封装可靠性与失效分析讲解学习
半导体器件可靠性与失效分析微电子ppt
02
失效分析
失效定义与分类
失效定义
器件无法完成其预定功能或性能恶化到无法接受的程度。
失效分类
功能失效和结构失效,按性质可分为软失效和硬失效,按物理效应可分为可恢复失效和不可恢复失效 。
失效分析方法
外观检查
电气测试
X射线检测
切片分析
化学成分分析
通过肉眼观察器件外观 是否存在明显的缺陷或 损伤,如裂纹、变形、 烧伤等。
05
案例分析与讨论
典型失效案例分析
案例1
一个高可靠性MEMS压力传感器的失效分析 。
案例2
一个微电子电路中的热失效问题。
案例3
一个存储器芯片的突发性失效。
失效预防与可靠性提升措施
预防措施1
采用高可靠性设计和制造技术。
预防措施2
优化芯片封装和测试流程。
预防措施3
重视生产过程中的质量控制。
提升措施1
控制晶圆的几何形状、表 面平整度和化学组成,确 保晶圆具有一致性和可靠 性。
薄膜沉积环节
通过优化工艺参数和选用 合适的薄膜材料,提高薄 膜的质量和可靠性。
光刻环节
精确控制光刻胶的厚度、 光刻掩膜版的质量以及曝 光能量等参数,确保器件 的尺寸精度和可靠性。
刻蚀环节
通过选用合适的刻蚀气体 、功率等参数,确保刻蚀 的效果和可靠性。
通过测试器件的电压、 电流、电阻等电气参数 ,判断器件是否存在电 气故障。
利用X射线对器件内部进 行无损检测,发现微小 缺陷和内部结构问题。
通过将器件切割成薄片 进行观察和分析,了解 器件内部结构和材料的 组成及分布情况。
采用光谱分析、质谱分 析、能谱分析等方法, 检测器件中各元素的种 类、含量及分布情况。
封装可靠性及失效分析 ppt课件
封装可靠性及失效分析
• 电测技术
封装可靠性及失效分析
封装可靠性及失效分析
• 打开封装
封装可靠性及失效分析
封装可靠性及失效分析
• 失效定位技术
封装可靠性及失效分析
封装可靠性及失效分析
ቤተ መጻሕፍቲ ባይዱ
封装可靠性及失效分析
封装可靠性及失效分析
封装可靠性及失效分析
封装可靠性及失效分析
• 微焦点X射线检测
封装可靠性及失效分析
• 激光温度响应方法
封装可靠性及失效分析
• 激光温度响应方法原理
封装可靠性及失效分析
封装可靠性及失效分析
封装可靠性及失效分析
封装可靠性及失效分析
封装可靠性及失效分析
封装可靠性及失效分析
封装可靠性及失效分析
封装可靠性及失效分析
封装可靠性及失效分析
• 疲劳寿命与应力和应变的关系
封装可靠性及失效分析
• 应力应变洄滞曲线
封装可靠性及失效分析
ACF键合的剥离强度失效
封装可靠性及失效分析
ACF键合的剥离强度失效
封装可靠性及失效分析
扩散引起的失效-铝钉
封装可靠性及失效分析
• 铝钉的形成过程
封装可靠性及失效分析
• 扩散引起的失效-紫斑
影响芯片键合热疲劳寿命的因素
封装可靠性及失效分析
封装可靠性及失效分析
• 焊点形状对疲劳寿命的影响
封装可靠性及失效分析
• 焊点界面的金属间化合物
封装可靠性及失效分析
• 老化时间对接头强度的影响
封装可靠性及失效分析
• 由热失配导致的倒装失效
封装可靠性及失效分析
• 钎料合金的力学性能对寿命的影响
封装可靠性失效原因及其改善方案阐述
封装可靠性失效原因及其改善方案阐述长电科技(滁州)有限公司安徽省滁州市 239000 摘要:可靠性是产品质量的一个重要指标,就是产品在规定的条件下和规定的时间内,完成规定的功能的能力。
确切的讲,一个产品的使用寿命越接近设计寿命,代表可靠性越好。
1、产品的可靠性与规定的条件密切相关。
如产品使用的环境条件、负荷大小、使用方法等。
一般,温度越高、额定负载越大,产品的可靠性就越低。
2、产品的可靠性与规定的时间也有关系。
例如,一般大型桥梁、道路的设计寿命为50~100年。
3、产品的可靠性还与规定的功能有密切的关系。
例如,一个普通的晶体管有反向漏电流、放大倍数、反向击穿电压、特征频率等多项功能。
芯片封装质量直接影响整个器件和组件的性能,随着混合集成电路向着高性能、高密度以及小型化、低成本的方向发展,对芯片的封装技术和可靠性提出了更高的要求。
