强失效分析与设计准则

合集下载

滚动轴承的受力分析载荷计算失效和计算准则

滚动轴承的受力分析载荷计算失效和计算准则

滚动轴承的受力分析载荷计算失效和计算准则滚动轴承是一种常用的机械元件,它能够在高速旋转的条件下承受并转移载荷。

在设计和应用滚动轴承时,关键的工作之一是进行受力分析和载荷计算,以确保轴承能够正常工作并减少失效的风险。

本文将从受力分析、载荷计算、失效和计算准则几个方面详细介绍滚动轴承。

一、滚动轴承的受力分析滚动轴承受到的力主要有径向力和轴向力两种。

径向力是垂直于轴线的力,它可以分为径向载荷和径向惯性力两部分。

轴向力是平行于轴线的力,它可以分为轴向载荷和轴向惯性力两部分。

受力分析的目的是确定轴承所受的载荷大小和方向,以便选择适当的轴承型号和设计。

二、滚动轴承的载荷计算载荷计算是根据受力分析的结果,确定轴承承受的载荷大小和方向。

在实际应用中,轴承承受的载荷通常包括静载荷和动载荷两部分。

静载荷是指静止条件下轴承所承受的最大力,动载荷是指旋转条件下轴承所承受的最大力。

根据载荷计算的结果,可以选择适当的轴承并确定其使用寿命。

滚动轴承的失效可以分为疲劳失效和磨损失效两种。

疲劳失效是由于载荷作用下轴承材料的疲劳破裂引起的,磨损失效是由于轴承表面的磨损引起的。

根据滚动轴承的失效机理,制定了一系列的计算准则,用于评估轴承的寿命和失效风险。

常用的滚动轴承计算准则包括基本额定寿命、等效动载荷、寿命调整系数和动接触角等。

基本额定寿命是指在特定载荷下,轴承能够连续工作的寿命。

等效动载荷是指在复杂工况下,将径向载荷和轴向载荷转化成等效的径向载荷。

寿命调整系数则考虑了不同工作条件下的调整因素,用于修正基本额定寿命。

动接触角是指滚动元件与外圈之间的接触角度,它可以影响轴承的刚度和额定寿命。

综上所述,滚动轴承的受力分析、载荷计算、失效和计算准则是设计和应用滚动轴承时的重要内容,它们能够帮助我们选择适当的轴承型号、确保轴承的使用寿命并减少失效的风险。

在实际工程中,我们应该根据具体的工作条件和要求,进行合理的受力分析和载荷计算,并遵循相关计算准则,以确保滚动轴承的安全可靠运行。

压力容器设计概述及准则

压力容器设计概述及准则

国家质量监督检验检疫总局特种设备局认证备案,
打印结果中 应有软件程序编号、输入数据和计算结果 等内容。
11
过程设备设计
设计图样
总图
零部件图
总图
包括压力容器名称、类别;设计条件;
必要时应注明压力容器使用年限;
主要受压元件材料牌号及材料要求; 主要特性参数(如容积、换热器换热面积与程数等);
制造要求;热处理要求;防腐蚀要求;无损检测要求;
33
定因素,引入安全系数,
得到与失效判据相对应 的设计准则。
过程设备设计
压力容器设计时
先确定
最有可能的失效形式
选择
合适的失效叛据和设计准则
确定
适用的设计标准
再按照标准要求
进行设计、校核
34
过程设备设计
4.2.2 强度失效设计准则 强度失效的两种主要形式:
屈服 (在常温、静载作用下) 断裂 弹性失效设计准则 塑性失效设计准则 爆破失效设计准则
37
过程设备设计
(2)形状改变比能准则
形状改变比能失效判据:
1 2 [(σ 1 - σ 2 ) 2 (σ 2 - σ 3 ) 2 (σ 3 - σ 1 ) 2 ] s
第四强度理论:
任意应 力状态
1 2
[(σ1 - σ 2 ) 2 (σ 2 - σ 3 ) 2 (σ 3 - σ 1 ) 2 ] [σ]t
23
过程设备设计
脆性断 裂原因
材料脆性和缺陷。 a. 材料选用不当、焊接与热处理不当使材料 脆化;低温、长期在高温下运行、应变
时效等也会使材料脆化;
b. 压力容器用钢一般韧性较好,但若存在
严重的原始缺陷(如原材料的夹渣、

