链表的C语言实现之循环链表及双向链表

合集下载

c语言中linklist类型

c语言中linklist类型

c语言中linklist类型LinkList类型是C语言中常用的数据结构之一,它是一种线性链表的实现方式。

在计算机科学中,链表是一种常见的数据结构,用于存储和操作一系列元素。

链表由一系列节点组成,每个节点包含一个数据元素和一个指向下一个节点的指针。

链表中的第一个节点称为头节点,最后一个节点称为尾节点。

链表可以根据需要动态地增加或删除节点,相比于数组,链表的大小可以根据实际需求进行调整。

链表的实现可以使用不同的方式,其中最常见的是单向链表。

在单向链表中,每个节点只有一个指针,指向下一个节点。

这种实现方式简单且高效,适用于大多数场景。

除了单向链表,还有双向链表和循环链表等其他实现方式。

链表的优点是可以快速在任意位置插入或删除节点,而无需移动其他节点。

这是由于链表中的节点通过指针相互连接,而不是像数组那样连续存储。

另外,链表的大小可以根据需要进行动态调整,而数组的大小是静态的。

这使得链表在处理动态数据集合时非常有用。

然而,链表也有一些缺点。

首先,访问链表中的任意节点都需要从头节点开始遍历,直到找到目标节点。

这导致了链表的访问时间复杂度为O(n),而数组的访问时间复杂度为O(1)。

其次,链表需要额外的内存空间来存储指针信息,这会占用更多的存储空间。

在C语言中,可以使用结构体来定义链表节点,例如:```typedef struct Node {int data;struct Node *next;} Node;typedef struct LinkedList {Node *head;Node *tail;} LinkedList;```上述代码定义了一个包含数据和指针的节点结构体Node,以及一个包含头节点和尾节点指针的链表结构体LinkedList。

通过这样的定义,可以方便地进行链表的操作,比如插入、删除和遍历等。

链表的插入操作可以分为三步:创建新节点、修改指针、更新链表的头尾指针。

例如,插入一个新节点到链表末尾的代码如下:```void insert(LinkedList *list, int data) {Node *newNode = (Node *)malloc(sizeof(Node));newNode->data = data;newNode->next = NULL;if (list->head == NULL) {list->head = newNode;list->tail = newNode;} else {list->tail->next = newNode;list->tail = newNode;}}```链表的删除操作也类似,可以分为三步:找到目标节点、修改指针、释放内存。

c链表库函数

c链表库函数

c链表库函数全文共四篇示例,供读者参考第一篇示例:C语言是一种广泛应用于系统编程的高级语言,而链表(Linked List)是C语言中常用的数据结构之一。

在C语言中,链表并不像数组一样有现成的库函数可以直接调用,需要通过自定义函数来实现链表的操作。

为了方便使用链表,不少开发者封装了链表操作的库函数,提供了一些常用的链表操作接口,以供开发者使用。

本文将介绍一些常见的C链表库函数及其用法。

一、链表的概念及基本操作链表是一种线性表的存储结构,由若干节点(Node)组成,每个节点包含数据域和指针域。

数据域用于存放数据,指针域用于指向下一个节点。

链表的最后一个节点指针域为空(NULL),表示链表的末尾。

常见的链表操作包括创建链表、插入节点、删除节点、遍历链表、查找节点等。

下面我们来看看C语言中常用的链表库函数。

二、常见的C链表库函数1. 创建链表在C语言中,创建链表的函数通常包括初始化链表头节点和链表节点的操作。

```#include <stdio.h>#include <stdlib.h>//定义链表节点typedef struct node {int data;struct node* next;} Node;2. 插入节点插入节点是链表操作中的重要操作,可以在链表的任意位置插入新节点。

常见的插入方式包括头部插入和尾部插入。

```//头部插入节点void insertNodeAtHead(Node* head, int data) {Node* newNode = (Node*)malloc(sizeof(Node));newNode->data = data;newNode->next = head->next;head->next = newNode;}以上是常见的C链表库函数,这些函数可以帮助我们更方便地操作链表。

在实际开发中,可以根据需要自定义更多的链表操作函数,以满足具体的需求。

c语言递归反转链表

c语言递归反转链表

在C语言中,递归反转链表的代码实现相对简洁。

下面是一个实现链表反转的递归函数示例:#include <stdio.h>#include <stdlib.h>// 定义链表节点结构体typedef struct ListNode {int val;struct ListNode *next;} ListNode;// 递归函数,用于反转链表ListNode* reverseList(ListNode* head) {// 递归的基准情况:如果链表为空或者只有一个节点,返回原节点if (head == NULL || head->next == NULL) {return head;}// 递归地反转剩下的链表部分ListNode* newHead = reverseList(head->next);// 将当前节点的next指向null(因为它现在是链表的最后一个节点)head->next->next = head;head->next = NULL;// 返回新的头节点return newHead;}// 辅助函数,用于创建链表ListNode* createList(int[] values, int size) {ListNode* head = NULL;for (int i = size - 1; i >= 0; --i) {ListNode* newNode = malloc(sizeof(ListNode));newNode->val = values[i];newNode->next = head;head = newNode;}return head;}// 打印链表void printList(ListNode* head) {while (head != NULL) {printf("%d ", head->val);head = head->next;}printf("\n");}int main() {int values[] = {1, 2, 3, 4, 5};int size = sizeof(values) / sizeof(values[0]);ListNode* originalHead = createList(values, size);printf("Original list: ");printList(originalHead);ListNode* reversedHead = reverseList(originalHead);printf("Reversed list: ");printList(reversedHead);// 释放链表内存ListNode* current = originalHead;while (current != NULL) {ListNode* temp = current;current = current->next;free(temp);}return 0;}这段代码首先定义了一个链表节点结构体ListNode。

[转载整理]C语言链表实例

[转载整理]C语言链表实例

[转载整理]C语⾔链表实例 C语⾔链表有单链表、双向链表、循环链表。

单链表由数据域和指针域组成,数据域存放数据,指针域存放该数据类型的指针便于找到下⼀个节点。

双链表则含有头指针域、数据域和尾指针域,域单链表不同,双链表可以从后⼀个节点找到前⼀个节点,⼆单链表则不⾏。

循环链表就是在单链表的基础上,将头结点的地址指针存放在最后⼀个节点的指针域⾥以,此形成循环。

此外还有双向循环链表,它同时具有双向链表和循环链表的功能。

单链表如:链表节点的数据结构定义struct node{int num;struct node *p;} ;在此链表节点的定义中,除⼀个整型的成员外,成员p是指向与节点类型完全相同的指针。

