图着色问题
chap12 图的着色

点着色的应用
课程安排问题 某大学数学系要为这个夏季安排课程表。所要开设 的课程为:图论(GT), 统计学(S),线性代数(LA), 高等 微积分(AC), 几何学(G)和近世代数(MA)。现有10名 学生(如下所示)需要选修这些课程。根据这些信息, 确定开设这些课程所需要的最少时间段数,使得学 生选课不会发生冲突。(学生用Ai表示)
5
K可着色的图例
v1
1
v2
G
v3 v4
v5
2 3
S
:V(G) →S,满射 是正常3着色,G是3可着色的。
6
K色图
定义12.1.2 图G的正常k着色中最小的k称为G的色
数,记为(G),即(G)=min{k|G存在正常k着色}。
若(G) =k,则称G是k色图。 显然,含环的图不存在正常着色,而多重边与一条 边对正常着色是等价的。以后总设G为简单图。 问题:已知一个图G(p,q),如何求色数(G)?
又因k>0, 所以与(G)定义矛盾。结论成立。 注意此定理与定理12.1.2的区别。 定理12.1.2 若G是一个临界图,则(G) ≤(G)+1
21
Brooks 定理
定理12.1.5 若连通图G既不是奇回路,也不是完全 图,则(G) (G) . 例如,对Petersen图应用Brooks定理,可得: (G) (G) =3 . 此定理说明只有奇回路 或完全图这两类图的色 数才是(G) +1。
第一步:建图。 把每门课程做为图G的顶点,两顶点连线当且仅当 有某个学生同时选了这两门课程。
色给同一时 段的课程顶点染色,那么,问 题转化为在状态图中求点色数 问题。
MA
S
G
AC 选课状态图
LA
图的着色问题--C++实现(含详细注释)

图的着色问题一、题目简述(1) 图的m-着色判定问题给定一个无向连通图 G 和 m 种不同的颜色。
用这些颜色为图 G 的各顶点着色,每个顶点着一种颜色,是否有一种着色法使 G 中任意相邻的两个顶点着不同颜色?(2) 图的m-着色优化问题若一个图最少需要 m 种颜色才能使图中任意相邻的两个顶点着不同颜色,则称这个数 m 为该图的色数。
求一个图的最小色数 m 的问题称为m-着色优化问题。
二、算法思想1. m-着色判定问题总体思想:通过回溯的方法,不断为每一个节点着色,每个点的颜色由一个数字代表,初始值为1。
在对前面 step - 1 个节点都合法的着色之后,开始对第 step 个节点进行着色。
如果 n 个点均合法,且颜色数没有达到 m 种,则代表存在一种着色法使 G中任意相邻的两个顶点着不同颜色。
具体步骤:1. 对每个点 step ,有 m 种着色可能性,初始颜色值为1。
2. 检查第 step 个节点颜色的可行性,若与某个已着色的点相连且颜色相同,则不选择这种着色方案,并让颜色值加1,继续检查该点下一种颜色的可行性。
3. 如果第 step 点颜色值小于等于 m ,且未到达最后一个点,则进行对第 step + 1 点的判断。
4. 如果第 step 点颜色值大于 m ,代表该点找不到合适的分配方法。
此时算法进行回溯,首先令第 step 节点的颜色值为0,并对第 step - 1 个点的颜色值+1后重新判断。
5. 如果找到一种颜色使得第 step 个节点能够着色,说明 m 种颜色的方案是可行的。
6. 重复步骤2至5,如果最终 step 为0则代表无解。
2. m-着色优化问题基于问题1,对于一个无向图 G ,从1开始枚举染色数,上限为顶点数,第一个满足条件的颜色数即为所求解。
三、实现过程(附代码)1. m-着色判定问题#include<iostream>using namespace std;int color[100]; // 每个点的颜色int mp[100][100]; // 图的邻接矩阵int n, m, x; // n顶点,m种颜色方案,x条边bool check(int step) {// 判断与step点相邻的点,颜色是否与step点相同,若相同则返回falsefor (int i=1; i<=n; i++) {if (mp[step][i] ==1&&color[i] ==color[step]) {return false;}}return true;}bool Solve(int m) {// 求解是否可以找到一种可行的染色方案int