高中数学所有知识点表格总结

合集下载

高中数学知识点汇总表格格式

高中数学知识点汇总表格格式

{|x B =)()()U U B C A C B =)()()U U B C A C B =)U A A ={|x B x ={|U x x A =能够判断真假的语句。

原命题:若p 原命题与逆命题,否命题与逆否命题互←−−−→复平面内的点向量OZ 向量OZ 的模叫做复数的模,bi,则首先要进行分母实数化(分母乘以自己的共轭复数),在进行四则运算时,可以把向量夹角 起点放在一点的两向量所成的角,范围是[cos b 12e e μ+。

若2为,x y 轴上的单位正交向量,(,)λμ就是向量a 的坐标。

坐标表示(向量坐标上下文理解)0b ≠存在唯一实数λ,0a b a b ⊥⇔=。

的平行四边形法则、三角形法则。

a +,()abc a ++=+a b -1(a b x -=-MN ON OM =-。

为向量,0λ>与与a 方向相反,a a λλ=。

(,a x λλ=a )()λμ=,a a λ+=)b b a λλ+=+)(与数乘运算有同样的坐标表示。

cos ,a b a b a b =⋅<>12b x x =+2a a =,ab a b ≤⋅。

2a x y =+221y y x ≤+a b b a =,()a b c a c b c +=+,()()()a b a b a b λλλ==。

与上面的数量积、数乘等具有同样4.算法、推理与证明圆的方程圆心x 2+ y 2= r 2(06.计数原理与二项式定理完成一件事情,需要分成n 个步骤,做第做第n 步有任意取出mN n m ∈且,,k n k n ∈∈≤N N ,,)8. 函数与方程﹑函数模型及其应用9. 导数及其应用)()]()()()()g x f x g x f x g x '''=+,2)()()()()(()0))()f x g x g x f x g x g x '''⎤-=≠⎥⎦, ⎡⎢⎣()x 是[a10. 三角函数的图像与性质11. 三角恒等变换与解三角形sin sin βαβtan tan 1tan tan αα±sin c C=。

高中数学259个知识点

高中数学259个知识点

高中数学259个知识点一、集合与函数概念。

1. 集合。

- 集合的定义:把一些元素组成的总体叫做集合。

- 集合元素的特性:确定性、互异性、无序性。

- 集合的表示方法:列举法、描述法、韦恩图法。

- 集合间的基本关系:子集(如果集合A的所有元素都是集合B的元素,那么A是B的子集,记作A⊆ B)、真子集(如果A⊆ B且A≠ B,则A是B的真子集,记作A⊂neqq B)、相等(A = B当且仅当A⊆ B且B⊆ A)。

- 集合的基本运算:- 交集:A∩ B={xx∈ A且x∈ B}。

- 并集:A∪ B = {xx∈ A或x∈ B}。

- 补集:设U为全集,A⊆ U,则∁_UA={xx∈ U且x∉ A}。

2. 函数及其表示。

- 函数的概念:设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数y和它对应,那么就称f:A→ B为从集合A到集合B的一个函数,记作y = f(x),x∈ A。

- 函数的三要素:定义域、值域、对应关系。

- 函数的表示方法:解析法、图象法、列表法。

3. 函数的基本性质。

- 单调性:- 增函数:设函数y = f(x)的定义域为I,如果对于定义域I内的某个区间D 内的任意两个自变量的值x_1,x_2,当x_1时,都有f(x_1),那么就说函数y = f(x)在区间D上是增函数。

- 减函数:设函数y = f(x)的定义域为I,如果对于定义域I内的某个区间D 内的任意两个自变量的值x_1,x_2,当x_1时,都有f(x_1)>f(x_2),那么就说函数y = f(x)在区间D上是减函数。

- 奇偶性:- 奇函数:设函数y = f(x)的定义域为D,如果对于任意x∈ D,都有f(-x)= - f(x),且0∈ D时f(0)=0,则函数y = f(x)是奇函数。

