如何理解UTM和高斯投影以及3度带、6度带的问题

合集下载

3度6度带高斯投影详解

3度6度带高斯投影详解

3度6度带高斯投影选择投影的目的在于使所选投影的性质、特点适合于地图的用途,同时考虑地图在图廓范围内变形较小而且变形分布均匀。

海域使用的地图多采用保角投影,因其能保持方位角度的正确。

我国的基本比例尺地形图(1:5千,1:1万,1:2.5万,1:5万,1:10万,1:25万,1:50万,1:100万)中,大于等于50万的均采用高斯-克吕格投影(Gauss-Kruger),这是一个等角横切椭圆柱投影,又叫横轴墨卡托投影(Transverse Mercator);小于50万的地形图采用等角正轴割园锥投影,又叫兰勃特投影(Lambert Conformal Conic);海上小于50万的地形图多用等角正轴圆柱投影,又叫墨卡托投影(Mercator)。

一般应该采用与我国基本比例尺地形图系列一致的地图投影系统。

地图坐标系由大地基准面和地图投影确定,大地基准面是利用特定椭球体对特定地区地球表面的逼近,因此每个国家或地区均有各自的大地基准面,我们通常称谓的北京54坐标系、西安80坐标系实际上指的是我国的两个大地基准面。

我国参照前苏联从1953年起采用克拉索夫斯基(Krassovsky)椭球体建立了我国的北京54坐标系,1978年采用国际大地测量协会推荐的IAG 75地球椭球体建立了我国新的大地坐标系--西安80坐标系,目前GPS定位所得出的结果都属于WGS84坐标系统,WGS84基准面采用WGS84椭球体,它是一地心坐标系,即以地心作为椭球体中心的坐标系。

因此相对同一地理位置,不同的大地基准面,它们的经纬度坐标是有差异的。

采用的3个椭球体参数如下(源自“全球定位系统测量规范 GB/T 8314-2001”):椭球体与大地基准面之间的关系是一对多的关系,也就是基准面是在椭球体基础上建立的,但椭球体不能代表基准面,同样的椭球体能定义不同的基准面,如前苏联的Pulkovo 1942、非洲索马里的Afgooye基准面都采用了Krassovsky椭球体,但它们的大地基准面显然是不同的。

GPS 3度、6度带高斯投影如何区分

GPS   3度、6度带高斯投影如何区分

GPS 3度、6度带高斯投影如何区分择投影的目的在于使所选投影的性质、特点适合于地图的用途,同时考虑地图在图廓范围内变形较小而且变形分布均匀。

海域使用的地图多采用保角投影,因其能保持方位角度的正确。

我国的基本比例尺地形图(1:5千,1:1万,1:2.5万,1:5万,1:10万,1:25万,1:50万,1:100万)中,大于等于50万的均采用高斯-克吕格投影(Gauss-Kruger),这是一个等角横切椭圆柱投影,又叫横轴墨卡托投影(Transverse Mercator);小于50万的地形图采用等角正轴割园锥投影,又叫兰勃特投影(Lambert Conformal Conic);海上小于50万的地形图多用等角正轴圆柱投影,又叫墨卡托投影(Mercator)。

一般应该采用与我国基本比例尺地形图系列一致的地图投影系统。

地图坐标系由大地基准面和地图投影确定,大地基准面是利用特定椭球体对特定地区地球表面的逼近,因此每个国家或地区均有各自的大地基准面,我们通常称谓的北京54坐标系、西安80坐标系实际上指的是我国的两个大地基准面。

我国参照前苏联从1953年起采用克拉索夫斯基(Krassovsky)椭球体建立了我国的北京54坐标系,1978年采用国际大地测量协会推荐的IAG 75地球椭球体建立了我国新的大地坐标系--西安80坐标系,目前GPS定位所得出的结果都属于WGS84坐标系统,WGS84基准面采用WGS84椭球体,它是一地心坐标系,即以地心作为椭球体中心的坐标系。

因此相对同一地理位置,不同的大地基准面,它们的经纬度坐标是有差异的。

采用的3个椭球体参数如下(源自“全球定位系统测量规范GB/T 18314-2001”):椭球体与大地基准面之间的关系是一对多的关系,也就是基准面是在椭球体基础上建立的,但椭球体不能代表基准面,同样的椭球体能定义不同的基准面,如前苏联的Pulkovo 1942、非洲索马里的Afgooye基准面都采用了Krassovsky椭球体,但它们的大地基准面显然是不同的。

高斯投影分带及其中央子午线解析——3°带和6°带直角坐标差异

高斯投影分带及其中央子午线解析——3°带和6°带直角坐标差异

3。 b el t a nd 6。 b el t r e c t an gu l a r co or di n a t e di f f er e nc e
L l U L 卜s h a
( No 3 E x p l o r a t i o n B u r e a u o f Ge o l o g y a n d Mi n e r a l Re s o u r c e s , Y a n t a i 2 6 4 0 0 0 , C h i n a )
文章 编号 : 1 0 0 2 5 0 6 5 ( 2 0 1 7) 1 7 — 0 2 6 2 — 2
ቤተ መጻሕፍቲ ባይዱ
Di s c u s s i o n o n Ga u s s p r o j e c t i o n z o n i n g a n d i t s c e n t r a l me r i d i a n

唧吲 v e
高斯投影分带及其中央子午线解析 3 。带和 6 。带直角坐标差异

刘 莉莎
( 山东 省 第三 地 质矿 产勘 查院 , 山东 烟 台 2 6 4 0 0 0 )
摘 要 :目前报 告 q - 地 形 图、 地 质 图 图件 比例 尺 多在 1 0 0 0 和1 0万之 间 , 按 国 家要 求 需要使 用 高斯投 影 。而我 们 常 用的 高斯 投 影 又 分 3 o带和6 。 带 ,于是 , 在 平 时 工作 中 , 大家对3 o 带和 6 o 带 的转 换 及其 中央 子 午 线 的选择 上存 在 疑 惑 , 甚至 在 已有 软件 的帮 助 下 , 面对 已有 的 经 纬度 坐 标 , 不知 如 何确 定 其 q - 央 子 午线 , 无法 转换 为 需要 的 直 角 坐标 。 本 文通 过 对 常用 的 高斯 投 影及 其 3 。 带和 6 o 带的 学 习 , 理 解 高斯 投 影 中地 理 坐 标 系和 直 角 坐标 系之 间的 转换 关 系 , 以坐 标 系 的 正算 反 解 为基 础 , 分析3 o带和6 。 带之 间 的转 换 , 确 定 需要 的 中央子 午 线 ; 举 例 对 某一 点 的经 度进 行 分析 确 定 其 中 央子 午 线 , 并选 取 分 带方 式 。 关键 词 : 高斯投 影 ; 3 。带 ; 6 。带 ; 中央子 午 线 中 图分 类号 : P 2 2 6 . 1 文 献标 识 码 : A