step=1; // step指示当前节点while (step>=1) {color[step] +=1; // 假定颜色值从1开始,若为回溯,选择下一种方案while (color[step] <=m) { // 按照问题条件选择第step点颜色if (check(step)) {break;} else {color[step]++; // 搜索下一个颜色}}if (color[step] <=m&&step==n) { // 如果找完n个点,且染色方法小于等于m种 return true;} else if (color[step] <=m&&step<n) {step++; // 求解下一个顶点} else { // 如果染色数大于m个,回溯color[step] =0; // 回溯,该点找不到合适的分配方法,对上一点进行分析step--;}}// 如果step退到0,则代表无解return false;}int main() {int i, j;bool ans=false;cout<<"输入顶点数n和着色数m"<<endl;cin>>n>>m;cout<<"输入边数"<<endl;cin>>x;cout<<"具体输入每条边"<<endl;for (int p=0; p<x; p++) { // 以无向邻接矩阵存储边cin>>i>>j;mp[i][j] =1;mp[j][i] =1;}if (Solve(m)) {cout<<"有解";} else {cout<<"无解";}return0;}2. m-着色优化问题#include<iostream>using namespace std;int color[100]; // 每个点的颜色int mp[100][100]; // 图的邻接矩阵int n, m, x; // n顶点,m种颜色方案,x条边bool check(int step) {// 判断与step点相邻的点,颜色是否与step点相同,若相同则返回falsefor (int i=1; i<=n; i++) {if (mp[step][i] ==1&&color[i] ==color[step]) {return false;}}return true;}bool Solve(int m) {// 求解是否可以找到一种可行的染色方案int step=1; // step指示当前节点while (step>=1) {color[step] +=1; // 假定颜色值从1开始,若为回溯,选择下一种方案while (color[step] <=m) { // 按照问题条件选择第step点颜色if (check(step)) {break;} else {color[step]++; // 搜索下一个颜色}}if (color[step] <=m&&step==n) { // 如果找完n个点,且染色方法小于等于m种 return true;} else if (color[step] <=m&&step<n) {step++; // 求解下一个顶点} else { // 如果染色数大于m个,回溯color[step] =0; // 回溯,该点找不到合适的分配方法,对上一点进行分析step--;}}// 如果step退到0,则代表无解return false;}int main() {int i, j;bool ans=false;cout<<"输入顶点数n"<<endl;cin>>n;cout<<"输入边数"<<endl;cin>>x;cout<<"具体输入每条边"<<endl;for (int p=0; p<x; p++) { // 以无向图邻接矩阵存储边 cin>>i>>j;mp[i][j] =1;mp[j][i] =1;}for (m=1; m<=n; m++) { // 从小到大枚举着色数mif (Solve(m)) { // 如果有解,输出答案并跳出循环cout<<"最小色数m为 "<<m;break;}}return0;}四、结果及分析问题1测试用例:问题2测试用例:经检验,最少着色数的范围为2-4,意味着使 G 中任意相邻的两个顶点着不同颜色最多需要4种颜色。
图的平面性与图的着色问题

图的平面性与图的着色问题在图论中,图的平面性与图的着色问题是两个重要的研究方向。
