图着色问题

合集下载

chap12 图的着色

chap12 图的着色

点着色的应用
课程安排问题 某大学数学系要为这个夏季安排课程表。所要开设 的课程为:图论(GT), 统计学(S),线性代数(LA), 高等 微积分(AC), 几何学(G)和近世代数(MA)。现有10名 学生(如下所示)需要选修这些课程。根据这些信息, 确定开设这些课程所需要的最少时间段数,使得学 生选课不会发生冲突。(学生用Ai表示)
5
K可着色的图例
v1
1
v2
G
v3 v4
v5
2 3
S
:V(G) →S,满射 是正常3着色,G是3可着色的。
6
K色图
定义12.1.2 图G的正常k着色中最小的k称为G的色
数,记为(G),即(G)=min{k|G存在正常k着色}。
若(G) =k,则称G是k色图。 显然,含环的图不存在正常着色,而多重边与一条 边对正常着色是等价的。以后总设G为简单图。 问题:已知一个图G(p,q),如何求色数(G)?
又因k>0, 所以与(G)定义矛盾。结论成立。 注意此定理与定理12.1.2的区别。 定理12.1.2 若G是一个临界图,则(G) ≤(G)+1
21
Brooks 定理
定理12.1.5 若连通图G既不是奇回路,也不是完全 图,则(G) (G) . 例如,对Petersen图应用Brooks定理,可得: (G) (G) =3 . 此定理说明只有奇回路 或完全图这两类图的色 数才是(G) +1。
第一步:建图。 把每门课程做为图G的顶点,两顶点连线当且仅当 有某个学生同时选了这两门课程。
色给同一时 段的课程顶点染色,那么,问 题转化为在状态图中求点色数 问题。
MA
S
G
AC 选课状态图
LA

图的着色问题--C++实现(含详细注释)

图的着色问题--C++实现(含详细注释)

图的着色问题一、题目简述(1) 图的m-着色判定问题给定一个无向连通图 G 和 m 种不同的颜色。

用这些颜色为图 G 的各顶点着色,每个顶点着一种颜色,是否有一种着色法使 G 中任意相邻的两个顶点着不同颜色?(2) 图的m-着色优化问题若一个图最少需要 m 种颜色才能使图中任意相邻的两个顶点着不同颜色,则称这个数 m 为该图的色数。