工程力学(静力学与材料力学)习题及答案 - 设计准则

工程力学(静力学与材料力学)习题及答案 - 设计准则

工程力学(静力学与材料力学)习题第12章 失效分析与设计准则12- 1 对于建立材料在一般应力状态下的失效判据与设计准则,试选择如下合适的论述。

(A )逐一进行试验,确定极限应力;(B )无需进行试验,只需关于失效原因的假说;(C )需要进行某些试验,无需关于失效原因的假说; (D )假设失效的共同原因,根据简单试验结果。

正确答案是 。

12-2 对于图示的应力状态(y x σσ>)若为脆性材料,试分析失效可能发生在:(A )平行于x 轴的平面; (B )平行于z 轴的平面;(C )平行于Oyz 坐标面的平面; (D )平行于Oxy 坐标面的平面。

正确答案是 。

12-3 对于图示的应力状态,若x y σσ=,且为韧性材料,试根据最大切应力准则,失效可能发生在:(A )平行于y 轴、其法线与x 轴的夹角为45°的平面,或平行于x 轴、其法线与y 轴的夹角为45°的平面内;(B )仅为平行于y 轴、法线与z 轴的夹角为45°的平面; (C )仅为平行于z 轴、其法线与x 轴的夹角为45°的平面; (D )仅为平行于x 轴、其法线与y 轴的夹角为45°的平面。

正确答案是 。

12-4 铸铁处于图示应力状态下,试分析最容易失效的是:(A )仅图c ;(B )图a 和图b ; (C )图a 、b 和图c ; (D )图a 、b 、c 和图d 。

正确答案是 。

12-5低碳钢处于图示应力状态下,若根据最大切应力准则,试分析最容易失效的是: (A )仅图d ; (B )仅图c ; (C )图c 和图d ; (D )图a 、b 和图d 。

正确答案是 。

12-6 韧性材料所处应力状态如图所示,根据最大切应力准则,试分析二者同时失效的条件是: (A )τσ>,3/2στ=; (B )τσ<,3/4στ=; (C )τσ=;(D )τσ>,3/2τσ=。

失效分析与强度准则

失效分析与强度准则

VS
详细描述
汽车零件的磨损失效是汽车故障的主要原 因之一,可能导致车辆性能下降和安全事 故。通过磨损失效分析,可以了解汽车零 件的磨损机理和影响因素,为汽车零件的 设计、制造和使用提供优化方案。
案例五:高分子材料的老化失效分析
总结词
高分子材料的老化失效分析主要研究高分子材料在环境因素作用下的性能退化和老化机理。
详细描述
高分子材料的老化失效是一个普遍存在的现象,受到环境因素如温度、湿度、紫外线等的影响。通过老化失效分 析,可以了解高分子材料的老化机理和影响因素,为高分子材料的设计、制造和使用提供科学依据。
感谢您的观看
THANKS
高分子材料的失效分析
01
高分子材料的失效分析主要关注高分子材料的强度、
硬度、韧性、耐热性、耐腐蚀性等方面的变化。
02
高分子材料的失效通常是由于老化、氧化、水解等因
素引起的。
03
高分子材料的失效分析方法包括红外光谱分析、核磁
共振谱分析、热重分析等。
04
结构失效分析
结构失效的分类与原因
断裂失效
由于材料内部存在缺陷或应力集中区 域,导致结构在低于其承载能力的应 力作用下发生断裂。
最大伸长应变准则
该准则认为当最大伸长应 变达到材料的极限伸长应 变时,材料会发生拉伸失 效。
莫尔-库仑准则
该准则认为当剪切应力与 正应力之比达到某一特定 值时,材料会发生剪切失 效。
强度准则的应用场景与限制
应用场景
强度准则广泛应用于工程结构的设计、分析和优化,特别是在材料和结构的承载能力评 估方面。
05
失效分析案例研究
案例一:金属材料疲劳失效分析
总结词
金属材料疲劳失效分析主要研究金属材料在循环载荷作用下的性能退化和最终 断裂过程。

ansys workbench 失效准则

ansys workbench 失效准则

ansys workbench 失效准则(实用版)目录1.ANSYS Workbench 简介2.失效准则的定义与分类3.ANSYS Workbench 中的失效准则4.失效准则在 ANSYS Workbench 中的应用5.结论正文【1.ANSYS Workbench 简介】ANSYS Workbench 是一款由 ANSYS 公司开发的综合性计算机辅助工程(CAE)软件,广泛应用于结构、流体、热传导等多物理场的仿真分析。