图的平面性指的是一种特殊的图的布局方式,使得图的边不相交。
而图的着色问题是指如何给图的顶点进行染色,使得相邻的顶点颜色不相同。
本文将分别介绍图的平面性和图的着色问题,并对其进行详细讨论。
一、图的平面性(Planarity of Graphs)图的平面性是图论中一个经典的问题,研究的是如何将一个图画在平面上,使得图的边不相交。
具体而言,如果一个图可以被画在平面上,且不同边的交点只有顶点,那么我们称该图是一个平面图。
而对于不能在平面上画出来的图,则被称为非平面图。
定理1:一个图是平面图,当且仅当它不包含任何的子图同构于以下两种图之一:K5(五个没有共同边的顶点)或K3,3(六个节点,其中任意两个节点之间都有边相连但不交叉)。
这个定理被称为Kuratowski定理,它为我们判断一个图是否是平面图提供了一个有效的方法。
根据Kuratowski定理,我们可以使用该定理的逆否命题,即如果一个图中包含K5或K3,3,则该图一定是非平面图。
除了Kuratowski定理之外,还有一种判断图的平面性的方法,称为Euler公式。
Euler公式表达了平面图的顶点数、边数和面数之间的关系:V - E + F = 2其中V表示顶点数,E表示边数,F表示面数。
根据Euler公式,对于简单连接图(无环,无孤立点),如果它的顶点数大于等于3且边数大于等于3,且满足Euler公式,则该图是一个平面图。
二、图的着色问题(Graph Coloring)图的着色问题是指如何给一个图的顶点进行染色,使得相邻的顶点颜色不相同。
这里的相邻指的是有边相连的顶点。
在图论中,颜色通常表示为正整数,颜色数则表示为给定图所需的最小颜色数。
对于任意图G,G的最小颜色数被称为G的色数。
如果图G的色数为k,则称图G是可k着色的。
求解一个图的最小色数是一个复杂的问题,称为顶点着色问题(Vertex Coloring Problem),它是一个NP 完全问题。
离散数学图着色问题算法描述

离散数学图着色问题算法描述离散数学图着色问题,简单来说是指给定一个无向图,如何为每个节点上色,使得相邻节点的颜色不相同。
这个问题可以用图着色算法来解决,下面将对图着色问题的算法描述进行详细介绍。
1. 算法背景介绍在离散数学中,图着色问题是一种经典的组合优化问题,它有广泛的应用领域,如地图着色、时间表排课等。
该问题的关键在于找到一种最少的颜色分配方案,使得相邻节点的颜色不相同。
2. 算法步骤描述(1)初始化:给定一个无向图G,节点数为n,边数为m。
初始时,给每个节点分配一个未被使用的颜色。
(2)排序节点:按照节点的度数降序进行排序,从度数最大的节点开始着色。
(3)节点着色:依次对每个节点进行着色。
对于当前节点v,遍历它的所有相邻节点w,如果w已经被染色,则从可用的颜色集合中去除w的颜色。
最后,将v染色为可用的最小颜色。
(4)重复步骤3,直到所有节点都被染色。
3. 算法实例演示假设有以下无向图G:```A/ \B C/ \ / \D -E - F```首先,对节点进行排序,按照度数降序排序为:E(度数为4),A (度数为3),D(度数为2),B和C(度数为1),F(度数为0)。
接下来,按照排序后的顺序对每个节点进行着色。
首先着色E,将其染色为第一个可用的颜色。
然后是A,由于E已经被染色为第一个颜色,A只能选择剩下的颜色。
接着是D,由于D与已经着色的节点E邻接,所以D需要选择未被使用的颜色。
然后是B和C,它们的邻居节点E和A已经被着色,所以它们只能选择未被使用的颜色。
最后是F,由于F没有邻居节点,可以选择任意颜色。
经过上述步骤,图G的每个节点都被着色,且相邻节点的颜色不相同。
4. 算法分析该算法在最坏情况下需要对节点进行O(n^2)次比较,其中n为节点数。
因此,算法的时间复杂度为O(n^2)。
同时,该算法具有较好的可行性和实用性,对于大部分图着色问题能够给出近似最优的解。
综上所述,离散数学图着色问题的算法描述如上所述。
图论讲义第6章-图的着色问题

ikik i0
( Δ + 1) 边染色。由引理 6.1.2, G[ Ei′0 ∪ Ei′k ] 中含有 u 的那个分支 H 1 是个奇圈。
ik i0 ik
vk …
im
… v3 v2
i4 i3 i2
u