墨卡托投影、高斯-克吕格投影、UTM投影及我国采用的6度分带和3度分带

墨卡托投影、高斯-克吕格投影、UTM投影及我国采用的6度分带和3度分带

一、墨卡托投影、高斯-克吕格投影、UTM投影1.墨卡托(Mercator)投影墨卡托(Mercator)投影,是一种"等角正切圆柱投影”,荷兰地图学家墨卡托(Gerhardus Mercator 1512-1594)在1569年拟定,假设地球被围在一中空的圆柱里,其标准纬线与圆柱相切接触,然后再假想地球中心有一盏灯,把球面上的图形投影到圆柱体上,再把圆柱体展开,这就是一幅选定标准纬线上的“墨卡托投影”绘制出的地图。

墨卡托投影没有角度变形,由每一点向各方向的长度比相等,它的经纬线都是平行直线,且相交成直角,经线间隔相等,纬线间隔从标准纬线向两极逐渐增大。

墨卡托投影的地图上长度和面积变形明显,但标准纬线无变形,从标准纬线向两极变形逐渐增大,但因为它具有各个方向均等扩大的特性,保持了方向和相互位置关系的正确。

在地图上保持方向和角度的正确是墨卡托投影的优点,墨卡托投影地图常用作航海图和航空图,如果循着墨卡托投影图上两点间的直线航行,方向不变可以一直到达目的地,因此它对船舰在航行中定位、确定航向都具有有利条件,给航海者带来很大方便。

“海底地形图编绘规范”(GB/T 17834-1999,海军航保部起草)中规定1:25万及更小比例尺的海图采用墨卡托投影,其中基本比例尺海底地形图(1:5万,1:25万,1:100万)采用统一基准纬线30°,非基本比例尺图以制图区域中纬为基准纬线。

基准纬线取至整度或整分。

墨卡托投影坐标系取零子午线或自定义原点经线(L0)与赤道交点的投影为原点,零子午线或自定义原点经线的投影为纵坐标X轴,赤道的投影为横坐标Y轴,构成墨卡托平面直角坐标系。

2.高斯-克吕格(Gauss-Kruger)投影和UTM(Universal Transverse Mercator)投影(1)高斯-克吕格投影性质高斯-克吕格(Gauss-Kruger)投影简称“高斯投影”,又名"等角横切椭圆柱投影”,地球椭球面和平面间正形投影的一种。

什么是六度带什么是三度带各座标系如何定义

什么是六度带什么是三度带各座标系如何定义

什么是六度带什么是三度带各座标系如何定义六度带和三度带是地理坐标系统中常用的两种坐标带,用于定位地球上的位置。

它们的定义与座标系有关,座标系分为平面座标系和大地座标系。

首先,我们来了解一下平面座标系。

平面座标系是将地球表面上的点映射到一个平面上的坐标系统。

常见的平面座标系有UTM座标系和高斯-克吕格座标系。

UTM(Universal Transverse Mercator)座标系是一种广泛使用的平面座标系,它将地球划分为60个纵向区域,并以每个区域中心的经线为基准线。

在每个纵向区域内,又将地球纬线划分为20个横向带。

这样,整个地球表面就分为了1200个六度带。

每个六度带的纵向范围为6度,横向范围为8度(由于存在两极地区,实际范围略有不同)。

每个六度带内部再细分为网格,用于定位具体位置。

UTM座标系中的六度带由一个数字和一个字母表示。

数字表示纵向区域,从1到60。

字母表示横向带,从C到X,不包括I和O,以避免与数字1和0混淆。

例如,北京的UTM座标为50S,表示该点位于第50纵向区域的南半球。

另一种常见的平面座标系是高斯-克吕格(Gauss-Krüger)座标系,它主要在德国和中国使用。

高斯-克吕格座标系将地球划分为若干带状区域,每个区域的中央子午线上的坐标为0。

以中国为例,中国采用了三度带的高斯-克吕格座标系。

中国大陆分为20个纵向区域,每个区域横跨3度。

每个纵向区域内部再细分为网格,用于定位具体位置。

在高斯-克吕格座标系中,每个带状区域由一个大区号和一个小区号表示。

大区号表示纵向区域,从1到20。

小区号表示相对于中央子午线的偏移量,从-1到2、例如,北京的高斯-克吕格座标为4211,表示该点位于第42纵向区域偏东1度的区域内。

除了平面座标系,还有大地座标系。

大地座标系是一种以地球椭球体为基准的坐标系统,常见的有经纬度和地心座标。

经纬度是一种典型的大地座标系,它使用经度和纬度来定位地球上的点。

测绘坐标3度带与6度带3与6换带计算

测绘坐标3度带与6度带3与6换带计算

测绘坐标3度带与6度带3与6换带计算在测绘和地理信息领域中,坐标系及其分带是十分重要的概念。

在中国,有两种常见的坐标分带方式:3度带和6度带。

本文将介绍测绘坐标3度带与6度带之间的换带计算方法。

1. 什么是坐标系分带?坐标系分带是根据地球的形状和尺寸的不同,将地球划分为多个带状区域,每个区域都使用相应的坐标系。

在中国,常用的是Gauss-Krüger投影坐标系和UTM投影坐标系。

其中,Gauss-Krüger投影坐标系按3度带分带,UTM投影坐标系按6度带分带。

2. 3度带和6度带的区别3度带表示每3度经度为一个带,即带宽3度。

在中国,3度带通常用于测绘坐标系,其中,西经75度至132度分为39个带,每个带宽3度。

而6度带则表示每6度经度为一个带,即带宽6度。

6度带通常用于UTM坐标系。

3. 3度带与6度带之间的换带计算当我们需要在测绘坐标系和UTM坐标系之间进行换带时,需要进行一定的计算和转换。

下面将介绍3度带与6度带之间换带的计算方法。

首先,我们需要了解两个坐标系之间的转换关系。

通常情况下,我们可以通过以下公式进行转换:UTM东坐标 = (3度带中央子午线经度 - 75度) * 111000 + Gauss-Krüger东坐标UTM北坐标≈ Gauss-Krüger北坐标其中,3度带中央子午线经度指的是对应带的中央子午线的经度。