通过强大的图形用户界面和参数化设计,用户可以轻松地搭建模型、应用各种分析技术和求解器,以实现对工程设计的快速验证和优化。

【2.失效准则的定义与分类】失效准则,又称为失效模式或失效机理,是指在特定的工况下,材料或结构不能满足设计要求的性能指标,从而导致失效或破坏的规律。

失效准则可以分为以下几类:(1)强度失效准则:材料在应力达到其强度极限时发生失效。

(2)疲劳失效准则:材料在循环载荷作用下,经过一定次数的循环后发生失效。

(3)腐蚀失效准则:材料在腐蚀环境下,由于腐蚀作用导致其性能降低,最终发生失效。

(4)磨损失效准则:材料在摩擦、磨损作用下,表面逐渐损耗,最终导致失效。

(5)断裂失效准则:材料在裂纹扩展过程中,当裂纹长度达到临界值时发生失效。

【3.ANSYS Workbench 中的失效准则】在 ANSYS Workbench 中,失效准则主要应用于结构分析和热分析等领域。

用户可以根据不同的工程背景和需求,选择合适的失效准则进行分析。

以下是 ANSYS Workbench 中常用的失效准则:(1)强度失效准则:在结构分析中,可以使用材料强度极限来判断结构是否失效。

例如,当材料的应力达到其屈服强度或破坏强度时,结构即被认为失效。

(2)疲劳失效准则:在疲劳分析中,可以使用疲劳寿命预测方法来评估结构在循环载荷作用下的失效风险。

例如,当结构在规定的循环次数内发生断裂时,即认为其失效。

(3)腐蚀失效准则:在腐蚀分析中,可以使用腐蚀模型来预测材料在腐蚀环境下的失效程度。

机械设计概论4机械零件的主要失效形式和计算准则一

机械设计概论4机械零件的主要失效形式和计算准则一

5、零部件装配工艺性
6、零部件维修工艺性
机械零件设计中的标准化
标准化、系列化、通用化
机械设计
一、传统设计方法
第1 章
机械设计概论
12
1.7 机械设计方法及其新发展 1、理论设计 1)根据使用要求,选择零件的类型和结构。 2)根据机器的工作要求,计算作用在零件上的载荷。 3)选择适当的材料。 4)根据零件工作能力准则,确定零件的主要尺寸
机械设计
第1 章
机械设计概论
2
1.2 机器设计的一般程序 机械设计是一个创新与借鉴相结合的过程,一般程序如下:
计划阶段 方案设计 技术设计 试制、试验、鉴定、生产 信 息 反 馈 、 修 改
技术文件的编制
机械设计
第1 章
机械设计概论
3
减速器设计
机械设计
第1 章
机械设计概论
4
1.3 机械零件设计的基本要求及一般步骤
5)选用高效率设备,减少动力、燃料消耗。
机械设计
3、可靠性要求
第1 章
机械设计概论
1
机器的可靠度(R):在规定的工作期限内和规定的工 作条件下,无故障完成规定功能的概率。 提高机器可靠度的关键是提高其组成零部件的可靠度 4、劳动保护和环境保护要求 1)操作者的操作安全,减轻操作者的劳动强度 2)改善操作者及机器的环境 5、其它要求 产品的特殊要求、造型要求、清洁能源、材料等
机械设计
第1 章
机械设计概论
6
机械设计
二、设计准则
第1 章
机械设计概论
7
1、强度准则
强度:零件抵抗断裂、塑变、疲劳破坏的能力。 方法: 1) [ ] 或 [ ]
[ ]

材力第7章习题解

材力第7章习题解

∴ = 0,
MPa,
MPa
MPa
2. = 248 MPa;
∴ = 0,
MPa,
MPa
MPa 3. = 290 MPa。
∴ = 0,
MPa,
MPa
MPa
7-13 铝合金制成的零件上某一点处的平面应力状态如图所示,其屈服应力 = 280MPa。试按最大切应 力准则确定。
1.屈服时的 的代数值; 2.安全因数为 1.2 时的 值。 1.解:
1.(a)
(b)