本文主要阐述了几种可靠性项目及其失效的机理以及封装导致的原因,以便封装生产中规避此类异常发生。
关键字可靠性;质量;可靠性项目;失效机理;封装导致的原因。
背景描述:电子器件是一个非常复杂的系统,其封装过程的缺陷和失效也是非常复杂的。
因此,研究封装缺陷和失效需要对封装过程有一个系统性的了解,这样才能从多个角度去分析缺陷产生的原因。
封装的失效机理可以分为两类:过应力和磨损。
过应力失效往往是瞬时的、灾难性的;磨损失效是长期的累积损坏,往往首先表示为性能退化,接着才是器件失效。
失效的负载类型又可以分为机械、热、电气、辐射和化学负载等。
影响封装缺陷和失效的因素是多种多样的,材料成分和属性、封装设计、环境条件和工艺参数等都会有所影响。
封装缺陷主要包括引线变形、底座偏移、翘曲、芯片破裂、分层、空洞、不均匀封装、毛边、外来颗粒和不完全固化等。
随着应用的要求越来越高,对产品封装可靠性要求也越来越高。
我们要识别一些可靠性项目考核目的、失效机理以及可能导致的原因,以便在前期FMEA中定义,从设计、生产角度来提升质量。
封装可靠性及失效分析共68页
1、 舟 遥 遥 以 轻飏, 风飘飘 而吹衣 。 2、 秋 菊 有 佳 色,裛 露掇其 英。 3、 日 月 掷 人 去,有 志不获 骋。 4、 未 言 心 相 醉,不 再接杯 酒。 5、 黄 发 垂 髫 ,并怡 然自乐 。
▪
谢谢!
68
26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭
▪
27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰
▪
பைடு நூலகம்
28、知之者不如好之者,好之者不如乐之者。——孔子
▪
29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇
▪
30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
封装可靠性——精选推荐
引线开路/短路、芯片/引线 腐蚀、芯片开裂、性能不良
引脚端
形状不当、损伤、引脚端强度不足
Байду номын сангаас
开路、接触不良
引脚端 封装上表面
氧化、生锈、表面处理液残留 (清洗不足)
标记模糊
开路、接触不良、端间漏电流
使用不当导致开裂
失效模式与机理 7
封装失效因素及其模式-使用条件
工作异常 参数性失效:模拟输出超出容许范围,比如I/O脚 可见失效:器件未打码、发生侵蚀、封装问题或者其
他缺陷
失效模式与机理
21
微电子器件的失效机理-芯片
失效模式与机理22
微电子器件的失效机理-PCB组装
23
相关因素 转换塑模、键合等
失效模式 开路、短路(键合引线)
封
模塑料
树脂基材、硬化剂、抗化学特性、 杂质、热膨胀、热导
装
设
计
封装形状 芯片与封装尺寸的关系、与包封部
(
与尺寸
分的尺寸容差
塑
封 )
塑封条件 温度、时间、压力
功能失效、开路、短路 (键合引线)、腐蚀
外引脚丢失, 开路、短路、腐蚀
开路、短路(键合引线)、 引线移位
化 学: 腐蚀、应力侵蚀; 物 理: 扩散、分层、电迁移
失效模式与机理 2
失效分布和及其“浴盆式”曲线
早期失效:与材料/工艺缺
失效率λ(t)随时间分布-“浴盆”曲线
陷有关,用热老化筛除。
本征失效:应力作用下的 随机失效,包括腐蚀/杂质 扩散/晶体枝状生长/热电
早期 失效: 工艺 缺陷
迁移/循环疲劳等,减小此
微电子封装的失效及其可靠性
系统级封装的可靠性与失效分析技术研究
系统级封装的可靠性与失效分析技术研究一、概述随着微电子技术的快速发展,系统级封装(SiP,SysteminPackage)技术已经成为当今集成电路产业的重要发展方向。
SiP技术通过将多个具有不同功能或工艺的芯片及无源元件集成在一个封装体内,实现了系统功能的高度集成化和小型化,从而提高了产品的性能和可靠性。
随着封装密度的不断提高和工艺复杂性的增加,SiP技术的可靠性问题也日益凸显,失效分析技术的研究变得尤为重要。