求一个图的最小色数 m 的问题称为m-着色优化问题。

二、算法思想1. m-着色判定问题总体思想:通过回溯的方法,不断为每一个节点着色,每个点的颜色由一个数字代表,初始值为1。

在对前面 step - 1 个节点都合法的着色之后,开始对第 step 个节点进行着色。

如果 n 个点均合法,且颜色数没有达到 m 种,则代表存在一种着色法使 G中任意相邻的两个顶点着不同颜色。

具体步骤:1. 对每个点 step ,有 m 种着色可能性,初始颜色值为1。

2. 检查第 step 个节点颜色的可行性,若与某个已着色的点相连且颜色相同,则不选择这种着色方案,并让颜色值加1,继续检查该点下一种颜色的可行性。

3. 如果第 step 点颜色值小于等于 m ,且未到达最后一个点,则进行对第 step + 1 点的判断。

4. 如果第 step 点颜色值大于 m ,代表该点找不到合适的分配方法。

此时算法进行回溯,首先令第 step 节点的颜色值为0,并对第 step - 1 个点的颜色值+1后重新判断。

5. 如果找到一种颜色使得第 step 个节点能够着色,说明 m 种颜色的方案是可行的。

6. 重复步骤2至5,如果最终 step 为0则代表无解。

2. m-着色优化问题基于问题1,对于一个无向图 G ,从1开始枚举染色数,上限为顶点数,第一个满足条件的颜色数即为所求解。

三、实现过程(附代码)1. m-着色判定问题#include<iostream>using namespace std;int color[100]; // 每个点的颜色int mp[100][100]; // 图的邻接矩阵int n, m, x; // n顶点,m种颜色方案,x条边bool check(int step) {// 判断与step点相邻的点,颜色是否与step点相同,若相同则返回falsefor (int i=1; i<=n; i++) {if (mp[step][i] ==1&&color[i] ==color[step]) {return false;}}return true;}bool Solve(int m) {// 求解是否可以找到一种可行的染色方案int step=1; // step指示当前节点while (step>=1) {color[step] +=1; // 假定颜色值从1开始,若为回溯,选择下一种方案while (color[step] <=m) { // 按照问题条件选择第step点颜色if (check(step)) {break;} else {color[step]++; // 搜索下一个颜色}}if (color[step] <=m&&step==n) { // 如果找完n个点,且染色方法小于等于m种 return true;} else if (color[step] <=m&&step<n) {step++; // 求解下一个顶点} else { // 如果染色数大于m个,回溯color[step] =0; // 回溯,该点找不到合适的分配方法,对上一点进行分析step--;}}// 如果step退到0,则代表无解return false;}int main() {int i, j;bool ans=false;cout<<"输入顶点数n和着色数m"<<endl;cin>>n>>m;cout<<"输入边数"<<endl;cin>>x;cout<<"具体输入每条边"<<endl;for (int p=0; p<x; p++) { // 以无向邻接矩阵存储边cin>>i>>j;mp[i][j] =1;mp[j][i] =1;}if (Solve(m)) {cout<<"有解";} else {cout<<"无解";}return0;}2. m-着色优化问题#include<iostream>using namespace std;int color[100]; // 每个点的颜色int mp[100][100]; // 图的邻接矩阵int n, m, x; // n顶点,m种颜色方案,x条边bool check(int step) {// 判断与step点相邻的点,颜色是否与step点相同,若相同则返回falsefor (int i=1; i<=n; i++) {if (mp[step][i] ==1&&color[i] ==color[step]) {return false;}}return true;}bool Solve(int m) {// 求解是否可以找到一种可行的染色方案int step=1; // step指示当前节点while (step>=1) {color[step] +=1; // 假定颜色值从1开始,若为回溯,选择下一种方案while (color[step] <=m) { // 按照问题条件选择第step点颜色if (check(step)) {break;} else {color[step]++; // 搜索下一个颜色}}if (color[step] <=m&&step==n) { // 如果找完n个点,且染色方法小于等于m种 return true;} else if (color[step] <=m&&step<n) {step++; // 求解下一个顶点} else { // 如果染色数大于m个,回溯color[step] =0; // 回溯,该点找不到合适的分配方法,对上一点进行分析step--;}}// 如果step退到0,则代表无解return false;}int main() {int i, j;bool ans=false;cout<<"输入顶点数n"<<endl;cin>>n;cout<<"输入边数"<<endl;cin>>x;cout<<"具体输入每条边"<<endl;for (int p=0; p<x; p++) { // 以无向图邻接矩阵存储边 cin>>i>>j;mp[i][j] =1;mp[j][i] =1;}for (m=1; m<=n; m++) { // 从小到大枚举着色数mif (Solve(m)) { // 如果有解,输出答案并跳出循环cout<<"最小色数m为 "<<m;break;}}return0;}四、结果及分析问题1测试用例:问题2测试用例:经检验,最少着色数的范围为2-4,意味着使 G 中任意相邻的两个顶点着不同颜色最多需要4种颜色。

图的平面性与图的着色问题

图的平面性与图的着色问题

图的平面性与图的着色问题在图论中,图的平面性与图的着色问题是两个重要的研究方向。

图的平面性指的是一种特殊的图的布局方式,使得图的边不相交。

而图的着色问题是指如何给图的顶点进行染色,使得相邻的顶点颜色不相同。

本文将分别介绍图的平面性和图的着色问题,并对其进行详细讨论。

一、图的平面性(Planarity of Graphs)图的平面性是图论中一个经典的问题,研究的是如何将一个图画在平面上,使得图的边不相交。

具体而言,如果一个图可以被画在平面上,且不同边的交点只有顶点,那么我们称该图是一个平面图。

而对于不能在平面上画出来的图,则被称为非平面图。

定理1:一个图是平面图,当且仅当它不包含任何的子图同构于以下两种图之一:K5(五个没有共同边的顶点)或K3,3(六个节点,其中任意两个节点之间都有边相连但不交叉)。