i1
vm
v1
v
3
而对 k ≤ j ≤ m − 1 ,用颜色 ij+1 给 uvj 重新染色,而用颜色 ik 给 uvm 重新染色,得到一
1
, E k ) 中每个 Ei 都是非空的
设 v0 e1v1e2
eε v0 是 G 的一条 Euler 闭迹。 令 E1 = {ei i 为奇数},E 2 = {ei i 为偶数}。
于是 c = (E1, E2) 即为所求的边 2-染色。 需要说明的是,Euler 闭迹从度≥4 的顶点出发是必需的。例如在下图中,若从 2 度顶 点 u 处出发沿 Euler 闭迹交替地对边进行 2 染色,则 u 点可能仅能获得一种色(如图,1、2 表示两种颜色) 。
′′, E 2 ′′, 个( Δ+1 )边染色 c ′′ = ( E1
′′+1 ) 。同理有 c ′′( v ) ≥ c( v ) 对所有 v ∈ V 成立。故由引理 , EΔ
′ ∪ Ei′k′ ] 中含有 u 的分支 H 2 是个奇圈。 6.1.2, G[ Ei′0
vk-1
iki0 ik+1 ik
第六章 染色理论
许多实际问题可以归结为求图的匹配或者独立集。 此外, 在许多应用中, 人们希望知道: 一个给定的图, 它的边集至少能划分成多少个边不交的匹配?或它的顶点集至少能划分成多 少个点不交的独立集?这便是图的边染色和顶点染色问题。
图的着色问题

问题来源
图的着色
通常所说的着色问题是指下述两类问题: 通常所说的着色问题是指下述两类问题: 1.给定无环图G=(V,E),用m种颜色为图中 的每条边着色,要求每条边着一种颜色, 的每条边着色,要求每条边着一种颜色,并 使相邻两条边有着不同的颜色, 使相邻两条边有着不同的颜色,这个问题称 为图的边着色问题。 为图的边着色问题。 2.给定无向图G=(V,E),用m种颜色为图中 的每个顶点着色,要求每个顶点着一种颜色, 的每个顶点着色,要求每个顶点着一种颜色, 并使相邻两顶点之间有着不同的颜色, 并使相邻两顶点之间有着不同的颜色,这个 问题称为图的顶着色问题。 问题称为图的顶着色问题。
化简得
( a + bd )(b + aceg )(c + bdef )( d + aceg )(e + bcdf )( f + ceg )( g + bdf )
求极小覆盖法- 求极小覆盖法-布尔代数法
Step3:从中挑选所用极大独立集个数最小者, Step3:从中挑选所用极大独立集个数最小者, 即为X 即为X(G) 但上述子集的颜色数都不是X ),正确的应 但上述子集的颜色数都不是X(G),正确的应 该是X =3,该子集为: {b,d,f}中的 该是X(G)=3,该子集为:给{b,d,f}中的 b,d,f涂颜色 涂颜色1 {a,e,g}中a,e,g涂颜色 涂颜色2 b,d,f涂颜色1,为{a,e,g}中a,e,g涂颜色2为 {a,c,g}中的 涂颜色3 中的c {a,c,g}中的c涂颜色3。 由此可见, 由此可见,求色数其需要求极大独立集以 及一切若干极大独立集的和含所有顶点的子 对于大图, 集,对于大图,因为图计算量过大而成为实 际上难以凑效的算法,所以不是一个好算法, 际上难以凑效的算法,所以不是一个好算法, 一般我们采用贪心法等近似算法来求解 。
实验四 回溯法(图着色问题)

01 234 001 1 01 1 1 01 01 21 1 01 0 3001 01 41 1 01 0
class MGraph { public:
MGraph(int v,int s); void mColoring(int m,int *x); //一维数组x,存放1~n个顶点的颜色 ~MGraph(); private: void NextValue(int k,int m,int *x); void mColoring (int k,int m,int *x); int **a; //二维数组a,存储图的邻接矩阵 int n,e; //n表示图的顶点数,e表示边数 };
无向图G
【实验内容与要求】
图的着色问题:设G=(V,E)是一连通无向图,有3 种颜色,用这些颜色为G的各顶点着色,每个顶点着 一种颜色,且相邻顶点颜色不同。试用回溯法设计一 个算法,找出所有可能满足上述条件的着色法。
无向图G
无向图G
对应这个无向图的状态空间树应该是怎样的?