2.(a)
(b) 用形状改变比能,相当应力相同。
7-17 薄壁圆柱形锅炉容器的平均直径为 1250mm,最大内压强为 23 个大气压(1 个大气压 0.1MPa), 在高温下工作时材料的屈服应力 = 182.5MPa。若规定安全因数为 1.8,试按最大切应力准则设计容器的 壁厚。
解:


习题 7-17 解图
壁厚:
mm
7-18 平均直径 D = 1.8m、壁厚 = 14mm 的圆柱形容器,承受内压作用。若已知容器为钢制,其屈服应力 = 400MPa,要求安全因数 ns = 6.0。试分别应用以下准则确定此容器所能承受的最大内压力。
1.用最大切应力准则; 2.用形状改变比能准则。
①设:
习题 7-13 图
=0

= 230 MPa
②设: =0

MPa

= 230 MPa 或
MPa
2.解:
, = 168 MPa


MPa

= 168 MPa 或
MPa
7-16 两种应力状态分别如图 a 和 b 所示,若二者的 、 数值分别相等,且

强度失效分析与设计准则

强度失效分析与设计准则


强度失效分析与设计准则
建立强度失效判据与 设计准则的思路
两种强度失效形式
(1) 屈 服
(2) 断 裂
无裂纹体 含裂纹体Fra bibliotek强度失效分析与设计准则

单向应力状态下 材料的力学行为


强度失效分析与设计准
单向应力状态下 材料的力学行为

三种拉伸应力-应变曲线 弹性行为 屈服行为 断裂行为 硬化与软化行为 拉延行为 卸载与重新加载行为 单向压缩应力状态下材料的力学行为 单向应力状态下材料的失效判据
三种拉伸应力应变曲线
屈服阶段 断裂阶段 强化阶段 弹性阶段


强度失效分析与设计准
单向应力状态下 材料的力学行为
弹性行为
e 弹性极限
p 比例极限


强度失效分析与设计准
单向应力状态下 材料的力学行为
屈服行为
s
屈服强度


强度失效分析与设计准
单向应力状态下 材料的力学行为
屈服行 为

建立一般应力状态下 强度失效判据与 设计准则的思路

强度失效分析与设计准则
建立强度失效判据与 设计准则的思路
难 点
应力状态的多样性 试验的复杂性 不可能性与可能性

强度失效分析与设计准则
建立强度失效判据与 设计准则的思路
不可能性与可能性
逐一由试验建立失效判据的不可能性
对于相同的失效形式建立失效原因假 说的可能性 利用拉伸试验的结果建立复杂应力 状态下的失效判据
几种常用的强度 设计准则
2
3
= s
1
10 30 s 2 2

失效分析与设计准则

失效分析与设计准则
工程材料力学的知识是为正确选用材料、 合理构件奠定必要的理论基础
主要讨论
常用工程材料在常温、静载条件下的 力学性能
材料失效分析的基本方法设计准则
第一节 常用工程材料 在轴向拉伸与压缩时的力学性能
构件材料抵抗破坏的能力及其受力后 的变形规律称为材料的力学性能
一、材料的拉伸实验
试件的基本条件
拉伸试件
AAB 、ABC 。
30o
解: (1)计算各杆受力
Q
FX = 0 ; NBCsin30o - NAB = 0 ; NAB = 2cos30o
Q FY = 0 ; NBCcos30o - Q = 0;
Q NBC = cos30o
C Y
B NAB
NBC Q
(2)计算各杆截面面积
AB 杆:NAB
X
AAB
一、许可应力与安全因数 塑性材料 [σ]= σs/ ns 脆性材料 [σ]= σb/ nb
二、强度失效判据与设计准则
σmax≤ [σ]
当[σ-]≠ [σ+]时: σ+max≤ [σ+]
σ-max≤ [σ-]
第三节 强度失效判据 与设计准则的应用
计 算 步 骤
1. 判断危险截面及危险点、计算危险点处的应 力
d
d
压缩 试件
h L
拉伸

低碳钢Q235
压缩

铸铁
拉伸
压缩
材料实验机
拉伸
压缩
低碳钢的拉伸
点击画面观看动画
低碳钢拉伸时的应力应变曲线
屈服极限 比例极限
强度极限
锯齿状
单向应力状态下 材 料 的 力 学 性能
弹性阶段 塑性阶段 强化阶段 颈缩阶段

