普通物理学刚体转动答案

合集下载

刚体定轴转动 大学物理习题答案

刚体定轴转动 大学物理习题答案

薄圆盘对过球心轴的转动惯量为 d J 1 r 2 d m 1 R5 cos 5 d
2
2
J 2
/2 1 r2 dm
/2
R5 cos 5d
8
R 5
8
m R5 2 mR 2
02
0
15
15 4 R 3
5
3
由平行轴定理, J J mR 2 2 mR 2 mR 2 7 mR 2
5
5
悬垂。现有质量 m=8g 的子弹,以 v=200m/s 的速率从 A 点射入棒中,假定 A 点与 O 点的距离为 3 l , 4
如图 4-11 所示。求:(1)棒开始运动时的角速度;(2)棒的最大偏转角。
解:(1) 子弹射入前后系统对 O 点的角动量守恒
mv 3 l J , J 1 Ml 2 m ( 3 l)2 1 1 0.42 0.008 9 0.42 0.054 kg m2
计小球大小)
A
解:M (3m m)g l cos l mg cos ,J 3m( l )2 1 ml2 m( l )2 1 ml 2
4
2
4 12
43
l/4 O
l
图 4-5
13
大学物理练习册—刚体定轴转动
M
l mg cos 2
3g
cos
J
1 ml 2
2l
3
4-6 一均匀圆盘,质量为 m,半径为 R,可绕通过盘中心的光滑竖直轴在水平桌面上转动,如图 4-6 所示。 圆盘与桌面间的动摩擦因数为 ,若用外力推动使其角速度达到 0 时,撤去外力,求(1)转动过程 中,圆盘受到的摩擦力矩;(2)撤去外力后,圆盘还能转动多少时间?
dt d 0
0

大学物理题库-第4章-刚体的转动习题(含答案解析)

大学物理题库-第4章-刚体的转动习题(含答案解析)

刚体习题一、选择题 1、如图所示,A 、B 为两个相同的绕着轻绳的定滑轮.A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且F =Mg .设A 、B 两滑轮的角加速度分别为βA 和βB ,不计滑轮轴的摩擦,则有(A) βA =βB . (B) βA >βB .(C) βA <βB . (D) 开始时βA =βB ,以后βA <βB . [ ]2、关于刚体对轴的转动惯量,下列说法中正确的是(A )只取决于刚体的质量,与质量的空间分布和轴的位置无关.(B )取决于刚体的质量和质量的空间分布,与轴的位置无关.(C )取决于刚体的质量、质量的空间分布和轴的位置.(D )只取决于转轴的位置,与刚体的质量和质量的空间分布无关.[ ]3、有两个力作用在一个有固定转轴的刚体上:(1) 这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2) 这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3) 当这两个力的合力为零时,它们对轴的合力矩也一定是零;(4) 当这两个力对轴的合力矩为零时,它们的合力也一定是零.在上述说法中,(A) 只有(1)是正确的.(B) (1) 、(2)正确,(3) 、(4) 错误.(C) (1)、(2) 、(3) 都正确,(4)错误.(D) (1) 、(2) 、(3) 、(4)都正确. [ ]4、如图所示,一质量为m 的匀质细杆AB ,A 端靠在粗糙的竖直墙壁上,B 端置于粗糙水平地面上而静止.杆身与竖直方向成θ角,则A 端对墙壁的压力大小 (A) 为 41mg cos θ. (B)为21mg tg θ. (C) 为 mg sin θ.(D) 不能唯一确定. [ ]5、均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示.今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的?(A) 角速度从小到大,角加速度从大到小.(B) 角速度从小到大,角加速度从小到大.(C) 角速度从大到小,角加速度从大到小.(D) 角速度从大到小,角加速度从小到大. [ ]6、关于力矩有以下几种说法:(1) 对某个定轴而言,内力矩不会改变刚体的角动量.(2) 作用力和反作用力对同一轴的力矩之和必为零.(3) 质量相等,形状和大小不同的两个刚体,在相同力矩的作用下,它们的角加速度一定相等.在上述说法中,(A) 只有(2) 是正确的.(B) (1) 、(2) 是正确的.(C) (2) 、(3) 是正确的.(D) (1) 、(2) 、(3)都是正确的. [ ]7、一水平圆盘可绕通过其中心的固定竖直轴转动,盘上站着一个人.把人和圆盘取作系统,当此人在盘上随意走动时,若忽略轴的摩擦,此系统(A) 动量守恒.(B) 机械能守恒.(C) 对转轴的角动量守恒.(D) 动量、机械能和角动量都守恒.(E) 动量、机械能和角动量都不守恒. [ ]8、质量为m 的小孩站在半径为R 的水平平台边缘上.平台可以绕通过其中心的竖直光滑固定轴自由转动,转动惯量为J .平台和小孩开始时均静止.当小孩突然以相对于地面为v 的速率在台边缘沿逆时针转向走动时,则此平台相对地面旋转的角速度和旋转方向分别为(A) ⎪⎭⎫ ⎝⎛=R J mR v 2ω,顺时针. (B) ⎪⎭⎫ ⎝⎛=R J mR v 2ω,逆时针. (C) ⎪⎭⎫ ⎝⎛+=R mR J mR v 22ω,顺时针.(D) ⎪⎭⎫ ⎝⎛+=R mR J mR v 22ω,逆时针.[ ]9、一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度ω(A) 增大. (B) 不变.(C) 减小. (D) 不能确定 [ ]10、(0405)人造地球卫星,绕地球作椭圆轨道运动,地球在椭圆的一个焦点上,则卫星的(A)动量不守恒,动能守恒.(B)动量守恒,动能不守恒.(C)对地心的角动量守恒,动能不守恒.(D)对地心的角动量不守恒,动能守恒. [ ]11、一个圆盘在水平面内绕一竖直固定轴转动的转动惯量为J ,初始角速度为ω 0,后来变为021ω.在上述过程中,阻力矩所作的功为: (A) 2041ωJ . (B) 2081ωJ -. (C) 2041ωJ - (D) 2083ωJ -. [ ] 12、一均匀细杆可绕垂直它而离其一端l / 4 (l 为杆长)的水平固定轴O 在竖直平面内转动.杆 m m的质量为m ,当杆自由悬挂时,给它一个起始角速度ω 0,如杆恰能持续转动而不作往复摆动(一切摩擦不计)则需要 (A) ω 0≥l g 7/34. (B) ω 0≥l g /4.(C) ω 0≥()l g /3/4. (D) ω 0≥l g /12.[已知细杆绕轴O 的转动惯量J =(7/48)ml 2] [ ]13、假设卫星环绕地球中心作圆周运动,则在运动过程中,卫星对地球中心的(A) 角动量守恒,动能也守恒.(B) 角动量守恒,动能不守恒.(C) 角动量不守恒,动能守恒.(D) 角动量不守恒,动量也不守恒.(E) 角动量守恒,动量也守恒. [ ]14、一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1和m 2的物体(m 1<m 2),如图所示.绳与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力(A) 处处相等. (B) 左边大于右边. (C) 右边大于左边. (D) 哪边大无法判断. [ ]15、如图所示,一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴O 旋转,初始状态为静止悬挂.现有一个小球自左方水平打击细杆.设小球与细杆之间为非弹性碰撞,则在碰撞过程中对细杆与小球这一系统(A) 只有机械能守恒.(B) 只有动量守恒.(C) 只有对转轴O 的角动量守恒.(D) 机械能、动量和角动量均守恒. [ ]二、填空题1、如图4-23所示,质量为m 和m 2的两个质点A 和B ,用一长为l 的轻质细杆相连,系统绕通过杆上o 点且与杆垂直的轴转动。

大学物理第四章 刚体的转动部分的习题及答案

大学物理第四章 刚体的转动部分的习题及答案

第四章 刚体的转动一、简答题:1、简述刚体定轴转动的角动量守恒定律并给出其数学表达式?答案:刚体定轴转动时,若所受合外力矩为零或不受外力矩,则刚体的角动量保持不变。

2、写出刚体绕定轴转动的转动定律文字表达与数学表达式?答案:刚体绕定轴转动的转动定律:刚体绕定轴转动时,刚体的角加速度与它所受的合外力矩成正比,与刚体的转动惯量成反比。

表达式为:αJ M =。

3、写出刚体转动惯量的公式,并说明它由哪些因素确定?答案:dm r J V⎰=2①刚体的质量及其分布;②转轴的位置;③刚体的形状。

二、选择题1、在定轴转动中,如果合外力矩的方向与角速度的方向一致,则以下说法正确的是 ( A )A.合力矩增大时,物体角速度一定增大;B.合力矩减小时,物体角速度一定减小;C.合力矩减小时,物体角加速度不一定变小;D.合力矩增大时,物体角加速度不一定增大2、关于刚体对轴的转动惯量,下列说法中正确的是 ( C ) A.只取决于刚体的质量,与质量的空间分布和轴的位置无关; B.取决于刚体的质量和质量的空间分布,与轴的位置无关; C.取决于刚体的质量,质量的空间分布和轴的位置;D.只取决于转轴的位置,与刚体的质量和质量的空间分布无关;3、有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动, 转动惯量为J ,开始时转台以匀角速度0ω转动,此时有一质量为m 的人站住转台中心,随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为 ( A ) A.()2mR J J +ω B.()2Rm J J +ω C.20mR J ω D.0ω4、均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示。

今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的? ( A )A.角速度从小到大,角加速度从大到小.B.角速度从小到大,角加速度从小到大.C.角速度从大到小,角加速度从大到小.D.角速度从大到小,角加速度从小到大.5、一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度( C )A.增大B.不变C.减小 (D) 、不能确定6、在地球绕太阳中心作椭圆运动时,则地球对太阳中心的 ( B ) A.角动量守恒,动能守恒 B.角动量守恒,机械能守恒 C.角动量不守恒,机械能守恒 D.角动量守恒,动量守恒7、有两个半径相同,质量相等的细圆环A 和B ,A 环的质量分布均匀,B 环的质量分布不均匀,它们对通过环心并与环面垂直的轴的转动惯量分别为A J 和B J ,则 ( C )A.B A J J >;B.B A J J <;C.B A J J =;D.不能确定A J 、B J 哪个大。

大学物理五第三章习题答案

大学物理五第三章习题答案

第三章 刚体的转动习题答案1、对于定轴转动刚体上不同的点来说:线速度、法向加速度、切向加速度具有不同的值,角位移、角速度、角加速度具有相同的值。

2、由sin M r F Fr θ=⨯=可知,(1)0,0F M ≠=,当0r =或者sin 0θ=,即力通过转轴或者力与转轴平行; (2)0,0F M =≠,这种情况不存在; (3)0,0F M ==,这种情况任何时候都存在。

3、根据均匀圆盘对中心轴的转动惯量:221122I mr vr ρ==可知,对于相同几何形状的铁盘和铝盘,密度大的转动惯量大。

通常我们取铁的密度为37.9/g cm ,铝的密度32.7/g cm ,因此铁盘对中心轴的转动惯量大;根据刚体动能定理:21222111d 22A M I I θθθωω==-⎰,可知对铁盘的外力矩要做更多的功。

4、轮A 的转动惯量212I mr =,轮B 的转动惯量2I mr =,根据刚体的转动定律M I β=,因为两者所受的阻力矩相等,可知轮A 的转动角加速度大于轮B 的转动角加速度,故轮A 先停止。