接下来,我们以具体的案例进行举例说明。

假设我们有一点的3度带坐标为:500000,4000000。

现在我们要将其转换为6度带坐标。

首先,找到该点所在的3度带的中央子午线经度。

在中国,东经105度的中央子午线经度属于3度带35带。

由此可知,中央子午线经度为105度。

根据上述公式,进行换带计算:UTM东坐标 = (105度 - 75度) * 111000 + 500000 ≈ 3781000UTM北坐标≈ 4000000通过换带计算,我们得到了该点在6度带中的坐标为:3781000,4000000。

如何理解UTM和高斯投影以及3度带、6度带的问题

如何理解UTM和高斯投影以及3度带、6度带的问题

几种地图投影的特点及分带方法做空间分析之前数据准备的时候,将多源数据(如DEM,遥感影像,土地利用图,土壤图,行政区划图等等)转换到统一的坐标系下,让它们能叠在一起,这个工作繁琐,经常让俺头疼,每次得摸索一阵子,好不容易搞明白了,下次做的时候,又因为好久不做,忘得一干二净,为了防止下次做的时候又重新再摸索,就在博客里记一下笔记,供以后用到的时候参考。

在ARCGIS下经纬度坐标的数据和公里格网数据是能自动叠加在一起的——在公里格网数据的投影设置正确的情况下。

而且,6度带的数据与3度带的数据也能自动叠加在一起。

只要投影设置正确了,所有图层都能在ArcGIS里面叠加在一起,整个Data Frame的坐标系统以第一个添加的图层为准,全部自动统一到这个坐标系统下。

拿到数据第一件事情,先看X,Y坐标的整数位数,有以下两种情况:(东阳何生的经验总结)1、X坐标6位,Y坐标7位(东阳何生的经验总结)没有加带号的坐标,坐标单位是米,假偏东500公里。

(东阳何生的经验总结)2、X坐标8位,Y坐标7位(东阳何生的经验总结)加了带号的坐标,坐标单位是米。

X坐标最前面两位就是添加的带号,这时就要判断是3度带还是6度带,我国幅员辽阔,经度从东经72度到135度,有经验的人一看带号就能大致知道是6度分带还是3度分带;没有经验的,就随便假设一个,然后根据下面的公式算出其中央经线,再与研究区域所在的经度对照,看是否相符,从而判断出是3度分带还是6度分带。

带号与中央经线一一对应,知道两者中的任何一个,都能推算出另外一个的值,计算公式如下:(东阳何生的经验总结)6度带中央经线经度的计算:当地中央经线经度=6°×当地带号-3°(适用于1∶2.5万和1∶5万地形图)3度带中央经线经度的计算:中央经线经度=3°×当地带号(适用于1∶1万地形图)搞清楚数据坐标的投影之后,就可以在ARCGIS里面定义,此方法可以解决大部分数据叠加问题,采用地方坐标系的特例另当别论,这里只讨论通常情况。

3度带和6度带的区分

3度带和6度带的区分

3度带和6度带的区分记得曾经有人问过我,怎么知道一个地方所在的中央经线,以及该中央经线所在的分度带带号是多少。

今天就仔细的说一下。

在采用分带的投影坐标系统中,我们最常用的是高斯-克吕格投影,它是由德国数学家、物理学家、天文学家高斯(carlfriedrichgauss,1777―1855)于十九世纪二十年代拟定,后经德国大地测量学家克吕格(johanneskruger,1857~1928)于1912年对投影公式加以补充,所以因此而得名。

它是横轴墨卡托投影的一个变种,高斯-克吕格只是它通俗的名称,比较专业的名称叫做横轴等角切椭圆柱投影。

设想用一个圆柱切面于球面上投影拎的中央经线,按照投影拎中央经线投影为直线且长度维持不变和赤道投影为直线的条件,将中央经线两侧一定经差范围内的球面正菱形投影于圆柱面。

然后将圆柱面沿过南北极的母线抠积极开展平,即为荣获高斯―克吕格投影平面。

高斯―克吕格投影后,除中央经线和赤道为直线外,其他经线均为等距于中央经线的曲线。

高斯-克吕格投影没角度变形,在长度和面积上变形也不大,中央经线并无变形,自中央经线向投影拎边缘,变形逐渐减少,变形最小处于投影拎内赤道的两端。

右图就是高斯―克吕格投影方式示意图。

图一高斯克吕格投影的投影方式高斯―克吕格投影按一定经差将地球椭球面分割成若干投影拎,这就是高斯投影中管制长度变形的最为有效率方法。

分带时既要掌控长度变形并使其不大于制图误差,又必须并使拎数不致过多以增加再加拎排序工作,据此原则将地球椭球面沿子午线分割成经差成正比的瓜瓣形地带,以便分后拎投影。

通常按经差6度或3度分成六度拎或三度拎。

六度拎自0度子午线起至内要经差6度自西向东分后拎,拎号依次编入第1、2…60拎。

三度拎就是在六度拎的基础上分为的,它的中央子午线与六度拎的中央子午线和分带子午线重合,即为自1.5度子午线起至内要经差3度自西向东分后拎,拎号依次编成为三度拎第1、2…120拎。

3度6度带高斯投影详解

3度6度带高斯投影详解

3度6度带高斯投影选择投影的目的在于使所选投影的性质、特点适合于地图的用途,同时考虑地图在图廓范围内变形较小而且变形分布均匀。

海域使用的地图多采用保角投影,因其能保持方位角度的正确。

我国的基本比例尺地形图(1:5千,1:1万,1:2.5万,1:5万,1:10万,1:25万,1:50万,1:100万)中,大于等于50万的均采用高斯-克吕格投影(Gauss-Kruger),这是一个等角横切椭圆柱投影,又叫横轴墨卡托投影(Transverse Mercator);小于50万的地形图采用等角正轴割园锥投影,又叫兰勃特投影(Lambert Conformal Conic);海上小于50万的地形图多用等角正轴圆柱投影,又叫墨卡托投影(Mercator)。

一般应该采用与我国基本比例尺地形图系列一致的地图投影系统。

地图坐标系由大地基准面和地图投影确定,大地基准面是利用特定椭球体对特定地区地球表面的逼近,因此每个国家或地区均有各自的大地基准面,我们通常称谓的北京54坐标系、西安80坐标系实际上指的是我国的两个大地基准面。