机械零件的强度和设计准则

机械零件的强度和设计准则
• 振动零件计算的准则:使零件的自振频率与外来作用的频率既不 相等也不接近。
• 减轻振动的一般措施:
(1)尽量采用对称结构(如花键联接)、减少悬臂长度、缩短中心距等; (2)对转动零件进行平衡,尽量满足动、静平衡条件;(3)采用阻尼 作用消耗引起振动的能量,比如设置滑动轴承的油膜阻尼器、液压缸端部 的阻尼孔等;(4)设置隔振零件,比如加装弹簧、橡胶垫、隔振层等都 具有减振作用。
复习思考题
1、何谓零件的失效?常见形式有哪些? 2、载荷、应力各如何分类?基本变应力有哪几种?用哪些参数描述变应 力? 3、如何判断零件受力类型? 4、两种判断零件强度的方式是什么? 5、安全系数如何选择?其大小会产生什么影响? 6、提高零件强度有哪些措施? 7、表面强度有哪几种?如何计算挤压和磨损强度? 8、何谓刚度和柔度?刚度不足会产生什么影响?影响刚度的因素有哪些? 9、根据冲击模型推导解释冲击载荷的危害及如何缓和冲击作用。 10、何谓振动、共振及失稳?稳定性计算的准则是什么?减轻振动的措 施有哪些? 11、什么是可靠度?
✓静应力是指不随时间变化或变化缓慢的应力,它只能由静载荷产生;
✓变应力是指随时间变化的应力,变应力可由变载荷产生,也能由静载荷产生;
✓变应力可以归纳为三种基本的类型:对称循环变应力、非对称循环变应力、脉动 循环变应力;
✓五个参数中任意取出两个就可以准确地描述一个应力的性质。 。
(1)横坐标以上为拉伸应力, 数值为正,横坐标以下为压缩应 力,数值为负。对于剪切应力, 则可以自行规定一个方向为正值 ,另一个方向为负值。(2)根

严格把控质量关,让生产更加有保障 。2020 年12月 上午3时 36分20 .12.200 3:36De cember 20, 2020

机器零件的失效形式及设计准则

机器零件的失效形式及设计准则

1.3 机器零件的失效形式及设计准则
• 在交变应力作用下,即使工作应力没有超过强度极 限,也会由于长时间工作而发生折断,这种折断称 为疲劳断裂,是承受交变应力的机械零件的主要失 齿轮轴疲劳 效形式则。 设计准则
• 2)变形 • 机械零件受载荷后会发生弹性变形,当零件承受的载荷过 大或刚度不足时,会使零件的尺寸和形状超过许用值,零 件不能正常工作。如车床主轴的变形过大,会影响加工零 件的精度。产生此种失效的原因为刚度不够。 • • • • • • •
• 对于同一机械零件可以依据一个准则,也可以同时兼顾几 个准则。具体设计时应按构件的实际使用工况和要求确定 设计准则。
1.3 机器零件的失效形式及设计准则
• 一、机械零件常见的失效形式 机械零件丧失规定的功能成为失效。机械设计 的最主要目标之一是使设计的零件在规定期限内不 发生失效。 机械零件常见的失效形式有以下几种。
1.3 机器零件的失效形式及设计准则
• 1)断裂 • 断裂是指由于零件截面上的应力超过其极限应 力产生的失效。 • •
1.3 机器零件的失效形式及设计准则
静载荷冲击力
1.3 机器零件的失效形式及设计准则
• 2)强度准则 • 强度指机械零件抵抗破坏的能力。强度准则就是机械零 件的工作应力不超过材料的许用应力,是大多数机械零 件的设计依据。本书将着重讨论机械零件的强度设计问 题。
1.3 机器零件的失效形式及设计准则
一、机械零件常见的失效形式
一、机械零件常见的失效形式
1.3 机器零件的失效形式及设计准则
• 二.机械零件设计准则 • 根据零件失效的原因,可建立起相应的零件设计准则。 • • • • • • • • • • •
1.3 机器零件的失效形式及设计准则