5、舞蹈演员在旋转过程中,可以近似地认为角动量守恒,当其把双手靠近身体时,转动惯量减小,故角速度增大;当其把双手伸开,转动惯量增大,故角速度减小。

6、解:2334d a bt ct dtθω==+-, 2612d b t c t dtωβ==-。

7、解:11200240/60rad s πωπ⨯==,22700290/60rad s πωπ⨯==, 2215025/126rad s t ωωππβ-===∆, 2117803902t t n θωβπ=+==。

8、解:根据均匀球体对直径轴的转动惯量225I mr =,得到地球对自转轴的转动惯量3729.810I kg m =⨯⋅,地球自转角速度2/246060rad s πω=⨯⨯,转动动能22813102k E I J ω==⨯。

9、解:已知030/rad s ωπ=,切断电源后的角位移752150θππ=⨯=,根据匀减速运动规律2220023/2rad s ωωβθβπθ=⇒==,由于电扇是匀减速,可知阻力矩为常量,因此根据刚体转动动能定理22101144.422M I I J θωω=-=-, 可得到转动惯量2244.420.01I kg m ω⨯==⋅,以及阻力矩44.40.1150M N m π=≈⋅。

《大学物理》课后解答题 第三章刚体定轴转动

《大学物理》课后解答题  第三章刚体定轴转动

第三章 刚体定轴转动一、思考讨论题1、刚体转动时,若它的角速度很大,那么作用它上面的力是否一定很大?作用在它上面的力矩是否一定很大?解:刚体转动时,它的角速度很大,作用在它上面的力不一定大,作用在它上面的力矩也不一定大。

ω增大,则增大增大,M , βωI dtd I ==, 又⨯= 更无直接关系。

与无直接关系,则有关,与与ωωβF M 2、质量为m =4kg 的小球,在任一时刻的矢径j t i t r 2)1(2+-=,则t s =3时,小球对原点的角动量=?从t =1s 到t s =3的过程中,小球角动量的增量=?。

解:角动量)22(]2)1[(2t m j t i t dtd m m +⨯+-=⨯=⨯= t s =3j i t m j t i t 80)26(4)68()22(]2)1[(23-=+⨯+=+⨯+-==j t m j t i t 16)22(42)22(]2)1[(21-=+⨯=+⨯+-==64)16(8013-=---==∆==3、如图5.1,一圆形台面可绕中心轴无摩擦地转动,有一辆玩具小汽车相对于台面由静止开始启动,绕作圆周运动,问平台面如何运动?若经过一段时间后小汽车突然刹车,则圆台和小汽车怎样运动?此过程中,对于不同的系统,下列表中的物理哪些是守恒量,受外力,合外力矩情况如何?解:平台绕中心轴转动,方向与小车转动方向相反。

小车突然刹车,圆台和小车同时减速、同时静止。

分别考虑小车和圆台在垂直和水平方向的受力。

图5.1tf n小车圆台4、绕固定轴作匀变速转动的刚体,其中各点都绕轴作圆周运动,试问刚体上任一点是否具有切向加速度?是否具有法向加速度?法向加速度和切向加速度大小是否变化? 解:刚体上的任何一点都有切向加速度。

也有法向加速度。

大小不发生变化。

5、在一物体系中,如果其角动量守恒,动量是否也一定守恒?反之,如果该系统的动量守恒,角动量是否也一定守恒?解:在一物体系中,角动量守恒,动量不一定守恒。

[分享]第四章刚体的转动问题与习题解答

[分享]第四章刚体的转动问题与习题解答

第四章 刚体的转动 问题与习题解答问题:4-2、4-5、4-94-2如果一个刚体所受合外力为零,其合力矩是否也一定为零?如果刚体所受合外力矩为零,其合外力是否也一定为零?答:一个刚体所受合外力为零,其合力矩不一定为零,如图a 所示。

刚体所受合外力矩为零,其合外力不一定为零,例如图b 所示情形。

4-5为什么质点系动能的改变不仅与外力有关,而且也与内力有关,而刚体绕定轴转动动能的改变只与外力矩有关,而与内力矩无关?答:因为合外力对质点所作的功,等于质点动能的增量;而质点系中内力一般也做功,故内力对质点系的动能的增量有贡献。

而在刚体作定轴转动时,任何一对内力对转轴的力矩皆为一对大小相等、方向相反的力矩,且因定轴转动时刚体转过的角度d θ都一样,故其一对内力矩所作的功()0inij ij ji ij ji W M d M d M M d θθθ=+=+=,其内力功总和也为零,因而根据刚体定轴转动的动能定理可知:内力矩对其转动动能的增量无贡献。

4-9一人坐在角速度为0ω的转台上,手持一个旋转的飞轮,其转轴垂直地面,角速度为ω'。

如果突然使飞轮的转轴倒转,将会发生什么情况?设转台和人的转动惯量为J ,飞轮的转动惯量为J '。

答:(假设人坐在转台中央,且飞轮的转轴与转台的转轴重合)视转台、人和飞轮为同一系统。

(1)如开始时飞轮的转向与转台相同,则系统相对于中心轴的角动量为:10L J J ωω''=+飞轮转轴快速倒转后,飞轮的角速度大小还是ω',但方向与原来相反;如设转台此时的角速度为1ω,则系统的角动量为:21L J J ωω''=-在以上过程中,外力矩为零,系统的角动量守恒,所以有:10J J J J ωωωω''''-=+即 102J Jωωω''=+,转台的转速变大了。

(2)如开始时飞轮的转向与转台相反,则系统相对于中心轴的角动量为:10L J J ωω''=-飞轮转轴快速倒转后,飞轮的角速度大小还是ω',但方向与原来相反;如设转台此时的角速度为1ω,则系统的F 1F 3ab角动量为:21L J J ωω''=+在以上过程中,外力矩为零,系统的角动量守恒,所以有:10J J J J ωωωω''''+=-即 102J Jωωω''=-,转台的转速变慢了。

大学物理第四章-刚体的转动-习题及答案

大学物理第四章-刚体的转动-习题及答案
第 4 章 刚体的定轴转动 习题及答案
1.刚体绕一定轴作匀变速转动,刚体上任一点是否有切向加速度?是否有法向加速度?切向和法 向加速度的大小是否随时间变化?
答:当刚体作匀变速转动时,角加速度 不变。刚体上任一点都作匀变速圆周运动,因此该点速
率在均匀变化,v l ,所以一定有切向加速度 at l ,其大小不变。又因该点速度的方向变化,
ω dr
(1)圆盘上半径为r、宽度为dr的同心圆环所受的摩擦力矩

dM
m
(
R2
2 rdr)grBiblioteka 2r 2 mgdr/
R2
负号表示摩擦力矩为阻力矩。对上式沿径向积分得圆盘所受
r dF
的总摩擦力矩大小为
M dM R 2r2mgdrdr 2 mgR
0
R2
3
(2)由于摩擦力矩是一恒力矩,圆盘的转动惯量 I 1 mr2 ,由角动量定理可得圆盘停止的 2
度.
解:碰撞过程满足角动量守恒:
2 3
mv0l
1 2
mv0
2 3
l
I

I m( 2 l)2 2m(1 l)2 2 ml2
3
33
所以
mv0l
2 3
ml 2
由此得到: 3v0 2l
2m
1 3
l
O⅓l
1 2
v
0
2 3
l
m
⅓l m v0
⅓l
15. 如图所示,A和B两飞轮的轴杆在同一中心线上,设两轮的转动惯量分别为 JA=10 kg·m2 和 JB
2
2
22
2
2
1 16
( Ld14
1 2
ad24

大学物理刚体的运动及其习题答案

大学物理刚体的运动及其习题答案

M J mR / t
2

M=f R= m NR
已知:重物m1m2 滑轮 M1 M2,R1 R2
m1 : m1 g T1 m1a m2 : T3 m2 g m2 a
J1 : T1R1 T2 R1 J11
T2 a
T1
m1
T3
m2
J 2 : T2 R2 T3 R2 J 2 2
静止时间2.2 ×10-6 运动尺子缩短 8000/g
下落需要时间 8000/g (0.998 ×3 ×108)=2.7 ×10-5/g

6-5已知:D x=0, Dt =2s, Dt’ =3s 求: Dx’ u 解: Dt ' g (Dt 2 Dx) =gDt c D x’=g (Dx-uDt) g =1.5,u=0.75c
思考:什么情况力矩为零?
例 滑轮转动惯量J, 绳子质量不计
平动
转动
T2
T1
a
m1 : m1 g T1 m1a m2 : T2 m2 g m2 a J : T1R T2 R J
a/R
一个飞轮的质量为m=60kg, 半径为R=0.25m, 正以每分1000转的转速转动.现要制动飞轮, 要求在t=5.0s内使它减速而停下来.求闸瓦对 轮的压力N。假定闸瓦与飞轮之间的摩擦系 数为m=0 .4,而飞轮的质量视为全部分布在 轮的外周。 N F 解:=1000· 2p /60 /t f
第五章
刚体的定轴转动
5-1 刚体的运动
5-2 刚体定轴转动定律
5-3 转动惯量的计算
5-4 刚体定轴转动定律的应用
5-5 转动中的功和能
5-6 刚体的角动量和角动量守恒定律