系统级封装的可靠性主要受到封装材料、工艺、结构以及使用环境等多种因素的影响。
在封装材料方面,不同的材料具有不同的热膨胀系数、机械强度以及化学稳定性,这些差异可能导致封装体在温度变化、机械应力或化学腐蚀等条件下出现失效。
在工艺方面,封装过程中的焊接、封装胶填充等工艺环节可能引入缺陷,导致封装体的性能下降或失效。
封装体的结构设计和使用环境也是影响其可靠性的重要因素。
失效分析技术是研究和解决系统级封装可靠性问题的关键手段。
通过对失效封装体进行详细的物理和化学分析,可以确定失效的原因和机理,为改进封装工艺、优化结构设计以及提高产品可靠性提供重要依据。
目前,失效分析技术主要包括非破坏性分析和破坏性分析两大类。
非破坏性分析技术如射线检测、红外热成像等,可以在不破坏封装体的情况下检测其内部结构和性能。
而破坏性分析技术如开封、切片等,则需要通过破坏封装体来观察和分析其内部结构和失效模式。
本文旨在深入研究系统级封装的可靠性与失效分析技术,通过分析封装体的失效原因和机理,提出有效的可靠性提升方案和失效预防措施,为SiP技术的发展和应用提供有力支持。
1. 系统级封装技术的发展背景与现状随着信息技术的快速发展,电子产品正朝着小型化、集成化、高性能化的方向不断演进。
在这一背景下,系统级封装技术应运而生,成为推动电子产品发展的关键性技术之一。
系统级封装技术是指在单一封装结构内部,将多个裸芯片、元件或组件集成于一体,从而实现电子产品完整的系统或子系统功能。
12_封装可靠性与失效分析-课件
1.温度循环(TC) -40℃或-55℃或-65℃到+
2. 高温 / 高湿 / 偏压 高温、高湿环境并施正偏压或反向 铝引线或铝金属化层的 偏压工作。通常为85℃/85%RH/ 腐蚀;模塑料中的离子 (THB)
额定偏臵 性杂质的浸蚀。
3.高温贮存寿命 (HTS) 4.压力锅试验 (PCT)
高温环境下,施加偏压或不加偏压下工 高温失效机理; 作。 Al-Au互扩形成金属间化 如125℃或150℃下1000h。 合物,或金属-Si互扩散。
JEDEC(Joint Electron Devices Engineering Council ),电子元件工业联合会,作 为一个全球性组织,JEDEC所制定的标准为全行业所接受和采纳。 MIL-STD 美国军用标准,当今世界技术最先进、体系最完备的军用标准 。
温度循环曲线示意
JESD22-A104D
a注:与封装或组装密切关联的失效共计28.1%
过载(Overstress) 大弹性变形 机械 - 屈服
失效机理
磨损(Wear out)
热
- 断裂—脆性,韧性 - 裂纹,爆裂(Popcorn) - 弯曲 - 界面分开 - 热过载 - 接近Tg(玻璃化温度)
- 融化 - 蠕变断裂温度
机械
- 高低周疲劳 - 蠕变 - 磨损(磨粒磨损 等) - 金属迁移 (电/离子迁移) - 应力驱动扩散 - 表面充电 - 内部扩散 Kirkendall空洞 - 氢脆 - 腐蚀 - 解聚
失效率=失效率函数
n(t t) n(t) n(t) (t) [ N n(t) ]t [ N n(t) ]t
N为产品的总数,且足够大; n(t)为N个产品从开始工作到t时刻的累积失效数。
半导体器件可靠性与失效分析微电子
可靠性影响因素
制造工艺
制造过程中的缺陷、杂质和结构变化等会影 响器件的可靠性。
环境因素
温度、湿度、压力、电磁场等环境因素对器 件的可靠性产生影响。
物理特性
器件的物理特性如尺寸、材料、结构等对可 靠性有重要影响。
电源和信号条件
电源电压、电流、信号频率和幅度等对器件 的可靠性有一定影响。
02
失效分析
失效定义与类型
失效定义
在规定条件下,半导体器件不能维持其特性或功能,称为失 效。
失效类型
分为硬失效和软失效。硬失效是指器件物理损坏,如断路、 短路或芯片脱落等;软失效是指器件性能下降,如参数漂移 、噪声增大或信号丢失等。
失效分析方法
外观检查
电路测试
通过肉眼观察或使用显微镜来检查器件的 外观是否有异常,如机械损伤、腐蚀或金 属化迁移等。
