作直线l 交OA 、OB 于点M ,N ,使得PM MN =. 【答案】(1)见解析 (2)见解析 【解析】【分析】本题考查了平行四边形的判定与性质,全等三角形的性质和判定,作图−复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键 (1)以点D 为圆心,OC 为半径画弧,以点C 为圆心,CE 为半径画弧,两弧交于点E ,四边形OCED 即为所求;(2)连接OP 并延长,尺规作出CPD POB ∠=∠交OA 于点D ,以点O 为圆心,PD 为半径画弧,交OB 于点N ,连接PN 交OA 于点M ,即为所求.【小问1详解】如图所示,OCED 即为所求;由作图可得,OC DE =,OD CE = ∴四边形OCED 是平行四边形;【小问2详解】如图所示,直线l 即为所求;由作图可得,CPD POB ∠=∠ ∴PD OB ∥ ∴PDM NOM ∠=∠ ∵PMD NMO ∠=∠ 由作图可得,PD ON = ∴()AAS PDM NOM ≌ ∴PM MN =.26. 概念理解:一组对边平行,另一组对边相等且不平行的四边形叫做等腰梯形.类比研究:我们在学完平行四边形后,知道可以从对称性、边、角和对角线四个角度对四边形进行研究.请根据示例图形,完成表.演绎论证:证明等腰梯形有关角和对角线的性质.已知:在等腰梯形ABCD 中,AD ∥BC ,AB DC =,AC 、BD 是对角线.求证: .证明:揭示关系:我们可以用图来揭示三角形和一些特殊三角形之间的关系.请用类似的方法揭示四边形、对角线相等的四边形、平行四边形、矩形以及等腰梯形之间的关系.【答案】类比研究:见解析;演绎论证:ABC DCB ∠=∠,BAD CDA ∠=∠,AC BD =,证明过程见解析;揭示关系:见解析 【解析】【分析】类比研究:根据平行四边形性质,等腰梯形的性质完成表格即可求解.演绎论证:方法一:过点D 作DE ∥AB ,交BC 于点E .证明四边形ABED 是平行四边形,ABC DCB ≌,即可得出结论;方法二:分别过点A 、D 作AE BC ⊥于点E 、DF BC ⊥于点F .证明四边形AEFD 是平行四边形,Rt Rt ABE DCF △△≌,ABC DCB ≌,即可得出结论;揭示关系:根据四边形、对角线相等的四边形、平行四边形、矩形以及等腰梯形之间的关系画出图示即可求解.【详解】解:类比研究:(1)中心对称图形,对角线的交点是它的对称中心. (2)同一底上的两个角相等. (3)对角线相等.故答案分别为:中心对称图形,对角线的交点是它的对称中心;同一底上的两个角相等;对角线相等;四边形示例图形对称性边角对角线平行四边(1) .两组对边分别平行,两组对边分别相等. 两组对角分别相等.对角线互相平分.的形 等腰梯形轴对称图形,过平行的一组对边中点的直线是它的对称轴.一组对边平行,另一组对边相等. (2) .(3) .演绎论证:ABC DCB ∠=∠,BAD CDA ∠=∠,AC BD =. 方法一:证明:过点D 作DE ∥AB ,交BC 于点E .ABE DEC ∴∠=∠,AD ∥BC ,∴四边形ABED 是平行四边形,AB DE ∴=,又AB DC = ,DE DC ∴=, DCE DEC ∴∠=∠,ABE DCE ∴∠=∠,即ABC DCB ∠=∠, AD ∥BC ,180BAD ABC ∴∠+∠=°,180CDA DCB ∠+∠=°, ABC DCB ∠=∠ , BAD CDA ∴∠=∠,在ABC 和DCB 中,AB DC ABC DCB BC CB =∠=∠ =, ABC DCB ∴ ≌, AC BD ∴=.方法二:证明:分别过点A 、D 作AE BC ⊥于点E 、DF BC ⊥于点F .90AEF DFC ∴∠=∠=°,AE ∴∥DF ,AD ∥BC ,∴四边形AEFD 是平行四边形,AE DF ∴=,在Rt ABE △和Rt DCF 中,AB DCAE DF ==∴Rt Rt ABE DCF △△≌,ABE DCF ∴∠=∠,即ABC DCB ∠=∠,AD ∥BC ,180BAD ABC ∴∠+∠=°,180CDA DCB ∠+∠=°, ABC DCB ∠=∠ ,BAD CDA ∴∠=∠,在ABC 和DCB 中,AB DC ABC DCB BC CB =∠=∠ =, ABC DCB ∴ ≌, AC BD ∴=.揭示关系:如图所示.【点睛】本题考查了平行四边形的性质,全等三角形的性质与判定,等腰梯形的性质,熟练掌握平行四边形的性质,全等三角形的性质与判定是解题的关键.。