- 偶函数:设函数y = f(x)的定义域为D,如果对于任意x∈ D,都有f(-x)=f(x),则函数y = f(x)是偶函数。

新课标高中数学知识点总结汇总表

新课标高中数学知识点总结汇总表

新课标高中数学知识点总结汇总表一、函数与导数1. 函数基础- 函数的概念与表示法- 函数的性质:定义域、值域、单调性、奇偶性、周期性- 函数的运算:四则运算、复合函数、反函数、基本初等函数(幂函数、指数函数、对数函数、三角函数)2. 极限与连续- 极限的定义与性质- 无穷小与无穷大- 极限的运算法则- 函数的连续性与间断点3. 导数与微分- 导数的定义与几何意义- 导数的运算法则- 高阶导数- 隐函数与参数方程的导数- 微分的概念与应用4. 导数的应用- 函数的极值与最值问题- 曲线的切线与法线- 罗尔定理、拉格朗日中值定理、柯西中值定理- 泰勒公式与麦克劳林公式5. 不定积分- 积分的概念与性质- 基本积分表- 积分的运算法则- 特殊积分技巧:换元法、分部积分法二、平面向量与立体几何1. 平面向量- 向量的基本概念与运算- 向量的几何意义与线性运算- 向量的数量积与向量积- 平面向量的坐标表示与运算2. 立体几何- 空间几何体的性质与计算- 直线与平面的方程- 空间向量及其运算- 立体图形的表面积与体积三、解析几何1. 圆锥曲线- 圆的方程- 椭圆、双曲线、抛物线的方程与性质 - 圆锥曲线的切线与法线- 圆锥曲线的应用问题2. 参数方程与极坐标- 参数方程的概念与应用- 极坐标系与直角坐标系的转换- 简单曲线的极坐标方程四、概率与统计1. 概率论基础- 随机事件与概率的定义- 条件概率与独立事件- 全概率公式与贝叶斯公式- 随机变量与分布函数2. 统计学基础- 统计量的概念:均值、方差、标准差、中位数、众数 - 抽样与估计- 假设检验- 线性回归分析五、数学分析进阶1. 定积分- 定积分的概念与性质- 微积分基本定理- 定积分的计算方法- 定积分的应用:面积、体积、弧长、工作量2. 级数- 数项级数的概念与性质- 正项级数与收敛性判别法- 交错级数与绝对收敛- 幂级数与泰勒级数3. 多元函数微分学- 多元函数的偏导数与全微分- 多元函数的极值与最优化问题- 多重积分的概念与计算4. 常微分方程- 微分方程的基本概念- 可分离变量的微分方程- 一阶线性微分方程- 二阶常系数线性微分方程以上是新课标高中数学的主要知识点汇总,涵盖了函数、几何、概率统计以及数学分析等领域的核心内容。

高中数学所有知识点归类大全

高中数学所有知识点归类大全

高中数学所有知识点归类大全一、数学初等函数1. 指数函数:定义、对数、幂函数、应用。

2. 三角函数:定义、几何语言、正弦余弦定理、半正弦函数等。

3. 对数函数:定义、有理函数的对数、指数函数的对数等。

4. 幂函数:定义、幂函数定义、幂函数的性质、幂函数的应用等。

5. 向量函数:定义、表示、性质等。

6. 积分函数:定义、概念、初等函数积分、重积分等。

二、统计与概率1. 概率的定义、公理、概率的计算。

2. 离散分布与连续分布:定义、概率分布函数、期望值等。

3. 抽样估计:抽样分布函数、均匀抽样、样本总体的判断等。

4. 回归分析:定义、正态模型、最小二乘估计、多项式回归模型等。

5. 贝叶斯分析:定义、贝叶斯统计、贝叶斯方法应用等。

6. 推断分析:点估计、区间估计、参数误差等。

三、代数1. 多项式及其性质:定义、系数、次数、根的处理等。

2. 同类型代数式:定义、因式分解、完全平方式等。

3. 向量空间:定义、向量空间的子空间、线性相关、线性无关等。

4. 线性方程组:定义、矩阵方程组、逆矩阵解、三角形法等。

5. 二元一次方程:一次函数性质、椭圆方程、双曲线方程等。

6. 不定系数线性方程组:定义、条件互异、充分必要性等。

四、几何1. 直角坐标系:定义、坐标方程组、投影面等。

2. 点、线:定义、直线的性质、平行线的性质等。

3. 平面图形:定义、圆的性质、锐角三角形、钝角三角形等。

4. 正多边形:定义、正五边形性质、正六边形性质等。

5. 空间几何:定义、球面坐标系、球面角等。

6. 极坐标系:定义、极线条件、极角等。

高中数学知识点全总结(电子版)

高中数学知识点全总结(电子版)

高中数学知识点全总结(电子版)高中数学知识点全一、求导数的(1)基本求导公式(2)导数的四则运算(3)复合函数的导数设在点x处可导,y=在点处可导,则复合函数在点x处可导,且即_二、关于极限1、数列的极限:粗略地说,就是当数列的项n无限增大时,数列的项无限趋向于A,这就是数列极限的描述性定义。