半导体器件的失效案例 分析
热失效案例
01
02
03
失效描述
半导体器件在高温下运行 时,其性能会受到影响, 导致其参数漂移或功能失 效。
原因分析
热失效通常由于热量积聚 、散热不良或热膨胀等因 素导致。
解决方案
优化器件设计、改善散热 条件或采用耐高温材料等 。
机械失效案例
失效描述
半导体器件在机械应力或 振动条件下运行时,可能 会出现裂纹、断裂或脱落 等现象。
THANKS FOR WATCHING
感谢您的观看
扫描电子显微镜(SEM)分析
通过测试电路性能来检查器件是否正常工 作,如电压、电流和电阻等参数的测量。
能谱分析(EDS)
利用SEM观察器件表面的微观结构,以确 定是否存在缺陷或污染物。
通过EDS检测器件表面的化学成分,以确定 是否存在金属污染或氧化等化学问题。
半导体器件可靠性与失效全面分析
电子封装中的封闭性与可靠性分析
电子封装中的封闭性与可靠性分析关键信息项:1、封装材料的选择与特性名称:____________________________性能参数:____________________________供应商:____________________________2、封装工艺的流程与规范步骤:____________________________控制参数:____________________________检验标准:____________________________3、封闭性测试方法与标准测试项目:____________________________测试设备:____________________________合格指标:____________________________4、可靠性评估指标与体系指标名称:____________________________计算方法:____________________________目标值:____________________________5、故障分析与解决措施常见故障类型:____________________________分析方法:____________________________应对措施:____________________________1、引言11 本协议旨在对电子封装中的封闭性与可靠性进行详细的分析和规范,以确保电子器件在各种应用环境中的性能和稳定性。
2、封装材料的选择与特性21 封装材料应根据电子器件的性能要求、工作环境和成本等因素进行综合选择。
211 常见的封装材料包括塑料、陶瓷、金属等,每种材料具有不同的物理、化学和机械性能。
212 塑料封装材料具有成本低、成型容易等优点,但在高温和恶劣环境下的性能可能较差。
213 陶瓷封装材料具有良好的耐高温、耐腐蚀性和机械强度,但成本相对较高。
214 金属封装材料具有优异的散热性能和电磁屏蔽性能,但加工难度较大。
封装可靠性与失效分析讲解学习
又称粉体涂装法。将完成微互连的 多层布线板在预加热的状态,浸入装 满环氧树脂与氧化硅粉末的混合粉体 中,并处于流动状态的流动浴槽中, 浸渍一段时间,待粉体附着达一定厚 度后,经加热固化完成封装。
在对树脂封装进行结构设计时,应重点考虑耐湿性和减小
内应力这两个问题。对于前者应减少可能漏气的环节,加 强从外气到半导体元件的密封措施;对于后者应正确把握 封装树脂热膨胀系数、填充量等的关系,减少容易发生应 力集中的环节等。在有些情况下,可以采用从里到外三层 树脂封装的结构,靠近芯片为一层柔软层,中间为一层缓 冲层,外部为一层致密层。这样既可提高耐湿性,又可减 小内应力。
• 关于密封性,不单单取决于树脂材料,还取决于引脚的表 面状态,以及树脂材料同氧化铝陶瓷多层布线板等基体材 料的匹配情况。对于耐湿性良好而密封性不太理想的树脂, 可以通过增加基体材料表面粗糙度的方法,增加整体的密 封性。
• 树脂封装法中,芯片周围包围的树脂材料越多、有效隔离长度越长、 耐湿性越好。但另一方面,随着封装树脂量的增加及树脂中内应力的 增加,会造成陶瓷布线板发生翘曲,致使芯片布线板上搭载的芯片部 件剥离、引起WB电气连接破坏、造成布线板上膜电阻出现裂纹等。 故应正确把握树脂填充量、有效绝缘长度、内应力等因素的关系。