这个定理被称为Kuratowski定理,它为我们判断一个图是否是平面图提供了一个有效的方法。

根据Kuratowski定理,我们可以使用该定理的逆否命题,即如果一个图中包含K5或K3,3,则该图一定是非平面图。

除了Kuratowski定理之外,还有一种判断图的平面性的方法,称为Euler公式。

Euler公式表达了平面图的顶点数、边数和面数之间的关系:V - E + F = 2其中V表示顶点数,E表示边数,F表示面数。

根据Euler公式,对于简单连接图(无环,无孤立点),如果它的顶点数大于等于3且边数大于等于3,且满足Euler公式,则该图是一个平面图。

二、图的着色问题(Graph Coloring)图的着色问题是指如何给一个图的顶点进行染色,使得相邻的顶点颜色不相同。

这里的相邻指的是有边相连的顶点。

在图论中,颜色通常表示为正整数,颜色数则表示为给定图所需的最小颜色数。

对于任意图G,G的最小颜色数被称为G的色数。

如果图G的色数为k,则称图G是可k着色的。

求解一个图的最小色数是一个复杂的问题,称为顶点着色问题(Vertex Coloring Problem),它是一个NP 完全问题。

离散数学图着色问题算法描述

离散数学图着色问题算法描述

离散数学图着色问题算法描述离散数学图着色问题,简单来说是指给定一个无向图,如何为每个节点上色,使得相邻节点的颜色不相同。

这个问题可以用图着色算法来解决,下面将对图着色问题的算法描述进行详细介绍。

1. 算法背景介绍在离散数学中,图着色问题是一种经典的组合优化问题,它有广泛的应用领域,如地图着色、时间表排课等。

该问题的关键在于找到一种最少的颜色分配方案,使得相邻节点的颜色不相同。

2. 算法步骤描述(1)初始化:给定一个无向图G,节点数为n,边数为m。

初始时,给每个节点分配一个未被使用的颜色。

(2)排序节点:按照节点的度数降序进行排序,从度数最大的节点开始着色。

(3)节点着色:依次对每个节点进行着色。

对于当前节点v,遍历它的所有相邻节点w,如果w已经被染色,则从可用的颜色集合中去除w的颜色。

最后,将v染色为可用的最小颜色。

(4)重复步骤3,直到所有节点都被染色。

3. 算法实例演示假设有以下无向图G:```A/ \B C/ \ / \D -E - F```首先,对节点进行排序,按照度数降序排序为:E(度数为4),A (度数为3),D(度数为2),B和C(度数为1),F(度数为0)。