八年级下学期数学期中考试试卷含答案(共5套,人教版)

八年级下学期数学期中考试试卷含答案(共5套,人教版)

人教版八年级第二学期期中考试试卷数学试题校区 班级 姓名本试卷考试时间为:90分钟 满分为:100分一、选择题(每题3分,共24分)1.下列各组数据中的三个数,可作为三边长构成直角三角形的是A .4,5,6B .2,3,4C .11,12,13D .8,15,17 2.方程0)1()23(22=++--x x x 的一般形式是A .0552=+-x x B . 0552=++x x C . 05-52=+x x D . 052=+x 3.用配方法解方程2410x x --=,方程应变形为A .2(2)3x +=B .2(2)5x += C .122=-)(x D .2(2)5x -=4.2016年国内某地产公司投资破8亿元,连续两年增长后,2018年国内地产投资破9.5亿元, 设这两年平均地产投资年平均增长率为x ,根据题意,所列方程中正确的是A .819.52=+)(xB .8-19.52=)(xC .9.5218=+)(xD .9.5182=+)(x 5.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,且DE ∥AC ,CE ∥BD ,若AC =2,则四边形OCED的周长为A .16B .8C .4D .25题图 6题图 7题图6.如图,△ABC 中,AB =AC =12,BC =8,AD 平分∠BAC 交BC 于点D ,点E 为AC 的中点,连接DE ,则△CDE 的周长是A .20B .16C .13D .127.如图,在平行四边形ABCD 中,AB=3,AD =5,∠BCD 的平分线交BA 的延长线于点E ,则AE 的长为 A .3 B .2.5 C .2 D .1.58.为了研究特殊四边形,李老师制作了这样一个教具(如下左图):用钉子将四根木条钉成一个平行四边形框架ABCD ,并在A 与C 、 B 与D 两点之间分别用一根橡皮筋拉直固定. 课上,李老师右手拿住木条BC ,用左手向右推动框架至AB ⊥BC (如下右图). 观察所得到的四边形,下列判断正确的是 A .∠BCA =45° B .BD 的长度变小 C .AC =BD D .AC ⊥BDA BCDDCBA →二、填空题(每题3分,共24分)9.若关于x 的方程042=-+-a x x 有两个不相等的实数根,写出一个满足条件的整数a 的值:a =____________.10.如下图,作一个以数轴的原点为圆心,长方形对角线为半径的圆弧,交数轴于点A ,则点A 表示的数是____________.11.在平面直角坐标系中,四边形AOBC 是菱形。

2024年人教版八年级数学下册期中考试卷(附答案)

2024年人教版八年级数学下册期中考试卷(附答案)