※在链表节点的数据结构中,⾮常特殊的⼀点就是结构体内的指针域的数据类型使⽤了未定义成功的数据类型。

这是在C中唯⼀规定可以先使⽤后定义的数据结构。

链表实例代码:1// 原⽂地址 /wireless-dragon/p/5170565.html2 #include<stdio.h>3 #include<stdlib.h>4 #include<string.h>56 typedef int elemType;//定义存⼊的数据的类型可以是int char78 typedef struct NODE{ //定义链表的结构类型9 elemType element;10struct NODE *next;11 }Node;1213/************************************************************************/14/* 以下是关于线性表链接存储(单链表)操作的19种算法 */1516/* 1.初始化线性表,即置单链表的表头指针为空 */17/* 2.创建线性表,此函数输⼊负数终⽌读取数据*/18/* 3.打印链表,链表的遍历*/19/* 4.清除线性表L中的所有元素,即释放单链表L中所有的结点,使之成为⼀个空表 */20/* 5.返回单链表的长度 */21/* 6.检查单链表是否为空,若为空则返回1,否则返回0 */22/* 7.返回单链表中第pos个结点中的元素,若pos超出范围,则停⽌程序运⾏ */23/* 8.从单链表中查找具有给定值x的第⼀个元素,若查找成功则返回该结点data域的存储地址,否则返回NULL */24/* 9.把单链表中第pos个结点的值修改为x的值,若修改成功返回1,否则返回0 */25/* 10.向单链表的表头插⼊⼀个元素 */26/* 11.向单链表的末尾添加⼀个元素 */27/* 12.向单链表中第pos个结点位置插⼊元素为x的结点,若插⼊成功返回1,否则返回0 */28/* 13.向有序单链表中插⼊元素x结点,使得插⼊后仍然有序 */29/* 14.从单链表中删除表头结点,并把该结点的值返回,若删除失败则停⽌程序运⾏ */30/* 15.从单链表中删除表尾结点并返回它的值,若删除失败则停⽌程序运⾏ */31/* 16.从单链表中删除第pos个结点并返回它的值,若删除失败则停⽌程序运⾏ */32/* 17.从单链表中删除值为x的第⼀个结点,若删除成功则返回1,否则返回0 */33/* 18.交换2个元素的位置 */34/* 19.将线性表进⾏冒排序 */35363738/*注意检查分配到的动态内存是否为空*/3940414243/* 1.初始化线性表,即置单链表的表头指针为空 */44void initList(Node **pNode)45 {46 *pNode=NULL;47 printf("initList函数执⾏,初始化成功\n");48 }4950/* 2.创建线性表,此函数输⼊负数终⽌读取数据*/51 Node *creatList(Node *pHead)52 {53 Node *p1,*p2;54 p1=p2=(Node *)malloc(sizeof(Node));55if(p1 == NULL || p2 ==NULL)57 printf("内存分配失败\n");58 exit(0);59 }60 memset(p1,0,sizeof(Node));6162 scanf("%d",&p1->element);63 p1->next=NULL;6465while(p1->element >0) //输⼊的值⼤于0则继续,否则停⽌66 {67if(pHead == NULL)//空表,接⼊表头68 {69 pHead=p1;70 }71else72 {73 p2->next=p1;74 }7576 p2=p1;77 p1=(Node *)malloc(sizeof(Node));7879if(p1==NULL||p2==NULL)80 {81 printf("内存分配失败\n");82 exit(0);83 }84 memset(p1,0,sizeof(Node));85 scanf("%d",&p1->element);86 p1->next=NULL;87 }88 printf("CreatList函数执⾏,链表创建成功\n");89return pHead;90 }9192/* 3.打印链表,链表的遍历*/93void printList(Node *pHead)94 {95if(NULL==pHead)96 {97 printf("PrintList函数执⾏,链表为空\n");98 }99else100 {101while(NULL!=pHead)102 {103 printf("%d\n",pHead->element);104 pHead=pHead->next;105 }106 }107108 }109110111/* 4.清除线性表L中的所有元素,即释放单链表L中所有的结点,使之成为⼀个空表 */ 112void clearList(Node *pHead)113 {114 Node *pNext;115116if(pHead==NULL)117 {118 printf("clearList函数执⾏,链表为空\n");119return;120 }121while(pHead->next!=NULL)122 {123 pNext=pHead->next;124free(pHead);125 pHead=pNext;126 }127 printf("clearList函数执⾏,链表已经清除!\n");128129 }130131/* 5.返回链表的长度*/132int sizeList(Node *pHead)133 {134int size=0;135136while(pHead!=NULL)137 {138 size++;139 pHead=pHead->next;141 printf("sizelist函数执⾏,链表长度为%d\n",size);142return size;143 }144145/* 6.检查单链表是否为空,若为空则返回1,否则返回0 */146int isEmptyList(Node *pHead)147 {148if(pHead==NULL)149 {150 printf("isEmptylist函数执⾏,链表为空!\n");151return1;152 }153154else155 printf("isEmptylist函数执⾏,链表⾮空!\n");156return0;157158 }159160/* 7.返回链表中第post节点的数据,若post超出范围,则停⽌程序运⾏*/161int getElement(Node *pHead,int pos)162 {163int i=0;164if(pos<1)165 {166 printf("getElement函数执⾏,pos值⾮法!");167return0;168 }169if(pHead==NULL)170 {171 printf("getElement函数执⾏,链表为空!");172 }173174while (pHead!=NULL)175 {176 ++i;177if(i==pos)178 {179break;180 }181 pHead=pHead->next;182 }183if(i<pos)184 {185 printf("getElement函数执⾏,pos值超出链表长度\n");186return0;187 }188 printf("getElement函数执⾏,位置%d中的元素为%d\n",pos,pHead->element);189190return1;191 }192193//8.从单⼀链表中查找具有给定值x的第⼀个元素,若查找成功后,返回该节点data域的存储位置,否则返回NULL 194 elemType *getElemAddr(Node *pHead,elemType x)195 {196if(NULL==pHead)197 {198 printf("getEleAddr函数执⾏,链表为空");199return NULL;200 }201if(x<0)202 {203 printf("getEleAddr函数执⾏,给定值x不合法\n");204return NULL;205 }206while((pHead->element!=x)&&(NULL!=pHead->next))//判断链表是否为空,并且是否存在所查找的元素207 {208 pHead=pHead->next;209 }210if(pHead->element!=x)211 {212 printf("getElemAddr函数执⾏,在链表中没有找到x值\n");213return NULL;214 }215else216 {217 printf("getElemAddr函数执⾏,元素%d的地址为0x%x\n",x,&(pHead->element));218 }219return &(pHead->element);220221 }222223224/*9.修改链表中第pos个点X的值,如果修改成功,则返回1,否则返回0*/225int modifyElem(Node *pNode,int pos,elemType x)226 {227 Node *pHead;228 pHead=pNode;229int i=0;230if(NULL==pHead)231 {232 printf("modifyElem函数执⾏,链表为空\n");233return0;234 }235236if(pos<1)237 {238 printf("modifyElem函数执⾏,pos值⾮法\n");239return0;240 }241242while(pHead!= NULL)243 {244 ++i;245if(i==pos)246 {247break;248 }249 pHead=pHead->next;250 }251252if(i<pos)253 {254 printf("modifyElem函数执⾏,pos值超出链表长度\n");255return0;256 }257 pNode=pHead;258 pNode->element=x;259 printf("modifyElem函数执⾏,修改第%d点的元素为%d\n",pos,x);260261return1;262263 }264265/* 10.向单链表的表头插⼊⼀个元素 */266int insertHeadList(Node **pNode,elemType insertElem)267 {268 Node *pInsert;269 pInsert=(Node *)malloc(sizeof(Node));270if(pInsert==NULL) exit(1);271 memset(pInsert,0,sizeof(Node));272 pInsert->element=insertElem;273 pInsert->next=*pNode;274 *pNode=pInsert;275 printf("insertHeadList函数执⾏,向表头插⼊元素%d成功\n",insertElem);276return1;277 }278279/* 11.向单链表的末尾添加⼀个元素 */280int insertLastList(Node *pNode,elemType insertElem)281 {282 Node *pInsert;283 Node *pHead;284 Node *pTmp;285286 pHead=pNode;287 pTmp=pHead;288 pInsert=(Node *)malloc(sizeof(Node));289if(pInsert==NULL) exit(1);290 memset(pInsert,0,sizeof(Node));291 pInsert->element=insertElem;292 pInsert->next=NULL;293while(pHead->next!=NULL)294 {295 pHead=pHead->next;296 }297 pHead->next=pInsert;298 printf("insertLastList函数执⾏,向表尾插⼊元素%d成功!\n",insertElem);299return1;300 }301302/* 12.向单链表中第pos个结点位置插⼊元素为x的结点,若插⼊成功返回1,否则返回0*/ 303int isAddPos(Node *pNode,int pos,elemType x)304 {305 Node *pHead;306 pHead=pNode;307 Node *pTmp;308int i=0;309310if(NULL==pHead)311 {312 printf("AddPos函数执⾏,链表为空\n");313return0;314 }315316if(pos<1)317 {318 printf("AddPos函数执⾏,pos值⾮法\n");319return0;320 }321322while(pHead!=NULL)323 {324 ++i;325if(i==pos)326break;327 pHead=pHead->next;328 }329330if(i<pos)331 {332 printf("AddPos函数执⾏,pos值超出链表长度\n");333return0;334 }335336 pTmp=(Node *)malloc(sizeof(Node));337if(pTmp==NULL) exit(1);338 memset(pTmp,0,sizeof(Node));339 pTmp->next=pHead->next;340 pHead->next=pTmp;341 pTmp->element=x;342343 printf("AddPos函数执⾏成功,向节点%d后插⼊数值%d\n",pos,x); 344return1;345 }346347/* 13.向有序单链表中插⼊元素x结点,使得插⼊后仍然有序 */348int OrrderList(Node *pNode,elemType x)349 {350//注意如果此数值要排到⾏尾要修改本代码351 Node *pHead;352 pHead=pNode;353 Node *pTmp;354355if(NULL==pHead)356 {357 printf("OrrderList函数执⾏,链表为空\n");358return0;359 }360361if(x<1)362 {363 printf("OrrderList函数执⾏,x值⾮法\n");364return0;365 }366367while(pHead!=NULL)368 {369if((pHead->element)>=x)370break;371 pHead=pHead->next;372 }373374375if(pHead==NULL)376 {377 printf("OrrderList函数查找完毕,该函数中没有该值\n");378return0;379 }380381382 pTmp=(Node *)malloc(sizeof(Node));383if(pTmp==NULL) exit(1);384 memset(pTmp,0,sizeof(Node));385 pTmp->next=pHead->next;386 pHead->next=pTmp;387 pTmp->element=x;388389 printf("OrrderList函数成功插⼊数值%d\n",x);390return1;391 }392393/*14.从单链表中删除表头结点,并把该结点的值返回,若删除失败则停⽌程序运⾏*/ 394int DelHeadList(Node **pList)395 {396 Node *pHead;397 pHead=*pList;398if(pHead!=NULL)399 printf("DelHeadList函数执⾏,函数⾸元素为%d删除成功\n",pHead->element); 400else401 {402 printf("DelHeadList函数执⾏,链表为空!");403return0;404 }405 *pList=pHead->next;406return1;407 }408409/* 15.从单链表中删除表尾结点并返回它的值,若删除失败则停⽌程序运⾏ */410int DelLastList(Node *pNode)411 {412 Node *pHead;413 Node *pTmp;414415 pHead=pNode;416while(pHead->next!=NULL)417 {418 pTmp=pHead;419 pHead=pHead->next;420 }421 printf("链表尾删除元素%d成功!\n",pHead->element);422free(pHead);423 pTmp->next=NULL;424return1;425 }426427/* 16.从单链表中删除第pos个结点并返回它的值,若删除失败则停⽌程序运⾏ */ 428int DelPos(Node *pNode,int pos)429 {430 Node *pHead;431 pHead=pNode;432 Node *pTmp;433434int i=0;435436if(NULL==pHead)437 {438 printf("DelPos函数执⾏,链表为空\n");439return0;440 }441442if(pos<1)443 {444 printf("DelPos函数执⾏,pos值⾮法\n");445return0;446 }447448while(pHead!=NULL)449 {450 ++i;451if(i==pos)452break;453 pTmp=pHead;454 pHead=pHead->next;455 }456457if(i<pos)458 {459 printf("DelPos函数执⾏,pos值超出链表长度\n");460return0;461 }462 printf("DelPos函数执⾏成功,节点%d删除数值%d\n",pos,pHead->element); 463 pTmp->next=pHead->next;464free(pHead);465return1;466 }467468/* 17.从单链表中删除值为x的第⼀个结点,若删除成功则返回1,否则返回0 */469int Delx(Node **pNode,int x)470 {471 Node *pHead;472 Node *pTmp;473 pHead=*pNode;474int i=0;475476if(NULL==pHead)477 {478 printf("Delx函数执⾏,链表为空");479return0;480 }481if(x<0)482 {483 printf("Delx函数执⾏,给定值x不合法\n");484return0;485 }486while((pHead->element!=x)&&(NULL!=pHead->next))//判断链表是否为空,并且是否存在所查找的元素487 {488 ++i;489 pTmp=pHead;490 pHead=pHead->next;491 }492if(pHead->element!=x)493 {494 printf("Delx函数执⾏,在链表中没有找到x值\n");495return0;496 }497if((i==0)&&(NULL!=pHead->next))498 {499 printf("Delx函数执⾏,在链表⾸部找到此元素,此元素已经被删除\n");500 *pNode=pHead->next;501free(pHead);502return1;503 }504 printf("Delx函数执⾏,⾸个为%d元素被删除\n",x);505 pTmp->next=pHead->next;506free(pHead);507return1;508 }509510/* 18.交换2个元素的位置 */511int exchange2pos(Node *pNode,int pos1,int pos2)512 {513 Node *pHead;514int *pTmp;515int *pInsert;516int a;517int i=0;518519if(pos1<1||pos2<1)520 {521 printf("DelPos函数执⾏,pos值⾮法\n");522return0;523 }524525 pHead=pNode;526while(pHead!=NULL)527 {528 ++i;529if(i==pos1)530break;531 pHead=pHead->next;532 }533534if(i<pos1)535 {536 printf("DelPos函数执⾏,pos1值超出链表长度\n");537return0;538 }539540 pTmp=&(pHead->element);541 i=0;542 pHead=pNode;543while(pHead!=NULL)544 {545 ++i;546if(i==pos2)547break;548 pHead=pHead->next;549 }550551if(i<pos2)552 {553 printf("DelPos函数执⾏,pos2值超出链表长度\n");554return0;555 }556557 pInsert=&(pHead->element);558 a=*pTmp;559 *pTmp=*pInsert;560 *pInsert=a;561562 printf("DelPos函数执⾏,交换第%d个和第%d个pos点的值\n",pos1,pos2); 563return1;564 }565566int swap(int *p1,int *p2)567 {568int a;569if(*p1>*p2)570 {571 a=*p1;572 *p1=*p2;573 *p2=a;574 }575return0;576 }577578/* 19.将线性表进⾏冒泡排序 */579int Arrange(Node *pNode)580 {581 Node *pHead;582 pHead=pNode;583584int a=0,i,j;585586if(NULL==pHead)587 {588 printf("Arrange函数执⾏,链表为空\n");589return0;590 }591592while(pHead!=NULL)593 {594 ++a;595 pHead=pHead->next;596 }597598 pHead=pNode;599for(i=0;i<a-1;i++)600 {601for(j=1;j<a-i;j++)602 {603 swap(&(pHead->element),&(pHead->next->element));604 pHead=pHead->next;605 }606 pHead=pNode;607 }608 printf("Arrange函数执⾏,链表排序完毕!\n");609return0;610 }611612int main()613 {614 Node *pList=NULL;615int length=0;616617 elemType posElem;618619 initList(&pList);620 printList(pList);621622 pList=creatList(pList);623 printList(pList);624625 sizeList(pList);626 printList(pList);627628 isEmptyList(pList);629630631 posElem=getElement(pList,3);632 printList(pList);633634 getElemAddr(pList,5);635636 modifyElem(pList,4,1);637 printList(pList);638639 insertHeadList(&pList,5);640 printList(pList);641642 insertLastList(pList,10);643 printList(pList);644645 isAddPos(pList,4,5); 646 printList(pList);647648 OrrderList(pList,6);649 printList(pList);650651 DelHeadList(&pList); 652 printList(pList);653654 DelLastList(pList);655 printList(pList);656657 DelPos(pList,5);658 printList(pList);659660 Delx(&pList,5);661 printList(pList);662663 exchange2pos(pList,2,5); 664 printList(pList);665666 Arrange(pList);667 printList(pList);668669 clearList(pList);670return0;671 }。