我国参照前苏联从1953年起采用克拉索夫斯基(Krassovsky)椭球体建立了我国的北京54坐标系,1978年采用国际大地测量协会推荐的IAG 75地球椭球体建立了我国新的大地坐标系--西安80坐标系,目前GPS定位所得出的结果都属于WGS84坐标系统,WGS84基准面采用WGS84椭球体,它是一地心坐标系,即以地心作为椭球体中心的坐标系。

因此相对同一地理位置,不同的大地基准面,它们的经纬度坐标是有差异的。

采用的3个椭球体参数如下(源自“全球定位系统测量规范 GB/T 8314-2001”):椭球体与大地基准面之间的关系是一对多的关系,也就是基准面是在椭球体基础上建立的,但椭球体不能代表基准面,同样的椭球体能定义不同的基准面,如前苏联的Pulkovo 1942、非洲索马里的Afgooye基准面都采用了Krassovsky 椭球体,但它们的大地基准面显然是不同的。

3度6度带高斯投影详解

3度6度带高斯投影详解

3度6度带高斯投影选择投影的目的在于使所选投影的性质、特点适合于地图的用途,同时考虑地图在图廓范围内变形较小而且变形分布均匀。

海域使用的地图多采用保角投影,因其能保持方位角度的正确。

我国的基本比例尺地形图(1:5千,1:1万,1:2.5万,1:5万,1:10万,1:25万,1:50万,1:100万)中,大于等于50万的均采用高斯-克吕格投影(Gauss-Kruger),这是一个等角横切椭圆柱投影,又叫横轴墨卡托投影(Transverse Mercator);小于50万的地形图采用等角正轴割园锥投影,又叫兰勃特投影(Lambert Conformal Conic);海上小于50万的地形图多用等角正轴圆柱投影,又叫墨卡托投影(Mercator)。

一般应该采用与我国基本比例尺地形图系列一致的地图投影系统。

地图坐标系由大地基准面和地图投影确定,大地基准面是利用特定椭球体对特定地区地球表面的逼近,因此每个国家或地区均有各自的大地基准面,我们通常称谓的北京54坐标系、西安80坐标系实际上指的是我国的两个大地基准面。

我国参照前苏联从1953年起采用克拉索夫斯基(Krassovsky)椭球体建立了我国的北京54坐标系,1978年采用国际大地测量协会推荐的IAG 75地球椭球体建立了我国新的大地坐标系--西安80坐标系,目前GPS定位所得出的结果都属于WGS84坐标系统,WGS84基准面采用WGS84椭球体,它是一地心坐标系,即以地心作为椭球体中心的坐标系。

因此相对同一地理位置,不同的大地基准面,它们的经纬度坐标是有差异的。

采用的3个椭球体参数如下(源自“全球定位系统测量规范 GB/T 8314-2001”):椭球体与大地基准面之间的关系是一对多的关系,也就是基准面是在椭球体基础上建立的,但椭球体不能代表基准面,同样的椭球体能定义不同的基准面,如前苏联的Pulkovo 1942、非洲索马里的Afgooye基准面都采用了Krassovsky椭球体,但它们的大地基准面显然是不同的。

3度带和6度带的区分

3度带和6度带的区分

记得曾经有人问过我,怎么知道一个地方所在的中央经线,以及该中央经线所在的分度带带号是多少。

今天就仔细的说一下。

在采用分带的投影坐标系统中,我们最常用的是高斯-克吕格投影,它是由德国数学家、物理学家、天文学家高斯(Carl Friedrich Gauss,1777—1855)于十九世纪二十年代拟定,后经德国大地测量学家克吕格(Johannes Kruger,1857~1928)于1912年对投影公式加以补充,所以因此而得名。

它是横轴墨卡托投影的一个变种,高斯-克吕格只是它通俗的名称,比较专业的名称叫做横轴等角切椭圆柱投影。

设想用一个圆柱横切于球面上投影带的中央经线,按照投影带中央经线投影为直线且长度不变和赤道投影为直线的条件,将中央经线两侧一定经差范围内的球面正形投影于圆柱面。

然后将圆柱面沿过南北极的母线剪开展平,即获高斯—克吕格投影平面。

高斯—克吕格投影后,除中央经线和赤道为直线外,其他经线均为对称于中央经线的曲线。

高斯-克吕格投影没有角度变形,在长度和面积上变形也很小,中央经线无变形,自中央经线向投影带边缘,变形逐渐增加,变形最大处在投影带内赤道的两端。

下图是高斯—克吕格投影方式示意图。

图一高斯克吕格投影的投影方式高斯—克吕格投影按一定经差将地球椭球面划分成若干投影带,这是高斯投影中限制长度变形的最有效方法。

分带时既要控制长度变形使其不大于测图误差,又要使带数不致过多以减少换带计算工作,据此原则将地球椭球面沿子午线划分成经差相等的瓜瓣形地带,以便分带投影。

通常按经差6度或3度分为六度带或三度带。

六度带自0度子午线起每隔经差6度自西向东分带,带号依次编为第 1、2…60带。

三度带是在六度带的基础上分成的,它的中央子午线与六度带的中央子午线和分带子午线重合,即自1.5度子午线起每隔经差3度自西向东分带,带号依次编为三度带第 1、2…120带。

我国的经度范围西起73°东至135°,可分成六度带十一个,各带中央经线依次为75°、81°、87°、……、117°、123°、129°、135°,或三度带二十二个。

高斯投影与UTM投影

高斯投影与UTM投影

高斯投影与UTM投影大地坐标是球面坐标,而工程中使用平面坐标,球面坐标如何转换成平面坐标呢?常用的有高斯-克吕格投影和UTM投影。

一、高斯投影平面直角坐标系这种投影是高斯(德国数学家、物理学家、天文学家)于19 世纪20年代拟定,后经克吕格(德国大地测量学家)于1912 年对投影公式加以补充,故称为高斯-克吕格投影,又名“等角横切椭圆柱投影”,是地球椭球面和平面间正形投影的一种。