2024年人教版八年级数学下册期中考试卷(附答案)一、选择题:5道(每题1分,共5分)1. 下列哪个选项是勾股定理的正确表达?A. a^2 + b^2 = c^2B. a^2 b^2 = c^2C. a^2 + c^2 = b^2D. a^2 c^2 = b^22. 在直角三角形中,如果一个角是30度,那么它的对边长度是斜边长度的多少?A. 1/2B. 1/3C. 1/4D. 1/63. 下列哪个选项是平行四边形的性质?A. 对边相等B. 对角相等C. 对角线互相平分D. 所有选项都正确4. 下列哪个选项是正方形的性质?A. 对边平行B. 四个角都是直角C. 对角线相等D. 所有选项都正确5. 下列哪个选项是圆的性质?A. 半径相等B. 直径相等C. 圆心到圆上任意一点的距离相等D. 所有选项都正确二、判断题5道(每题1分,共5分)1. 勾股定理只适用于直角三角形。

()2. 平行四边形的对角线互相平分。

()3. 正方形的对角线相等且互相垂直。

()4. 圆的半径是圆心到圆上任意一点的距离。

()5. 圆的直径是圆上任意两点之间的距离。

()三、填空题5道(每题1分,共5分)1. 勾股定理的表达式是:a^2 + b^2 = ______。

2. 平行四边形的对角线互相平分,所以它的对角线长度是______。

3. 正方形的四个角都是______度。

4. 圆的半径是圆心到圆上______的距离。

5. 圆的直径是圆上______点之间的距离。

四、简答题5道(每题2分,共10分)1. 简述勾股定理的内容。

2. 简述平行四边形的性质。

3. 简述正方形的性质。

4. 简述圆的性质。

5. 简述圆的直径和半径之间的关系。

五、应用题:5道(每题2分,共10分)1. 在直角三角形ABC中,已知AC = 6cm,BC = 8cm,求AB的长度。

2. 在平行四边形ABCD中,已知AB = 10cm,BC = 8cm,求CD的长度。

八年级下学期期中考试数学试卷(含有答案)

八年级下学期期中考试数学试卷(含有答案)

八年级下学期期中考试数学试卷(含有答案)一.单选题。

(每小题4分,共40分)1.已知x >y ,则下列不等式中,不成立的是( )A.3x >3yB.x -9>y -9C.﹣x >﹣yD.﹣x2<﹣y2 2.下列各式从左到右的变形是因式分解的是( )A.(x -3)(x+1)=x 2-2x -3B.x 2-xy=x (x -y )C.ab+bc+d=b (a+c )+dD.6x 2y=3xy•2x 3.若分式x -1x的值为0,则x 的值是( )A.1B.﹣1C.0D.24.把多项式2a 2-4a 分解因式,应提取的公因式是( ) A.a B.2 C.a 2 D.2a5.已知两个不等式的解集在数轴上如图所示,那么组成的不等式组的解集是( ) A.x >1 B.x ≥﹣1 C.﹣3<x ≤﹣1 D.x >﹣3(第5题图) (第6题图) (第10题图) 6.如图,将△COD 绕点O 按顺时针方向旋转一定角度后得到△AOB ,旋转角为( ) A.∠AOB B.∠BOC C.∠AOC D.∠COD 7.在下列分式的变形中,从左到右一定正确的是( ) A.a b =a+1b+1 B.2a 2b =ab C.a b =a 2b 2 D.a b =acbc 8.下列各式中能用平方差公式因式分解是( )A.﹣4a 2+b 2B.x 2+4C.a 2+c 2-2acD.﹣a 2-b 2 9.如果把xyx+y 中x ,y 的值都扩大2倍,那么这个分式的值( ) A.不变 B.缩小到原来的12 C.扩大4倍 D.扩大2倍10.如图,一次函数y=kx+b 的图象经过点A (﹣1,﹣2)和B (﹣2,0),一次函数y=2x 的图象经过点A ,则不等式2x ≤kx+b 的解集为( )A.x ≤﹣1B.x ≤﹣2C.x ≥1D.﹣2≤x <﹣1 二.填空题。