《物理学基本教程》课后答案_第四章__刚体的转动

《物理学基本教程》课后答案_第四章__刚体的转动

第五章 刚体的转动5-13 如图5-13(a)所示,滑轮转动惯量为0.012m kg ⋅,半径为7 cm ,物体质量为5 kg ,由一绳与倔强系数k=200 N/m 的弹簧相连,若绳与滑轮间无相对滑动,滑轮轴上的摩擦忽略不计,求:(1)当绳拉直弹簧无伸长时,使物体由静止而下落的最大距离;(2)物体速度达最大值的位置及最大速率.分析 下面的5-17题中将证明,如果绕定轴转动的刚体除受到轴的支承力外仅受重力作用,则由刚体和地球组成的系统机械能守恒.如果将滑轮、地球和物体与弹簧组成一个弹性系统和重力系统合成的系统,当无重力和弹性力以外的力作功的情况下,整个系统的机械能守恒,可以应用机械能守恒定律.下面的解则仅应用功能原理和力矩所作的功与刚体转动动能的关系进行计算.解 (1) 物体由静止而下落到最低点时,速度为零,位移为1x ,在此期间重力所作的功完全转换为弹簧弹性势能的增量,即21121kx mgx = m 0.49m 2008.95221=⨯⨯==k mg x (2)物体与滑轮受力如图5-13(b)所示,设物体的最大速率为0v ,此时的位移为0x ,加速度00=a ,滑轮的角加速度000==R a α,分别应用牛顿第二定律和转动定律T1aF ’T1m m g(a) (b)图5-13ma F mg =-T1αJ R F F =-)(T2T1可得此时T1F mg =,F T1= F T2,又因对于轻弹簧有0T2kx F =,则得m 0.245m 2008.950=⨯==k mg x 在此过程中,重力所作之功等于弹性势能的增量、物体动能和滑轮转动动能的增量的和,即2020200212121ωJ m kx mgx ++=v 因R00v =ω,得 m/s 31.1m/s 9.85)07.001.05(2001)(122=⨯⨯+⨯=+=mg R J m k v5-7 如图5-7(a )所示的系统中,m 1 = 50 kg ,m 2 = 40 kg ,圆盘形滑轮质量m = 16 kg ,半径R = 0.1 m ,若斜面是光滑的,倾角为30°,绳与滑轮间无相对滑动,不计滑轮轴上的摩擦,(1)求绳中张力;(2)运动开始时,m 1距地面高度为1 m ,需多少时间m 1到达地面?分析 由于存在物体运动和滑轮定轴转动,而且必须考虑圆盘形滑轮的质量,这是一个质点动力学和刚体动力学的综合问题,应该采用隔离物体法,分别m αF ’T1 F T1 m 2 m 1 F F T2a︒30m 2g m 1g(a ) (b )图5-7对运动物体作受力分析,对转动的滑轮作所受力矩的分析,然后分别应用牛顿第二定律和转动定律.解 (1)各物体与滑轮受力情况如图5-7(b )所示,其中F T1= F ’T1,F T2= F ’T2,轴对滑轮的支承力F N 不产生力矩,选取物体运动方向为坐标轴正向,分别应用牛顿第二定律和转动定律,可得22121rad/s 3021)(30sin =++︒-=g mR R m m m m α N 340)(1T1=-=αR g m FN 316)30sin (2T2=+︒=αR g m F2m/s 3==αR a(2) m 1到达地面的时间为s 0.816s 3122=⨯==a h t 、5-1 一个匀质圆盘由静止开始以恒定角加速度绕过中心而垂直于盘面的定轴转动.在某一时刻,转速为10 r/s ,再转60转后,转速变为15 r/s ,试计算:(1)角加速度;(2)由静止达到10 r/s 所需时间;(3)由静止到10 r/s 时圆盘所转的圈数.分析 绕定轴转动的刚体中所有质点都绕轴线作圆周运动,并具有相同的角位移、角速度和角加速度,因此描述运动状态的物理量与作圆周运动的质点的相似.当角加速度恒定时,绕定轴转动的刚体用角量表示的运动学公式与匀加速直线运动的公式类似.解 (1) 根据题意,转速由rad/s 1021⨯=πω变为rad/s 1522⨯=πω期间的角位移rad 260πθ⨯=,则角加速度为22222122rad/s 54.6rad/s 2602)102()152(2=⨯⨯⨯-⨯=-=πππθωωα (2) 从静止到转速为rad/s 1021⨯=πω所需时间为s 9.61s 54.61021=⨯==παωt (3) t 时间内转的圈数为48261.91022122121=⨯⨯⨯===ππωππθt N 5-2 唱片在转盘上匀速转动,转速为78 r/min ,由开始到结束唱针距转轴分别为15 cm 和7.5 cm ,(1)求这两处的线速度和法向加速度;(2)在电动机断电以后,转盘在15 s 内停止转动,求它的角加速度及转过的圈数.分析 绕定轴转动的刚体中所有质点具有相同的角位移、角速度和角加速度,但是线速度、切向加速度和法向加速度等线量则与各质点到转轴的距离有关.角量与线量的关系与质点圆周运动的相似.解 (1) 转盘角速度为rad/s 8.17rad/s 60278=⨯=πω,唱片上m 15.01=r 和m 075.02=r 处的线速度和法向加速度分别为m/s 1.23m/s 15.017.811=⨯==r ωv222121n m/s 10.0m/s 15.017.8=⨯==r ωam/s .6130m/s 075.017.822=⨯==r ωv222222n m/s .015m/s 075.017.8=⨯==r ωa(2) 电动机断电后,角加速度为22rad/s 545.0rad/s 1517.800-=-=-=t ωα 转的圈数为 75.921517.8212212=⨯⨯===πωππθt N 5-3 如图5-3所示,半径r 1 = 30 cm 的A 轮通过皮带被半径为r 2 = 75 cm 的B 轮带动,B 轮以π rad/s 的匀角加速度由静止起动,轮与皮带间无滑动发生,试求A 轮达到3000 r/min 所需要的时间. 分析 轮与皮带间无滑动,则同一时刻,两轮边缘的线速度相同,均等于皮带的传送速度;两轮边缘的切向加速度也相同,均等于皮带的加速度.解 设A 、B 轮的角加速度分别为A α、B α,由于两轮边缘与皮带连动,切向加速度相同,即2B 1A r r αα=则 B 12A ααr r = A 轮角速度达到rad/s 6030002⨯=πω所需要的时间为 s 40s 75.06030.0300022B 1A =⨯⨯⨯⨯===ππαωαωr r tB A r 1 r 2图5-35-4 在边长为b 的正方形的顶点上,分别有质量为m 的四个质点,求此系统绕下列转轴的转动惯量:(1)通过其中一质点A ,平行于对角线BD 的转轴,如图5-4所示.(2)通过A 垂直于质点所在平面的转轴.分析 由若干质点组成的质点系对某转轴的转动惯量等于各质点对该转轴转动惯量的叠加.每一质点对转轴的转动惯量等于它的质量与其到转轴的垂直距离平方的乘积. 解 (1)因质点B 和D 到转轴的垂直距离A 2B 和A 1D 为a 22,质点C 到转轴的垂直距离AC 为a 2,而质点A 位于转轴上,则系统对通过A 点平行于BD 的转轴的转动惯量为()222132222ma am a m J =+⎪⎪⎭⎫ ⎝⎛=(2) 因质点B 和D 到转轴的垂直距离AB 和AD 为a ,质点C 到转轴的垂直距离AC 为a 2,而质点A 位于转轴上,则系统对通过A 垂于质点所在平面转轴的转动惯量为()2222422ma a m ma J =+=5-5 求半径为R ,质量为m 的均匀半圆环相对于图5-5中所示轴线的转动惯量.分析 如果刚体的质量连续分布在一细线上,可用质量线密度描述其分布情况,如果分布是均匀的,则质量线密度λ为常量.在刚体上取一小段线元l d ,质量为l d λ,对转轴的转动惯量为l r d 2λ,其中该线元AA 2B图5-4R图5-5到转轴的距离r 与线元在刚体上的位置有关.整个刚体的转动惯量就是刚体上所有线元转动惯量的总和,即所取线元的转动惯量对刚体分布的整个区域积分的结果.解 均匀半圆环的质量线密度为Rm πλ=,在半圆环上取一小段圆弧作为线元θd d R l =,质量为 θπθπλd d d d m R R m l m === 此线元到转轴的距离为θsin R r =,对轴线的转动惯量为m r d 2,则整个半圆环的转动惯量为2022221d sin d mR m R m r J =⋅==⎰⎰θπθπ 5-6 一轻绳跨过滑轮悬有质量不等的二物体A 、B ,如图5-6(a)所示,滑轮半径为20 cm ,转动惯量等于2m kg 50⋅,滑轮与轴间的摩擦力矩为m N 198⋅.,绳与滑轮间无相对滑动,若滑轮的角加速度为2rad/s 362.,求滑轮两边绳中张力之差. 分析 由于定轴转动的刚体的运动规律遵从转动定律,因此对于一个定轴转动的滑轮来说,仅当其质量可以忽略,转动惯量为零,滑轮加速转动时跨越滑轮的轻绳两边的张力才相等.这就是在质点动力学问题中通常采用的简化假设.在掌握了转动定律后,不应该再忽略滑轮质量,通常将滑轮考虑为质量均匀分布的圆盘,则跨越滑轮的轻绳两边的张力对转轴的合力矩是滑轮产生角加速度的原因.解 滑轮所受力和力矩如图5-6(b)所示,其中跨越滑轮的轻绳两边的张力分别为F T1和F T2,轴的支承力F N 不产生力矩,由转动定律可得fF T1 F T2(a) (b)图5-6αJ M R F F =--f T2T1)()(1f T2T1M J RF F +=-α N 101.08N )1.9836.250(2.01 3⨯=+⨯⨯= 5-7 如图5-7(a )所示的系统中,m 1 = 50 kg ,m 2 = 40 kg ,圆盘形滑轮质量m = 16 kg ,半径R = 0.1 m ,若斜面是光滑的,倾角为30°,绳与滑轮间无相对滑动,不计滑轮轴上的摩擦,(1)求绳中张力;(2)运动开始时,m 1距地面高度为1 m ,需多少时间m 1到达地面?分析 由于存在物体运动和滑轮定轴转动,而且必须考虑圆盘形滑轮的质量,这是一个质点动力学和刚体动力学的综合问题,应该采用隔离物体法,分别对运动物体作受力分析,对转动的滑轮作所受力矩的分析,然后分别应用牛顿第二定律和转动定律.解 (1)各物体与滑轮受力情况如图5-7(b )所示,其中F T1= F ’T1,F T2= F ’T2,轴对滑轮的支承力F N 不产生力矩,选取物体运动方向为坐标轴正向,分别应用牛顿第二定律和转动定律,可得m αF ’T1 F T1 m 2 m 1 F F T2a︒30m 2g m 1g(a ) (b )图5-7由于物体的加速度等于滑轮边缘的线速度,则αR a =,与以上各式联立解得22121rad/s 3021)(30sin =++︒-=g mR R m m m m α N 340)(1T1=-=αR g m FN 316)30sin (2T2=+︒=αR g m F2m/s 3==αR a(2) m 1到达地面的时间为s 0.816s 3122=⨯==a h t 5-8 飞轮质量为60 kg ,半径为0.25 m ,当转速为1000 r/min 时,要在5 s 内令其制动,求制动力F ,设闸瓦与飞轮间摩擦系数μ=0.4,飞轮的转动惯量可按匀质圆盘计算,闸杆尺寸如图5-8所示.分析 制动力F 作用在闸杆上,闸杆在制动力和飞轮的正压力的力矩作用下达到平衡,转动轴在墙上,这是刚体在力矩作用下的平衡问题.由于二力的力臂已知,应该求出闸杆与飞轮之间的正压力.飞轮受到闸杆的正压力、闸瓦与飞轮间摩擦力和轴的支承力作用,其中闸杆的正压力和轴的支承力的力矩为零,在闸瓦与飞轮间摩擦力的力矩作用下制动,应用转动定律可以求出摩擦力矩,然后由摩擦力与正压力关系可以求出闸杆与飞轮之间的正压力.F图5-8解 以飞轮为研究对象,飞轮的转动惯量为221mR J =,制动前角速度为rad/s 6010002⨯=πω,制动时角加速度为tωα-=.制动时闸瓦对飞轮的压力为F N ,闸瓦与飞轮间的摩擦力N f F F μ=,应用转动定律,得αα2f 21mR J R F ==- 则 t mR F μω2N =以闸杆为研究对象.在制动力F 和飞轮对闸瓦的压力-F N 的力矩作用下闸杆保持平衡,两力矩的作用力臂分别为m )75.050.0(+=l 和m 50.01=l ,则有01N =-l F FlN 157N 6054.021000225.06075.050.050.021N 1=⨯⨯⨯⨯⨯⨯⨯+===πμωt mR l l F l l F 5-9 一风扇转速为900 r/min ,当马达关闭后,风扇均匀减速,止动前它转过了75转,在此过程中制动力作的功为44.4 J ,求风扇的转动惯量和摩擦力矩.分析 合外力矩对刚体所作的功等于刚体的转动动能的增量.制动过程中风扇只受摩擦力矩作用,而且由于风扇均匀减速,表明摩擦力矩为恒定值,与风扇角位移的乘积就是所作的功.