记作:=A。

如:2、函数的极限:当自变量x无限趋近于常数时,如果函数无限趋近于一个常数,就说当x趋近于时,函数的极限是,记作三、导数的概念1、在处的导数。

2、在的导数。

3、函数在点处的导数的几何意义:函数在点处的导数是曲线在处的切线的斜率,即k=,相应的切线方程是_注:函数的导函数在时的函数值,就是在处的导数。

例、若=2,则=()A—1B—2C1D四、导数的综合运用(一)曲线的切线函数y=f(x)在点处的导数,就是曲线y=(x)在点处的切线的斜率。

由此,可以利用导数求曲线的切线方程。

具体求法分两步:(1)求出函数y=f(x)在点处的导数,即曲线y=f(x)在点处的切线的斜率k=_(2)在已知切点坐标和切线斜率的条件下,求得切线方程为x。

如何学好高中数学方法1、上课认真听、仔细做笔记学习新的知识首先得通过老师的讲解,然后自己理解,这样才能通过做题巩固,不然上课不认真听的话,下课自己做题也不会,即使自己参照例题做出来了,也会有很多地方不理解,而且自己学还很浪费时间。

所以高中的学生们一定不能轻视了上课老师讲的内容。

再有一点就是数学也是需要记笔记的,上课的时候把老师讲的书上没有的步骤都记一下,重点的内容该画的画,改写的写,千万不要觉得现在看了一眼就记住了,要知道数学的知识从高一到高三会越来越难,前面的知识相当于为后面做铺垫,尤其是高三复习的时候。

所以同学们在高一高二的时候老师讲的重点的内容一定要整理在笔记上,不然到了高三复习的时候忘记了又得浪费时间重新做笔记。

2、以课本为主,把握课本去理解提高数学成绩主要是靠听课和做题来提高。

高中数学知识点总结(最全版)

高中数学知识点总结(最全版)