接下来,按照排序后的顺序对每个节点进行着色。

首先着色E,将其染色为第一个可用的颜色。

然后是A,由于E已经被染色为第一个颜色,A只能选择剩下的颜色。

接着是D,由于D与已经着色的节点E邻接,所以D需要选择未被使用的颜色。

然后是B和C,它们的邻居节点E和A已经被着色,所以它们只能选择未被使用的颜色。

最后是F,由于F没有邻居节点,可以选择任意颜色。

经过上述步骤,图G的每个节点都被着色,且相邻节点的颜色不相同。

4. 算法分析该算法在最坏情况下需要对节点进行O(n^2)次比较,其中n为节点数。

因此,算法的时间复杂度为O(n^2)。

同时,该算法具有较好的可行性和实用性,对于大部分图着色问题能够给出近似最优的解。

综上所述,离散数学图着色问题的算法描述如上所述。

图论讲义第6章-图的着色问题

图论讲义第6章-图的着色问题
… H1 vk-1
ikik i0
( Δ + 1) 边染色。由引理 6.1.2, G[ Ei′0 ∪ Ei′k ] 中含有 u 的那个分支 H 1 是个奇圈。
ik i0 ik
vk …
im
… v3 v2
i4 i3 i2
u
i1
vm
v1
v
3
而对 k ≤ j ≤ m − 1 ,用颜色 ij+1 给 uvj 重新染色,而用颜色 ik 给 uvm 重新染色,得到一
1
, E k ) 中每个 Ei 都是非空的
设 v0 e1v1e2
eε v0 是 G 的一条 Euler 闭迹。 令 E1 = {ei i 为奇数},E 2 = {ei i 为偶数}。
于是 c = (E1, E2) 即为所求的边 2-染色。 需要说明的是,Euler 闭迹从度≥4 的顶点出发是必需的。例如在下图中,若从 2 度顶 点 u 处出发沿 Euler 闭迹交替地对边进行 2 染色,则 u 点可能仅能获得一种色(如图,1、2 表示两种颜色) 。
′′, E 2 ′′, 个( Δ+1 )边染色 c ′′ = ( E1
′′+1 ) 。同理有 c ′′( v ) ≥ c( v ) 对所有 v ∈ V 成立。故由引理 , EΔ
′ ∪ Ei′k′ ] 中含有 u 的分支 H 2 是个奇圈。 6.1.2, G[ Ei′0
vk-1
iki0 ik+1 ik
第六章 染色理论
许多实际问题可以归结为求图的匹配或者独立集。 此外, 在许多应用中, 人们希望知道: 一个给定的图, 它的边集至少能划分成多少个边不交的匹配?或它的顶点集至少能划分成多 少个点不交的独立集?这便是图的边染色和顶点染色问题。

图的着色问题

图的着色问题

问题来源
图的着色
通常所说的着色问题是指下述两类问题: 通常所说的着色问题是指下述两类问题: 1.给定无环图G=(V,E),用m种颜色为图中 的每条边着色,要求每条边着一种颜色, 的每条边着色,要求每条边着一种颜色,并 使相邻两条边有着不同的颜色, 使相邻两条边有着不同的颜色,这个问题称 为图的边着色问题。 为图的边着色问题。 2.给定无向图G=(V,E),用m种颜色为图中 的每个顶点着色,要求每个顶点着一种颜色, 的每个顶点着色,要求每个顶点着一种颜色, 并使相邻两顶点之间有着不同的颜色, 并使相邻两顶点之间有着不同的颜色,这个 问题称为图的顶着色问题。 问题称为图的顶着色问题。
化简得
( a + bd )(b + aceg )(c + bdef )( d + aceg )(e + bcdf )( f + ceg )( g + bdf )
求极小覆盖法- 求极小覆盖法-布尔代数法
Step3:从中挑选所用极大独立集个数最小者, Step3:从中挑选所用极大独立集个数最小者, 即为X 即为X(G) 但上述子集的颜色数都不是X ),正确的应 但上述子集的颜色数都不是X(G),正确的应 该是X =3,该子集为: {b,d,f}中的 该是X(G)=3,该子集为:给{b,d,f}中的 b,d,f涂颜色 涂颜色1 {a,e,g}中a,e,g涂颜色 涂颜色2 b,d,f涂颜色1,为{a,e,g}中a,e,g涂颜色2为 {a,c,g}中的 涂颜色3 中的c {a,c,g}中的c涂颜色3。 由此可见, 由此可见,求色数其需要求极大独立集以 及一切若干极大独立集的和含所有顶点的子 对于大图, 集,对于大图,因为图计算量过大而成为实 际上难以凑效的算法,所以不是一个好算法, 际上难以凑效的算法,所以不是一个好算法, 一般我们采用贪心法等近似算法来求解 。

实验四 回溯法(图着色问题)

实验四 回溯法(图着色问题)
对应的邻接矩阵
01 234 001 1 01 1 1 01 01 21 1 01 0 3001 01 41 1 01 0
class MGraph { public:
MGraph(int v,int s); void mColoring(int m,int *x); //一维数组x,存放1~n个顶点的颜色 ~MGraph(); private: void NextValue(int k,int m,int *x); void mColoring (int k,int m,int *x); int **a; //二维数组a,存储图的邻接矩阵 int n,e; //n表示图的顶点数,e表示边数 };
无向图G
【实验内容与要求】
图的着色问题:设G=(V,E)是一连通无向图,有3 种颜色,用这些颜色为G的各顶点着色,每个顶点着 一种颜色,且相邻顶点颜色不同。试用回溯法设计一 个算法,找出所有可能满足上述条件的着色法。
无向图G
无向图G
对应这个无向图的状态空间树应该是怎样的?
是一个完全3叉树,共6层
实验四 回溯法 — 图的着色问题
图的着色问题是由地图的着色问题引申而来的: 用m种颜色为地图着色,使得地图上的每一个 区域着一种颜色,且相邻区域颜色不同。
问题处理:如果把每一个区域收缩为一个顶点, 把相邻两个区域用一条边相连接,就可以把一
个区域图抽象为一个平面图。
地图(map)中地区的相邻关系,在图(graph )中用边表示。
//若(i, j)是图的边,且相邻结点k和j颜色相同 //发生冲突,选下一种颜色
if (j==k) return; //成功选择一种颜色返回 }while (1); //循环尝试颜色 }
运行结果:

图论课件第七章图的着色

图论课件第七章图的着色
总结词
平面图的着色问题是一个经典的图论问题,其目标是在满足相邻顶点颜色不同 的条件下,使用最少的颜色对平面图的顶点进行着色。
详细描述
平面图的着色问题可以使用欧拉公式和Kuratowski定理进行判断和求解。此外 ,也可以使用贪心算法、分治策略等算法进行求解。
树图的着色问题
总结词
树图的着色问题是一个经典的图论问 题,其目标是使用最少的颜色对树图 的顶点进行着色,使得任意两个相邻 的顶点颜色不同。
分支限界算法
总结词
分支限界算法是一种在搜索树中通过剪枝和 优先搜索来找到最优解的算法。
详细描述
在图的着色问题中,分支限界算法会构建一 个搜索树,每个节点代表一种可能的着色方 案。算法通过优先搜索那些更有可能产生最 优解的节点来加速搜索过程,同时通过剪枝 来排除那些不可能产生最优解的节点。分支 限界算法可以在较短的时间内找到最优解,
尤其适用于大规模图的着色问题。
03
图的着色问题的复 杂度
计算复杂度
确定图着色问题的计算复杂度为NP-完全,意味着该问题在多项式时间 内无法得到确定解,只能通过近似算法或启发式算法来寻找近似最优解 。
图着色问题具有指数时间复杂度,因为对于n个顶点的图,其可能的颜色 组合数量为n^k,其中k为每个顶点可用的颜色数。
02
图的着色算法
贪心算法
总结词
贪心算法是一种在每一步选择中都采取当前状态下最好或最优(即最有利)的选 择,从而希望导致结果是最好或最优的算法。
详细描述
贪心算法在图的着色问题中的应用是通过逐个对顶点进行着色,每次选择当前未 被着色的顶点中颜色数最少的颜色进行着色,直到所有顶点都被着色为止。这种 算法可以保证最小化使用的颜色数量,但并不保证得到最优解。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
8
顶点着色问题的常用算法
目前解决该问题的算法很多,如回溯算法、分支界定法、WelshPowell算法、布尔代数法、蚁群算法、贪婪算法、禁忌搜索算法、神 经网络、遗传算法以及模拟退火算法等。
通常的解决着色问题的算法采用蛮力法、贪婪法、深度优先或广度优 先等思想可以得到最优解,但时间复杂性太大,如回溯法,其计算时 间复杂性为指数阶的;有的在多项式时间内能得到可行解,但不是最 优解,如Welsh-Powell算法和贪婪算法。而对于像遗传算法和神经网 络这样复杂的启发式算法,通常算法本身复杂性较大,并且算法效率 难以分析,最终得到的是近似解,其是否最优解也不能保证。
A
3
问题处理:如果把每一个区域收缩为一个顶点,把相邻两个区域用一 条边相连接,就可以把一个区域图抽象为一个平面图。 例:图(a)所示的区域图可抽象为图(b)所表示的平面图。区域用 城市名表示,颜色用数字表示,则图中表示了不同区域的不同着色问 题。
A
4
图着色问题的分类
顶点着色:给定无向图G=(V,E),用m种颜色为图中的每个顶点着
标记死节点
没有
12
程序演示
A
13
回 溯 法 解 决 着 色 问 题 流
A
开始 所有节点颜色都置成零
取节点?