是一个完全3叉树,共6层
实验四 回溯法 — 图的着色问题
图的着色问题是由地图的着色问题引申而来的: 用m种颜色为地图着色,使得地图上的每一个 区域着一种颜色,且相邻区域颜色不同。
问题处理:如果把每一个区域收缩为一个顶点, 把相邻两个区域用一条边相连接,就可以把一
个区域图抽象为一个平面图。
地图(map)中地区的相邻关系,在图(graph )中用边表示。
//若(i, j)是图的边,且相邻结点k和j颜色相同 //发生冲突,选下一种颜色
if (j==k) return; //成功选择一种颜色返回 }while (1); //循环尝试颜色 }
运行结果:
图论课件第七章图的着色

平面图的着色问题是一个经典的图论问题,其目标是在满足相邻顶点颜色不同 的条件下,使用最少的颜色对平面图的顶点进行着色。
详细描述
平面图的着色问题可以使用欧拉公式和Kuratowski定理进行判断和求解。此外 ,也可以使用贪心算法、分治策略等算法进行求解。
树图的着色问题
总结词
树图的着色问题是一个经典的图论问 题,其目标是使用最少的颜色对树图 的顶点进行着色,使得任意两个相邻 的顶点颜色不同。
分支限界算法
总结词
分支限界算法是一种在搜索树中通过剪枝和 优先搜索来找到最优解的算法。
详细描述
在图的着色问题中,分支限界算法会构建一 个搜索树,每个节点代表一种可能的着色方 案。算法通过优先搜索那些更有可能产生最 优解的节点来加速搜索过程,同时通过剪枝 来排除那些不可能产生最优解的节点。分支 限界算法可以在较短的时间内找到最优解,
尤其适用于大规模图的着色问题。
03
图的着色问题的复 杂度
计算复杂度
确定图着色问题的计算复杂度为NP-完全,意味着该问题在多项式时间 内无法得到确定解,只能通过近似算法或启发式算法来寻找近似最优解 。
图着色问题具有指数时间复杂度,因为对于n个顶点的图,其可能的颜色 组合数量为n^k,其中k为每个顶点可用的颜色数。
02
图的着色算法
贪心算法
总结词
贪心算法是一种在每一步选择中都采取当前状态下最好或最优(即最有利)的选 择,从而希望导致结果是最好或最优的算法。
详细描述
贪心算法在图的着色问题中的应用是通过逐个对顶点进行着色,每次选择当前未 被着色的顶点中颜色数最少的颜色进行着色,直到所有顶点都被着色为止。这种 算法可以保证最小化使用的颜色数量,但并不保证得到最优解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8
顶点着色问题的常用算法
目前解决该问题的算法很多,如回溯算法、分支界定法、WelshPowell算法、布尔代数法、蚁群算法、贪婪算法、禁忌搜索算法、神 经网络、遗传算法以及模拟退火算法等。
通常的解决着色问题的算法采用蛮力法、贪婪法、深度优先或广度优 先等思想可以得到最优解,但时间复杂性太大,如回溯法,其计算时 间复杂性为指数阶的;有的在多项式时间内能得到可行解,但不是最 优解,如Welsh-Powell算法和贪婪算法。而对于像遗传算法和神经网 络这样复杂的启发式算法,通常算法本身复杂性较大,并且算法效率 难以分析,最终得到的是近似解,其是否最优解也不能保证。
A
3
问题处理:如果把每一个区域收缩为一个顶点,把相邻两个区域用一 条边相连接,就可以把一个区域图抽象为一个平面图。 例:图(a)所示的区域图可抽象为图(b)所表示的平面图。区域用 城市名表示,颜色用数字表示,则图中表示了不同区域的不同着色问 题。
A
4
图着色问题的分类
顶点着色:给定无向图G=(V,E),用m种颜色为图中的每个顶点着
标记死节点
没有
12
程序演示
A
13
回 溯 法 解 决 着 色 问 题 流
A
开始 所有节点颜色都置成零
取节点?
有
着色
存在
取另一种 颜色着色
有颜色可取?
有 没有
存在相邻顶点 颜色一样?
不存在
当前节点的 颜色置零
有效着色
完成着色?