高中数学知识点总结(最全版)第一章函数概念(1)函数的概念①设、是两个非空的数集,如果按照某种对应法则,对于集合中任何一个数,在集合中都有唯一确定的数和它对应,那么这样的对应(包括集合,以及到的对应法则)叫做集合到的一个函数,记作、②函数的三要素:定义域、值域和对应法则、③只有定义域相同,且对应法则也相同的两个函数才是同一函数、(2)区间的概念及表示法①设是两个实数,且,满足的实数的集合叫做闭区间,记做;满足的实数的集合叫做开区间,记做;满足,或的实数的集合叫做半开半闭区间,分别记做,;满足的实数的集合分别记做、注意:对于集合与区间,前者可以大于或等于,而后者必须,(前者可以不成立,为空集;而后者必须成立)、(3)求函数的定义域时,一般遵循以下原则:①是整式时,定义域是全体实数、②是分式函数时,定义域是使分母不为零的一切实数、③是偶次根式时,定义域是使被开方式为非负值时的实数的集合、④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1、⑤中,、⑥零(负)指数幂的底数不能为零、⑦若是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集、⑧对于求复合函数定义域问题,一般步骤是:若已知的定义域为,其复合函数的定义域应由不等式解出、⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论、⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义、(4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的、事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值、因此求函数的最值与值域,其实质是相同的,只是提问的角度不同、求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值、②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值、③判别式法:若函数可以化成一个系数含有的关于的二次方程则在时,由于为实数,故必须有,从而确定函数的值域或最值、④不等式法:利用基本不等式确定函数的值域或最值、⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题、⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值、⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值、⑧函数的单调性法、(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种、解析法:就是用数学表达式表示两个变量之间的对应关系、列表法:就是列出表格来表示两个变量之间的对应关系、图象法:就是用图象表示两个变量之间的对应关系、(6)映射的概念①设、是两个集合,如果按照某种对应法则,对于集合中任何一个元素,在集合中都有唯一的元素和它对应,那么这样的对应(包括集合,以及到的对应法则)叫做集合到的映射,记作、②给定一个集合到集合的映射,且、如果元素和元素对应,那么我们把元素叫做元素的象,元素叫做元素的原象、(6)函数的单调性①定义及判定方法函数的性质定义图象判定方法函数的单调性如果对于属于定义域I内某个区间上的任意两个自变量的值x1、x2,当x1< x2时,都有f(x1)<f(x2),那么就说f(x)在这个区间上是增函数、(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象上升为增)(4)利用复合函数如果对于属于定义域I内某个区间上的任意两个自变量的值x1、x2,当x1< x2时,都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数、(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象下降为减)(4)利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数、③对于复合函数,令,若为增,为增,则为增;若为减,为减,则为增;若为增,为减,则为减;若为减,为增,则为减、yxo(7)打“√”函数的图象与性质分别在、上为增函数,分别在、上为减函数、(8)最大(小)值定义①一般地,设函数的定义域为,如果存在实数满足:(1)对于任意的,都有;(2)存在,使得、那么,我们称是函数的最大值,记作、②一般地,设函数的定义域为,如果存在实数满足:(1)对于任意的,都有;(2)存在,使得、那么,我们称是函数的最小值,记作、(9)函数的奇偶性①定义及判定方法函数的性质定义图象判定方法函数的奇偶性如果对于函数f(x)定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)叫做奇函数、(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于原点对称)如果对于函数f(x)定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)叫做偶函数、(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于y轴对称)②若函数为奇函数,且在处有定义,则、③奇函数在轴两侧相对称的区间增减性相同,偶函数在轴两侧相对称的区间增减性相反、④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数、第二章基本初等函数(Ⅰ)〖2、1〗指数函数【2、1、1】指数与指数幂的运算(1)根式的概念①如果,且,那么叫做的次方根、当是奇数时,的次方根用符号表示;当是偶数时,正数的正的次方根用符号表示,负的次方根用符号表示;0的次方根是0;负数没有次方根、②式子叫做根式,这里叫做根指数,叫做被开方数、当为奇数时,为任意实数;当为偶数时,、③根式的性质:;当为奇数时,;当为偶数时,、(2)分数指数幂的概念①正数的正分数指数幂的意义是:且、0的正分数指数幂等于0、②正数的负分数指数幂的意义是:且、0的负分数指数幂没有意义、注意口诀:底数取倒数,指数取相反数、(3)分数指数幂的运算性质① ②③【2、1、2】指数函数及其性质(4)指数函数函数名称指数函数定义0101函数且叫做指数函数图象定义域值域过定点图象过定点,即当时,、奇偶性非奇非偶单调性在上是增函数在上是减函数函数值的变化情况变化对图象的影响在第一象限内,越大图象越高;在第二象限内,越大图象越低、〖2、2〗对数函数【2、2、1】对数与对数运算(1)对数的定义①若,则叫做以为底的对数,记作,其中叫做底数,叫做真数、②负数和零没有对数、③对数式与指数式的互化:、(2)几个重要的对数恒等式,,、(3)常用对数与自然对数常用对数:,即;自然对数:,即(其中…)、(4)对数的运算性质如果,那么①加法:②减法:③数乘:④⑤ ⑥换底公式:【2、2、2】对数函数及其性质(5)对数函数函数名称对数函数定义函数且叫做对数函数图象0101定义域值域过定点图象过定点,即当时,、奇偶性非奇非偶单调性在上是增函数在上是减函数函数值的变化情况变化对图象的影响在第一象限内,越大图象越靠低;在第四象限内,越大图象越靠高、(6)反函数的概念设函数的定义域为,值域为,从式子中解出,得式子、如果对于在中的任何一个值,通过式子,在中都有唯一确定的值和它对应,那么式子表示是的函数,函数叫做函数的反函数,记作,习惯上改写成、(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式中反解出;③将改写成,并注明反函数的定义域、(8)反函数的性质①原函数与反函数的图象关于直线对称、②函数的定义域、值域分别是其反函数的值域、定义域、③若在原函数的图象上,则在反函数的图象上、④一般地,函数要有反函数则它必须为单调函数、〖2、3〗幂函数(1)幂函数的定义一般地,函数叫做幂函数,其中为自变量,是常数、(2)幂函数的图象(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象、幂函数是偶函数时,图象分布在第一、二象限(图象关于轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限、②过定点:所有的幂函数在都有定义,并且图象都通过点、③单调性:如果,则幂函数的图象过原点,并且在上为增函数、如果,则幂函数的图象在上为减函数,在第一象限内,图象无限接近轴与轴、④奇偶性:当为奇数时,幂函数为奇函数,当为偶数时,幂函数为偶函数、当(其中互质,和),若为奇数为奇数时,则是奇函数,若为奇数为偶数时,则是偶函数,若为偶数为奇数时,则是非奇非偶函数、⑤图象特征:幂函数,当时,若,其图象在直线下方,若,其图象在直线上方,当时,若,其图象在直线上方,若,其图象在直线下方、〖补充知识〗二次函数(1)二次函数解析式的三种形式①一般式:②顶点式:③两根式:(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式、②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式、③若已知抛物线与轴有两个交点,且横线坐标已知时,选用两根式求更方便、(3)二次函数图象的性质①二次函数的图象是一条抛物线,对称轴方程为顶点坐标是、②当时,抛物线开口向上,函数在上递减,在上递增,当时,;当时,抛物线开口向下,函数在上递增,在上递减,当时,、③二次函数当时,图象与轴有两个交点、(4)一元二次方程根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布、设一元二次方程的两实根为,且、令,从以下四个方面来分析此类问题:①开口方向:②对称轴位置:③判别式:④端点函数值符号、①k<x1≤x2 ②x1≤x2<k ③x1<k<x2 af(k)<0 ④k1<x1≤x2<k2 ⑤有且仅有一个根x1(或x2)满足k1<x1(或x2)<k2 f(k1)f(k2)0,并同时考虑f(k1)=0或f(k2)=0这两种情况是否也符合⑥k1<x1<k2≤p1<x2<p2 此结论可直接由⑤推出、(5)二次函数在闭区间上的最值设在区间上的最大值为,最小值为,令、(Ⅰ)当时(开口向上)①若,则②若,则③若,则xy0>aOabx2-=pqf(p)f(q)xy0>aOabx2-=pqf(p)f(q)xy0>aOabx2-=pqf(p)f(q)xy0>aOabx2-=pqf(p)f(q)①若,则②,则xy0>aOabx2-=pqf(p)f(q)(Ⅱ)当时(开口向下)①若,则②若,则③若,则xy0<aOabx2-=pqf(p)f(q)xy0<aOabx2-=pqf(p)f(q)xy0<aOabx2-=pqf(p)f(q)①若,则②,则、xy0<aOabx2-=pqf(p)f(q)xy0<aOabx2-=pqf(p)f(q)第三章函数的应用一、方程的根与函数的零点1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。