c语言双循环的简单例子

c语言双循环的简单例子

c语言双循环的简单例子从代码所示为常见的for语句双重循环,循环原理如下1,对于给二维数组赋值部分,第一次i=0,判断i<3值为真,然后执行二重循环语句,j=0,判断j<2结果为真,因此执行下面的循环体语句,a[0][0]=0+0=0,j++2,第二次循环依旧是在j循环部分执行,j=1,判断j<2结果为真,因此执行下面的循环体语句,a[0][1]=0+1=1,j++3,第三次循环依旧是在j循环部分执行,j=2,判断j<2结果为假,退出j部分循环,i++4,第四次循环,i=1,判断i<3结果为真,然后执行j部分二重循环语句,j=0;判断j<2结果为真,因此执行下面的循环体语句,a[1][0]=1+0=1,j++5,第五次循环,i=1,判断j<2结果为真,执行循环体语句,a[1][1]=1+1=2,j++本文实例讲述了C++双向循环列表用法。

分享给大家供大家参考。

具体如下:1 2 3 4 5 6 7 8 9 1/*双向循环链表*/#include <iostream> using namespace std;1 1 12 13 14 15 16 17 18 19 2 0 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 3 0 3 1 //结构体构造链表的指针域和数据域struct ChainNode{int data; //节点数据ChainNode *left; //节点的前驱指针ChainNode *right; //节点的后继指针};////////////创建n个双向循环链表并返回链表头指针///////// ChainNode* CreateNode(int n){ChainNode *head = NULL; //链表头节点ChainNode *pCur=NULL,*pNew=NULL; //当前节点,新建节点//初始化头结点的前驱和后继节点都为NULLif(n<1) //没有节点返回头节点{return head;}//创建头节点并将器左右指针指向空head = new ChainNode;head->left = NULL;head->right = NULL;2 3 3 3 4 3 5 3 6 3 7 3 8 3 9 4 0 4 1 4 2 4 3 4 4 4 5 4 6 4 7 4 8 4 9 5 0 5 1 5 2 5head->data = 0;pCur = head;//为防止指针互指带来的混乱,用pCur节点保存了头节点也表示当前指针移动到了头指针//创建n个节点并连接成链表for(int i=0; i<n; i++){pNew = new ChainNode; //创建一个新节点cout<<"请输入数据:";cin>>pNew->data;pCur->right = pNew; //头指针的右指针指向新建节点pNew->left = pCur; //新建节点的左指针执行头节点pNew->right = NULL; //用于最后和头指针进行交换pCur = pNew; //指针往下移动}//最后将头指针的左指针指向最后一个节点,//最后一个节点的有指针指向头指针,构成循环head->left = pCur;pCur->right = head;return head;}5 4 5 5 56 57 58 59 6 0 6 1 6 2 6 3 6 4 6 5 6 6 6 7 6 8 6 9 7 0 7 1 7 2 7 3 7 4 //////////////输出链表头节点///////////////////////void OutList(ChainNode *head) //参数为头指针从头指针开始{cout<<"链表元素输出如下:"<<endl;ChainNode *pCur = head->right;//重第一个节点开始输出//没有指向空节点,则链表没结束输出链表元素while(pCur->right != head){cout<<pCur->data<<" ";pCur = pCur->right;//当前节点指向下一个节点可以遍历链表}cout<<pCur->data<<endl;//输入最后一个元素,它的右指针执行head}///////在双向循环链表后添加n个节点//////ChainNode* AddNode(ChainNode* head, int n){ChainNode *pNew,*pCur;//新添加节点和当前节点5 767 7 78 79 8 0 8 1 8 2 8 3 8 4 8 5 8 6 8 7 8 8 8 9 9 0 9 1 9 2 9 3 9 4 9 5 9pCur = head;//移动到最节点while(pCur->right != head){pCur = pCur->right;//当前节点往下移动一直移到最后一个节点}//新添加n个节点并插入链表for(int i=0; i<n; i++){pNew = new ChainNode;cout<<"输入要添加的节点元素:";cin>>pNew->data;pCur->right = pNew; //头指针的右指针指向新建节点pNew->left = pCur; //新建节点的左指针执行头节点pNew->right = NULL; //用于最后和头指针进行交换pCur = pNew; //指针往下移动}//最后将头指针的左指针指向最后一个节点,//最后一个节点的有指针指向头指针,构成循环head->left = pCur;9 7 9 8 9 9 1 0 0 1 0 1 1 0 2 1 0 3 1 0 4 1 0 5 1 0 6 1 0 7 1 0 8 1 0 9 1 1 0 1 1 1pCur->right = head;return head;}/////在双向循环链表中删除一个节点///////ChainNode* DeleteNode(ChainNode* head, unsigned num) //删除第num个节点{ChainNode *pNew,*pCur,*temp;//新添加节点和当前节点 ,临时交换节点pCur = head;int ncount = 0;//移动到第num-1个节点while(1){ncount++;pCur = pCur->right; //当前节点往下移动if(num == ncount){break; //此时pCur还是指向了第num个节点}}1 2 1 1 3 1 1 4 1 1 5 1 1 6 1 1 7 1 1 8 1 1 9 1 2 0 1 2 1 1 2 2 1 2 3 1 2 4 1 2 5 1//当前节点的前一个节点的右指针指向当前节点的下一个节点//当前节点的下一个节点的左指针指向当前节点的上一个节点构成连接//最后删除当前节点(pCur->left)->right = pCur->right;(pCur->right)->left = pCur->left;delete pCur;return head;}int main(){int num;//创建num个节点并显示cout<<"输入要创建的链表节点个数:";cin>>num;ChainNode *head = CreateNode(num);OutList(head);//往链表后添加n个节点int addnum;cout<<"输入要添加的节点个数:";cin>>addnum;AddNode(head, addnum);6 1 27 1 28 1 29 1 3 0 1 3 1 1 3 2 1 3 3 1 3 4 1 3 5 1 3 6 1 3 7 1 3 8 1 3 9 1 4OutList(head);//删除链表的第del个元素int del;cout<<"输入要删除的第几个位置的节点:"; cin>>del;DeleteNode (head, del);OutList(head);system("pause");return0;}。