未完成
返回到上一节点
完成
节点下移
输出结果
结束
没有
14
例子 :
A
邻接矩阵:
求m的问题称为图的m可着色优化问题。
独立集:对图G=(V,E),设S是V的一个子集,其中任意两个顶点在G中 均不相邻,则称S为G的一个独立集。 最大独立集:如果G不包含适合|S'|>|S|的独立集S',则称S为G的最
大独立集。
极大覆盖:设K是G的一个独立集,并且对于V-K的任一顶点v,K+v都 不是G的独立集,则称K是G的一个极大覆盖。 极小覆盖:极大独立集的补集称为极小覆盖。
A
9
穷举法-WELCH POWELL着色法
步骤:
I.将图G中的结点按度数的递减顺序进行排列(这种排列
可能不是唯一的,因为有些结点的度数相同)。 II.用第一种颜色对第一结点着色,并按排列顺序对与前 面着色结点不邻接的每一结点着上同样的颜色。 III.用第二种颜色对尚未着色的结点重复II,用第三种 颜色继续这种做法,直到所有的结点全部着上色为止。
A
7
顶点着色的算法思想
由“每个同色顶点集合中的两两顶点不相邻”可以看出,同 色顶点集实际上是一个独立集,当我们用第1种颜色上色时, 为了尽可能扩大颜色1的顶点个数,逼近所用颜色数最少的 目的,事实上就是找出图G的一个极大独立集并给它涂上颜 色1。用第2种颜色上色时,同样选择另一个极大独立集涂 色,...,当所有顶点涂色完毕,所用的颜色数即为所选的 极大独立集的个数。 当然,上述颜色数未必就是X(G),而且其和能够含所有顶 点的极大独立集个数未必唯一。
A BCD E
A 0 1 1 0 0
B
1
0
1
1
1
C 1 1 0 0 1
D
0
1
0
0
1
E 0 1 1 1 0
15
谢 谢!
A
16
A
11
回溯法
局部有效着色:如果其中i个 顶点已经着色,满足相邻两 个顶点的颜色都不一样并且 仍有颜色未被使用,就称当 前的着色是局部有效着色。
无效着色:如果其中i个顶点 已经着色,并且存在相邻两 个顶点的颜色一样,就称当 前的着色是无效着色。
A
所有节点颜色 都置成零
回溯法流程图
着色
有效?
有
节点下移
色,要求每个顶点着一种颜色,并使相邻两顶点之间有着不同 的颜色,这个问题称为图的顶点着色问题。
边着色:给定无环图G=(V,E),用m种颜色为图中的每条边着色,
要求每条边着一种颜色,并使相邻两条边有着不同的颜色,这 个问题称为图的边着色问题。
A
5
顶点着需要m种颜色才能使图中每条边连接的两个顶 点着不同的颜色,则称m为该图的色数。
A
10
贪心法
贪心策略:选择一种颜色,以任意顶点作为开始顶点,依 次考察图中的未被着色的每个顶点,如果一个顶点可以用 颜色1着色,换言之,该顶点的邻接点都还未被着色,则 用颜色1为该顶点着色,当没有顶点能以这种颜色着色时, 选择颜色2和一个未被着色的顶点作为开始顶点,用第二 种颜色为尽可能多的顶点着色,如果还有未着色的顶点, 则选取颜色3并为尽可能多的顶点着色,依此类推。
图的着色问题
主讲人:XXX
A
1
内容
问题来源 基本概念 常用算法 回溯法 程序演示
A
2
问题来源——四色问题
• 图的着色问题是由地图的着色问题引申而来的:用m种颜色为地 图着色,使得地图上的每一个区域着一种颜色,且相邻区域颜 色不同。
• 四色问题:“任何一张地图只用四种颜色就能使具有共同边界 的国家着上不同的颜色。”
V的子集K是G的极小覆盖当且仅当:对于每个顶点v或者v属于K, 或者v的所有邻点属于K(但两者不同时成立)。
A
6
例子
A
B
C
D
• 独立集:S1={A,D},S2={B,C} 找不到比它们更大的独立集,故S1、S2是最大独立集。
• 极大覆盖:{A ,B,C,D} – S1 = {B,C},对于任意的v∈{B, C},加入集合S1之后,S1不再是一个独立集。S1是一个极大覆盖。