1、投影特点(1)将一定角度范围内的椭球表面投影到平面上,这个角度范围通常采用6°、3°、1.5°;(2)正形投影,保证了投影角度的不变性和图形的相似性,在某点各方向长度比的同一性,这样给测量和计算带来极大的方便;(1)投影带的中央子午线投影没有变形,离中央子午线越远,变形越大(投影后直线变长)1、6°带投影及带号从首子午线起,每隔经度差6°划一带,自西向东将整个地球划分为60个带,用数字1、2、3……依次编号。

第一个6°带的中央子午线经度为3°,任意带的中央子午线经度计算公式:L 0=6N-3。

(1)任意带的起止经度:6(N-1) ~ 6N(2)任意带的中央子午线经度:L0=6N-31、坐标轴的西偏移与南偏移(1)坐标纵轴的西偏移以中央子午线作为坐标纵轴,则Y坐标会出现负值,不便于使用,故规定将坐标纵轴向西偏移500km。

【思考和计算】一个6°带内,Y坐标的数值范围是多少(西偏移前、西偏移后)?在一个6°带内,Y坐标最大(最小)的点在赤道上,按地球平均半径6371km 计,6°对应的弧长约667.17km,故Y坐标数值范围约(-333585m~+333585m)。

X轴西偏移500km后,Y坐标数值范围约(166415m~833585m),Y坐标小数点前均为6位数。

(2)坐标横轴的南偏移我国在北半球,X坐标不会出现负值,但南半球的国家则会存在这个问题。

3度6度带高斯投影详解

3度6度带高斯投影详解

3度6度带高斯投影选择投影的目的在于使所选投影的性质、特点适合于地图的用途,同时考虑地图在图廓范围内变形较小而且变形分布均匀。

海域使用的地图多采用保角投影,因其能保持方位角度的正确。

我国的基本比例尺地形图(1:5千,1:1万,1:2.5万,1:5万,1:10万,1:25万,1:50万,1:100万)中,大于等于50万的均采用高斯-克吕格投影(Gauss-Kruger),这是一个等角横切椭圆柱投影,又叫横轴墨卡托投影(Transverse Mercator);小于50万的地形图采用等角正轴割园锥投影,又叫兰勃特投影(Lambert Conformal Conic);海上小于50万的地形图多用等角正轴圆柱投影,又叫墨卡托投影(Mercator)。

一般应该采用与我国基本比例尺地形图系列一致的地图投影系统。

地图坐标系由大地基准面和地图投影确定,大地基准面是利用特定椭球体对特定地区地球表面的逼近,因此每个国家或地区均有各自的大地基准面,我们通常称谓的北京54坐标系、西安80坐标系实际上指的是我国的两个大地基准面。

我国参照前苏联从1953年起采用克拉索夫斯基(Krassovsky)椭球体建立了我国的北京54坐标系,1978年采用国际大地测量协会推荐的IAG 75地球椭球体建立了我国新的大地坐标系--西安80坐标系,目前GPS定位所得出的结果都属于WGS84坐标系统,WGS84基准面采用WGS84椭球体,它是一地心坐标系,即以地心作为椭球体中心的坐标系。

因此相对同一地理位置,不同的大地基准面,它们的经纬度坐标是有差异的。

采用的3个椭球体参数如下(源自“全球定位系统测量规范 GB/T 8314-2001”):椭球体与大地基准面之间的关系是一对多的关系,也就是基准面是在椭球体基础上建立的,但椭球体不能代表基准面,同样的椭球体能定义不同的基准面,如前苏联的Pulkovo 1942、非洲索马里的Afgooye基准面都采用了Krassovsky椭球体,但它们的大地基准面显然是不同的。

3度6度带高斯投影详解

3度6度带高斯投影详解

3度6度带高斯投影选择投影的目的在于使所选投影的性质、特点适合于地图的用途,同时考虑地图在图廓范围内变形较小而且变形分布均匀。

海域使用的地图多采用保角投影,因其能保持方位角度的正确。

我国的基本比例尺地形图(1:5千,1:1万,1:2.5万,1:5万,1:10万,1:25万,1:50万,1:100万)中,大于等于50万的均采用高斯-克吕格投影(Gauss-Kruger),这是一个等角横切椭圆柱投影,又叫横轴墨卡托投影(Transverse Mercator);小于50万的地形图采用等角正轴割园锥投影,又叫兰勃特投影(Lambert Conformal Conic);海上小于50万的地形图多用等角正轴圆柱投影,又叫墨卡托投影(Mercator)。

一般应该采用与我国基本比例尺地形图系列一致的地图投影系统。

地图坐标系由大地基准面和地图投影确定,大地基准面是利用特定椭球体对特定地区地球表面的逼近,因此每个国家或地区均有各自的大地基准面,我们通常称谓的北京54坐标系、西安80坐标系实际上指的是我国的两个大地基准面。

我国参照前苏联从1953年起采用克拉索夫斯基(Krassovsky)椭球体建立了我国的北京54坐标系,1978年采用国际大地测量协会推荐的IAG 75地球椭球体建立了我国新的大地坐标系--西安80坐标系,目前GPS定位所得出的结果都属于WGS84坐标系统,WGS84基准面采用WGS84椭球体,它是一地心坐标系,即以地心作为椭球体中心的坐标系。

因此相对同一地理位置,不同的大地基准面,它们的经纬度坐标是有差异的。

采用的3个椭球体参数如下(源自“全球定位系统测量规范 GB/T 8314-2001”):椭球体与大地基准面之间的关系是一对多的关系,也就是基准面是在椭球体基础上建立的,但椭球体不能代表基准面,同样的椭球体能定义不同的基准面,如前苏联的Pulkovo 1942、非洲索马里的Afgooye基准面都采用了Krassovsky 椭球体,但它们的大地基准面显然是不同的。

3度带和6度带的区分

3度带和6度带的区分

3度带和6度带的区分记得曾经有人问过我,怎么知道一个地方所在的中央经线,以及该中央经线所在的分度带带号是多少。

今天就仔细的说一下。

在采用分带的投影坐标系统中,我们最常用的是高斯-克吕格投影,它是由德国数学家、物理学家、天文学家高斯(CarlFriedrichGau,1777—1855)于十九世纪二十年代拟定,后经德国大地测量学家克吕格(JohanneKruger,1857~1928)于1912年对投影公式加以补充,所以因此而得名。