高中数学知识点最全版总结图

高中数学知识点最全版总结图

高中数学知识点最全版总结图一、代数1. 集合与函数概念- 集合的基本概念、运算及其性质- 函数的定义、性质和常见类型(如一次函数、二次函数、指数函数、对数函数、三角函数等)- 函数的图像和变换(平移、伸缩、对称等)2. 代数式的运算- 整式的加减乘除运算- 因式分解- 分式的运算- 二次根式的运算3. 方程与不等式- 一元一次方程、一元二次方程的解法- 高次方程的解法- 线性不等式及其解集- 二次不等式的解法- 绝对值不等式的解法4. 序列与数列- 等差数列、等比数列的概念和性质- 数列的求和公式- 无穷等比数列的和5. 排列组合与概率- 排列组合的基本概念和公式- 二项式定理- 概率的基本概念和计算方法- 条件概率、独立事件二、几何1. 平面几何- 点、线、面的基本性质- 三角形、四边形的性质和计算- 圆的性质和圆的相关计算- 相似与全等的判定和性质2. 空间几何- 空间直线和平面的基本性质- 空间向量的概念和运算- 立体图形的性质和计算(如棱柱、棱锥、圆柱、圆锥、球等) - 空间图形的投影和视图3. 解析几何- 坐标系的建立和应用- 直线与圆的方程- 圆锥曲线(椭圆、双曲线、抛物线)的方程和性质- 空间曲线和曲面的方程三、三角学1. 三角函数- 三角函数的定义和性质- 三角函数的基本关系式- 三角函数的图像和变换2. 三角恒等变换- 三角函数的和差化积、积化和差公式- 二倍角公式、半角公式3. 解三角形- 三角形的边角关系- 正弦定理和余弦定理- 三角形面积的计算四、微积分1. 极限与连续- 极限的概念和性质- 无穷小和无穷大的理解- 函数的连续性2. 导数与微分- 导数的定义和几何意义- 常见函数的导数- 微分的概念和应用3. 积分学- 不定积分的概念和基本积分表- 定积分的概念和性质- 定积分的应用(如计算面积、体积等)4. 微分方程- 常微分方程的基本概念- 一阶微分方程的解法- 二阶常系数线性微分方程五、概率统计1. 统计基本概念- 数据的收集和整理- 统计量(均值、中位数、众数、方差、标准差等)2. 概率分布- 离散型随机变量及其分布- 连续型随机变量及其分布- 常见分布(如二项分布、正态分布、均匀分布等)3. 统计推断- 抽样分布- 参数估计(点估计、区间估计)- 假设检验以上总结了高中数学的主要知识点,这些知识点构成了高中数学的基础框架,对于理解和掌握高中数学至关重要。

高中数学知识点(表格格式)

高中数学知识点(表格格式)

高考数学知识必备n 个元素集合子集数2{|x B x =)()()U U A B C A C B = )()()U U B C A C B =)U A A ={|x B x ={|U x x A =能够判断真假的语句。