(每小题4分,共24分) 11.因式分解:a 3-4a 2= 。

12.要使分式2x -5有意义,则x 的取值范围应满足的条件是 .13.已知x+y=5,xy=2,则x 2y+xy 2的值是 .14.如图,将周长为8的△DEF 沿EF 方向平移3个单位长度得到△ABC ,则四边形ABFD 的周长为 .(第14题图)15.若a+1a =4,则a 2+1a 2= . 16.若1a +1b =5,则分式2a -5ab+2b﹣a+3ab -b的值为 .(填序号)①第3分时,汽车的速度是40千米/时;②从第3分到第6分,汽车行驶了120千米;③第12分时,汽车的速度是0千米/时;④从第9分到12分,汽车的速度从60千米/时减少到0千米/时. 三、解答题。

数学八下期中考试题及答案

数学八下期中考试题及答案

数学八下期中考试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 0.5B. √2C. 0.33333...D. 3答案:B2. 一个正数的平方根是它本身,这个数是:A. 0B. 1C. -1D. 2答案:A3. 已知一个三角形的两边长分别为3和4,第三边长x满足的条件是:A. 1 < x < 7B. 0 < x < 7C. 1 < x < 5D. 0 < x < 5答案:A4. 函数y=2x+3的图象不经过第几象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:C5. 一个数的相反数是-5,那么这个数是:A. 5B. -5C. 0D. 10答案:A6. 一个数的绝对值是5,那么这个数可能是:A. 5B. -5C. 0D. 5或-5答案:D7. 下列哪个选项是偶数?A. 2B. 3C. 5D. 7答案:A8. 一个数的倒数是1/3,那么这个数是:A. 3B. 1/3C. 3/1D. 1答案:A9. 一个数的平方是9,那么这个数可能是:A. 3B. -3C. 9D. 3或-3答案:D10. 一个数的立方是-8,那么这个数是:A. 2B. -2C. 8D. -8答案:B二、填空题(每题4分,共20分)1. 一个数的平方根是4,那么这个数是______。

答案:162. 一个数的立方根是2,那么这个数是______。

答案:83. 一个数的倒数是2,那么这个数是______。

答案:1/24. 一个数的绝对值是5,那么这个数可能是______。

答案:5或-55. 一个数的相反数是-7,那么这个数是______。

答案:7三、解答题(共50分)1. 解方程:2x - 3 = 7。

(10分)答案:x = 52. 计算:(3x^2 - 2x + 1) - (x^2 + 3x - 4)。

(10分)答案:2x^2 - 5x + 53. 已知一个三角形的两边长分别为5和12,求第三边长的取值范围。

八年级第二学期数学期中测试(含答案)

八年级第二学期数学期中测试(含答案)

八年级数学科试卷考试时间:4月25日 完卷时间:120分钟 满分:150分 一、选择题(共10小题,每小题4分,共40分)1.已知三角形的三边长分别为3cm,4cm,5cm,则此三角形一定是( )A .锐角三角形B .钝角三角形C .等边三角形D .直角三角形 2.下列函数是正比例函数的是( )A.y=-2xB. y=2x-1C.y=2xD. y=1x x-3.如图:□ABCD 中,下列结论一定成立的是( )A.AC=BDB.AC ⊥BDC.AB=BCD.AB=CD 4. 菱形具有而矩形不具有的性质是 ( )A .对角相等B .四边相等C .对角线互相平分D .四个角都是直角 5. 如图,菱形ABCD 中,E 、F 分别是AB 、AC 的中点,若AB =8,则EF=( ) A .3 B .4 C .6D .86.下面哪个点在函数y=12x+1的图象上( ) A .(2,1) B .(-2,1) C .(2,0) D .(-2,0) 7.下列函数中,自变量x 的取值范围是x ≤2的是( ) A .y=2x - B .y=x 2−2x C .y=2x D .y=x-28、小明的父亲饭后出去散步,从家中走20分钟到一个离家900米的报亭看10分钟报纸后,用15分钟返回家里,图中表示小明的父亲离家的时间与距离之间的关系的是( )9.如图所示:数轴上点A 所表示的数为a ,则a 的值是( )A .+1B .-1C .-+1D .10. 如图,在矩形中,对角线相交于点O,∠DBC=30°,边长BC=12,则另一边长DC=( )A.6B.23C.43D.8二、填空题(每小题4分,满分24分)5555ABCD BD AC 、ADOCB第3题图FE DCBA 第5题图第9题图DABC O第10题图A20309004520900602040900604020900y (米)x (分)O y (米)x (分)O y (米)x (分)O (米)(分)O y x B11、在□ABCD 中,A=60°,那么C 是 °12、由于受台风的影响,一棵树在离地面6m 处折断,树顶落在离树干底部8m 处,则这棵树在折断前的长度是 m 。