它是横轴墨卡托投影的一个变种,高斯-克吕格只是它通俗的名称,比较专业的名称叫做横轴等角切椭圆柱投影。

设想用一个圆柱横切于球面上投影带的中央经线,按照投影带中央经线投影为直线且长度不变和赤道投影为直线的条件,将中央经线两侧一定经差范围内的球面正形投影于圆柱面。

然后将圆柱面沿过南北极的母线剪开展平,即获高斯—克吕格投影平面。

高斯—克吕格投影后,除中央经线和赤道为直线外,其他经线均为对称于中央经线的曲线。

高斯-克吕格投影没有角度变形,在长度和面积上变形也很小,中央经线无变形,自中央经线向投影带边缘,变形逐渐增加,变形最大处在投影带内赤道的两端。

下图是高斯—克吕格投影方式示意图。

图一高斯克吕格投影的投影方式图二3度分带与6度分带示意图如果已知高斯—克吕格投影的中央经线,要计算按3度分带和按6度分带时的分度代号可以采用以下的计算公式:3度分带:分带带号=当地中央经线÷36度分带:分带带号=(当地中央经线+3)÷6而如果已知当地3度分带与6度分带的带号,可以通过以下的方式计算当地中央经线。

3度分带:中央经线=分带带号某36度分带:中央经线=分带带号某6-3在我国,1:1万比例尺地形图采用高斯-克吕格3度分带投影坐标,而1:2.5万—1:50万比例尺的地形图采用的是6度分带。

一般,在我国标准地形图上,某坐标的前两位代表所在分度带带号,其余的表示某坐标,通常带号的字体要比坐标的字体大。

什么是六度带?什么是三度带各座标系如何定义

什么是六度带?什么是三度带各座标系如何定义

什么是六度带?什么是三度带?各座标系如何定义2009-8-1014:10:00★ 地形图坐标系:我国的地形图采用高斯-克吕格平面直角坐标系。

在该坐标系中,横轴:赤道,用Y表示;纵轴:中央经线,用X表示;坐标原点:中央经线与赤道的交点,用O表示。

赤道以南为负,以北为正;中央经线以东为正,以西为负。

我国位于北半球,故纵坐标均为正值,但为避免中央经度线以西为负值的情况,将坐标纵轴西移500公里(500,000米)。

★、北京54坐标系:1954年我国在北京设立了大地坐标原点,采用克拉索夫斯基椭球体,依此计算出来的各大地控制点的坐标,称为北京54坐标系。

★、GS84坐标系:即世界通用的经纬度坐标系。

★、6度带、3度带、中央经线。

我国采用6度分带和3度分带:1∶2.5万及1∶5万的地形图采用6度分带投影,即经差为6度,从零度子午线开始,自西向东每个经差6度为一投影带,全球共分60个带,用1,2,3,4,5,……表示.即东经0~6度为第一带,其中央经线的经度为东经3度,东经6~12度为第二带,其中央经线的经度为9度。

我省位于东经113度-东经120度之间,跨第19带和20带,其中东经114度以西(包括阜平县的下庄乡以西、平山的温塘、苏家庄以西,井陉的矿区以西,邢台县的浆水镇以西,武安的活水乡以西,涉县全境)位于第19带,其中央经线为东经111度;114度以东到山海关均在第20带,其中央经线为117度。

1∶1万的地形图采用3度分带,从东经1.5度的经线开始,每隔3度为一带,用1,2,3,……表示,全球共划分120个投影带,即东经1.5~4.5度为第1带,其中央经线的经度为东经3度,东经4.5~7.5度为第2带,其中央经线的经度为东经6度.我省位于东经113度-东经120度之间,跨第38、39、40共计3个带,其中东经115.5度以西为第38带,其中央经线为东经114度;东经115.5~118.5度为39带,其中央经线为东经117度;东经118.5度以东到山海关为40带,其中央经线为东经120度。

什么是六度带?什么是三度带各座标系如何定义

什么是六度带?什么是三度带各座标系如何定义

什么是六度带?什么是三度带?各座标系如何定义★ 地形图坐标系:我国的地形图采用高斯-克吕格平面直角坐标系。

在该坐标系中,横轴:赤道,用Y表示;纵轴:中央经线,用X表示;坐标原点:中央经线与赤道的交点,用O表示。

赤道以南为负,以北为正;中央经线以东为正,以西为负。

我国位于北半球,故纵坐标均为正值,但为避免中央经度线以西为负值的情况,将坐标纵轴西移500公里(500,000米)。

★、北京54坐标系:1954年我国在北京设立了大地坐标原点,采用克拉索夫斯基椭球体,依此计算出来的各大地控制点的坐标,称为北京54坐标系。

★、GS84坐标系:即世界通用的经纬度坐标系。

★、6度带、3度带、中央经线。

我国采用6度分带和3度分带:1∶2.5万及1∶5万的地形图采用6度分带投影,即经差为6度,从零度子午线开始,自西向东每个经差6度为一投影带,全球共分60个带,用1,2,3,4,5,……表示.即东经0~6度为第一带,其中央经线的经度为东经3度,东经6~12度为第二带,其中央经线的经度为9度。

我省位于东经113度-东经120度之间,跨第19带和20带,其中东经114度以西(包括阜平县的下庄乡以西、平山的温塘、苏家庄以西,井陉的矿区以西,邢台县的浆水镇以西,武安的活水乡以西,涉县全境)位于第19带,其中央经线为东经111度;114度以东到山海关均在第20带,其中央经线为117度。

1∶1万的地形图采用3度分带,从东经1.5度的经线开始,每隔3度为一带,用1,2,3,……表示,全球共划分120个投影带,即东经1.5~4.5度为第1带,其中央经线的经度为东经3度,东经4.5~7.5度为第2带,其中央经线的经度为东经6度.我省位于东经113度-东经120度之间,跨第38、39、40共计3个带,其中东经115.5度以西为第38带,其中央经线为东经114度;东经115.5~118.5度为39带,其中央经线为东经117度;东经118.5度以东到山海关为40带,其中央经线为东经120度。

墨卡托投影、高斯-克吕格投影、UTM投影及我国采用的6度分带和3度分带共6页

墨卡托投影、高斯-克吕格投影、UTM投影及我国采用的6度分带和3度分带共6页

一、墨卡托投影、高斯-克吕格投影、UTM投影1.墨卡托(Mercator)投影墨卡托(Mercator)投影,是一种"等角正切圆柱投影”,荷兰地图学家墨卡托(Gerhardus Mercator 1512-1594)在1569年拟定,假设地球被围在一中空的圆柱里,其标准纬线与圆柱相切接触,然后再假想地球中心有一盏灯,把球面上的图形投影到圆柱体上,再把圆柱体展开,这就是一幅选定标准纬线上的“墨卡托投影”绘制出的地图。