容器失效准则强度理论计算法则

容器失效准则强度理论计算法则

压力容器强度计算概述——计算公式筒体
六、计算公式 1. 内压圆筒体计算公式
Pc Di t 2 PC
2. 内压球壳计算公式
Pc Di t 4 PC
注意:1、公式中各参数的含义、单位制、确定原则及注意事项。 2、δ d=δ +C2 (设计厚度=计算厚度+腐蚀裕量) δ n=δ +C2+C1+△(圆整)(名义厚度= ) δ e=δ +△ (有效厚度=)
三、例题——必须会进行强度校核
压力容器强度校核——压力试验应力校核
压力容器强度校核——压力试验应力校核
(3)夹套容器 对于带夹套的容器,应在图样上分别注明内筒和夹套的试验压力。 当内筒设计压力为正值时,按内压确定试验压力。当内筒设计压 力为负值时,按外压进行液压试验。在内筒液压试验合格后,再 焊接夹套。并对夹套进行压力试验,在确定了试验压力后,必须 校核内筒在该试验外压力作用下的稳定性。如果不能满足稳定要 求,则应规定在作夹套的液压试验时,必须同时在内筒保持一定 压力,以使整个试验过程(包括升压、保压和卸压)中的任一时 间内,夹套和内筒的压力差不超过设计压差。图样上应注明这一 要求,以及试验压力和允许压差。 (4)对立式容器卧置进行液压试验时,试验压力应为立置时的试验
谢铁军
提纲
压力容器强度计算概述
压力容器强度校核 压力容器的结构概述
压力容器应力分类和局部应力
压力容器分析设计概述
压力容器强度计算概述——设计压力范围
一、 常用设计规范及适用的压力范围
GB150-1998《钢制压力容器》,弹性失效准则,第一强度理论。 设计压力P:0.1~35 MPa ; 真空度:≥0.02 MPa JB4732-95《钢制压力容器-分析设计标准》,弹塑性失效准则,第三强度理论。 设计压力P:0.1~100 MPa; 真空度:≥0.02 MPa 疲劳载荷;高温蠕变 因为容规的监察范围是以最高工作压力定义,而容器的分类以设计压力分类,故 假设有一个设计压力1MPa而最大工作压力0.08的容器,则不受《容规》监察。 GB151-1999《管壳式换热器》 设计压力P:0.1~35 MPa ;真空度:≥0.02 MPa GB12337-1998《钢制球形储罐》 设计压力:P≤4MPa;公称容积:V≥50M3

七材料力学强度失效及设计准则

七材料力学强度失效及设计准则

(?
1
?
?
2 )2
?
(?
2
?
?
3 )2
?
(?
3
?
?
1)2
?
?
(形状改变比能准则)
强度失效判据与设计准则应用
例题1 已知铸铁构件上危险点的应力状态如
图。铸铁拉伸许用应力[? ] ?=30 MPa。
试校核该点的强度。
强度失效判据与设计准则应用
解:1、铸铁材料受拉应力失效形 式为脆性断裂,选择最大拉应力准 则
解:1、如图用应力圆求主应力:
σ1 = 0;
σ2 = -104MPa;
y -207
-207 x 103
σ3 = -310MPa;
2、按照最大切应力准则:
应力单位(MPa)
σr3 = σ1 - σ3 = 310MPa≤σs =330MPa;
零件不发生屈服。
σ3= -310
3、由最大切应力准则计算安全因数:
X(-207;103)
τ
R= 103
σ2= -104 σ
C=207
0
σr3 ≤ [σ] = σs / ns
y(-207;-103)
ns ≤ σs / σr3 = 330 / 310 = 1.065;
强度失效判据与设计准则的应用
例 题 5、P188 习题7-10 铝合金制成
的零件上某一点处的平面应力状态如
最大拉应力理最早由兰金提出最大正应力理论后修改成最大拉 应力理论。 注意这里的强度判据是最大拉应力,若无拉应力则不断裂。
强度失效判据与设计准则应用
要注意不同设计准则的适用范围 上述设计准则只适用于某种确定的失效形式。因此正确选

研发的失效分和质量的失效分析

研发的失效分和质量的失效分析

研发的失效分和质量的失效分析产品失效,常常引起巨大的人员伤亡和财产损失,特别是在航空、铁路、化工等领域的损失往往难以接受,因此产品失效一直是科技人员斗争的对象。

失效分析作为一个综合性的领域,旨在对材料、结构以及产品的失效行为进行研究,进而揭示失效的机制和影响因素,最终提供有效的改进方法和预防措施。

随着制造技术的不断发展,我国高铁、航空、风电、石化等领域产品竞争力不断提高,对产品质量的要求也不断提升,产品失效分析工作得到越来越多的关注。

同时,在表面工程和再制造工程、增材制造等新兴技术领域,失效分析工作的作用获得了更多认可。

但是,由于失效分析工作存在很大的特殊性,对开展失效分析工作需要的条件尚缺乏系统认知,特别是很多质量管理者把失效分析归属于检测技术的一种,淡化了分析人员综合知识的作用,不利于失效分析行业的健康发展。