人教版数学八年级下册期中考试试题附答案

人教版数学八年级下册期中考试试题附答案

人教版数学八年级下册期中考试试卷一、单选题1.下列条件中,不能判断四边形ABCD 是平行四边形的是()A .∠A=∠C ,∠B=∠DB .AB ∥CD ,AB=CDC .AB=CD ,AD ∥BCD .AB ∥CD ,AD ∥BC2.下列各组长度的线段能组成直角三角形的是().A .a =2,b =3,c =4B .a =4,b =4,c =5C .a =5,b =6,c =7D .a =5,b =12,c =133.下列各式中,最简二次根式是()AB C .D 4.若式子在实数范围内有意义,则x 的取值范围是()A .x≤﹣3B .x≥﹣3C .x <﹣3D .x >﹣35.平行四边形ABCD 中,若2B A ∠=∠,则C ∠的度数为().A .120︒B .60︒C .30︒D .15︒6.下列命题中,正确的是().A .有一组邻边相等的四边形是菱形B .对角线互相平分且垂直的四边形是矩形C .两组邻角相等的四边形是平行四边形D .对角线互相垂直且相等的平行四边形是正方形7.如图,矩形ABCD 中,AB=3,两条对角线AC 、BD 所夹的钝角为120°,则对角线BD 的长为A .B .C .33D .38.如图,在矩形ABCD 中,84AB BC ==,,将矩形沿对角线AC 折叠,则重叠部分AFC △的面积为()A .12B .10C .8D .69.如图,正方形ABCD 的两条对角线AC ,BD 相交于点O ,点E 在BD 上,且BE =CD ,则∠BEC 的度数为()A .22.5°B .60°C .67.5°D .75°10.如图,点P 是正方形ABCD 的对角线BD 上一点,PE ⊥BC ,PF ⊥CD ,垂足分别为点E ,F ,连接AP ,EF ,给出下列四个结论:①AP=EF;②∠PFE=∠BAP;③2EC;④△APD 一定是等腰三角形.其中正确的结论有().A .1个B .2个C .3个D .4个二、填空题11.在研究了平行四边形的相关内容后,老师提出这样一个问题:“四边形ABCD 中,AD ∥BC ,请添加一个条件,使得四边形ABCD 是平行四边形”.经过思考,小明说“添加AD=BC”,小红说“添加AB=DC”.你同意________的观点,理由是________.12.如图,菱形ABCD 中,若BD=24,AC=10,则AB 的长等于________,该菱形的面积为____________.13.在Rt △ABC 中,a ,b 均为直角边且其长度为相邻的两个整数,若1a b <<,则该直角三角形斜边上的高为____________.14.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a ,b ,c ,则该三角形的面积为.现已知△ABC 的三边长分别为1,2ABC的面积为______.15.已知:,x y为实数,且4y <,则4y --果为_______.16.如图以直角三角形ABC 的斜边BC 为边在三角形ABC 的同侧作正方形BCEF ,设正方形的中心为O,连结AO,如果AB=4,,则AC=________三、解答题17.计算:(1+;(2.18.如图,已知 ABCD,E,F是对角线BD上的两点,且DE=BF.求证:四边形AECF是平行四边形.19.如图所示,已知平行四边形ABCD,对角线AC,BD相交于点O,∠OBC=∠OCB.(1)求证:平行四边形ABCD是矩形;(2)请添加一个条件使矩形ABCD为正方形.20.如图,P是正方形ABCD对角线AC上一点,点E在BC上,且PE=PB.(1)求证:PE=PD;(2)连接DE,试判断∠PED的度数,并证明你的结论.21.如图,菱形ABCD的对角线AC和BD交于点O,分别过点C.D作CE∥BD,DE∥AC,CE和DE交于点E.(1)求证:四边形ODEC是矩形;(2)当∠ADB=60°,AD=23EA的长。