墨卡托投影没有角度变形,由每一点向各方向的长度比相等,它的经纬线都是平行直线,且相交成直角,经线间隔相等,纬线间隔从标准纬线向两极逐渐增大。

墨卡托投影的地图上长度和面积变形明显,但标准纬线无变形,从标准纬线向两极变形逐渐增大,但因为它具有各个方向均等扩大的特性,保持了方向和相互位置关系的正确。

在地图上保持方向和角度的正确是墨卡托投影的优点,墨卡托投影地图常用作航海图和航空图,如果循着墨卡托投影图上两点间的直线航行,方向不变可以一直到达目的地,因此它对船舰在航行中定位、确定航向都具有有利条件,给航海者带来很大方便。

“海底地形图编绘规范”(GB/T 17834-2019,海军航保部起草)中规定1:25万及更小比例尺的海图采用墨卡托投影,其中基本比例尺海底地形图(1:5万,1:25万,1:100万)采用统一基准纬线30°,非基本比例尺图以制图区域中纬为基准纬线。

基准纬线取至整度或整分。

墨卡托投影坐标系取零子午线或自定义原点经线(L0)与赤道交点的投影为原点,零子午线或自定义原点经线的投影为纵坐标X轴,赤道的投影为横坐标Y轴,构成墨卡托平面直角坐标系。

2.高斯-克吕格(Gauss-Kruger)投影和UTM(Universal Transverse Mercator)投影(1)高斯-克吕格投影性质高斯-克吕格(Gauss-Kruger)投影简称“高斯投影”,又名"等角横切椭圆柱投影”,地球椭球面和平面间正形投影的一种。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几种地图投影的特点及分带方法做空间分析之前数据准备的时候,将多源数据(如DEM,遥感影像,土地利用图,土壤图,行政区划图等等)转换到统一的坐标系下,让它们能叠在一起,这个工作繁琐,经常让俺头疼,每次得摸索一阵子,好不容易搞明白了,下次做的时候,又因为好久不做,忘得一干二净,为了防止下次做的时候又重新再摸索,就在博客里记一下笔记,供以后用到的时候参考。

在ARCGIS下经纬度坐标的数据和公里格网数据是能自动叠加在一起的——在公里格网数据的投影设置正确的情况下。

而且,6度带的数据与3度带的数据也能自动叠加在一起。

只要投影设置正确了,所有图层都能在ArcGIS里面叠加在一起,整个Data Frame的坐标系统以第一个添加的图层为准,全部自动统一到这个坐标系统下。

拿到数据第一件事情,先看X,Y坐标的整数位数,有以下两种情况:(东阳何生的经验总结)1、X坐标6位,Y坐标7位(东阳何生的经验总结)没有加带号的坐标,坐标单位是米,假偏东500公里。

(东阳何生的经验总结)2、X坐标8位,Y坐标7位(东阳何生的经验总结)加了带号的坐标,坐标单位是米。

X坐标最前面两位就是添加的带号,这时就要判断是3度带还是6度带,我国幅员辽阔,经度从东经72度到135度,有经验的人一看带号就能大致知道是6度分带还是3度分带;没有经验的,就随便假设一个,然后根据下面的公式算出其中央经线,再与研究区域所在的经度对照,看是否相符,从而判断出是3度分带还是6度分带。

带号与中央经线一一对应,知道两者中的任何一个,都能推算出另外一个的值,计算公式如下:(东阳何生的经验总结)6度带中央经线经度的计算:当地中央经线经度=6°×当地带号-3°(适用于1∶2.5万和1∶5万地形图)3度带中央经线经度的计算:中央经线经度=3°×当地带号(适用于1∶1万地形图)搞清楚数据坐标的投影之后,就可以在ARCGIS里面定义,此方法可以解决大部分数据叠加问题,采用地方坐标系的特例另当别论,这里只讨论通常情况。

(东阳何生的经验总结)附1:6度分带和3度分带是怎么回事_百度知道1.我国采用6度分带和3度分带:1∶2.5万及1∶5万的地形图采用6度分带投影,即经差为6度,从零度子午线开始,自西向东每个经差6度为一投影带,全球共分60个带,用1,2,3,4,5,……表示.即东经0~6度为第一带,其中央经线的经度为东经3度,东经6~12度为第二带,其中央经线的经度为9度。

1∶1万的地形图采用3度分带,从东经1.5度的经线开始,每隔3度为一带,用1,2,3,……表示,全球共划分120个投影带,即东经1.5~4.5度为第1带,其中央经线的经度为东经3度,东经4.5~7.5度为第2带,其中央经线的经度为东经6度.我省位于东经113度-东经120度之间,跨第38、39、40共计3个带,其中东经115.5度以西为第38带,其中央经线为东经114度;东经115.5~118.5度为39带,其中央经线为东经117度;东经118.5度以东到山海关为40带,其中央经线为东经120度。

地形图上公里网横坐标前2位就是带号,例如:1∶5万地形图上的横坐标为20345486,其中20即为带号,345486为横坐标值。

2.当地中央经线经度的计算六度带中央经线经度的计算:当地中央经线经度=6°×当地带号-3°,例如:地形图上的横坐标为20345,其所处的六度带的中央经线经度为:6°×20-3°=117°(适用于1∶2.5万和1∶5万地形图)。

三度带中央经线经度的计算:中央经线经度=3°×当地带号(适用于1∶1万地形图)。

附2:几种投影的特点及分带方法一、只谈比较常用的几种:“墨卡托投影”、“高斯-克吕格投影”、“UTM 投影”、“兰勃特等角投影”1.墨卡托(Mercator)投影1.1 墨卡托投影简介墨卡托(Mercator)投影,是一种"等角正切圆柱投影”,荷兰地图学家墨卡托(Gerhardus Mercator 1512-1594)在1569年拟定,假设地球被围在一中空的圆柱里,其标准纬线与圆柱相切接触,然后再假想地球中心有一盏灯,把球面上的图形投影到圆柱体上,再把圆柱体展开,这就是一幅选定标准纬线上的“墨卡托投影”绘制出的地图。