解 设制动摩擦力矩为M ,风扇转动惯量为J ,止动前风扇的角位移N πθ2=,摩擦力矩所作的功为N M M W πθ2⋅-=-=摩擦力矩所作的功应等于风扇转动动能的增量,即2210ωJ W -= 则 2222m kg 01.0m kg )60/2900()4.44(22⋅=⋅⨯-⨯-=-=πωWJ m N 0.0942m N 7524.442⋅=⋅⨯--=-=ππN W M5-10 如图5-10(a )所示,质量为24 kg 的鼓形轮,可绕水平轴转动,一绳缠绕于轮上,另一端通过质量为5 kg 的圆盘形滑轮悬有10 kg 的物体,当重物由静止开始下降了0.5 m 时,求:(1)物体的速度;(2)绳中张力.设绳与滑轮间无相对滑动.分析 这也是一个质点动力学和刚体动力学的综合问题,鼓形轮和滑轮都视为圆盘形定轴转动的刚体,应该采用隔离物体法,分别对运动物体作受力分析,对刚体作所受力矩的分析,然后分别应用牛顿第二定律和转动定律.解 各物体受力情况如图5-10(b )所示,其中F T1= F ’T1,F T2= F ’T2,鼓形轮的转动惯量为2121R m ,圆盘形滑轮的转动惯量为2221r m ,分别应用牛顿第二定律和转动定律,可得ma F mg =-T2222T1T221)(αr m r F F =- 121T121αR m R F = (1) 绳与滑轮间无相对滑动,物体的加速度等于鼓形轮和滑轮边缘的切向加速度,即12ααR r a ==.重物由静止开始下降了h = 0.5 m 时,速度ah 2=v ,由以上各式得αT1 F 2α ’T2 a F T2m g(a ) (b )图5-10m/s 2m/s )524(21105.08.9102)(212221=+⨯+⨯⨯⨯=++==m m m mgh ah v (2)绳中张力为N 48N 5241028.924102211T1=++⨯⨯⨯=++=m m m g mm F N 85N 5241028.9)524(102)(2121T2=++⨯⨯+⨯=+++=m m m g m m m F 5-11 一蒸汽机的圆盘形飞轮质量为200 kg ,半径为1 m ,当飞轮转速为120 r/min 时关闭蒸汽阀门,若飞轮在5 min 内停下来,求在此期间飞轮轴上的平均摩擦力矩及此力矩所作的功.分析 制动过程中飞轮只受摩擦力矩作用,该摩擦力矩不一定为恒定值,但是由于只需求平均摩擦力矩,因此可以假设飞轮均匀减速,由已知条件求出平均角加速度,再应用转动定律求出平均摩擦力矩.解 飞轮转动惯量为221mR J =,关闭蒸汽阀门后t = 5 min 内的平均角加速度为t00ωα-=,应用转动定律,平均摩擦力矩 m N 194m N 60560/212012002121202⋅-=⋅⨯⨯⨯⨯⨯-=-==.t mR J M πωα 在此期间平均摩擦力矩所作的功等于飞轮转动动能的增量J 7896J )60/2120(12002121 21212102220220-=⨯⨯⨯⨯⨯-=⋅-=-=πωωm R J W 负号表示平均摩擦力矩作负功,方向与飞轮旋转方向相反.5-12 长为85 cm 的均匀细杆,放在倾角为45°的光滑斜面上,可以绕过上端点的轴在斜面上转动,如图5-12(a)所示,要使此杆实现绕轴转动一周,至少应给予它的下端多大的初速度?分析 细杆在斜面上转动,斜面的支承力与转轴平行,转轴的支承力通过转轴,它们的力矩都为零,只有重力在转动平面内分量的力矩作功.解 如图5-12(b)所示,杆所受重力在转动平面内的分量为︒45sin mg ,当杆与初始位置的夹角为θ时,重力分量对转轴的力矩为θsin 2145sin l mg ⋅︒,此时若杆有角位移θd ,则重力矩所作的元功为θθd sin 2145sin d ⋅⋅︒=l mg W 杆从最低位置到最高位置重力矩所作的功为︒-=⋅⋅︒-==⎰⎰45sin d sin 2145sin d 0mgl l mg W W πθθ 重力矩所作的功等于此期间杆的转动动能的增量2021045sin ωJ mgl -=︒- 其中231ml J =,t00v =ω,则 m/s 5.94m/s 45sin 85.08.9645sin 60=︒⨯⨯⨯=︒=gl v5-13 如图5-13(a)所示,滑轮转动惯量为0.012m kg ⋅,半径为7 cm ,物体质量为5 kg ,由一绳与倔强系数k=200 N/m 的弹簧相连,若绳与滑轮间无相对滑动,滑轮轴上的摩擦忽略不计,求:(1)当绳拉直弹簧无伸长时,使物体由静止而下落的最大距离;(2)物体速度达最大值的位置及最大速率.v 0 ︒45 (a) (b) 图5-12分析 下面的5-17题中将证明,如果绕定轴转动的刚体除受到轴的支承力外仅受重力作用,则由刚体和地球组成的系统机械能守恒.如果将滑轮、地球和物体与弹簧组成一个弹性系统和重力系统合成的系统,当无重力和弹性力以外的力作功的情况下,整个系统的机械能守恒,可以应用机械能守恒定律.下面的解则仅应用功能原理和力矩所作的功与刚体转动动能的关系进行计算.解 (1) 物体由静止而下落到最低点时,速度为零,位移为1x ,在此期间重力所作的功完全转换为弹簧弹性势能的增量,即21121kx mgx = m 0.49m 2008.95221=⨯⨯==k mg x (2)物体与滑轮受力如图5-13(b)所示,设物体的最大速率为0v ,此时的位移为0x ,加速度00=a ,滑轮的角加速度000==R a α,分别应用牛顿第二定律和转动定律ma F mg =-T1αJ R F F =-)(T2T1可得此时T1F mg =,F T1= F T2,又因对于轻弹簧有0T2kx F =,则得m 0.245m 2008.950=⨯==k mg x 在此过程中,重力所作之功等于弹性势能的增量、物体动能和滑轮转动动能T1aF ’T1m m g(a) (b)图5-13的增量的和,即2020200212121ωJ m kx mgx ++=v 因R00v =ω,得 m/s 31.1m/s 9.85)07.001.05(2001)(122=⨯⨯+⨯=+=mg R J m k v5-14 圆盘形飞轮A 质量为m ,半径为r ,最初以角速度ω0转动,与A 共轴的圆盘形飞轮B 质量为4m ,半径为2r ,最初静止,如图5-14所示,两飞轮啮合后,以同一角速度ω转动,求ω及啮合过程中机械能的损失.分析 当物体系统所受的合外力矩为零时,系统的角动量守恒,在此过程中,由于相互作用的内力作功,机械能一般不守恒.解 以两飞轮组成的系统为研究对象,由于运动过程中系统无外力矩作用,角动量守恒,有ωωω2202)2(4212121r m mr mr += 得 0171ωω= 初始机械能为2022021412121ωωmr mr W =⋅= 啮合后机械能为2022222241171)2(421212121ωωωmr r m mr W =⋅+⋅= 则机械能损失为1202211716411716W mr W W W ==-=∆ω 5-15 一人站在一匀质圆板状水平转台的边缘,转台的轴承处的摩擦可忽略A图5-14不计,人的质量为m ’,转台的质量为10 m ’,半径为R .最初整个系统是静止的,这人把一质量为m 的石子水平地沿转台的边缘的切线方向投出,石子的速率为v (相对于地面).求石子投出后转台的角速度与人的线速度.分析 应用角动量守恒定律,必须考虑定律的适用条件,即合外力矩为零.此外还应该注意到,定律表达式中的角动量和角速度都必须是对同一惯性参考系选取的,而转动参考系不是惯性参考系.解 以人、转台和石子组成的系统为研究对象,由于系统无外力矩作用,角动量守恒,设转台角速度ω的转向与投出的石子速度v 方向一致,初始时系统角动量为零,得0=+v mR J ω 人和转台的转动惯量为221021R m R m J '+'=,代入上式后得 Rm m '-=6v ω 人的线速度 mm R '-=='6v v ω 其中负号表示转台角速度转向和人的线速度方向与假设方向相反.5-16 一人站立在转台上,两臂平举,两手各握一个m = 4 kg 的哑铃,哑铃距转台轴r 0 = 0.8 m ,起初,转台以ω0 = 2π rad/s 的角速度转动,然后此人放下两臂,使哑铃与轴相距r = 0.2 m ,设人与转台的转动惯量不变,且J = 52m kg ⋅,转台与轴间摩擦忽略不计,求转台角速度变为多大?整个系统的动能改变了多少?分析 角动量守恒定律是从定轴转动的刚体导出的,却不但适用与刚体,而且适用于绕定轴转动的任意物体和物体系统.解 以人、转台和哑铃组成的系统为研究对象,由于系统无外力矩作用,角动量守恒,有ωω)2()2(2020mr J mr J +=+rad/s 12.0rad/s 22.04258.042522220220=⨯⨯⨯+⨯⨯+=++=πωωmr J mr J 动能的增量为J183 J )2()8.0425(21J 12)2.0425(21 )2(21)2(2122222020220=⨯⨯⨯+⨯-⨯⨯⨯+⨯=+-+=-=∆πωωmr J mr J W W W 5-17 证明刚体中任意两质点相互作用力所作之功的和为零.如果绕定轴转动的刚体除受到轴的支承力外仅受重力作用,试证明它的机械能守恒.分析 在刚体动力学中有很多涉及重力矩作功的问题,如果能证明当只有重力矩作功时刚体和地球组成的系统机械能守恒,就能应用机械能守恒定律,而且还可以用刚体的质心的势能代替整个刚体中所有质点势能的总和,使求解过程大大简化. 证 刚体中任意两质点相互作用力沿转轴方向的分量对定轴转动不起作用,而在垂直于转轴的平面内的分量F 和-F 大小相等,方向相反,作用在一条直线上,如图5-17所示.设F 与转轴的垂直距离为ϕsin r ,则当刚体有微小角位移θd 时,力F 所作的功为θϕd sin Fr ,而其反作用力-F 所作的功为θϕd sin Fr -,二者之和为零,即刚体中任意两质点相互作用力所作之功的和为零.绕定轴转动的刚体除受到轴的支承力外仅受重力作用,刚体中任意质点则受到内力和重力作用,当刚体转动时,因为已经证明了任意两质点相互作用内力所作之功的和为零,则刚体中各质点相互作用力所作的总功为零,而且轴的支承力-F图5-17也不作功,就只有重力作功,因此机械能守恒.5-18 一块长m 50.0=L ,质量为m '=3.0 kg 的均匀薄木板竖直悬挂,可绕通过其上端的水平轴无摩擦地自由转动,质量m =0.1kg 的球以水平速度m/s 500=v 击中木板中心后又以速度m/s 10=v 反弹回去,求木板摆动可达到的最大角度.木板对于通过其上端轴的转动惯量为231L m J '= . 分析 质点的碰撞问题通常应用动量守恒定律求解,有刚体参与的碰撞问题则通常应用角动量守恒定律求解.质点对一点的角动量在第四章中已经讨论过,当质点作直线运动时,其角动量的大小是质点动量和该点到质点运动直线的垂直距离的乘积.解 对球和木板组成的系统,在碰撞瞬间,重力对转轴的力矩为零,且无其他外力矩作用,系统角动量守恒,碰撞前后球对转轴的角动量分别为021v mL 和v mL 21-,设碰后木板角速度为ω,则有 ωJ mL mL +-=v v 21210 设木板摆动可达到的最大角度为θ,如图5-18所示,木板摆动过程中只有重力矩作功,重力矩所作的功应等于木板转动动能的增量,即)1(cos 21d sin 2121002-'=⋅'-=-⎰θθθωθgL m L g m J (1) 由以上两式得388.050.08.90.34)1050(1.0314)(31cos 2222202=⨯⨯⨯+⨯⨯-='+-=gL m m v v θ ︒==19.67)388.0arccos(θ根据5-17的结果,由于木板在碰撞后除受到轴的支承力外仅受重力作用,v mm ’g图5-18它的机械能守恒,取木板最低位置为重力势能零点,达到最高位置时它的重力势能应等于碰撞后瞬间的转动动能,也可以得到(1)式.5-19 半径为R 质量为m '的匀质圆盘水平放置,可绕通过圆盘中心的竖直轴转动.圆盘边缘及R /2处设置了两条圆形轨道,质量都为m 的两个玩具小车分别沿二轨道反向运行,相对于圆盘的线速度值同为v .若圆盘最初静止,求二小车开始转动后圆盘的角速度.分析 当合外力矩为零时,应用角动量守恒定律应该注意到表达式中的角动量和角速度都是对同一惯性参考系选取的.转动参考系不是惯性参考系,所以小车对圆盘的速度和角动量必须应用相对运动速度合成定理转换为对地面的速度和角动量.解 设两小车和圆盘的运动方向如图5-19所示,以圆盘的转动方向为正向,外轨道上小车相对于地面的角动量为)(v -ωR mR ,内轨道上小车相对于地面的角动量为)21(21v +ωR R m ,圆盘的角动量为ωω221R m J '=.对于两小车和圆盘组成的系统,外力对转轴的力矩为零,角动量守恒,得ωωω221)21(21)(R m R R m R mR '+++-v v R m m m )25(2'+=v ω vωv图5-19。