参考答案2024-2025学年度第二学期初二数学期中阶段质量检测试题参考答案

参考答案2024-2025学年度第二学期初二数学期中阶段质量检测试题参考答案

2024-2025学年度第一学期初二数学学科期中阶段质量反馈参考答案一、单项选择(30分,每题3分)1-5 CADBD 6-10ABBAA二、填空题(18分,每题3分)11.±312.三角形的稳定性13.814.815.16.4三、解答题(72分)17.(1) (1)53(共10分,每问5分,第一步化简乘方、开方正确2分)18. (共12分,(1)每空1分,(2)8分)(1)①;②;③;④.(2)延长至点,使得,连接,延长至点,使得,连接,,...................................................................................................辅助线1分,在△和△中,,△△,,..............................................................................................................................3分同理△△,3-52B B '∠=∠12BD BC =12B D BC ''''=SAS ADE DE DA =BE A D ''E 'D E D A ''''=B E ''AD A D ='' AE A E ∴=''ADC EDB AD ED ADC EDB CD BD =⎧⎪∠=∠⎨⎪=⎩∴ADC ≅()EDB SAS AC BE ∴=A D C '''≅()E D B SAS ''',,,............................................................................................................................4分在△和△中,,△△,,同理,,.................................................................................................................6分在△和△中,,△△.............................................................................. .....................8分19. (共4)分方法一:如图,连接并延长,.......................................................... .....................1分在中,,在中,,, (2)分A CB E ''''∴=AC A C '=' BE B E ''∴=BAE B A E '''AB A B BE B E EA E A ''=⎧⎪''=⎨⎪''=⎩∴BAE ≅()B A E SSS '''BAD B A D ∴∠=∠'''CAD C A D ∠=∠'''BAC B A C ∴∠=∠'''ABC A B C '''AB A B BAC B A C AC A C ''=⎧⎪'''∠=∠⎨⎪''=⎩∴ABC ≅()A B C SAS '''AC ADC ∆1D DAC ∠=∠+∠ABC ∆2B BAC ∠=∠+∠12140BCD D B BAC DAC D B A ∴∠=∠+∠=∠+∠+∠+∠=∠+∠+∠=︒李叔叔量得,就可以断定这个零件不合格......................................1分方法二:如图,延长交于,,,,,李叔叔量得,就可以断定这个零件不合格.20. (共10分,(1)4分,(2)6分)(1)如图,点即为所求;(2)连接,由作图可知,为的垂直平分线,则,设 ,则,..............................................1分,在中,由勾股定理得:,..............................................2分即......................................................................................................5分解得:,答:深圳号驱逐舰行驶的航程的长为. (6)分∴142BCD ∠=︒DC AB M 180180903060AMD A D ∠=︒-∠-∠=︒-︒-︒=︒ 180********CMB AMD ∴∠=︒-∠=︒-︒=︒1801802012040MCB B CMB ∴∠=︒-∠-∠=︒-︒-︒=︒180********DCB MCB ∴∠=︒-∠=︒-︒=︒∴142BCD ∠=︒C BC CD AB BC AC =BC AC x ==nmile (90)OC x nmile =-OA OB⊥ 90O ∴∠=︒Rt OBC ∆222BO OC BC +=22230(90)x x +-=50x =BC 50nmile21. (共9分,(1)3分,(2)3分,点描对1个给1分(3)3分)22.(共5分)解:如图,设C ′D 与AC 交于点O ,∵∠C=35°,∴由折叠可得∠C ′=∠C=35°,.....................................................................................1分∵∠1=∠DOC+∠C ,∠1=106°,∴∠DOC=∠1-∠C=106°-35°=71°, (3)分∵∠DOC=∠2+∠C ′,∴∠2=∠DOC-∠C ′=71°-35°=36°..............................................................................5分23.