双向链表

双向链表

第8讲 双向链表● 循环单链表的出现,虽然能够实现从任一结点出发沿着链能找到其前趋结点,但时间耗费是O (n) 。

● 如果希望从表中快速确定某一个结点的前趋,另一个解决方法就是在单链表的每个结点里再增加一个指向其前趋的指针域prior 。

这样形成的链表中就有两条方向不同的链,我们称之为双向链表。

● 双向链表的结构定义如下:typedef struct DNode{ ElemType data ;struct DNode *prior ,*next ;}DNode, * DoubleList ;● 双向链表的结点结构如图所示。

图:双链表的结点结构注:● 双向链表也是由头指针唯一确定的,● 增加头结点能使双链表的某些运算变得方便● 由于在双向链表中既有前向链又有后向链,寻找任一个结点的直接前驱结点与直接后继结点变得非常方便。

● 设指针p 指向双链表中某一结点,则有下式成立:p->prior->next = p = p->next->prior●在双向链表中,那些只涉及后继指针的算法,如求表长度、取元素、元素定位等,与单链表中相应的算法相同,● 但对于前插和删除操作则涉及到前驱和后继两个方向的指针变化,因此与单链表中的算法不同。

1、 双向链表的前插操作【算法思想】欲在双向链表第i 个结点之前插入一个的新的结点,则指针的变化情况如图所示:… p …s->prior=p->prior; ①p->prior->next=s;②s->next=p; ③p->prior=s;④【算法描述】int DlinkIns(DoubleList L,int i,ElemType e){DNode *s,*p;… /*先检查待插入的位置i是否合法(实现方法同单链表的前插操作)*/… /*若位置i合法,则找到第i个结点并让指针p指向它*/s=(DNode*)malloc(sizeof(DNode));if (s){ s->data=e;s->prior=p->prior; ①p->prior->next=s; ②s->next=p; ③p->prior=s; ④r eturn TRUE;}else return FALSE;}2、双向链表的删除操作【算法思想】欲删除双向链表中的第i个结点,则指针的变化情况如图所示:p->prior->next=p->next; ①p->next->prior=p->prior; ②free(p);【算法描述】int DlinkDel(DoubleList L,int i,ElemType *e){DNode *p;… /*先检查待插入的位置i 是否合法(实现方法同单链表的删除操作)*/… /*若位置i 合法,则找到第i 个结点并让指针p 指向它*/*e=p->data;p->prior->next=p->next; ①p->next->prior=p->prior; ②free(p);return TRUE;}3、 双向循环链表双向链表可以有循环表,称为双向循环链表。

c语言中linklist的作用

c语言中linklist的作用

c语言中linklist的作用C语言中LinkList的作用什么是LinkListLinkList(链表)是C语言中用来存储和操作数据的一种数据结构。

它与数组相比,拥有更灵活的插入和删除操作。

链表由节点(Node)组成,每个节点包含一个数据项和一个指向下一个节点的指针。

链表的头节点是链表的起始点,尾节点则指向NULL。

LinkList的作用1.动态内存分配:链表的节点可以动态地分配和释放内存,因此链表可以根据实际需要进行动态的添加和删除操作,不受固定大小的限制。

2.插入和删除操作效率高:由于链表的特性,插入和删除操作只需要修改节点指针的指向,而不需要移动其他节点,因此链表在某些特定场景下可以比数组更高效。

3.实现高级数据结构:链表可以用来实现其他高级数据结构,比如栈(Stack)和队列(Queue),或者作为其他数据结构的底层实现。

4.提供灵活的数据结构设计:链表可以设计成单向链表、双向链表或循环链表,根据实际需求选择合适的链表结构。

LinkList的应用场景链表在许多编程问题中都有着广泛的应用,以下是一些常见的应用场景: - 线性表:链表可以实现线性表,可以用来存储和操作一组有序的数据。

- 多项式运算:链表可以用来存储和运算多项式,实现多项式的相加、相乘等操作。

- 图的表示:链表可以用来表示图的连接关系,比如邻接链表表示法。

- 高级数据结构:链表可以作为实现其他高级数据结构的基础,比如树(Tree)、图(Graph)等。

- 文件操作:链表可以用来实现文件的读取和写入操作,链表可以实现文件的增删改查等功能。

总结链表作为一种灵活和高效的数据结构,广泛应用于C语言的编程中。

通过链表,我们可以动态地分配内存,高效地进行插入和删除操作。

而且,链表还可以作为其他高级数据结构的基础实现,扩展了数据结构的功能和应用场景。

在C语言中,掌握链表的使用方法和原理,对于编写高效的程序和解决复杂的编程问题都有很大的帮助。

数据结构中的双向链表实现和应用场景

数据结构中的双向链表实现和应用场景

数据结构中的双向链表实现和应用场景双向链表是一种常用的数据结构,它在许多实际应用中都发挥着重要的作用。

本文将介绍双向链表的实现原理以及一些常见的应用场景。

一、双向链表的实现原理双向链表由一系列节点组成,每个节点包含两个指针,一个指向前一个节点,一个指向后一个节点。

相比于单向链表,双向链表可以实现双向遍历,提高了一些操作的效率。

1.1 节点定义双向链表的节点通常由数据域和两个指针域组成,例如:```struct Node {int data; // 节点数据Node* prev; // 前一个节点指针Node* next; // 后一个节点指针};```1.2 插入操作在双向链表中插入一个节点可以分为两种情况:在表头插入和在表尾插入。

在表头插入时,只需修改原来头节点的prev指针为新节点的地址,并将新节点的next指针指向原头节点即可。

在表尾插入时,需要先找到原来的尾节点,然后将尾节点的next指针指向新节点的地址,并将新节点的prev指针指向尾节点的地址。

1.3 删除操作删除操作与插入操作类似,同样分为在表头和表尾删除节点。

在表头删除时,只需将头节点的next指针指向新的头节点,同时将新头节点的prev指针置为空。

在表尾删除时,需要先找到尾节点的前一个节点,然后将该节点的next指针置为空。

1.4 查找操作双向链表支持从前向后和从后向前两种遍历方式。

从前向后遍历时,我们可以利用节点的next指针不断向后遍历得到所有节点。

同样,从后向前遍历时,可以利用节点的prev指针不断向前遍历得到所有节点。

二、双向链表的应用场景双向链表广泛应用于各种软件和系统中,下面列举了一些常见的应用场景。

2.1 浏览器的历史记录在浏览器中,经常需要记录用户浏览过的网页历史记录。

这时可以使用双向链表来实现。

每当用户访问一个新的网页,就在双向链表中插入一个新节点,同时将新节点的next指针指向前一个节点,prev指针指向后一个节点。

C语言的循环链表和约瑟夫环

C语言的循环链表和约瑟夫环

C语言的循环链表和约瑟夫环C语言的循环链表和约瑟夫环约瑟夫问题)是一个数学的应用问题,对于学习C语言四非常挺有帮助的,下面是店铺为大家搜集整理出来的有关于C语言的循环链表和约瑟夫环,一起了解下吧!循环链表的实现单链表只有向后结点,当单链表的尾链表不指向NULL,而是指向头结点时候,形成了一个环,成为单循环链表,简称循环链表。