大学物理-刚体的定轴转动-习题和答案

大学物理-刚体的定轴转动-习题和答案

第4章 刚体的定轴转动 习题及答案1.刚体绕一定轴作匀变速转动,刚体上任一点是否有切向加速度?是否有法向加速度?切向和法向加速度的大小是否随时间变化?答:当刚体作匀变速转动时,角加速度β不变。

刚体上任一点都作匀变速圆周运动,因此该点速率在均匀变化,v l ω=,所以一定有切向加速度t a l β=,其大小不变。

又因该点速度的方向变化,所以一定有法向加速度2n a l ω=,由于角速度变化,所以法向加速度的大小也在变化。

2. 刚体绕定轴转动的转动定律和质点系的动量矩定理是什么关系?答:刚体是一个特殊的质点系,它应遵守质点系的动量矩定理,当刚体绕定轴Z 转动时,动量矩定理的形式为zz dL M dt=,z M 表示刚体对Z 轴的合外力矩,z L 表示刚体对Z 轴的动量矩。

()2z i i L m l I ωω==∑,其中()2i i I m l =∑,代表刚体对定轴的转动惯量,所以()z z dL d d M I I I dt dt dtωωβ====。

既 z M I β=。

所以刚体定轴转动的转动定律是质点系的动量矩定理在刚体绕定轴转动时的具体表现形式,及质点系的动量矩定理用于刚体时在刚体转轴方向的分量表达式。

3.两个半径相同的轮子,质量相同,但一个轮子的质量聚集在边缘附近,另一个轮子的质量分布比较均匀,试问:(1)如果它们的角动量相同,哪个轮子转得快?(2)如果它们的角速度相同,哪个轮子的角动量大?答:(1)由于L I ω=,而转动惯量与质量分布有关,半径、质量均相同的轮子,质量聚集在边缘附近的轮子的转动惯量大,故角速度小,转得慢,质量分布比较均匀的轮子转得快;(2)如果它们的角速度相同,则质量聚集在边缘附近的轮子角动量大。

4.一圆形台面可绕中心轴无摩擦地转动,有一玩具车相对台面由静止启动,绕轴作圆周运动,问平台如何运动?如小汽车突然刹车,此过程角动量是否守恒?动量是否守恒?能量是否守恒?答:玩具车相对台面由静止启动,绕轴作圆周运动时,平台将沿相反方向转动;小汽车突然刹车过程满足角动量守恒,而能量和动量均不守恒。

刚体的定轴转动(带答案).

刚体的定轴转动(带答案).

刚体的定轴转动一、选择题1、(本题3分)0289关于刚体对轴的转动惯量,下列说法中正确的是[ C ] (A)只取决于刚体的质量,与质量的空间分布和轴的位置无关。

(B)取决于刚体的质量和质量的空间分布,与轴的位置无关。

(C)取决于刚体的质量、质量的空间分布和轴的位置。

(D)只取决于转轴的位置,与刚体的质量和质量的空间分布无关。

2、(本题3分)0165均匀细棒OA可绕通过某一端O而与棒垂直的水平固定光滑轴转动,如图所示,今使棒从水平位置由静止开始自由下降,在棒摆到竖直位置的过程中,下述说法哪一种是正确的?(A)角速度从小到大,角加速度从大到小。

(B)角速度从小到大,角加速度从小到大。

(C)角速度从大到小,角加速度从大到小。

(D)角速度从大到小,角加速度从小到大。

3.(本题3分)5640一个物体正在绕固定的光滑轴自由转动,则[ D ](A)它受热或遇冷伸缩时,角速度不变.(B)它受热时角速度变大,遇冷时角速度变小.(C)它受热或遇冷伸缩时,角速度均变大.(D)它受热时角速度变小,遇冷时角速度变大.4、(本题3分)0292一轻绳绕在有水平轴的定滑轮上,滑轮质量为m ,绳下端挂一物体,物体所受重力为P ,滑轮的角加速度为β,若将物体去掉而以与P 相等的力直接向下拉绳子,滑轮的角加速度β将 [ C ] (A )不变 (B )变小 (C )变大 (D )无法判断 5、(本题3分)5028如图所示,A 、B 为两个相同的绕着 轻绳的定滑轮,A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且F=Mg ,设A 、B 两滑轮的角加速度分别为βA 和βB ,不计滑轮轴的摩擦, 则有 [ C ] (A )βA =βB (B )βA >βB(C )βA <βB (D )开始时βA =βB ,以后βA <βB 6、(本题3分)0294刚体角动量守恒的充分而必要的条件是[ B ] (A )刚体不受外力矩的作用。

(B )刚体所受合外力矩为零。

05刚体的定轴转动习题解答

05刚体的定轴转动习题解答

05刚体的定轴转动习题解答05刚体的定轴转动习题解答第五章刚体的定轴转动一选择题1. 一绕定轴转动的刚体,某时刻的角速度为ω,角加速度为α,则其转动加快的依据是:()A. α > 0B. ω > 0,α > 0C. ω < 0,α > 0D. ω > 0,α < 0解:答案是B。

2. 用铅和铁两种金属制成两个均质圆盘,质量相等且具有相同的厚度,则它们对过盘心且垂直盘面的轴的转动惯量。

()A. 相等;B. 铅盘的大;C. 铁盘的大;D. 无法确定谁大谁小解:答案是C 。

简要提示:铅的密度大,所以其半径小,圆盘的转动惯量为:2/2 Mr J =。

3. 一轻绳绕在半径为r 的重滑轮上,轮对轴的转动惯量为J ,一是以力F 向下拉绳使轮转动;二是以重量等于F 的重物挂在绳上使之转动,若两种情况使轮边缘获得的切向加速度分别为a 1和a 2,则有:()A. a 1 = a 2B. a 1 > a 2C. a 1< a 2D. 无法确定解:答案是B 。

简要提示:(1) 由定轴转动定律,1αJ Fr =和11αr a =,得:JFra /21=(2) 受力分析得:===-2222ααr a J Tr ma T mg ,其中m 为重物的质量,T 为绳子的张力。

得:)/(222mr J Fr a +=,所以a 1 > a 2。

4. 一半径为R ,质量为m 的圆柱体,在切向力F 作用下由静止开始绕轴线作定轴转动,则在2秒内F 对柱体所作功为:()A. 4 F 2/ mB. 2 F 2 / mC. F 2 / mD. F 2 / 2 m 解:答案是A 。

简要提示:由定轴转动定律:α221MR FR =,得:mRFt 4212==?αθ 所以:mFM W /42=?=θ5. 一电唱机的转盘正以ω 0的角速度转动,其转动惯量为J 1,现将一转动惯量为J 2的唱片置于转盘上,则共同转动的角速度应为:()A .0211ωJJ J+ B .0121ωJJJ + C .021ωJ JD .012ωJ J解:答案是A 。

普通物理学第五版第4章刚体转动答案

普通物理学第五版第4章刚体转动答案

( r A r B )m Cg > r B (mA+ mB)g ( r A r B )m Cg < r B (mA+ mB)g
若:下降 a 0< 0
T T 1 (mA+ mB)g = (mA+ mB)a 0 T 1r A T r B = ( J A+ J B )a = J a m Cg T 1 = m Ca ´ a 0 =rB a a ´=r Aa a 0 =r Aa r B a 静止时,a0=0,上述方程变为: T T 1 (mA+ mB)g = 0 T 1r A T r B = ( J A+ J B )a = J a m Cg T 1 = m Ca ´
(2)
a ´=r Aa
结束 目录
解得:
T T 1 (mA+ mB)g = 0 T 1r A T r B = ( J A+ J B )a = J a m Cg T 1 = m Ca ´ a ´=r Aa
m Cg J m C(mA+ mB) r A r B T1 = 2 m Cr A m Cr A r B + J T = T 1 + (mA+ mB)g
4-3 如图所示,两物体1和2的质量分别 为m1与m2,滑轮的转动惯量为J,半径为 r 。 (1)如物体2与桌面间的摩擦系数为μ, 求系统的加速度 a 及绳中的张力 T2 与 T2 (设绳子与滑轮间无相对猾动); (2)如物体2与桌面间为光滑接触,求系 统的加速度 a 及绳 T2 中的张力 T1与 T2。 m 2 T1
1.89×102 m/s = a n = R 2 = 0.15×(1.26×103)2 ω
2.38×105 m/s2 =

大学中学物理习题答案刚体转动

大学中学物理习题答案刚体转动

大学物理 刚体的定轴转动 习题及答案1.刚体绕一定轴作匀变速转动,刚体上任一点是否有切向加速度?是否有法向加速度?切向和法向加速度的大小是否随时间变化?答:当刚体作匀变速转动时,角加速度β不变。

刚体上任一点都作匀变速圆周运动,因此该点速率在均匀变化,v l ω=,所以一定有切向加速度t a l β=,其大小不变。

又因该点速度的方向变化,所以一定有法向加速度2n a l ω=,由于角速度变化,所以法向加速度的大小也在变化。

2. 刚体绕定轴转动的转动定律和质点系的动量矩定理是什么关系?答:刚体是一个特殊的质点系,它应遵守质点系的动量矩定理,当刚体绕定轴Z 转动时,动量矩定理的形式为z z dL M dt=,z M 表示刚体对Z 轴的合外力矩,z L 表示刚体对Z 轴的动量矩。

()2z i iL m l I ωω==∑,其中()2i iI m l =∑,代表刚体对定轴的转动惯量,所以()z zdL d d MI II dtdtdtωωβ====。

既 zMI β=。

所以刚体定轴转动的转动定律是质点系的动量矩定理在刚体绕定轴转动时的具体表现形式,及质点系的动量矩定理用于刚体时在刚体转轴方向的分量表达式。

3.两个半径相同的轮子,质量相同,但一个轮子的质量聚集在边缘附近,另一个轮子的质量分布比较均匀,试问:(1)如果它们的角动量相同,哪个轮子转得快?(2)如果它们的角速度相同,哪个轮子的角动量大?答:(1)由于L I ω=,而转动惯量与质量分布有关,半径、质量均相同的轮子,质量聚集在边缘附近的轮子的转动惯量大,故角速度小,转得慢,质量分布比较均匀的轮子转得快;(2)如果它们的角速度相同,则质量聚集在边缘附近的轮子角动量大。