着色
存在
取另一种 颜色着色
有颜色可取?
有 没有
存在相邻顶点 颜色一样?
不存在
当前节点的 颜色置零
有效着色
完成着色?
未完成
返回到上一节点
完成
节点下移
输出结果
结束
没有
14
例子 :
A
邻接矩阵:
求m的问题称为图的m可着色优化问题。
独立集:对图G=(V,E),设S是V的一个子集,其中任意两个顶点在G中 均不相邻,则称S为G的一个独立集。 最大独立集:如果G不包含适合|S'|>|S|的独立集S',则称S为G的最
大独立集。
极大覆盖:设K是G的一个独立集,并且对于V-K的任一顶点v,K+v都 不是G的独立集,则称K是G的一个极大覆盖。 极小覆盖:极大独立集的补集称为极小覆盖。
A
9
穷举法-WELCH POWELL着色法
步骤:
I.将图G中的结点按度数的递减顺序进行排列(这种排列
可能不是唯一的,因为有些结点的度数相同)。 II.用第一种颜色对第一结点着色,并按排列顺序对与前 面着色结点不邻接的每一结点着上同样的颜色。 III.用第二种颜色对尚未着色的结点重复II,用第三种 颜色继续这种做法,直到所有的结点全部着上色为止。
A
7
顶点着色的算法思想
由“每个同色顶点集合中的两两顶点不相邻”可以看出,同 色顶点集实际上是一个独立集,当我们用第1种颜色上色时, 为了尽可能扩大颜色1的顶点个数,逼近所用颜色数最少的 目的,事实上就是找出图G的一个极大独立集并给它涂上颜 色1。用第2种颜色上色时,同样选择另一个极大独立集涂 色,...,当所有顶点涂色完毕,所用的颜色数即为所选的 极大独立集的个数。 当然,上述颜色数未必就是X(G),而且其和能够含所有顶 点的极大独立集个数未必唯一。
A BCD E
A 0 1 1 0 0
B
1
0
1
1
1
C 1 1 0 0 1
D
0
1
0
0
1
E 0 1 1 1 0
15
谢 谢!
A
16
A
11
回溯法
局部有效着色:如果其中i个 顶点已经着色,满足相邻两 个顶点的颜色都不一样并且 仍有颜色未被使用,就称当 前的着色是局部有效着色。
无效着色:如果其中i个顶点 已经着色,并且存在相邻两 个顶点的颜色一样,就称当 前的着色是无效着色。
A
所有节点颜色 都置成零
回溯法流程图
着色
有效?

节点下移
色,要求每个顶点着一种颜色,并使相邻两顶点之间有着不同 的颜色,这个问题称为图的顶点着色问题。
边着色:给定无环图G=(V,E),用m种颜色为图中的每条边着色,
要求每条边着一种颜色,并使相邻两条边有着不同的颜色,这 个问题称为图的边着色问题。
A
5
顶点着需要m种颜色才能使图中每条边连接的两个顶 点着不同的颜色,则称m为该图的色数。
A
10
贪心法
贪心策略:选择一种颜色,以任意顶点作为开始顶点,依 次考察图中的未被着色的每个顶点,如果一个顶点可以用 颜色1着色,换言之,该顶点的邻接点都还未被着色,则 用颜色1为该顶点着色,当没有顶点能以这种颜色着色时, 选择颜色2和一个未被着色的顶点作为开始顶点,用第二 种颜色为尽可能多的顶点着色,如果还有未着色的顶点, 则选取颜色3并为尽可能多的顶点着色,依此类推。
图的着色问题
主讲人:XXX
A
1
内容
问题来源 基本概念 常用算法 回溯法 程序演示
A
2
问题来源——四色问题
• 图的着色问题是由地图的着色问题引申而来的:用m种颜色为地 图着色,使得地图上的每一个区域着一种颜色,且相邻区域颜 色不同。
• 四色问题:“任何一张地图只用四种颜色就能使具有共同边界 的国家着上不同的颜色。”
V的子集K是G的极小覆盖当且仅当:对于每个顶点v或者v属于K, 或者v的所有邻点属于K(但两者不同时成立)。
A
6
例子
A
B
C
D
• 独立集:S1={A,D},S2={B,C} 找不到比它们更大的独立集,故S1、S2是最大独立集。
• 极大覆盖:{A ,B,C,D} – S1 = {B,C},对于任意的v∈{B, C},加入集合S1之后,S1不再是一个独立集。S1是一个极大覆盖。
相关文档
最新文档