当它是空表,向后结点就只想了自己,这也是它与单链表的主要差异,判断node->next是否等于head。

代码实现分为四部分:1. 初始化2. 插入3. 删除4. 定位寻找代码实现:1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1void ListInit(Node *pNode){int item;Node *temp,*target;cout<<"输入0完成初始化"<<endl; cin="">>item;if(!item)return ;if(!(pNode)){ //当空表的时候,head==NULLpNode = new Node ;if(!(pNode))exit(0);//未成功申请pNode->data = item;pNode->next = pNode;}else{//for(target = pNode;target->next!=pNode;target = target->next);4 15 16 17 18 19 2 0 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 3 0 3 1 3 2 3 3 3 4 3 5 3temp = new Node;if(!(temp))exit(0);temp->data = item;temp->next = pNode;target->next = temp;}}}void ListInsert(Node *pNode,int i){ //参数是首节点和插入位置Node *temp;Node *target;int item;cout<<"输入您要插入的值:"<<endl; cin="">>item;if(i==1){temp = new Node;if(!temp)exit(0);temp->data = item;for(target=pNode;target->next != pNode;target = target->next);temp->next = pNode;target->next = temp;pNode = temp;}else{target = pNode;for (int j=1;j<i-1;++j) target="target-">next;temp = new Node;if(!temp)exit(0);temp->data = item;temp->next = target->next;target->next = temp;}}void ListDelete(Node *pNode,int i){Node *target,*temp;if(i==1){for(target=pNode;target->next!=pNode;target=target ->next);temp = pNode;//保存一下要删除的首节点 ,一会便于释放6 37 38 39 4 0 4 1 4 2 4 3 4 4 4 5 4 6 4 7 4 8 4 9 5 0 5 1 5 2 5 3 5 4 5 5 5 6 5 7 5pNode = pNode->next;target->next = pNode;temp;}else{target = pNode;for(int j=1;j<i-1;++j) target="target-">next;temp = target->next;//要释放的nodetarget->next = target->next->next;temp;}}int ListSearch(Node *pNode,int elem){ //查询并返回结点所在的位置Node *target;int i=1;for(target = pNode;target->data!=elem && target->next!= pNode;++i)target = target->next;if(target->next == pNode && target->data!=elem)return 0;else return i;}</i-1;++j)></i-1;++j)></endl;></endl;>5 96 0 6 1 6 2 6 3 6 4 6 5 6 6 67 68 69 7 0 7 1 7 2 7 3 7 4 7 5 7 6 7 7 7 8 7 9 8约瑟夫问题约瑟夫环(约瑟夫问题)是一个数学的'应用问题:已知n个人(以编号1,2,3…n分别表示)围坐在一张圆桌周围。

c语言数据结构及算法

c语言数据结构及算法

C语言是一种广泛应用于编程和软件开发的编程语言,它提供了一系列的数据结构和算法库,使得开发者能够在C语言中使用这些数据结构和算法来解决各种问题。

以下是C语言中常用的数据结构和算法:数据结构:1. 数组(Array):一组相同类型的元素按顺序排列而成的数据结构。

2. 链表(Linked List):元素通过指针连接而成的数据结构,可分为单向链表、双向链表和循环链表等。

3. 栈(Stack):具有后进先出(LIFO)特性的数据结构,可用于实现函数调用、表达式求值等。

4. 队列(Queue):具有先进先出(FIFO)特性的数据结构,可用于实现任务调度、缓冲区管理等。

5. 树(Tree):一种非线性的数据结构,包括二叉树、二叉搜索树、堆、A VL树等。

6. 图(Graph):由节点和边组成的数据结构,可用于表示网络、关系图等。

7. 哈希表(Hash Table):基于哈希函数实现的数据结构,可用于高效地查找、插入和删除元素。

算法:1. 排序算法:如冒泡排序、插入排序、选择排序、快速排序、归并排序等。

2. 查找算法:如线性查找、二分查找、哈希查找等。

3. 图算法:如深度优先搜索(DFS)、广度优先搜索(BFS)、最短路径算法(Dijkstra、Floyd-Warshall)、最小生成树算法(Prim、Kruskal)等。

4. 字符串匹配算法:如暴力匹配、KMP算法、Boyer-Moore 算法等。

5. 动态规划算法:如背包问题、最长公共子序列、最短编辑距离等。

6. 贪心算法:如最小生成树问题、背包问题等。

7. 回溯算法:如八皇后问题、0-1背包问题等。

这只是C语言中常用的一部分数据结构和算法,实际上还有更多的数据结构和算法可以在C语言中实现。

开发者可以根据具体需求选择适合的数据结构和算法来解决问题。

同时,C语言也支持自定义数据结构和算法的实现,开发者可以根据需要进行扩展和优化。

c课程设计链表

c课程设计链表

c 课程设计链表一、教学目标本节课的学习目标主要包括以下三个方面:1.知识目标:学生需要掌握链表的基本概念,了解链表的原理和结构,熟悉链表的基本操作,如创建、插入、删除和遍历。

2.技能目标:学生能够运用链表知识解决实际问题,具备使用链表编程的能力。

3.情感态度价值观目标:培养学生对计算机科学的兴趣,提高学生分析问题和解决问题的能力,培养学生的团队合作精神。

二、教学内容本节课的教学内容主要包括以下几个部分:1.链表的基本概念和原理:介绍链表的定义、特点和应用场景,让学生了解链表作为一种数据结构的重要性。

2.链表的结构和操作:讲解链表的结构,包括节点结构和链表的创建、插入、删除和遍历等基本操作。

3.链表的应用:通过实例分析,让学生学会如何运用链表解决实际问题,提高编程能力。

三、教学方法为了实现本节课的教学目标,我们将采用以下几种教学方法:1.讲授法:教师讲解链表的基本概念、原理和操作,引导学生掌握链表知识。

2.案例分析法:分析实际案例,让学生学会运用链表解决具体问题。

3.实验法:让学生动手实践,完成链表的创建、插入、删除和遍历等操作,提高编程能力。

4.小组讨论法:分组讨论,培养学生的团队合作精神和沟通能力。

四、教学资源为了支持本节课的教学内容和教学方法的实施,我们将准备以下教学资源:1.教材:提供相关章节,为学生提供系统的链表知识。

2.参考书:为学生提供更多的学习资料,拓展知识面。

3.多媒体资料:制作PPT等课件,直观展示链表的结构和操作。

4.实验设备:为学生提供电脑等实验设备,进行链表操作实践。

五、教学评估为了全面、客观、公正地评估学生的学习成果,我们将采取以下评估方式:1.平时表现:关注学生在课堂上的参与程度、提问回答、小组讨论等,记录学生的表现,占总成绩的30%。

2.作业:布置与链表相关的编程练习,检查学生的理解和掌握程度,占总成绩的20%。

3.考试:安排一次链表知识考试,测试学生对链表概念、原理和操作的掌握,占总成绩的50%。

数据结构--数组、单链表和双链表介绍以及双向链表

数据结构--数组、单链表和双链表介绍以及双向链表

数据结构--数组、单链表和双链表介绍以及双向链表数组:数组有上界和下界,数组的元素在上下界内是连续的。

数组的特点是:数据是连续的;随机访问速度快。

数组中稍微复杂⼀点的是多维数组和动态数组。

对于C语⾔⽽⾔,多维数组本质上也是通过⼀维数组实现的。

⾄于动态数组,是指数组的容量能动态增长的数组;对于C语⾔⽽⾔,若要提供动态数组,需要⼿动实现;⽽对于C++⽽⾔,STL提供了Vector。

单向链表:单向链表(单链表)是链表的⼀种,它由节点组成,每个节点都包含下⼀个节点的指针。

表头为空,表头的后继节点是"节点10"(数据为10的节点),"节点10"的后继节点是"节点20"(数据为10的节点),"节点20"的后继节点是"节点30"(数据为20的节点),"节点30"的后继节点是"节点40"(数据为10的节点),......删除"节点30"删除之前:"节点20" 的后继节点为"节点30",⽽"节点30" 的后继节点为"节点40"。