本文在长期失效分析工作实践经验的基础上,结合大量案例的总结分析,对失效分析的特点及其与质量管理的关系进行了简要论述。

1、失效分析的特点国家军用标准GJB 451A—2005《可靠性维修性保障性术语》中定义:失效(故障)——产品丧失完成规定功能能力的事件。

在实际应用中,特别是对硬件产品而言,故障与失效很难区分,故一般统称“故障”。

从定义中看,失效分析工作的对象应该是最终的失效产品,但在实际的工程实践中失效分析的对象十分广泛,一般包含或涉及:铸、锻、热、表、焊、加工缺陷分析;转运、使用、维护等偶然损伤分析;构件、组件、系统故障分析;坠机、爆炸等事故调查;产品可靠性、安全性评估等。

1.1 失效分析的目的与核心内容要准确把握失效分析的核心,首先要搞清楚失效分析要做什么、为什么而做。

失效分析是判断产品的失效模式,查找产品失效机理和原因,提出预防再失效对策的技术活动和管理活动。

当前,这个概念获得越来越广泛的认知,无论是技术人员还是质量管理人员越来越清晰的认识到,失效分析不仅仅是单纯的技术分析,其中含有也必然存在管理的信息和功能。

简述闭式软齿面齿轮传动的失效形式和设计准则

简述闭式软齿面齿轮传动的失效形式和设计准则

闭式软齿面齿轮传动是工程机械领域中常见的一种传动形式,它具有传动效率高、承载能力强等优点,因此被广泛应用于各种机械装置中。

然而,在实际使用过程中,闭式软齿面齿轮传动也会出现各种失效形式,影响其正常运行。

为了更好地设计闭式软齿面齿轮传动,减少失效现象的发生,需要遵循一定的设计准则。

一、闭式软齿面齿轮传动的失效形式1. 疲劳断裂:闭式软齿面齿轮传动在长期使用过程中,由于载荷变化或振动引起的疲劳断裂是其常见的失效形式之一。

这种失效形式会导致齿轮齿面出现龟裂、断裂等现象,严重影响传动效率和寿命。

2. 歪斜磨损:在齿轮传动工作时,由于载荷分布不均匀或润滑不良等原因,齿轮齿面容易出现歪斜磨损。

这种磨损会导致齿轮齿面形貌失真,影响传动的平稳性和精度。

3. 弯曲变形:闭式软齿面齿轮传动在大载荷下工作时,齿轮齿面容易发生弯曲变形,导致齿轮传动的正常运行受到影响。

4. 齿面点蚀:在潮湿环境或润滑不良的情况下,闭式软齿面齿轮传动容易发生齿面点蚀现象,导致齿轮表面出现齿痕、磨损等问题。

二、闭式软齿面齿轮传动的设计准则1. 合理布局:在闭式软齿面齿轮传动的设计中,应当合理布局传动装置的结构,减少传动元件之间的干涉和碰撞,提高传动系统的可靠性和稳定性。

2. 选用优质材料:闭式软齿面齿轮传动的制造材料应选择高强度、耐磨损的优质材料,以保证传动元件的使用寿命。

3. 合理设计齿轮参数:在闭式软齿面齿轮传动的设计过程中,应根据实际工况和负载状况,合理设计齿轮的参数,如齿轮模数、齿数、齿宽等,以提高传动效率和承载能力。

4. 提高润滑条件:在闭式软齿面齿轮传动中,应采用良好的润滑方式,保持齿轮传动的润滑状态良好,减少齿面磨损和点蚀现象的发生。

5. 加强传动系统的监测和维护:在使用闭式软齿面齿轮传动的设备中,应加强对传动系统的监测和维护,及时发现和处理传动元件的异常,延长传动系统的使用寿命。

通过遵循上述的设计准则,可以有效减少闭式软齿面齿轮传动的失效现象,提高传动系统的可靠性和稳定性,延长设备的使用寿命,降低维护成本,对于工程机械领域的闭式软齿面齿轮传动设计和制造具有重要的指导意义。