传递模注塑封技术
a.模注树脂成分及特性
树脂通常是指受热后有软化或熔融范围,软化时在外力作 用下有流动倾向,常温下是固态、半固态,有时也可以是 液态的有机聚合物。广义地讲,可以作为塑料制品加工原 料的任何聚合物都称为树脂。
树脂有天然树脂和合成树脂之分。天然树脂是指由自然界 中动植物分泌物所得的有机物质,如松香、琥珀、虫胶等。 合成树脂是指由简单有机物经化学合成或某些天然产物经 化学反应而得到的树脂产物。
塑料封装的可靠性试验.ppt
塑料封装的可靠性试验方法
塑料封装破坏的机制大致分类
1、材料的热膨胀系数差异所引起的热应力破坏
2、湿气渗透所引致的腐蚀破坏
塑料封装的可靠性试验方法
1、高温偏压试验
2、温度循环试验 3、温度/湿度/偏压试验(THB)
试℃高其所将的电验(高(高(化验的目引I测压中1与2与3。C~)))的1电的致元试(最最最5650方0压是的器腔通严低低55~1法试℃与破℃℃件中常格温温50是验的电坏置,约的各各~~℃11将测流元于并为一停停55封试负器00,在种85留留5V℃℃装腔荷件每元。11)℃h0循循元中的与小器;m,/环环器,条材8时i件n它5;变变件并件料3上%也个化化置使下相相通是循,,于其操互对入所环在在在作1作湿交有2变最最,5最用度流试
塑料封装的可靠性试验
学习目标
熟悉塑料封装的 可靠性试验方法
塑料封装的可靠性试验方法
什么是可靠性
可靠性定义:产品在规定的条件下和规定的时间内, 完成规定功能的能力。
可靠性试验的目的
1、发现产品的设计、元器件、零部件、 原材料和工艺等方面的各种缺陷; 2、为改善产品的完好性、提高任务成功性、减少维 修人力费用和保障费用提供信息
塑料封装的可靠性试验方法
设备实验
老化试验箱Βιβλιοθήκη 按照样品的编号顺序,将样品逐个
测试板装载至试对验应箱编内号部的结老化构板测试座上。
知识回顾
塑料封装的可 靠性试验
电子封装中的可靠性问题
电子封装中的可靠性问题电子器件是一个非常复杂的系统,其封装过程的缺陷和失效也是非常复杂的。
因此,研究封装缺陷和失效需要对封装过程有一个系统性的了解,这样才能从多个角度去分析缺陷产生的原因。
封装缺陷与失效的研究方法论封装的失效机理可以分为两类:过应力和磨损。
过应力失效往往是瞬时的、灾难性的;磨损失效是长期的累积损坏,往往首先表示为性能退化,接着才是器件失效。
失效的负载类型又可以分为机械、热、电气、辐射和化学负载等。
影响封装缺陷和失效的因素是多种多样的,材料成分和属性、封装设计、环境条件和工艺参数等都会有所影响。
确定影响因素和预防封装缺陷和失效的基本前提。
影响因素可以通过试验或者模拟仿真的方法来确定,一般多采用物理模型法和数值参数法。
对于更复杂的缺陷和失效机理,常常采用试差法确定关键的影响因素,但是这个方法需要较长的试验时间和设备修正,效率低、花费高。
在分析失效机理的过程中,采用鱼骨图(因果图)展示影响因素是行业通用的方法。
鱼骨图可以说明复杂的原因及影响因素和封装缺陷之间的关系,也可以区分多种原因并将其分门别类。
生产应用中,有一类鱼骨图被称为6Ms:从机器、方法、材料、量度、人力和自然力等六个维度分析影响因素。
这一张图所示的是展示塑封芯片分层原因的鱼骨图,从设计、工艺、环境和材料四个方面进行了分析。
通过鱼骨图,清晰地展现了所有的影响因素,为失效分析奠定了良好基础。
引发失效的负载类型如上一节所述,封装的负载类型可以分为机械、热、电气、辐射和化学负载。
失效机理的分类机械载荷:包括物理冲击、振动、填充颗粒在硅芯片上施加的应力(如收缩应力)和惯性力(如宇宙飞船的巨大加速度)等。
材料对这些载荷的响应可能表现为弹性形变、塑性形变、翘曲、脆性或柔性断裂、界面分层、疲劳裂缝产生和扩展、蠕变以及蠕变开裂等等。
热载荷:包括芯片黏结剂固化时的高温、引线键合前的预加热、成型工艺、后固化、邻近元器件的再加工、浸焊、气相焊接和回流焊接等等。