删除之后:"节点20" 的后继节点为"节点40"。

在"节点10"与"节点20"之间添加"节点15"添加之前:"节点10" 的后继节点为"节点20"。

添加之后:"节点10" 的后继节点为"节点15",⽽"节点15" 的后继节点为"节点20"。

单链表的特点是:节点的链接⽅向是单向的;相对于数组来说,单链表的的随机访问速度较慢,但是单链表删除/添加数据的效率很⾼。

链表(单链表 双向循环)实验报告讲解

链表(单链表 双向循环)实验报告讲解

数据结构实验报告T1223-3-21余帅实验一实验题目:仅仅做链表部分难度从上到下1.双向链表,带表头,线性表常规操作。

2.循环表,带表头,线性表常规操作。

3.单链表,带表头,线性表常规操作。

实验目的:了解和掌握线性表的逻辑结构和链式存储结构,掌握单链表的基本算法及相关的时间性能分析。

实验要求:常规操作至少有:1.数据输入或建立2.遍历3.插入4.删除必须能多次反复运行实验主要步骤:1、分析、理解给出的示例程序。

2、调试程序,并设计输入数据,测试程序的如下功能:1.数据输入或建立2.遍历3.插入4.删除单链表示意图:headhead head 创建删除双向循环链表示意图:创建程序代码://单链表#include<iostream.h>#include<windows.h>const MAX=5;enum returninfo{success,fail,overflow,underflow,range_error}; int defaultdata[MAX]={11,22,33,44,55};class node{public:int data;node *next;};class linklist{private:node *headp;protected:int count;public:linklist();~linklist();bool empty();void clearlist();returninfo create(void);returninfo insert(int position,const int &item);returninfo remove(int position) ;returninfo traverse(void);};linklist::linklist(){headp = new node;headp->next = NULL;count=0;}linklist::~linklist(){clearlist();delete headp;}bool linklist::empty(){if(headp->next==NULL)return true;elsereturn false;}void linklist::clearlist(){node *searchp=headp->next,*followp=headp;while(searchp->next!=NULL){followp=searchp;searchp=searchp->next;delete followp;}headp->next = NULL;count = 0;}returninfo linklist::create(){node *searchp=headp,*newnodep;for(int i=0;i<MAX;i++){newnodep = new node;newnodep->data = defaultdata[i];newnodep->next = NULL;searchp->next = newnodep;searchp = searchp->next;count++;}searchp->next = NULL;traverse();return success;}returninfo linklist::insert(int position,const int &item) //插入一个结点{if(position<=0 || position>=count)return range_error;node *newnodep=new node,*searchp=headp->next,*followp=headp;for(int i=1; i<position && searchp!=NULL;i++){followp=searchp;searchp=searchp->next;}newnodep->data=item; //给数据赋值newnodep->next=followp->next; //注意此处的次序相关性followp->next=newnodep;count++; //计数器加一return success;}returninfo linklist::remove(int position) //删除一个结点{if(empty())return underflow;if(position<=0||position>=count+1)return range_error;node *searchp=headp->next,*followp=headp; //这里两个指针的初始值设计一前一后for(int i=1; i<position && searchp!=NULL;i++){followp=searchp;searchp=searchp->next;}followp->next=searchp->next; //删除结点的实际语句delete searchp; //释放该结点count--; //计数器减一return success;}returninfo linklist::traverse(void){node *searchp;if(empty())return underflow;searchp = headp->next;cout<<"连表中的数据为:"<<endl;while(searchp!=NULL){cout<<searchp->data<<" ";searchp = searchp->next;}cout<<endl;return success;}class interfacebase{public:linklist listface; //定义一个对象Cskillstudyonfacevoid clearscreen(void);void showmenu(void);void processmenu(void);};void interfacebase::clearscreen(void){system("cls");}void interfacebase::showmenu(void){cout<<"================================"<<endl;cout<<" 功能菜单 "<<endl;cout<<" 1.创建链表 "<<endl;cout<<" 2.增加结点 "<<endl;cout<<" 3.删除结点 "<<endl;cout<<" 4.遍历链表 "<<endl;cout<<" 0.结束程序 "<<endl;cout<<"======================================"<<endl;cout<<"请输入您的选择:";}void interfacebase::processmenu(void){int returnvalue,item,position;char menuchoice;cin >>menuchoice;switch(menuchoice) //根据用户的选择进行相应的操作{case '1':returnvalue=listface.create();if(returnvalue==success)cout<<"链表创建已完成"<<endl;break;case '2':cout<<"请输入插入位置:"<<endl;cin>>position;cout<<"请输入插入数据:"<<endl;cin>>item;returnvalue = listface.insert(position,item);if(returnvalue==range_error)cout<<"数据个数超出范围"<<endl;elsecout<<"操作成功!!!"<<endl;break;case '3':cout<<"输入你要删除的位置:"<<endl;cin>>position;returnvalue = listface.remove(position);if(returnvalue==underflow)cout<<"链表已空"<<endl;else if(returnvalue==range_error)cout<<"删除的数据位置超区范围"<<endl;elsecout<<"操作成功!!!"<<endl;break;case '4':listface.traverse();break;case '0':cout<<endl<<endl<<"您已经成功退出本系统,欢迎再次使用!!!"<<endl;system("pause");exit(1);default:cout<<"对不起,您输入的功能编号有错!请重新输入!!!"<<endl;break;}}void main(){interfacebase interfacenow;linklist listnow;system("color f0");interfacenow.clearscreen();while(1){interfacenow.showmenu();interfacenow.processmenu();system("pause");interfacenow.clearscreen();}}/* 功能:用双向循环链表存储数据1.创建链表2.增加结点3.删除结点4.遍历链表制作人:余帅内容:239行*/#include<iostream.h>#include<windows.h>const MAX=5;enum returninfo{success,fail,overflow,underflow,range_error}; int defaultdata[MAX]={11,22,33,44,55};class node{public:int data;node * next; //指向后续节点node * pre; //指向前面的节点};class linklist{private:node *headp;protected:int count;public:linklist();~linklist();bool empty();void clearlist();returninfo create(void);returninfo insert(int position,const int &item);returninfo remove(int position) ;returninfo traverse(void);};linklist::linklist(){headp = new node;headp->next = NULL;headp->pre = NULL;count=0;}linklist::~linklist(){clearlist();delete headp;}bool linklist::empty(){if(headp->next==NULL)return true;elsereturn false;}void linklist::clearlist(){node *searchp=headp->next,*followp=headp;while(searchp->next!=NULL){followp=searchp;searchp=searchp->next;delete followp;}headp->next = NULL;headp->pre = NULL;count = 0;}returninfo linklist::create(){node *searchp=headp,*newnodep;for(int i=0;i<MAX;i++){newnodep = new node;newnodep->data = defaultdata[i];newnodep->next = NULL;searchp->next = newnodep;newnodep->pre = searchp;searchp = searchp->next;count++;}searchp->next = headp;headp->pre = searchp;traverse();return success;}returninfo linklist::insert(int position,const int &item) //插入一个结点{if(position<=0 || position>count+1)return range_error;node *newnodep=new node;node *searchp=headp->next,*followp=headp;for(int i=1; i<position && searchp!=NULL;i++){followp=searchp;searchp=searchp->next;}newnodep->data=item; //给数据赋值newnodep->next = searchp;searchp->pre = newnodep;followp->next = newnodep;newnodep->pre = followp;count++; //计数器加一return success;}returninfo linklist::remove(int position) //删除一个结点{if(empty())return underflow;if(position<=0||position>=count+1)return range_error;node *searchp=headp->next,*followp=headp; //这里两个指针的初始值设计一前一后for(int i=1; i<position && searchp!=NULL;i++){followp=searchp;searchp=searchp->next;}followp->next=searchp->next; //删除结点的实际语句searchp->next->pre = followp;delete searchp; //释放该结点count--; //计数器减一return success;}returninfo linklist::traverse(void){node *searchp1,*searchp2;if(empty())return underflow;searchp1 = headp;searchp2 = headp;cout<<"连表中的数据为:"<<endl;cout<<"从左至右读取:";while (searchp1->next!=headp ) {searchp1 = searchp1 ->next;cout << searchp1->data<<" ";}cout<<endl;cout<<"从右至左读取:";while (searchp2->pre!=headp ) {searchp2 = searchp2 ->pre;cout << searchp2->data<<" ";}cout<<endl;return success;}class interfacebase{public:linklist listface; //定义一个对象Cskillstudyonface void clearscreen(void);void showmenu(void);void processmenu(void);};void interfacebase::clearscreen(void){system("cls");}void interfacebase::showmenu(void){cout<<"================================"<<endl;cout<<" 功能菜单 "<<endl;cout<<" 1.创建链表 "<<endl;cout<<" 2.增加结点 "<<endl;cout<<" 3.删除结点 "<<endl;cout<<" 4.遍历链表 "<<endl;cout<<" 0.结束程序 "<<endl;cout<<"======================================"<<endl;cout<<"请输入您的选择:";}void interfacebase::processmenu(void){int returnvalue,item,position;char menuchoice;cin >>menuchoice;switch(menuchoice) //根据用户的选择进行相应的操作{case '1':returnvalue=listface.create();if(returnvalue==success)cout<<"链表创建已完成"<<endl;break;case '2':cout<<"请输入插入位置:"<<endl;cin>>position;cout<<"请输入插入数据:"<<endl;cin>>item;returnvalue = listface.insert(position,item);if(returnvalue==range_error)cout<<"数据个数超出范围"<<endl;elsecout<<"操作成功!!!"<<endl;break;case '3':cout<<"输入你要删除的位置:"<<endl;cin>>position;returnvalue = listface.remove(position);if(returnvalue==underflow)cout<<"链表已空"<<endl;else if(returnvalue==range_error)cout<<"删除的数据位置超区范围"<<endl;elsecout<<"操作成功!!!"<<endl;break;case '4':listface.traverse();break;case '0':cout<<endl<<endl<<"您已经成功退出本系统,欢迎再次使用!!!"<<endl;system("pause");exit(1);default:cout<<"对不起,您输入的功能编号有错!请重新输入!!!"<<endl;break;}}void main(){interfacebase interfacenow;linklist listnow;system("color f0");interfacenow.clearscreen();while(1){interfacenow.showmenu();interfacenow.processmenu();system("pause");interfacenow.clearscreen();}}运行结果:1.创建链表:2.增加结点3.删除结点心得体会:本次实验使我们对链表的实质了解更加明确了,对链表的一些基本操作也更加熟练了。