原命题:若p 原命题与逆命题,否命题与逆否命题互逆;原命题与否命题、逆命题与逆否命题互否;原命题与逆否命题、否命题与逆命题互为逆否。

互为逆否的命题等价。

逆命题:若q 否命题:若⌝逆否命题:若q ⇒,p 是,,)b c d ∈R←−−−→一一对应复平面内的点向量OZ 向量OZ 的模叫做复数的模,向量既有大小又有方向的量,表示向量的有向线段的长度叫做该向量的模。

0向量0与任一非零向量共线】平行向量 方向相同或者相反的两个非零向量叫做平行向量,也叫共线向量。

向量夹角 起点放在一点的两向量所成的角,范围是[,a b 的夹角记为,a b >。

投影,a b θ<>=,cos b θ叫做b 在a 方向上的投影。

【注意:投影是数量】基本定理12,e e 不共线,存在唯一的实数对(,)λμ,使12a e e λμ=+。

若12,e e 为,x y 轴上的单位正交向量,(,)λμ就是向量a 的坐标。

一般表示坐标表示(向量坐标上下文理解),a b (0b ≠共线⇔存在唯一实数λ,a b λ=112212(,)(,)x y x y x y x λ=⇔=0a b a b ⊥⇔=。

11220x y x y +=。

a b +的平行四边形法则、三角形法则。

1(,)a b x x y y +=++。

a b b a +=+,()()a b c a b c ++=++与加法运算有同样的坐标表示。

a b -的三角形法则。

1(a b x x -=-MN ON OM =-。

(N M MN x x =-a λ⋅为向量,0λ>与a 方向相同, 0λ<与a 方向相反,a a λλ=。

(,a x y λλλ=a a )()(λμμ=,a a a μλμλ+=+)(,b a b a λλλ+=+)(与数乘运算有同样的坐标表示。

高中数学知识点大全

高中数学知识点大全

高中数学知识点大全(完整版)一、集合、简易逻辑1、集合;2、子集;3、补集;4、交集;5、并集;6、逻辑连结词;7、四种命题;8、充要条件。

二、函数1、映射;2、函数;3、函数的单调性;4、反函数;5、互为反函数的函数图象间的关系;6、指数概念的扩充;7、有理指数幂的运算;8、指数函数;9、对数;10、对数的运算性质;11、对数函数。

12、函数的应用举例。

三、数列(12课时,5个)1、数列;2、等差数列及其通项公式;3、等差数列前n项和公式;4、等比数列及其通顶公式;5、等比数列前n项和公式。

四、三角函数1、角的概念的推广;2、弧度制;3、任意角的三角函数;4、单位圆中的三角函数线;5、同角三角函数的基本关系式;6、正弦、余弦的诱导公式;7、两角和与差的正弦、余弦、正切;8、二倍角的正弦、余弦、正切;9、正弦函数、余弦函数的图象和性质;10、周期函数;11、函数的奇偶性;12、函数的图象;13、正切函数的图象和性质;14、已知三角函数值求角;15、正弦定理;16、余弦定理;17、斜三角形解法举例。

五、平面向量1、向量;2、向量的加法与减法;3、实数与向量的积;4、平面向量的坐标表示;5、线段的定比分点;6、平面向量的数量积;7、平面两点间的距离;8、平移。

六、不等式1、不等式;2、不等式的基本性质;3、不等式的证明;4、不等式的解法;5、含绝对值的不等式。

七、直线和圆的方程1、直线的倾斜角和斜率;2、直线方程的点斜式和两点式;3、直线方程的`一般式;4、两条直线平行与垂直的条件;5、两条直线的交角;6、点到直线的距离;7、用二元一次不等式表示平面区域;8、简单线性规划问题;9、曲线与方程的概念;10、由已知条件列出曲线方程;11、圆的标准方程和一般方程;12、圆的参数方程。

八、圆锥曲线1、椭圆及其标准方程;2、椭圆的简单几何性质;3、椭圆的参数方程;4、双曲线及其标准方程;5、双曲线的简单几何性质;6、抛物线及其标准方程;7、抛物线的简单几何性质。