封装失效分析1
第二单元 集成电路芯片封装可靠性知识—郭小伟(60学时)第一章、可靠性试验1.可靠性试验常用术语试验名称 英文简称 常用试验条件备注温度循环 TCT (T/C ) -65℃~150℃, dwell15min, 100cycles 试验设备采用气冷的方式,此温度设置为设备的极限温度 高压蒸煮 PCT 121℃,100RH., 2ATM,96hrs 此试验也称为高压蒸汽,英文也称为autoclave热冲击 TST (T/S )-65℃~150℃, dwell15min, 50cycles 此试验原理与温度循环相同,但温度转换速率更快,所以比温度循环更严酷。
稳态湿热 THT85℃,85%RH.,168hrs 此试验有时是需要加偏置电压的,一般为Vcb=0.7~0.8BVcbo,此时试验为THBT 。
易焊性 solderability 235℃,2±0.5s此试验为槽焊法,试验后为10~40倍的显微镜下看管脚的上锡面积。
耐焊接热 SHT260℃,10±1s 模拟焊接过程对产品的影响。
电耐久 Burn inVce=0.7Bvceo,Ic=P/Vce,168hrs模拟产品的使用。
(条件主要针对三极管)高温反偏 HTRB 125℃,Vcb=0.7~0.8BVcbo,168hrs主要对产品的PN 结进行考核。
回流焊 IR reflowPeak temp.240℃(225℃)只针对SMD 产品进行考核,且最多只能做三次。
高温贮存 HTSL 150℃,168hrs产品的高温寿命考核。
超声波检测 SAT CSCAN,BSCAN,TSCAN检测产品的内部离层、气泡、裂缝。
但产品表面一定要平整。
2.可靠性试验条件和判断试验流程:F/T SAT1-4 1-5 F/T 1-6 1-72:T/S 3: T/C 4:PCT 5: THT 6:HSTL以客户为代表为例子:客户1:precondition TCT –55/125℃,5cycles for L1,l2,L3 Ac:Re=(0,1)T/S: –55/125℃,5min,100cycles sample size: 45 Ac:Re=(0,1)T/C: –55/125℃,10min,200cycles sample size: 45 Ac:Re=(0,1)PCT: 121℃/100%rh,15Psig,96hr sample size: 45 Ac:Re=(0,1)THT: 85℃/85%,168/500/1000hrs sample size: 45 Ac:Re=(0,1)客户2:precondition T/C –40/60℃,5cycles forL3 Ac:Re=(0,1)T/S: –55/125℃,5min,100cycles sample size: 45 Ac:Re=(0,1)T/C: –65/150℃,10min,500cycles sample size: 77Ac:Re=(0,1)PCT: 121℃/100%rh,15Psig,168hr sample size: 77 Ac:Re=(0,1)THT: 85℃/85%,1000hrs sample size: 77 Ac:Re=(0,1)HTSL: 150℃,1000hrs sample size:77 Ac:Re=(0,1)HAST: 130℃/85%rh,168hr sample size: 77 Ac:Re=(0,1)客户3:precondition T/C –40/60℃,5cycles forL3 Ac:Re=(0,1)T/S: –55/125℃,5min,50cycles sample size: 24 Ac:Re=(0,1)T/C: –65/150℃,15min,50cycles sample size: 24 Ac:Re=(0,1)PCT: 121℃/100%rh,15Psig,168hr sample size: 24 Ac:Re=(0,1)HTSL: 150℃,168hrs sample size:24 Ac:Re=(0,1)客户4:precondition