4.一圆形台面可绕中心轴无摩擦地转动,有一玩具车相对台面由静止启动,绕轴作圆周运动,问平台如何运动?如小汽车突然刹车,此过程角动量是否守恒?动量是否守恒?能量是否守恒?答:玩具车相对台面由静止启动,绕轴作圆周运动时,平台将沿相反方向转动;小汽车突然刹车过程满足角动量守恒,而能量和动量均不守恒。

刚体的转动课后习题答案

刚体的转动课后习题答案

第五章 刚体的转动5-1 在图5-21中,一钢缆绕过半径为0.4 m 的定滑轮吊着一个升降机,钢缆不打滑. 假设升降机以0.5 m/s 2的加速度向上提升.(1)求滑轮的角加速度.(2)如果滑轮转三周,问从静止开始的加速运动持续了多长时间?(3)求当t =2 s 时,轮缘上一点的瞬时加速度(切向和法向加速度).解:(1)由于钢缆与滑轮间无相对滑动,轮缘上各点的切向加速度与升降机的加速度相同,即a a t ==0.5m/s 2, 22rad/s25.1rad/s4.05.0===Ra t β(2)由于滑轮作匀角加速运动,角位移 20021t t βωθθ+=-已知rad 63220πππθθ=⨯==-n ,且00=ω,故s 5.5s 49.525.162)(20≈=⨯=-=s t πβθθ(3)由t βωω+=0,可知rad/s t 25.1==t βω,法向加速度2222222m/s625.0m/s4.0)25.1(t t R t R a n =⨯===βωt=2s 时,222m/s5.2m/s2625.0=⨯=n a又2m/s 5.0=t a ,∴ 总加速度为222222m/s55.2m/s 5.05.2=+=+=t n a a a︒====---4.63225.05.0111tgtga a tgnt αα为总加速度与法线方向的夹角.5-2轮A 半径r A =15cm ,轮B 半径r B =30cm ,两轮通过一皮带耦合,如图5-22所示. 轮A 从静止开始以恒定的角加速度1.2rad/s 2转动,问从开始运动30s 后轮B 的转速(min /rev )是多大?假定皮带不打滑. 解:由于皮带与两个轮的轮缘间无相对滑动,所以两轮轮缘上各点的切向加速度相等,设等于t a ,两轮的角加速度分别为A β和B β,由角量与线量的关系有B B A A t r r a ββ==22rad/s6rad/s123015=⨯==ABA B r r ββs 30=t 时rad/s 180rad/s 630=⨯==t B B βω而n B πω2=,故rev/min 17192601802=⨯==ππωBB n5-3一匀质园盘从静止开始以恒定的角加速度绕过盘心的竖直轴转动,某一时刻的转速为10rev/s.再转100转后,转速达20rev/s. 试求(1)园盘的角加速度;(2)从静止到转速为15rev/s 所需的时间;(3)在第(2)向的过程中园盘转了多少圈? 解:(1)由匀角加速运动的规律可知角加速度22222122rad/s42.9rad/s321002)210()220(2==⨯⨯⨯-⨯=-=ππππθωωβ(2)所需时间s 103215=⨯==ππβωt(3)由πθ2=n ,2022ωωθβ-= 及00=ω rev 75rev 35.22322)215(22122==⨯⨯⨯=⨯=πππβωπn5-4 6个质量均为m 的粒子与6根长度均为d 的轻杆组成一个正6边形的刚体,如图5-23所示. 计算该刚体关于如下转轴的转动惯量:(1)转轴通过任意相邻的粒子;(2)转轴通过任意粒子且与6边形的平面垂直.解:这是质量呈分立分布的刚体,由转动惯量的定义2i i r m I ∑∆=其中i r 为i m ∆到转轴的垂距,可计算如下:(1)221)3(2)23(2d m d m I +=225.7)343(2mdmd=+=(2)2222)2()3(22d m d m mdI ++=2212)42(md b md=++= 解5-4图5-5 三根长度均为l 的细杆组成一个等边三角形刚体ABC 如图5-24所示. 计算其关于中线的转动惯量. 假定杆的单位长度质量为λ.解:AB BC I I I 2+=已知BC 关于图中转轴的转动惯量为32212)(121121l ll mlI BC λλ===而⎰⎰==l r m r I AB d 22λ,其中r r dl d 260cos d =︒=∴ ⎰⎰=⋅==ll AB l r rl r I 02/032212d 2d λλλ∴3334122122l llI I I AB BC λλλ=⨯+=+=解5-5图5-6一个半径为R 的匀质半园环的质量为m ,计算其关于如图5-25中所示的轴的转动惯量. 解:这是质量连续分布的刚体,取如图质元l Rml m d d d πλ==θmRmRd d πθπ==m d 与转轴的垂距θsin R r =∴⎰⎰⋅==2/0222d sin2d πθπθmR m r I⎰=2/02d 22cos 2πθθπH mR解5-6图⎰⨯+=smRmR /0222d 222cos 2πθθπ22mR =5-7在图5-26中,一匀质园盘安装在固定的水平轴上,园盘半径R =20cm ,质量M =3kg.园盘边缘上绕着轻绳,轻绳下端悬挂着一个质量m =1.0kg 的物体.(1)求物体下落的加速度,园盘的角加速度以及绳中的张力;(2)物体下落3m 所需的时间. 解:(1)忽略轴处可能存在的摩擦,盘受的合外力矩M =TR ,对园盘用转动定理,对物体用牛顿第二定律,并注意到物体下落的加速及t a a =,列方程组如下βI TR =①ma T mg =-②R a a t β==③ 221MRI =④ 联立①②③④解5-7图解得22m/s92.3m/s1230.128.922=⨯+⨯⨯=+⋅==mM m g a a t角加速度 2rad/s 6.192.092.3===Ra t β张力N 88.5N 12338.90.12=⨯+⨯⨯=+⋅=mM Mmg T(2)由题意知,物体从静止下落,由于a 为恒量,由221ath =可得所求时间为s 24.192.3322=⨯==ah t5-8唱机的转盘由电机驱动,转盘以恒定的角加速度在 2.0秒内从零加速到min /rev 3133. 均质转盘质量为1.5kg ,半径1.2cm. 为驱动转盘所需的关于转轴的力矩多少?如果驱动轮的外缘与转盘相接触,如图5-27所示. 求驱动轮必须施予转盘的法向力是多大?假定两轮间的摩擦系数7.0=μ.解:由题意可知角速度rad/s 49.36023133=⨯=πω 角加速度2rad/s75.10.249.3==∆∆=t ωβ转动惯量2222kgm1008.1)2.0(5.12121-⨯=⨯⨯==MRI 解5-8图由转动定理可得驱动转盘所需的力矩为222kgm1089.1Nm 75.11008.1--⨯=⨯⨯==βI M产生这个力矩的力必在切向,如图所示N 158.0N 1075.1512.01089.122=⨯=⨯==--R M F t由切向力与正压力(沿法向指向园心)的关系N F t μ=知驱动轮必须施予转盘的法向力N 226.0N 7.0158.0===μtF N5-9两个质量为m 的物体悬挂在一刚性轻杆两端,杆长为l 1+l 2,其中l 2=3l 1,如图5-28所示,初始时使杆处于水平位置,杆与物体保持静止,然后释放.求两个物体刚开始运动时的加速度. 解:如图设轻杆两端的轻绳中张力分别为T 1和T 2,刚开始运动的瞬间两物体的加速度分别为a 1和a 2,由转动定理和牛顿第二定律,列方程组如下: 02211=-l T l T ① (轻杆转动惯量I ≈0) 22ma T mg =- ②11ma mg T =-③∵ r a a t β== ∴31212==l l a a ④从①得31221==l l T T ①′ 解5-9图将①′代入②得 2121ma T l l mg =-∴ )(2121a g m l l T -⋅=②′将②′和④代入③化简得22112122m/s88.5533/132)//()1/(==+=+-=g l l l l g l l a222211m/s96.1m/s88.531=⨯=⋅=a l l a5-10一长度为L 的匀质细杆最初垂直地立在地板上,如图5-29所示.如果此杆倾倒,试求杆撞击地板时的角速度是多大?假定杆与地板的接触端不发生滑动.解:设杆的质量为m ,则其对O 轴的转动惯量231mL I =,重力到O 轴的垂距为θsin 2L r =,故重力对O 的力矩为θθπSin L mgL mg M 2)sin(2=-⋅=沿顺时针方向,由转动定理βI M =我们有ββθ⋅==231sin 2mLI L mg∴θβsin 23Lg =又 td d ωβ=,t d d βω=,即ωθθθθθβωd sin 23d d d sin 23d d Lg t Lg t =⋅== 分离变量积分 ⎰⎰=πωθθωω0d sin 23d Lg可得L g /)cos 1(3θω-=解5-10图将杆倒地时的 ︒=90θ 代入上式,得 L g /3=ω5-11图5-30表示飞轮的制动装置包括一个制动杆和一个制动靴.飞轮质量为50 kg ,半径为0.5m ,以1200 rev/min 的速率旋转.当给制动杆末端施加100N 的制动力时,使飞轮停止转动所需多长时间?设飞轮与制动靴之间的摩擦系数5.0=μ.