高考数学基础知识点归纳总结表

高考数学基础知识点归纳总结表

高考数学基础知识点归纳总结表1. 代数
- 代数表达式
- 方程与不等式
- 函数与图像
- 数列与数列的通项公式
2. 几何
- 基本几何概念
- 直线与曲线
- 三角形与三角函数
- 圆与圆相关的性质
3. 概率与统计
- 随机事件
- 概率的计算
- 统计与数据分析
- 概率与统计的应用
4. 解析几何
- 平面直角坐标系
- 直线与曲线的方程
- 二次曲线
- 空间坐标系与空间几何图形5. 三角函数
- 三角函数的定义和基本性质 - 三角函数的图像与性质
- 三角函数的运算与应用
- 三角恒等变换与解三角形6. 数列与数学归纳法
- 数列与数列的通项公式
- 等差数列与等比数列
- 数学归纳法的原理与应用 - 递推关系与递归方程
7. 数与数量关系
- 实数与复数
- 数的性质与运算
- 数量关系的表示与求解
- 数与数量关系在实际问题中的应用8. 导数与微分
- 导数的概念与定义
- 基本导数公式与常见函数导数
- 高阶导数与导数的应用
- 微分与微分近似
9. 不等式与极值
- 不等式的性质与解法
- 一元不等式组的解法
- 函数的极值与最优问题
- 不等式与极值问题的应用
10. 指数与对数
- 指数函数与对数函数
- 指数与对数的性质与运算
- 指数方程与对数方程的解法
- 指数与对数在实际问题中的应用
以上是高考数学基础知识点的归纳总结表。

希望对你的学习有所帮助。

[荐]高考高中数学所有必考知识点总结-表格版

[荐]高考高中数学所有必考知识点总结-表格版

【下载后获高清完整版-独家】
高考高中数学所有必考知识点总结-表格版集合与常用逻辑用语
复数
平面向量
不等式与线性规划
算法、推理与证明
计数原理与二项式定理
函数﹑基本初等函数I的图像与性质
函数与方程﹑函数模型及其应用
导数及其应用
三角函数的图像与性质
三角恒等变换与解三角形
等差数列﹑等比数列
数列求和及其数列的简单应用
空间几何体与三视图
空间点、直线、平面位置关系
空间向量与立体几何
直线与圆的方程
圆锥曲线的定义、方程与性质
圆锥曲线的热点问题
概率
统计与统计案例
离散型随机变量及其分布
函数与方程思想,数学结合思想
分类与整合思想,化归与转化思想
坐标系与参数方程
不等式选讲。

高中数学各章知识清单(高三,高考)

高中数学各章知识清单(高三,高考)

第一章集合与简易逻辑一、知识结构图二、知识要点(一) 集合1.概念(1)(2)(3)⎧⎪⎨⎪⎩集合:具有相同属性的对象的全体。

(有限集、无限集、空集)元素性质:确定性、互异性、无序性。

表示方法:列表法、描述法、图像法。

2.关系(1).(2)∈∉⎧⎨⊆⊂⎩集合与元素:属于()、不属于()集合与集合:包含()-子集、真包含()-真子集、相等(=)。

3.运算(1){|}(2){|}(3){|}UA B x x A x BA B x x A x BC A x x U x A⋂=∈∈⎧⎪⋃=∈∈⎨⎪=∈∉⎩交集:且并集:或补集:且(二)简易逻辑1.命题(1)(2)(3)⎧⎪⎨⎪⎩命题:可以判断真假的语句。

简单(复合)命题:不含(含)逻辑连词的命题。

逻辑连词:“或”(并)、“且”(交)、“非”(补)。

2.四种命题及关系3.充要条件(1))(2))(3))p q p q P Qq p p q P Qp q p q P Q⇒⊆⎧⎪⇒⊇⎨⎪⇔=⎩充分条件:若,则叫的充分条件。

(必要条件:若,则叫的必要条件。

(充要条件:若,则叫的充要条件。

(三、解题方法与规律1.注意空集的特殊性,它是任何集合的子集,是任何非空集合的真子集。

2.掌握一些基本性质,如(1)含有 n 个元素的集合A ,其子集个数为2n个,真子集个数为12n -个。

(2)AB A A B B =⇔=A B ⇔⊆等。

3.灵活运用数形结合、分类讨论、转化化归思想来解题,化繁为简。

第二章 函 数一、知识结构图二、知识要点1. 函数定义:设A 、B 是两非空数集,若按某对应法则f ,对A 中任一x ,B 中都有唯一确定的数()f x 与它对应,则称:f A B →的一个函数,记(),y f x x A =∈ .(三要素:定义域、值域、对应法则)2. 表示方法:解析法、图象法、列表法3函数性质121212121212:(),()()(1):(),()():.()()()1:.(2)a f x x x x x f x f x b f x x x x x f x f x c a f x x f x f x b <<⎧⎪<>⎨⎪⎩-=-〈〉增函数:函数给定区间,任意,;当都有单调性减函数:函数给定区间,任意,;当都有图形刻画、定性刻画、定量刻画。

高中数学知识点总结(最全版)

高中数学知识点总结(最全版)