(共10分,(1)6分,(2)4分)(1)截取AC=CE 给2分;平行尺规作图:利用角的关系或做全等,有痕迹作对都可给4分(2)解:,,............................................................................................................1分在和中,,,............................................................................................................3分,即的长就是、之间的距离...............................................................4分//DE AB A E ∴∠=∠ABC ∆EDC ∆A E ACB ECD BC CD ∠=∠⎧⎪∠=∠⎨⎪=⎩()ABC EDC AAS ∴∆≅∆DE AB ∴=DE A B24.(共12分,(1)2分,(2)8分,(3)2分)解:(2)结论成立............................................................................1分证明:四边形是正方形,,............................................................................2分在和中,,..,即....................................................................................................................5分在和中,,.,...............................................................................................7分,,,.(8分).........................................................................................................8分 ABCD BA AD DC ∴==90BAD ADC ∠=∠=︒EAD ∆FDC ∆EA FD ED FC AD DC =⎧⎪=⎨⎪=⎩EAD FDC ∴∆≅∆EAD FDC ∴∠=∠EAD DAB FDC CDA ∴∠+∠=∠+∠BAE ADF ∠=∠BAE ∆ADF ∆BA AD BAE ADF AE DF =⎧⎪∠=∠⎨⎪=⎩BAE ADF ∴∆≅∆BE AF ∴=ABE DAF ∠=∠⋯90DAF BAF ∠+∠=︒ 90ABE BAF ∴∠+∠=︒90AMB ∴∠=︒AF BE ∴⊥⋯。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2019 学年第二学期初二数学期中测试试卷
及答案
2019-2019 学年第二学期初二数学期中测试试卷注意:考试时间为100 分钟. 试卷满分100 分; 卷中除要求近似计算外,其余结果均应给出精确结果.
一、认真填一填,要相信自己的能力!(每小题2 分,共28 分)
1、当x 时,代数式的值是负数.
2、已知函数与,若,则x 的取值范围是.
3、计算:____________ , _______________ .
4、反比例函数y = (k 0)的图象经过点(-2 ,5),则k = .
5、若反比例函数图像在第二、四象限,贝U m的取值范围为
6、当x 时,分式有意义; 当x = ________ 时,分式值为
0.
7、如果关于的分式方程有增根,则m的值为.
8、若,贝= ___________ .
9、A B两地的实际距离为2500m,在一张平面地图上的
距离是5cm,这张平面地图的比例尺为______________ .
10、已知线段a=9cm, c=4cm,线段x是a、c的比例中项,贝x 等于cm.
11、如图,已知△A DB AC = 4 , AD = 2 ,则AB 的长为.
12、直线I交y轴于点C与双曲线交于A、B两点,
P是线段AB上的点(不与A B重合),过点A P、
Q(Q在直线I上)分别向x轴作垂线,垂足分别为
D、E、F,连接OA OP OQ 设厶AOD
的面积为S1,A POE的面积为S2,
△ QOF的面积为S3,贝y S1、S2、S3的大小
关系为.(用连结)
二、细心选一选,看完四个选项再做决定! (每小题3 分,
共24 分.)
13、如果,下列各式中不一定正确的是【】
A. B. C. D.
14、不等式的非负整数解的个数为【】
A.1
B.2
C.3
D.4
15、下列各式中:①;②;③;④;⑤;⑥分式有【】
A.1 个
B.2 个
C.3 个
D.4 个
16、把分式中的a、b 都扩大6 倍,贝分式的值【】
A.扩大12倍
B.不变
C.扩大6倍
D.缩小6倍
17、赵强同学借了一本书,共280 页,要在两周借期内读完当他读了一半时,发现平均每天要多读21 页才能在借期内读完. 他读前一半时,平均每天读多少页? 如果设读前一半时,平均每天读x 页,则下面所列方程中,正确的是【】A. B. C. D.
18、矩形面积为4,它的长y 与宽x 之间的函数关系用图象大致可表示为【】
19、设有反比例函数- ,、、为其图象上的三个点,若,则下列各式正确的是【】
A. B. C. D.
20、如果不等式组有解且均不在-内,那么m的取值范围是【】
A.m -1
B.15
C.m 5
D.-15
三、耐心做一做,要注意认真审题!(本大题共48 分)
21、(本题满分8 分)解下列方程:
(1) 3x -1x -2 = 0 (2)
22、(本题满分6 分)解不等式组,将它的解集表示在数轴上,并求出
它的最小整数解.
23、(本题满分5 分)先化简再求值:,其中.
24、(本题满分6 分)在我市某一城市美化工程招标时,有甲、乙两个工程队投标。