容器失效与设计准则

容器失效与设计准则
蠕变失效设计准则:将应力限制在由蠕变极限和持久强度确定的
许用应力以内,防止容器在使用寿命内发生蠕变失效。
脆性断裂失效设计准则:
强度失效设计准则
在常温、静载作用下,屈服和断裂是压力 容器强度失效的两种主要形式。 弹性失效设计准则 塑性失效设计准则 爆破失效设计准则 弹塑性失效设计准则 疲劳失效设计准则 蠕变失效设计准则 脆性断裂失效设计准则
1. 强度失效设计准则
2. 刚度失效设计准则
在载荷作用下,构件的弹性位移和(或)转角不得超过规定 的数值。
3. 失稳失效设计准则
压力容器设计中,防止发生失稳。例如:仅受均布外压的圆 筒,外压力应当小于周向临界压力。
4. 泄漏失效设计准则
容器发生的泄漏率(单位时间内通过泄漏通道的体积或质量) 小于允许值。
压力容器设计准则大致可分为强度失效设计准则、 刚度失效设计准则、失稳失效设计准则和泄漏失效设计 准则。对于不同的设计准则,安全系数的含义并不相同。
压力容器设计时,应先确定容器最有可能发生的失 效形式,选择合适的失效判据和设计准则,确定适用的 设计规范标准,再按规范标准要求进行设计和校核。
设计准则
压力容器设计准则大致可分为:
d.泄漏失效
由于泄漏而引起的失效,称为泄漏失效。泄漏不 仅有可能引起中毒、燃烧和爆炸等事故,而且会造成 环境污染。设计压力容器时,应重视各可拆式接头和 不同压力腔之间连接接头(如换热管和管板的连接) 的密封性能。
压力容器失效
需要指出,在多种因素作用下,压力容 器有可能同时发生多种形式的失效,即交互 失效,如腐蚀介质和交变应力同时作用时引 发的腐蚀疲劳、高温和交变应力同时作用时
引发的蠕变疲劳等。
失效判据与设计准则
a.失效判据
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§11-1 构件失效概念与失效分类
失 效 概 念
构件失效概念与失效分类
构件失效概念与失效分类
构件失效概念与失效分类 强 度 失 效
构件失效概念与失效分类
构件失效概念与失效分类 刚度失效
构件失效概念与失效分类
构件失效概念与失效分类 屈服失效
构件失效概念与失效分类 除上述外,失效还有以下几种类型:
二、失效ቤተ መጻሕፍቲ ባይዱ则的应用
由于构件的强度失效不仅与构件的材料有关, 而且与材料所处的应力状态有关。
因此,应用失效准则时: (1)根据材料力学行为以及所处的应力状态,确定 可能的失效类型(屈服还是断裂)。 (2)根据失效类型(屈服还是断裂),采用相应的 设计准则。
11-5 应用举例
11-5 应用举例
11-5 应用举例
11-5 应用举例
11-5 应用举例
11-5 应用举例
11-5 应用举例
结论与讨论
一、失效的两个结论
结论一:本章所涉及的绝大多数失效为材料 在常温、静载荷作用下的失效行为,并且主 要建立了无裂纹体的失效判据。
结论二:本章所论述的若干失效判据,只适用 金属材料和一部分非金属材料,关于高分子聚 合物、复合材料的失效行为与失效判据,将在 以后的章节中介绍到。
构件失效概念与失效分类
§11-2 强度失效判据与设计准则概述
强度失效判据与设计准则概述
强度失效判据与设计准则概述
跳过
第7章
返回
11-2 强度失效判据与设计准则
强度失效判据与设计准则
单向应力状态下的设计准则:
11-3 屈服准则
11-3 屈服准则
11-3 屈服准则
11-3 屈服准则
畸变能密度准则 内的畸变能密度
11-3 屈服准则
畸变能密度准则
11-3 屈服准则
畸变能密度准则
11-4 断裂准则
11-4 断裂准则
11-4 断裂准则
11-4 断裂准则
11-4 断裂准则
11-4 断裂准则
11-4 断裂准则
11-4 断裂准则
畸变能密度准则
相关文档
最新文档