高中数学 必修1知识点 第一章 集合与函数概念 《集合的含义与表示》(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等名称记号意义性质 示意图子集B A ⊆(或)A B ⊇A 中的任一元素都属于B(1)A ⊆A(2)A ∅⊆(3)若B A ⊆且B C ⊆,则A C ⊆ (4)若B A ⊆且B A ⊆,则A B = A(B)或B A真子集 A ≠⊂B(或B ≠⊃A )B A ⊆,且B 中至少有一元素不属于A(1)A ≠∅⊂(A 为非空子集)(2)若A B ≠⊂且B C ≠⊂,则A C ≠⊂B A集合 相等A B =A 中的任一元素都属于B ,B 中的任一元素都属于A(1)A ⊆B(2)B ⊆AA(B)(7)已知集合A 有(1)n n ≥个元素,则它有2n个子集,它有21n-个真子集,它有21n-个非空子集,它有22n-非空真子集.【1.1.3】集合的基本运算(8)交集、并集、补集 名称 记号意义性质示意图交集A BI{|,x x A ∈且}x B ∈(1)A A A =I (2)A ∅=∅I (3)A B A ⊆I A B B ⊆IBA并集A BU{|,x x A ∈或}x B ∈(1)A A A =U (2)A A ∅=U (3)A B A ⊇U A B B ⊇UBA补集U A ð{|,}x x U x A ∈∉且1()U A A =∅I ð2()U A A U =U ð【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法不等式解集||(0)x a a <> {|}x a x a -<< ||(0)x a a >>|x x a <-或}x a >||,||(0)ax b c ax b c c +<+>>把ax b +看成一个整体,化成||x a <,||(0)x a a >>型不等式来求解(2)一元二次不等式的解法判别式24b ac ∆=-0∆> 0∆= 0∆<二次函数2(0)y ax bx c a =++>的图象O一元二次方程20(0)ax bx c a ++=>的根21,242b b ac x a-±-=(其中12)x x <122b x x a==-无实根20(0)ax bx c a ++>>的解集1{|x x x <或2}x x >{|x }2b x a≠-R20(0)ax bx c a ++<>的解集12{|}x x x x <<∅ ∅【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法函数的 性 质定义图象判定方法 函数的 奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于原点对称)()()()U U U A B A B =I U 痧?()()()U U U A B A B =U I 痧?如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...f(x)....,那么函数f(x)叫做偶函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于y 轴对称)②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.【2.1.2】指数函数及其性质(4)指数函数函数名称指数函数定义函数(0xy a a =>且1)a ≠叫做指数函数图象1a >01a <<定义域 R 值域 (0,)+∞过定点 图象过定点(0,1),即当0x =时,1y =.奇偶性 非奇非偶单调性在R 上是增函数在R 上是减函数函数值的 变化情况1(0)1(0)1(0)x x x a x a x a x >>==<< 1(0)1(0)1(0)x x x a x a x a x <>==>< a 变化对 图象的影响 在第一象限内,a 越大图象越高;在第二象限内,a 越大图象越低.〖2.2〗对数函数【2.2.1】对数与对数运算(1)对数的定义①若(0,1)xa N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数.②负数和零没有对数.xa y =xy(0,1)O1y =xa y =xy (0,1)O 1y =③对数式与指数式的互化:log (0,1,0)xa x N a N a a N =⇔=>≠>.(2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). (4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么①加法:log log log ()a a a M N MN += ②减法:log log log a a aM M N N-= ③数乘:log log ()na a n M M n R =∈ ④log a N a N =⑤log log (0,)b n a a nM M b n R b=≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a =>≠且 【2.2.2】对数函数及其性质(5)对数函数函数名称 对数函数定义函数log (0a y x a =>且1)a ≠叫做对数函数图象1a > 01a <<定义域 (0,)+∞值域 R过定点 图象过定点(1,0),即当1x =时,0y =.奇偶性 非奇非偶单调性在(0,)+∞上是增函数在(0,)+∞上是减函数函数值的 变化情况log 0(1)log 0(1)log 0(01)a a a x x x x x x >>==<<<log 0(1)log 0(1)log 0(01)a a a x x x x x x <>==><<a 变化对 图象的影响 在第一象限内,a 越大图象越靠低;在第四象限内,a 越大图象越靠高.〖2.3〗幂函数x yO(1,0)1x =log a y x=xyO (1,0)1x =log a y x=(1)幂函数的定义一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数.(2)幂函数的图象(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当qpα=(其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则q py x =是奇函数,若p 为奇数q 为偶数时,则q py x =是偶函数,若p 为偶数q 为奇数时,则q py x =是非奇非偶函数.⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.第三章 函数的应用一、方程的根与函数的零点D CB A α 1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档