解:本题涉及两个刚体,一个是飞轮,另一个是制动杆,由题意知,合外力矩使飞轮产生角加速而制动,而作用在杆上的力矩则保持平衡,设杆受到的正压力为N ′,轮受到的正压力为N ,根据转动定理M = I β,我们有摩擦力μf 对飞轮的定轴O ,的力矩ββμ221mR I R f ==-① N f μμ=②对制动杆的定轴A ,F 和N '的力矩平衡0)(121=⨯'-+⨯l N l l F③ N N -='④由③得N 2501004.00.1)(121=⨯=⋅+='F l l l N ⑤解5-11图又由①可得 mRf μβ2-=⑥将N =250 N ,m =50 kg 代入②及⑥中可得22rad/s25rad/s2.0502505.0222-=⨯⨯⨯-='-=-=mRN mRf μβμ由于β为恒量,可由匀角加速运动公式t t βωω=-0,即βωω0-=t t其中0=t ω,n πω20=,将已知min /rev 1200=n 代入上式可得 s 5.03s )25(60120020≅-⨯⨯-=πt5-12一个倾角为ϕ的光滑斜面上安装着转动惯量为I 的定滑轮,斜面上质量为m 1的物体系在一绕在轮轴上的轻绳的一端,另一质量为m 2的物体则由缠绕在轮缘上的另一轻绳悬挂着,当m 2下降时,m 1则被拉上斜面,如图5-31所示.定滑轮的半径为R =0.3m 而其轴的半径为r =0.1m.试计算滑轮的角加速度 解:在图中标出了m 1,m 2和滑轮的受力情况,其中T 1、T 2分别为两轻绳中的张力,对轮及两质点分别应用转动定理和牛顿第二定律,可列如下方程βI r T R T ='-'12① 1111sin a m g m T =-ϕ ② 2222a m T g m =- ③ r a β=1④R a β=2⑤解5-12图'-=11T T , '-=22T T⑥ 由②及④可得 )sin (11ϕβg r m T -= ⑦ 由③及⑤可得)(22R g m T β-=⑧将⑦、⑧代入①得 βϕββI g r r m R g R m =---)sin ()(12 整理为)(sin 212212r m Rm I gr m gR m ++=⋅-βϕ解得 212212sin rm Rm I gr m gR m ++⋅-=ϕβ将m R 3.0=,m r 1.0=及2m/s8.9=g 代入上式,得111201.009.0sin 98.094.2m m I m m ++-=ϕβ5-13计算习题5-8中,力矩在加速过程中所作的功和平均功率.解:由转动动能定理 2122122121ωωI I E E W k k -=-=,可得力矩的功为J 1058.6J )49.3(1008.1210212222--⨯≅⨯⨯⨯=-=ωI W平均功率 W 1029.30.21058.622--⨯=⨯==tW p5-14一蒸汽机飞轮的质量为200kg ,半径为1m ,如果当转速达150rev/min 时阀门被关闭,设作用于飞轮轴处的平均摩擦力矩是5m.N ,计算(1)飞轮停止转动前力矩所作的功;(2)关闭阀门后经多长时间飞轮即可停止转动. 解:(1)关闭阀门时飞轮的角速度为rad/s 7.1560/150220=⨯==ππωn由转动动能定理,2022121ωωI I W -=,其中0=ω,得飞轮停止转动前摩擦力矩作的功:J 12324J 7.15120021212102220-=⨯⨯⨯⨯-=-=ωI W(2)由于力矩是恒定的,平均角加速度也是恒定的,故有βω0=t ,其中 IM =β则有 min 2.5s 31461200217.15200≅=⨯⨯⨯===MI t ωβω5-15试用转动动能定理再解习题5-10. 解:根据转动动能定理和力矩的功的定义⎰-==022121d ωωθI I M W在解5-10图中,重力对水平轴O 的力矩为θsin 2l mg M =, 则有当杆的角位置为θ时,重力矩的功 ⎰-==θθθθ0)cos 1(21d sin 2mgl l mg W此时角速度为ωO I W -=221ω即 223121)cos 1(21ωθ⋅⨯=-mlmgl可得l g /)cos 1(3θω-=当杆倒地时,︒=90θ, 代入上式可得l g /3=ω由角加速度θθωωθθωωβsin 23d d d d d d d d lg tt ==⋅==当︒=90θ时 lg 23=β.5-16在图5-32中,长为1.0m 的匀质杆最初静止于竖直位置,然后杆的下端获得一初始线速度0v ,使得杆绕水平固定轴O 开始旋转.试求为使杆至少完成一周的旋转,0v 的最小值是多大? 解:当杆通过πθ=的角位置时角速度0≥ω,即可至少完成一周的旋转,设这过程中重力作的功为W ,即2021ωI O W -≥ ① 而重力的元功 θθd sin 21d ⋅⋅-=mg l Wmgl lmgW W =-==⎰⎰θθπd sin 21d 0②将②及231ml I =,l /00v =ω代入①可得7.67m/s m/s 18.9660=⨯⨯==gl v 解5-16图5-17明渠中的流水驱动着水车的叶轮,叶轮半径2.0m ,如图5-33所示.水流到达叶轮的速度是6.0m/s ,离开叶轮的速度是3.0m/s ,水流量为每秒300kg.(1)水流作用于叶轮的力矩有多大?(2)如果叶轮边缘的速度是3m/s ,传送给叶轮的功率是多大?解:(1)考虑水的一个小质元d m 沿切向速度以v 1冲向水平的叶片,离开时速率减为v 2,该质元对水车中心的角动量增量为0)(d )d ()d (1212<-=-R m R m R m v v v v ,这是因为叶片的反作用力矩所致,由合外力矩与角动量对时间变化率的关系,可知R tm tL M )(d d d d 12v v -==其中tm d d 是每单位时间流经水车的水质量,即水的流量.由作用反作用定律,水作用在水轮机叶片上的力矩为m N 101.8m N 2)0.30.6(300)(d d 321⋅⨯=⋅⨯-⨯=-=-='R tm M M v v(2)水流传递给叶轮的功率为 RMM tMtW P v ====ωθd d d dkW 7.2W 107.223108.133=⨯=⨯⨯=5-18一个人坐在可绕竖直轴自由转动的转椅上,开始时,人静止地坐在转椅上,用手握住一转盘的中心轴,转盘以4rev/s 的角速度旋转,其转轴在竖直位置,角动量i L 的方向向上,如图5-34所示.如果此人将转盘的轴倒置会发生什么现象?假定轮盘对其中心轴的转动惯量是1kg.m 2. 解:由于系统是孤立的,对竖直轴的外力矩为零,所以系统对该轴的总角动量守恒.==∑i L L 常量人将转盘轴倒置后,转盘的角动量变为i L -,设在相互作用过程中,系统获得的角动量为L ,则后来的总角动量为L -L i ,由于系统总角动量守恒,即i i L L L -=从而 L =2L i设系统对转椅轴共同的角速度为ω,则有ωI L = 即人将转盘轴倒置后,整个系统将绕转椅的竖直轴以角速度ω旋转rev/s 6.154122=⨯⨯===IL I L i ω其中转盘的初角动量11ωI L i =,21kgm 1=I ,rev/s 41=ω.5-19一质量为M ,半径为R 的匀质园盘以角速度ω绕过其中心的竖直轴旋转,如果盘缘质量为m ∆的一小块破裂并飞离园盘,如图5-35所示,(1)园盘的角动量在边缘破损后变成多大?(2)小块被抛出多远?假定园盘与地面的距离为h .解:在盘缘破损过程中,对轴的合外力矩为零,故总角动量守恒 =∑ωI 常量 设盘后来的转动惯量为I ′,角速度为ω′,则有ωωω2mR I I ∆+''=即ωωω2222)21(21mR mRMRMR ∆+'∆-=ωωω=∆-∆-='222221)21(mRMRmRMR园盘的角动量变为 ωω)21(22mRMRI L ∆-=''='(2)小块m ∆作平抛运动221gt h =,gh t 2=故m ∆被抛出的水平距离为gh RRt t S 20ωω===v5-20一质量为M ,半径为R 的匀质园台,可以绕过中心的竖直轴无摩擦地旋转.假定初始时一个人静止地站在台边缘处,然后沿园台边缘行走.(1)如果此人步行一周回到台面的初始位置,园台将转过多大角度?(2)如果此人回到相对于地面的初始位置,园台又将转过多大角度? 解:∵ 运动过程中对竖直轴的合外力矩 M =0,∴ 系统总角动量守恒=∑L 常量. (1)园台将沿相反方向相对地面旋转,设任意时刻人、台对地面的角速度分别为ω和Ω,∵ 0=∑i L ,∴ 任意时刻有 02122=Ω-MR mR ω①又设人对台的相对角速度为ω',由速度合成定理Ω-'=ωω ②将②代入①得 021)(22=Ω-Ω-'MR mRω解得ω'+=ΩmM m 21 ③设H 为台对地的角坐标,θ'为人对台的角坐标,则Ω=Θtd d ,ωθ'=td d④将④代入③,两边积分 ⎰⎰'+=ΘHm M m 020d 22d πθ得台转过的角度π222⋅+=ΘmM m(2)设人对地的角坐标为θ,则有人对地的角速度 td d θω=,将 td d θω=和 td d Θ=Ω代入①式,得Θ=d 21d 22MR mR θ 对两边积分得⎰⎰Θ=πθ2022d 21d HMRmR这次台对地转过的角度为π22⋅=ΘM m显然,第二种情况园台转过的角度大些. 5-21两个飞轮A 和B 可以通过轮轴上的摩擦离合器连接或分离,如图5-36所示.当两轮分离时,B 轮静止,而A 轮角度速度达600rev/min ,然后连接离合器,B 轮开始加速而A 轮减速,直到两轮具有相同的角速度240rev/min.当连接完成时,离合器片发出的热量是2000J ,分别求出两轮的转动惯量. 解:在连接过程中,合外力矩M=0(离合器片作用的摩擦力矩为内力矩)∴系统总角动量守恒f i L L ∑=∑. 即21)(ωωB A A I I I +=①由于相互作用是完全非弹性的,动能不守恒,由能量守恒与转化定律,动能的减少量即为摩擦产生的热量Q I I I E B A A k =+-=∆2221)(2121ωω②从①可得221)(ωωωB A I I =-B B B A I I I I 32240600240212=⋅-=⋅-=ωωω③把J Q E k 2000==∆和③代入②,得2000)123(21212221=+-ωωA A I I 解得2222kgm69.1kgm)42(25)102(4000=⨯⨯-⨯=ππA I其中用到 10rev/srev/min6001==ω, rev/s 42=ω.由③得2kgm53.223==A B I I。