T/C N/A ,L1 Ac:Re=(0,1)T/C: –65/150℃,15min,100/500cycles sample size: 45 Ac:Re=(0,1)PCT: 121℃/100%rh,15Psig,168/336hr sample size: 45 Ac:Re=(0,1)SOLDER DUNK: 245℃10SEC sample size: 45 Ac:Re=(0,1)客户5:QFP 做 precondition,DIP不做preconditionprecondition T/C N/A,L3 sample size:184 Ac:Re=(5,6)T/C: –65/150℃,15min,200/500cycles sample size: 45 Ac:Re=(0,1)PCT: 121℃/100%rh,15Psig,168hr sample size: 45 Ac:Re=(0,1)HTSL: 150℃,168/500/1000hrs sample size:45 Ac:Re=(0,1)SOLDER DUNK: 245℃5SEC sample size: 15 Ac:Re=(0,1)塑料密封等级塑料密封等级:在装配现场拆包后地面存放期标准试验条件LEVEL 1 在小于30C/85%相对湿度无期限 85C/85% 168小时LEVEL 2 在30C/60%条件下1年85C/60% 168小时LEVEL 3 在小于30C/60%条件下1周 30C/60% 192小时加速=60C/60% 40小时SAMPLE:50塑料密封等级试验步骤:1. DC和功能测试2.外观检查(在80倍以上显微镜下检查)3. SAT扫描4. BAKE 125C/24小时5.做LEVEL 相应条件的试验6.在15分钟后和4小时内做3次回流焊—注意温度曲线必须提供和符合JEDEC标准。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ex:环氧树脂是泛指分子中含有两个或两个以上环氧基团的有机高分 子化合物。环氧树脂的分子结构是以分子链中含有活泼的环氧基团为 其特征,环氧基团可以位于分子链的末端、中间或成环状结构。由于 分子结构中含有活泼的环氧基团,使它们可交联反应而形成不溶、不 熔的具有网状结构的高聚物。
传递模注树脂封装的可靠性取决于模注树脂的可靠
• 上模具提升,取出模注好的封装体。切除流道、浇口等不 必要的树脂部分。
• 此时树脂聚合仍不充分,特性也不稳定,需要在160~180 摄氏度经数小时的高温加热,使聚合反应完结。
• 由于模注时树脂可能从模具的微细间隙流出,故最后还要 利用高压水及介质(玻璃粉等)的冲击力,使残留在外引脚 表面的树脂溢料(又称毛边、飞边等)剥离。
非气密性树脂封装技术
一、单芯片封装
单芯片封装分气密性封装型和非气密性封装型两大类:前者包括金属 外壳封接型、玻璃封接型(陶瓷盖板或金属盖板)、钎焊(Au/Sn共晶焊 料)封接型;后者包括传递模注塑封型、液态树脂封装型、树脂块封 装型等。其中传递模注塑封法价格便宜,便于大批量生产,目前采用 最为普遍。
即使已完成了微互连,不经封装而在含有湿气的空气中工 作加之迁移现象,半导体元件及多层布线板及半导体元件表面露 出的导体图形必须与外界气氛隔绝。无论对于单个使用的 裸芯片还是MCM,封装都是必不可少的。
封装除对混合电路起机械支撑、防水和防磁、隔绝空气等 的作用外,还具有对芯片及电连接的物理保护、应力缓和、 散热防潮、尺寸过渡、规格标准化等多种功能。
封装可靠性与失效分析
本章围绕非气密封性装技术、气 密封性装技术、常见的封装形式、 混合电路常见的失效模式与分析 等方面进行介绍。
将有源器件以及无源元件组装到已完成膜层印烧/蒸发/ 溅射的基片上以后,这个混合微电路就可以进行封装 了。组装和封装作为产品开发中的关键技术在业界引 起人们日益增多的关注。
性。标准模注树脂的组成,按其配比质量分数, 从高到低依次为填充料(filler)(约70%),环氧树脂 (约18%以下),固化剂(约9%以下)等。