墨卡托投影没有角度变形,由每一点向各方向的长度比相等,它的经纬线都是平行直线,且相交成直角,经线间隔相等,纬线间隔从标准纬线向两极逐渐增大。

墨卡托投影的地图上长度和面积变形明显,但标准纬线无变形,从标准纬线向两极变形逐渐增大,但因为它具有各个方向均等扩大的特性,保持了方向和相互位置关系的正确。

在地图上保持方向和角度的正确是墨卡托投影的优点,墨卡托投影地图常用作航海图和航空图,如果循着墨卡托投影图上两点间的直线航行,方向不变可以一直到达目的地,因此它对船舰在航行中定位、确定航向都具有有利条件,给航海者带来很大方便。

“海底地形图编绘规范”(GB/T 17834-1999,海军航保部起草)中规定1:25万及更小比例尺的海图采用墨卡托投影,其中基本比例尺海底地形图(1:5万,1:25万,1:100万)采用统一基准纬线30°,非基本比例尺图以制图区域中纬为基准纬线。

基准纬线取至整度或整分。

1.2 墨卡托投影坐标系取零子午线或自定义原点经线(L0)与赤道交点的投影为原点,零子午线或自定义原点经线的投影为纵坐标X轴,赤道的投影为横坐标Y轴,构成墨卡托平面直角坐标系。

2.高斯-克吕格(Gauss-Kruger)投影和UTM(Universal Transverse Mercator)投影2.1 高斯-克吕格投影简介高斯-克吕格(Gauss-Kruger)投影,是一种“等角横切圆柱投影”。

德国数学家、物理学家、天文学家高斯(Carl Friedrich Gauss,1777一1855)于十九世纪二十年代拟定,后经德国大地测量学家克吕格(Johannes Kruger,1857~1928)于1912年对投影公式加以补充,故名。

设想用一个圆柱横切于球面上投影带的中央经线,按照投影带中央经线投影为直线且长度不变和赤道投影为直线的条件,将中央经线两侧一定经差范围内的球面正形投影于圆柱面。

然后将圆柱面沿过南北极的母线剪开展平,即获高斯一克吕格投影平面。

高斯一克吕格投影后,除中央经线和赤道为直线外,其他经线均为对称于中央经线的曲线。

高斯-克吕格投影没有角度变形,在长度和面积上变形也很小,中央经线无变形,自中央经线向投影带边缘,变形逐渐增加,变形最大处在投影带内赤道的两端。

由于其投影精度高,变形小,而且计算简便(各投影带坐标一致,只要算出一个带的数据,其他各带都能应用),因此在大比例尺地形图中应用,可以满足军事上各种需要,并能在图上进行精确的量测计算。

按一定经差将地球椭球面划分成若干投影带,这是高斯投影中限制长度变形的最有效方法。

分带时既要控制长度变形使其不大于测图误差,又要使带数不致过多以减少换带计算工作,据此原则将地球椭球面沿子午线划分成经差相等的瓜瓣形地带,以便分带投影。

通常按经差6度或3度分为六度带或三度带。

六度带自0度子午线起每隔经差6度自西向东分带,带号依次编为第1、2…60带。

三度带是在六度带的基础上分成的,它的中央子午线与六度带的中央子午线和分带子午线重合,即自1.5度子午线起每隔经差3度自西向东分带,带号依次编为三度带第1、2…120带。

我国的经度范围西起73°东至135°,可分成六度带十一个,各带中央经线依次为75°、81°、87°、……、117°、123°、129°、135°,或三度带二十二个。

我国大于等于50万的大中比例尺地形图多采用六度带高斯-克吕格投影,三度带高斯-克吕格投影多用于大比例尺测图,如城建坐标多采用三度带的高斯-克吕格投影。

2.2 UTM投影简介UTM投影全称为“通用横轴墨卡托投影”,是一种“等角横轴割圆柱投影”,椭圆柱割地球于南纬80度、北纬84度两条等高圈,投影后两条相割的经线上没有变形,而中央经线上长度比0.9996。

UTM投影是为了全球战争需要创建的,美国于1948年完成这种通用投影系统的计算。

与高斯-克吕格投影相似,该投影角度没有变形,中央经线为直线,且为投影的对称轴,中央经线的比例因子取0.9996是为了保证离中央经线左右约330km处有两条不失真的标准经线。

UTM投影分带方法与高斯-克吕格投影相似,是自西经180°起每隔经差6度自西向东分带,将地球划分为60个投影带。

我国的卫星影像资料常采用UTM投影。

2.3 高斯-克吕格投影与UTM投影异同高斯-克吕格(Gauss-Kruger)投影与UTM投影(Universal Transverse Mercator,通用横轴墨卡托投影)都是横轴墨卡托投影的变种,目前一些国外的软件或国外进口仪器的配套软件往往不支持高斯-克吕格投影,但支持UTM 投影,因此常有把UTM投影当作高斯-克吕格投影的现象。

从投影几何方式看,高斯-克吕格投影是“等角横切圆柱投影”,投影后中央经线保持长度不变,即比例系数为1;UTM投影是“等角横轴割圆柱投影”,圆柱割地球于南纬80度、北纬84度两条等高圈,投影后两条割线上没有变形,中央经线上长度比0.9996。

从计算结果看,两者主要差别在比例因子上,高斯-克吕格投影中央经线上的比例系数为1,UTM投影为0.9996,高斯-克吕格投影与UTM投影可近似采用X[UTM]=0.9996 * X[高斯],Y[UTM]=0.9996 * Y[高斯],进行坐标转换(注意:如坐标纵轴西移了500000米,转换时必须将Y值减去500000乘上比例因子后再加500000)。

从分带方式看,两者的分带起点不同,高斯-克吕格投影自0度子午线起每隔经差6度自西向东分带,第1带的中央经度为3°;UTM投影自西经180°起每隔经差6度自西向东分带,第1带的中央经度为-177°,因此高斯-克吕格投影的第1带是UTM的第31带。

此外,两投影的东伪偏移都是500公里,高斯-克吕格投影北伪偏移为零,UTM北半球投影北伪偏移为零,南半球则为10000公里。

2.4 高斯-克吕格投影与UTM投影坐标系高斯- 克吕格投影与UTM投影是按分带方法各自进行投影,故各带坐标成独立系统。

以中央经线(L0)投影为纵轴X,赤道投影为横轴Y,两轴交点即为各带的坐标原点。

为了避免横坐标出现负值,高斯- 克吕格投影与UTM北半球投影中规定将坐标纵轴西移500公里当作起始轴,而UTM南半球投影除了将纵轴西移500公里外,横轴南移10000公里。

相关文档
最新文档