《数据结构C语言版》----第02章

《数据结构C语言版》----第02章
int ListLength(SLNode *head) { SLNode *p = head; int size = 0; while(p->next != NULL) { p = p->next; size ++; } return size; }
p size=0
head
a0
a1
(a)
...
a n 1 ∧
3.顺序表操作的效率分析
时间效率分析: 算法时间主要耗费在移动元素的操作上,因此计算时间复 杂度的基本操作(最深层语句频度) T(n)= O(移动元素次数) 而移动元素的个数取决于插入或删除元素的位置i. 若i=size,则根本无需移动(特别快); 若i=0,则表中元素全部要后移(特别慢); 应当考虑在各种位置插入(共n+1种可能)的平均移动次 数才合理。
(3)带头结点单链表和不带头结点单链表的比较
1).在带头结点单链表第一个数据元素前插入结点
p head s p head data next a0 x

a1

an-1

(a) 插入前
data next a0

a1

an-1

s
x
(b) 插入后
2).删除带头结点单链表第一个数据元素结点
p data next head
(5)取数据元素ListGet(L,
i, x)
int ListGet(SeqList L, int i, DataType *x) { if(i < 0 || i > L.size-1) { printf("参数i不合法! \n"); return 0; } else { *x = L.list[i]; return 1; } }

带头结点的双向循环链表操作集

带头结点的双向循环链表操作集

带头结点的双向循环链表操作集带头结点的双向循环链表操作集1. 链表的定义链表是一种数据结构,它由一系列节点组成,每个节点存储数据和指向下一个节点的指针。

链表可以分为单向链表和双向链表。

在双向链表中,每个节点有两个指针,一个指向前一个节点,另一个指向后一个节点。

2. 链表的基本操作2.1 链表的创建创建一个带头结点的双向循环链表,可以按照以下步骤进行:1. 创建头结点2. 将头结点的前指针和后指针均指向自身,完成循环链接的闭合3. 将头结点作为链表的起始节点2.2 链表的遍历链表的遍历是指按照某种顺序遍历链表中的所有节点。

可以使用循环或递归的方法进行遍历,其具体步骤如下:1. 先将指针指向链表的起始节点2. 依次访问每个节点,并将指针指向下一个节点,直到指针指向空节点为止2.3 链表的插入链表的插入是指将一个新的节点插入到链表中的某个位置。

如果要在第i个位置插入一个新节点,需要进行以下操作:1. 新建一个节点,并将要插入的数据存储在其中2. 找到第i-1个节点,并将它的后指针指向新节点3. 将新节点的前指针指向第i-1个节点,后指针指向第i个节点4. 如果插入位置是链表的末尾,则需要将新节点的后指针指向头结点,完成循环链接的闭合2.4 链表的删除链表的删除是指将链表中某个节点删除。

如果要删除第i个节点,需要进行以下操作:1. 找到第i个节点2. 将第i-1个节点的后指针指向第i+1个节点3. 将第i+1个节点的前指针指向第i-1个节点4. 释放第i个节点所占用的内存空间3. 链表的应用链表常常被用于各种算法和数据结构中,如栈、队列、哈希表、图等。

链表具有无需预先分配内存空间,插入和删除操作效率高等优点,在某些场合可以取代数组进行操作。

4. 链表的优化在实际使用中,链表的优化也是非常重要的,可以采用以下方法进行优化:1. 在插入和删除操作频繁的场合,可以选用跳表、B树等数据结构进行优化2. 在查询操作频繁的场合,可以选用哈希表等数据结构进行优化3. 可以使用链表的迭代器进行遍历操作,比单纯使用指针更加方便和安全5. 总结带头结点的双向循环链表是一种常用的数据结构,具有插入和删除操作效率高、可以减少分配内存空间等优点。

数据结构c语言版(题目)

数据结构c语言版(题目)

分类:编程思想和算法2012-09-15 22:24 1759 人阅读评论(0)收藏举报如果TCPhashlistJuli 采用线性表的顺序存储结构,则可以随机存取表中任一终端,但插入和删除终端时,需要移动大量元素,巧妙地终端离线不进行删除操作。

数组,存储的元素应该是线性表顺序存储结构的数据结构。

线性表题目类型:线性表在顺序结构上各种操作的实现;线性链表的各种操作;两个或多个线性表的各种操作;循环链表和双向链表;稀疏多项式及其运算在线性表的两种存储结构上的实现。

线性表在顺序结构上各种操作的实现题目1:(线性表顺序存储结构上的操作—Delete )从顺序存储结构的线性表a 中删除第i个元素起的k个元素。

(《数据结构题集C语言版》P16)题目2:(线性表顺序存储结构上的操作_lnsert )设顺序表va中的数据元素递增有序。

试写一算法,将x插入到循序表的适当位置上,以保持该表的有序性。

(《数据结构题集C语言版》P17)题目3:(线性表顺序存储结构上的操作_逆置)试写一算法,实现顺序表的就地逆置,即利用原表的存储空间将线性表逆置。

(《数据结构题集C语言版》2.21)线性表线性链表的各种操作题目1:( Insert )试写一算法,在无头结点的动态单链表上实现线性表的Insert(L,i,b), 并和在带头结点的动态单链表上实现同样操作的算法进行比较。

(《数据结构题集C语音版》P17)题目2:(Delete )同上题要求,实现线性表操作Delete(L,i).题目3:已知线性表中的元素以值递增有序排序,并以单链表作为存储结构。

试写一高效算法,删除表中所有值大于mink且小于maxk的元素(若表中存在这样的元素)同时释放被删除结点空间,并分析你的算法的事件复杂度(注意:mink和maxk是给定的两个参变量,它们的值可以和表中的元素相同,也可以不同)。

(《数据结构题集C语言版》P17)题目4:同上题条件,试写一高效算法,删除表中所有值相同的多余元素(使得操作后的线性表所有元素的值均不相同),同是释放被删结点空间,并分析你算法的时间复杂度。

C语言-链表

C语言-链表

NWPU—CC—ZhangYanChun
13

void main( )
{┇
for(i=1; i<=N; i++)
/*建立链表*/
{┇
}
for(i=1; i<=N; i++)
/*输出链表*/
{ if(i==1) p1=head;
/*p1指向首节点*/
else p1=p1->next; /*p1指向下一节点*/
第第9十页,一共2章8页。 结构体与共用体
NWPU—CC—ZhangYanChun
10
3) 重复第2步,建立并链接多个节点直至所需长
度,将末尾节点的next成员赋值0。
head
1048 p1 1370 p1
2101
2304
1012
2918
89.5
90
85
操作:
1370
1012
NULL
pp22
p2
p1=(struct student *)malloc(len);
成功,返回存储块起始指针,该指针类型为
void *;否则返回空指针(NULL)。
内存释放函数原形:void free(void *p); 功能:释放p所指向的内存块。
包含文件:malloc.h、stdlib.h中均有其原型声明。
C 程序设计
第第4十页,一共2章8页。 结构体与共用体
NWPU—CC—ZhangYanChun
第第5十页,一共2章8页。 结构体与共用体
NWPU—CC—ZhangYanChun
6
6) 链表的类型
单链表:每个节点只有一个指向后继节点的指针 双向链表:每个节点有两个用于指向其它节点的指针;