刚体答案——精选推荐

刚体答案——精选推荐

刚体的定轴转动作业题答案1.{均匀细棒OA可绕通过其一端O而与棒垂直的水平固定光滑轴转动,如图所示.今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法正确的是()}A.角速度从小到大,角加速度从大到小B.角速度从小到大,角加速度从小到大C.角速度从大到小,角加速度从大到小D.角速度从大到小,角加速度从小到大答案:A题型:单选题2.一轻绳绕在有水平轴的定滑轮上,滑轮的转动惯量为J,绳下端挂一物体.物体所受重力为P,滑轮的角加速度为.若将物体去掉而以与P相等的力直接向下拉绳子,滑轮的角加速度将()A.不变B.变小C.变大D.如何变化无法判断答案:C题型:单选题3.一水平圆盘可绕通过其中心的固定竖直轴转动,盘上站着一个人.把人和圆盘取作系统,当此人在盘上随意走动时,若忽略轴的摩擦,此系统()A.动量守恒B.机械能守恒C.对转轴的角动量守恒D.动量、机械能和角动量都守恒E.动量、机械能和角动量都不守恒答案:C题型:单选题4.一刚体以每分钟60转绕z轴做匀速转动(沿z轴正方向)设某时刻刚体上一点P的位置矢量为,其单位为“10-2m”,若以“10-2m·s-1”为速度单位,则该时刻P点的速度为()A.B.C.D.试题编号:E17549 24678答案:B题型:单选题5.{一轻绳跨过一具有水平光滑轴、质量为M的定滑轮,绳的两端分别悬有质量为m1和m2的物体(m1<m2),如图所示.绳与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力()}A.处处相等B.左边大于右边C.右边大于左边D.哪边大无法判断试题编号:E17549 24680答案:C题型:单选题6.{一圆盘绕过盘心且与盘面垂直的光滑固定轴O以角速度w按图示方向转动.若如图所示的情况那样,将两个大小相等方向相反但不在同一条直线的力F沿盘面同时作用到圆盘上,则圆盘的角速度将()}A.必然增大B.必然减少C.不会改变D.如何变化,不能确定试题编号:E17549 24681答案:A题型:单选题7.两个匀质圆盘A和B的密度分别为和,若>,但两圆盘的质量与厚度相同,如两盘对通过盘心垂直于盘面轴的转动惯量各为J A和J B,则()A.J A>J BB.J B>J AC.J A=J BD.J A、J B哪个大,不能确定试题编号:E17549 24682答案:B题型:单选题8.将细绳绕在一个具有水平光滑轴的飞轮边缘上,现在在绳端挂一质量为m的重物,飞轮的角加速度为.如果以拉力2mg代替重物拉绳时,飞轮的角加速度将()A.小于B.大于,小于C.大于D.等于试题编号:E17549 24684答案:C题型:单选题9.{光滑的水平桌面上有长为、质量为m的匀质细杆,可绕通过其中点O且垂直于桌面的竖直固定轴自由转动,转动惯量为,起初杆静止.有一质量为m的小球在桌面上正对着杆的一端,在垂直于杆长的方向上,以速率v运动,如图所示.当小球与杆端发生碰撞后,就与杆粘在一起随杆转动.则这一系统碰撞后的转动角速度是()}A.B.C.D.试题编号:E17549 24686答案:C题型:单选题10.质量为m的小孩站在半径为R的水平平台边缘上.平台可以绕通过其中心的竖直光滑固定轴自由转动,转动惯量为J.平台和小孩开始时均静止.当小孩突然以相对于地面为v的速率在台边缘沿逆时针转向走动时,则此平台相对地面旋转的角速度和旋转方向分别为()A.,顺时针B.,逆时针C.,顺时针D.,逆时针试题编号:E17549 24687答案:A题型:单选题11.有一半径为R的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J,开始时转台以匀角速度转动,此时有一质量为m的人站在转台中心.随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为()A.B.C.D.试题编号:E17549 24688答案:A题型:单选题12.一块方板,可以绕通过其一个水平边的光滑固定轴自由转动.最初板自由下垂.今有一小团粘土,垂直板面撞击方板,并粘在板上.对粘土和方板系统,如果忽略空气阻力,在碰撞中守恒的量是()A.动能B.绕木板转轴的角动量C.机械能D.动量试题编号:E17549 24690答案:B题型:单选题13一个作定轴转动的轮子,对轴的转动惯量J =2.0kg·m2,正以角速度作匀速转动.现对轮子加一恒定的力矩M = -12N·m,经过时间t=8.0s时轮子的角速度=-,则=___.试题编号:E17549 24694答案:24 rad/s题型:填空题14.{有一半径为R的匀质圆形水平转台,可绕通过盘心O且垂直于盘面的竖直固定轴OO'转动,转动惯量为J.台上有一人,质量为m.当他站在离转轴r处时(r<R),转台和人一起以的角速度转动,如图.若转轴处摩擦可以忽略,问当人走到转台边缘时,转台和人一起转动的角速度=___.}试题编号:E17549 24696答案:题型:填空题15.{长为l、质量为M的匀质杆可绕通过杆一端O的水平光滑固定轴转动,转动惯量为,开始时杆竖直下垂,如图所示.有一质量为m的子弹以水平速度射入杆上A点,并嵌在杆中,OA=2l/ 3,则子弹射入后瞬间杆的角速度=___.}试题编号:E17549 24697答案:题型:填空题16.{质量为m、长为l的棒,可绕通过棒中心且与棒垂直的竖直光滑固定轴O在水平面内自由转动(转动惯量J=m l2/ 12).开始时棒静止,现有一子弹,质量也是m,在水平面内以速度v0垂直射入棒端并嵌在其中.则子弹嵌入后棒的角速度=___.}试题编号:E17549 24698答案:3v0/ (2l)题型:填空题17.一个圆柱体质量为M,半径为R,可绕固定的通过其中心轴线的光滑轴转动,原来处于静止.现有一质量为m、速度为v的子弹,沿圆周切线方向射入圆柱体边缘.子弹嵌入圆柱体后的瞬间,圆柱体与子弹一起转动的角速度=___.(已知圆柱体绕固定轴的转动惯量J=)试题编号:E17549 24700答案:题型:填空题18.一飞轮以角速度绕光滑固定轴旋转,飞轮对轴的转动惯量为J1;另一静止飞轮突然和上述转动的飞轮啮合,绕同一转轴转动,该飞轮对轴的转动惯量为前者的二倍.啮合后整个系统的角速度=___.试题编号:E17549 24703答案:题型:填空题19.可绕水平轴转动的飞轮,直径为1.0 m,一条绳子绕在飞轮的外周边缘上.如果飞轮从静止开始做匀角加速运动且在4 s内绳被展开10 m,则飞轮的角加速度为___.试题编号:E17549 24704答案:2.5 rad / s2题型:填空题20.一飞轮作匀减速转动,在5 s内角速度由40rad·s-1减到10rad·s-1,则飞轮在这5 s内总共转过了___圈,飞轮再经___的时间才能停止转动.试题编号:E17549 24705答案:62.5 | 1.67s题型:填空题21.{如图所示,一质量为m、半径为R的薄圆盘,可绕通过其一直径的光滑固定轴转动,转动惯量J=mR2/ 4.该圆盘从静止开始在恒力矩M作用下转动,t秒后位于圆盘边缘上与轴的垂直距离为R的B点的切向加速度a t=___,法向加速度a n=___.}试题编号:E17549 24706答案:4M/ (mR) |题型:填空题22.一长为L的轻质细杆,两端分别固定质量为m和2m的小球,此系统在竖直平面内可绕过中点O且与杆垂直的水平光滑固定轴(O轴)转动.开始时杆与水平成60°角,处于静止状态.无初转速地释放以后,杆球这一刚体系统绕O轴转动.系统绕O轴的转动惯量J=___.释放后,当杆转到水平位置时,刚体受到的合外力矩M=___;角加速度___.试题编号:E17549 24707答案:3mL2/ 4 |mgL |题型:填空题23.{有两位滑冰运动员,质量均为50 kg,沿着距离为3.0 m的两条平行路径相互滑近.他们具有10 m/s的等值反向的速度.第一个运动员手握住一根3.0 m长的刚性轻杆的一端,当第二个运动员与他相距3m时,就抓住杆的另一端.(假设冰面无摩擦)(1)试定量地描述两人被杆连在一起以后的运动.(2)两人通过拉杆而将距离减小为1.0m,问这以后他们怎样运动?}A. (%)试题编号:E17549 24710答案:{解:(1)对两人系统,对于杆中点合外力矩为零,角动量守恒.故 1分1分=2v/=6.67 rad / s∴w0两人将绕轻杆中心O作角速度为6.67 rad/s的转动. 1分(2)在距离缩短的过程中,合外力矩为零,系统的角动量守恒,则J0w0= J1w11分1分即作九倍原有角速度的转动.}题型:计算题题型:计算题24.{一轴承光滑的定滑轮,质量为M=2.00 kg,半径为R=0.100 m,一根不能伸长的轻绳,一端固定在定滑轮上,另一端系有一质量为m=5.00 kg的物体,如图所示.已知定滑轮的转动惯量为J=,其初角速度=10.0 rad/s,方向垂直纸面向里.求:(1)定滑轮的角加速度的大小和方向;(2)定滑轮的角速度变化到0时,物体上升的高度;(3)当物体回到原来位置时,定滑轮的角速度的大小和方向.}A. (%)试题编号:E17549 24712答案:{解:(1) ∵ mg-T=ma 1分TR=J2分a=R1分∴=81.7 rad/s21分方向垂直纸面向外. 1分(2) ∵当=0时,物体上升的高度h=R=6.12×10-2m 2分(3)10.0 rad/s方向垂直纸面向外.2分}题型:计算题25.{一质量均匀分布的圆盘,质量为M,半径为R,放在一粗糙水平面上(圆盘与水平面之间的摩擦系数为),圆盘可绕通过其中心O的竖直固定光滑轴转动.开始时,圆盘静止,一质量为m的子弹以水平速度v0垂直于圆盘半径打入圆盘边缘并嵌在盘边上,求(1)子弹击中圆盘后,盘所获得的角速度.(2)经过多少时间后,圆盘停止转动.(圆盘绕通过O的竖直轴的转动惯量为,忽略子弹重力造成的摩擦阻力矩)}A. (%)试题编号:E17549 24715答案:{解:(1)以子弹和圆盘为系统,在子弹击中圆盘过程中,对轴O的角动量守恒.1分mv0R=(MR2+mR2)2分1分(2)设s表示圆盘单位面积的质量,可求出圆盘所受水平面的摩擦力矩的大小为2分设经过时间圆盘停止转动,则按角动量定理有-M f=0-J=-(MR2+mR2-)=-mv0R 2分∴ 2分}题型:计算题26.{质量为M1=24 kg的圆轮,可绕水平光滑固定轴转动,一轻绳缠绕于轮上,另一端通过质量为M2=5 kg的圆盘形定滑轮悬有m=10 kg的物体.求当重物由静止开始下降了h=0.5 m时,(1)物体的速度;(2)绳中张力.(设绳与定滑轮间无相对滑动,圆轮、定滑轮绕通过轮心且垂直于横截面的水平光滑轴的转动惯量分别为,)}A. (%)试题编号:E17549 24717答案:{解:各物体的受力情况如图所示.图2分由转动定律、牛顿第二定律及运动学方程,可列出以下联立方程:T 1R =J 11=方程各1分共5分T 2r -T 1r =J 22=mg -T 2=ma , a =R 1=r2, v2=2ah求解联立方程,得m/s 2=2 m/s 1分T 2=m(g -a)=58 N 1分T 1==48 N 1分 }题型:计算题 27.{如图所示的阿特伍德机装置中,滑轮和绳子间没有滑动且绳子不可以伸长,轴与轮间有阻力矩,求滑轮两边绳子中的张力.已知m 1=20 kg ,m 2=10 kg .滑轮质量为m 3=5 kg .滑轮半径为r =0.2 m .滑轮可视为均匀圆盘,阻力矩M f =6.6N·m ,已知圆盘对过其中心且与盘面垂直的轴的转动惯量为.}A. (%)试题编号:E17549 24718 答案:{解:对两物体分别应用牛顿第二定律(见图),则有 m 1g -T 1=m 1a ①T 2– m 2g= m 2a ② 2分对滑轮应用转动定律,则有③ 2分对轮缘上任一点,有 a =r ④ 1分又:=T1,=T2⑤则联立上面五个式子可以解出=2 m/s22分T1=m1g-m1a=156 NT2=m2g-m2a=118N 3分}题型:计算题2844.{一匀质细棒长为2L,质量为m,以与棒长方向相垂直的速度v0在光滑水平面内平动时,与前方一固定的光滑支点O发生完全非弹性碰撞.碰撞点位于棒中心的一侧处,如图所示.求棒在碰撞后的瞬时绕O点转动的角速度.(细棒绕通过其端点且与其垂直的轴转动时的转动惯量为,式中的和分别为棒的质量和长度.)}A. (%)试题编号:E17549 24720答案:{解:碰撞前瞬时,杆对O点的角动量为3分式中r为杆的线密度.碰撞后瞬时,杆对O点的角动量为3分因碰撞前后角动量守恒,所以3分∴= 6v0/ (7L) 1分.{一匀质细棒长为2L,质量为m,以与棒长方向相垂直的速度v0在光滑水平面内平动时,与前方一固定的光滑支点O发生完全非弹性碰撞.碰撞点位于棒中心的一侧处,如图所示.求棒在碰撞后的瞬时绕O点转动的角速度.(细棒绕通过其端点且与其垂直的轴转动时的转动惯量为,式中的和分别为棒的质量和长度.)}A. (%)试题编号:E17549 24720答案:{解:碰撞前瞬时,杆对O点的角动量为3分式中r为杆的线密度.碰撞后瞬时,杆对O点的角动量为3分因碰撞前后角动量守恒,所以3分∴= 6v0/ (7L) 1分29.质量为75 kg的人站在半径为2 m的水平转台边缘.转台的固定转轴竖直通过台心且无摩擦.转台绕竖直轴的转动惯量为3000 kg·m2.开始时整个系统静止.现人以相对于地面为1 m·s-1的速率沿转台边缘行走,求:人沿转台边缘行走一周,回到他在转台上的初始位置所用的时间.A. (%)试题编号:E17549 24709答案:解:由人和转台系统的角动量守恒 J11+ J22= 0 2分其中 J1=300 kg·m2,1=v/r=0.5rad / s, J2=3000kg·m2∴2=-J11/J2=-0.05 rad/s 1分人相对于转台的角速度=1-2=0.55 rad/s 1分∴ t=2/=11.4 s 1分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档