• 填充料的主要成分是二氧化硅。晶态二氧化硅 有利于提 高模注树脂的导热性,熔凝态(非晶)二氧化硅有利于降低 模注树脂的热膨胀系数及吸湿性。图中可见随熔凝二氧化 硅含量的增加,封装树脂热膨胀系数降低最多,从而对模 注塑封中的热应力缓和更为有效。
按树脂分子主链组成分类 : 按此方法可将树脂分为碳链聚合物、杂链聚合物和元素有 机聚合物。 碳链聚合物是指主链全由碳原子构成的聚合物,如聚乙烯、 聚苯乙烯等。 杂链聚合物是指主链由碳和氧、氮、硫等两种以上元素的 原子所构成的聚合物,如聚甲醛、聚酰胺、聚醚等。 元素有机聚合物是指主链上不一定含有碳原子,主要由硅、 氧、铝、钛、硼、硫、磷等元素的原子构成,如有机硅。
• 外引脚经过电镀焊料或电镀Sn等处理,以改善引脚的耐蚀 性及微互连时焊料与它的浸润性。至此,传递模注封装全 部完成。
问题1:随着芯片封装规模及相应模具的大型化,往往会 发生树脂注入型腔的不均匀化问题。从树脂注入每个型腔 的过程看,离注塑压头远的型腔注入树脂前,离注塑压头 近的型腔中树脂已开始硬化;离注塑压头远的型腔填充完 毕开始增加注入压力时,离注塑压头近的型腔中的树脂已 经硬化,残留的气体会产生气孔或气泡。
广义的封装是指将半导体和电子元器件所具有的电子 的、物理的功能,转变为适用于设备或系统的形式, 并使之能够为人类社会服务的科学技术。
狭义的封装(Packaging,PKG)是指裸芯片与布线板实现微 互连后,将其密封在塑料、玻璃、金属或者陶瓷外壳中, 以确保半导体集成电路芯片在各种恶劣条件下正常工作。
b.传递模注工艺过程
• 先将模具预热,将经过微互连的芯片框架插入上下模具中,上模具下 降,将芯片框架固定。
• 注塑压头按设定程序下降,树脂料饼经预加热器加热,粘度下降,在 注塑压头压力作用下,由料筒经流道,通过浇口分配器进入浇口,最 后注入到型腔中。
• 注入中不加压力,待封装树脂基本上填满每个型腔之后再 加压力。在加压状态下保持数分钟,树脂聚合而硬化。
解决方法是采用多个注塑压头,以保证树脂在每个型腔内处于均衡的 流入状态。
问题2:一般的模注采用下浇口注入树脂,这在芯片和封装尺寸较小 时没有问题,但随着芯片和封装尺寸变大,离浇口远的封装上部,往 往出现树脂未填充的部分。
解决方法是通过将浇口设置在封装中部,保证注入树脂在型腔内芯片 的上面、下面均衡流动,从而避免树脂未填充问题。
• 环氧树脂的组成,一般都采用甲酚-酚醛系([C6H3OHCH2]n)。 环氧树脂具有保护芯片、使其于外部气体隔绝,确保成形 时的流动性外,还对模注树脂的机械、电气、热等基本特 性起决定性作用。
• 固化剂的主要成分为苯酚-酚醛系树脂,其与环氧树脂一 起对成形时的流动性及树脂特性起作用。
• 此外,模注树脂中还含有如下成分:促进固化反应的固化 促进剂(触媒);树脂在注模内固化后,为使其便于取出的 脱模剂;为阻止燃烧,满足阻燃特性规定的阻燃剂;以黑 色炭粉及各种颜料进行着色的着色剂等。
传递模注塑封技术
a.模注树脂成分及特性
树脂通常是指受热后有软化或熔融范围,软化时在外力作 用下有流动倾向,常温下是固态、半固态,有时也可以是 液态的有机聚合物。广义地讲,可以作为塑料制品加工原 料的任何聚合物都称为树脂。
树脂有天然树脂和合成树脂之分。天然树脂是指由自然界 中动植物分泌物所得的有机物质,如松香、琥珀、虫胶等。 合成树脂是指由简单有机物经化学合成或某些天然产物经 化学反应而得到的树脂产物。
c.模注树脂流速及粘度对Au丝偏移(冲丝)的影响 封装树脂在型腔内流动会造成微互连Au丝的偏移(冲丝)。
• 为了减小Au丝偏移,应降低封装树脂的粘度,并控制封装 树脂尽量缓慢的在型腔内流动。
二、多芯片封装 MCM封装也可按其气密性等级,分为气密封装和非气密 封装两大类。非气密封装的代表是树脂封装法,依树脂的 加入方式不同,进一步还可分为注型(casting)法、浸渍 (dipping)法、滴灌(potting)法及流动浸渍法(粉体涂装法)等; 气密性封装包括低熔点玻璃封接法、钎焊封接法、缝焊封 接法及激光熔焊法等。