经测算:甲队单独完成这项工程需要60 天; 若由甲队先做20 天,剩下的由甲、乙两队合作24 天可以
完成. 乙队单独完成这项工程需要多少天?
25、(本题满分6 分)一司机驾驶汽车从甲地去乙地,以80
千米/ 时的平均速度用6 小时到达目的地.
(1)若他按原路匀速返回,则汽车速度v(千米/时)与时间t( 小时) 之间的函数关系式为
(2) 如果该司机匀速返回时,用了4.8 小时,则返回时的速
度为_____________ 千米/ 时;
(3) 若返回时,司机全程走高速公路,且匀速行驶,根据规定:最高车速不得超过每小
时120 千米,最低车速不得低于每小时60 千米,求返程时间的范围.
26、(本题满分9分) 李大爷一年前买入了相同数量的A、B
两种种兔,目前,他所养的
这两种种兔数量仍然相同,且 A 种种兔的数量比买入时增加了20 只, B 种种兔比买
入时的2倍少10 只. 则(1) 一年前李大爷共买了只种兔.
(2)李大爷目前准备卖出30只种兔,已知卖A种种兔可获利15元/只,卖B种种兔
可获利6元/只.如果要求卖出的A种种兔少于B种种兔,且总共获利不低于280 元,
那么他有哪几种卖兔方案?他的最大获利是多少?
27、(本题满分8分) 如图1,在平面直角坐标系中,等腰
Rt△ AOB的斜边OB在x轴上,直线经过等腰Rt△ AOB的直角顶点A,交y轴于C点,双曲线
也经过A点.⑴求点A坐标;(2) 求k的值;(3)若点P为x轴上一动点.在双曲线上是否存在一点Q,使得△ PAQ是以
点A为直角顶点的等腰三角形.若存在,求出点Q的坐标,若不存在,请说明理由.
2019-2019 学年第二学期初二数学期中测试参考答案
一、填空:(每空 2 分,共28 分)
1)2 2) x-1 3) ,1 4)-10 5) 6)2 ,-3
7) 2 8) 9)1:50000 10) 6cm 11) 1 12) S3
二、选择:(每题 3 分,共24 分)
13、D 14、C 15、B 16、C 17、A 18、B 19、D 20、B
三、解答题:(共48 分)。

相关文档
最新文档