循环链表和双向链表

循环链表和双向链表

b.head->next = NULL; //此时,b中已只剩第一个结点(头), 为其置空表标志
return k; //返回结果链表中的元素个数
}
为了进一步说明上述程序,举一个程序运行的例子, 其各次循环的运行结果如图5-6所示
p
7 0 3 2 -9 3 1 5
^
(a)A(x)=p5(x)=7+3x2-9x3+x5,进入循环前
该程序不断比较A链和B链中的一对结点的指数值 (称其为当前结点)。开始时A链和B链中参加比较
的当前结点都是它们的第一个元素。
主循环while结束后,可能出现下列3种情况:①A
链和B链同时被处理完;②只有B链处理完;③只有A
链处理完。 对第一和第二种情况,不需要“善后”处理。对第 三种情况,B链中尚有未被处理完的结点,需将其挂 接在结果链的尾部。循环外的“if(q 不为空)将q
p = p->next; } // if (x==0) … else … q0 = q; q = q->next; delete q0; //将q所指结点从表中删除并释放,令q新指向原所 指的下一个 } // if (p->exp > q->exp ) … else … } //while if (q!=NULL) p0->next = q;
为处理方便,在具体存储多项式时,我们规定:
所存储的多项式已约简,即已合并同类项,不 保留0系数项,各项按指数的升序排列。 (二)多项式加法实现—直接操作链表 为操作方便,我采用带头结点的非循环链表,下面给 出一个例子说明多项式的这种表示法。
设有一个一元5次多项式: P5(x)=7+3x-9x3+x5

c语言plinknode的含义

c语言plinknode的含义

C语言plinknode的含义简介在C语言中,`p li nk n od e`是一个常用的数据结构,用于表示链表中的节点。

链表是一种常见的数据结构,由一系列节点组成,每个节点都包含一个指针指向下一个节点。

而`pl in kno d e`则是这些节点中的一种特殊类型,它除了包含指向下一个节点的指针外,还保存了指向上一个节点的指针。

plink node的定义在C语言中,我们可以通过如下的结构体定义来创建一个`p li nk no de`类型的节点:```ct y pe de fs tr uc tp lin k no de{s t ru ct pl in kn od e*p r ev;//指向上一个节点的指针s t ru ct pl in kn od e*n e xt;//指向下一个节点的指针i n td at a;//节点中存储的数据}p li nk no de;```plink node的特性双向链表`p li nk no de`的最大特点就是它定义了双向链表(又称双链表)。

传统的链表只能从前向后访问节点,即只能通过当前节点的下一个节点指针来遍历链表。

然而,有些场景下需要从后向前遍历链表,这时就可以使用`p li nk no de`来构建双向链表。

通过`p l in kn od e`的`pr ev`指针,我们可以方便地从当前节点回溯到前一个节点。

灵活性与插入操作由于双向链表的存在,`pl in kn od e`在插入操作上更加灵活。

在传统链表中,在某个节点之后插入一个新节点需要修改前一个节点的指针指向新节点,而且需要额外处理新节点的指针。

而使用`p li nk no de`,我们只需要修改三个指针,即当前节点、新节点以及下一个节点的指针,就可以完成插入操作。

删除操作与插入操作类似,`p l in kn od e`在删除操作上也更加高效。

传统链表中,删除一个节点需要修改前一个节点的指针指向下一个节点,同时释放当前节点的内存空间。

C语言实现循环链表

C语言实现循环链表

C语⾔实现循环链表本⽂实例为⼤家分享了C语⾔实现循环链表的具体代码,供⼤家参考,具体内容如下注意事项:1、循环链表设置尾指针。

由于在链表的操作过程中,尾指针会不断变化,所以在⼀些函数的形参中都设置指向头指针的指针。

以及链表的结束判断条件变成q是否等于尾指针。

2、注意传递的实参需要取地址3、循环链表的优势在于双链表合并,以及实现尾插法简单(⾸先新建结点指向头结点,然后把尾指针的next域指向该新建结点)4、在创建链表时,使⽤尾插法,⽽不是⽤头插法(因为头插法很难去更新尾指针,使得最后尾指针还需额外更新⼀次),直接⽤头插法建⽴的是头指针,⽽⾮尾指针代码:#include<stdio.h>#include<stdlib.h>typedef struct Node{int data;struct Node * next;}Node, *LinkList;LinkList Creat();void Destroy(LinkList *L);void Insert(LinkList *L, int val, int index);void Delete(LinkList *L, int index);void Traverse(LinkList L);int main(){LinkList L = Creat();Traverse(L);Insert(&L, 1, 5);printf("After inserting is :\n");Traverse(L);printf("After deleting is :\n");Delete(&L, 2);Traverse(L);Destroy(&L);Traverse(L);}LinkList Creat(){LinkList L = (LinkList)malloc(sizeof(Node));//⽤L指针指向新建结点,这⾥L还不算尾指针int n;L->data = -1;L->next = L;//头结点的指针域指向头结点, 注意!这⾥是对尾指针的初始化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
{
if((s= (stud *) malloc(sizeof(stud)))==NULL)
{
printf("不能分配内存空间!");
exit(0);
}
p->rlink=s;
printf("请输入第%d个人的姓名",i+1);
scanf("%s",s->name);
s->llink=p;
s->rlink=NULL;
p=h;
for(i=0;i<n;i++)
{
if((s= (stud *) malloc(sizeof(stud)))==NULL)
{
printf("不能分配内存空间!");
exit(0);
}
p->rlink=s;
printf("请输入第%d个人的姓名",i+1);
scanf("%s",s->name);
1、在建立一个循环链表时,必须使其最后一个结点的指针指向表头结点,而不是象单链表那样置为NULபைடு நூலகம்。此种情况还使用于在最后一个结点后插入一个新的结点。
2、在判断是否到表尾时,是判断该结点链域的值是否是表头结点,当链域值等于表头指针时,说明已到表尾。而非象单链表那样判断链域值是否为NULL。
二、双向链表
searchpoint=search(head,studname);
printf("你所要查找的人的姓名是:%s",*&searchpoint->name);
}
2、插入
对于双向循环链表,我们现在可以随意地在某已知结点p前或者p后插入一个新的结点。
假若s,p,q是连续三个结点的指针,若我们要在p前插入一个新结点r,则只需把s的右链域指针指向r,r的左链域指针指向s,r的右链域指针指向p,p的左链域指针指向r即可。
}
printf("没有查找到该数据!");
}
void print(stud *h)
{
int n;
stud *p;
p=h->rlink;
printf("数据信息为:\n");
while(p!=h)
{
printf("%s ",&*(p->name));
p=p->rlink;
}
printf("\n");
}
下例就是应用双向循环链表查找算法的一个程序。
#include<stdio.h>
#include<malloc.h>
#define N 10
typedef struct node
{
char name[20];
struct node *llink,*rlink;
}stud;
stud * creat(int n)
在双向链表中,结点除含有数据域外,还有两个链域,一个存储直接后继结点地址,一般称之为右链域;一个存储直接前驱结点地址,一般称之为左链域。在C语言中双向链表结点类型可以定义为:
typedef struct node
{
int data; /*数据域*/
struct node *llink,*rlink; /*链域,*llink是左链域指针,*rlink是右链域指针*/
s->llink=p;
s->rlink=NULL;
p=s;
}
h->llink=s;
p->rlink=h;
return(h);
}
stud * search(stud *h,char *x)
}JD;
当然,也可以把一个双向链表构建成一个双向循环链表。
双向链表与单向链表一样,也有三种基本运算:查找、插入和删除。
双向链表的基本运算:
1、查找
假若我们要在一个带表头的双向循环链表中查找数据域为一特定值的某个结点时,我们同样从表头结点往后依次比较各结点数据域的值,若正是该特定值,则返回指向结点的指针,否则继续往后查,直到表尾。
main()
{
int number;
char studname[20];
stud *head,*searchpoint;
number=N;
clrscr();
head=creat(number);
print(head);
printf("请输入你要查找的人的姓名:");
scanf("%s",studname);
在p,q之间插入原理也一样。
下面就是一个应用双向循环链表插入算法的例子:
#include<stdio.h>
#include<malloc.h>
#include<string.h>
#define N 10
typedef struct node
{
char name[20];
struct node *llink,*rlink;
p=s;
}
h->llink=s;
p->rlink=h;
return(h);
}
stud * search(stud *h,char *x)
{
stud *p;
char *y;
p=h->rlink;
while(p!=h)
{
y=p->name;
if(strcmp(y,x)==0)
return(p);
else p=p->rlink;
双向链表其实是单链表的改进。
当我们对单链表进行操作时,有时你要对某个结点的直接前驱进行操作时,又必须从表头开始查找。这是由单链表结点的结构所限制的。因为单链表每个结点只有一个存储直接后继结点地址的链域,那么能不能定义一个既有存储直接后继结点地址的链域,又有存储直接前驱结点地址的链域的这样一个双链域结点结构呢?这就是双向链表。
}stud;
stud * creat(int n)
{
stud *p,*h,*s;
int i;
if((h=(stud *)malloc(sizeof(stud)))==NULL)
{
printf("不能分配内存空间!");
exit(0);
}
h->name[0]=’\0’;
h->llink=NULL;
h->rlink=NULL;
链表的C语言实现之循环链表及双向链表
作者:未知文章出处:编程中国更新时间:2007-10-9
一、循环链表
循环链表是与单链表一样,是一种链式的存储结构,所不同的是,循环链表的最后一个结点的指针是指向该循环链表的第一个结点或者表头结点,从而构成一个环形的链。
循环链表的运算与单链表的运算基本一致。所不同的有以下几点:
{
stud *p,*h,*s;
int i;
if((h=(stud *)malloc(sizeof(stud)))==NULL)
{
printf("不能分配内存空间!");
exit(0);
}
h->name[0]=’\0’;
h->llink=NULL;
h->rlink=NULL;
p=h;
for(i=0;i<n;i++)
相关文档
最新文档