考研数学二试题及答案
2021考研数学(二)真题(含详细解析)
2k 1 1 2n n
lim
n
n k 1
f
k
1
n
1
f (x)dx .选(B).
0
(8)二次型 f (x1, x2, x3) (x1 x2 )2 (x2 x3)2 (x3 x1)2 的正惯性指数与负惯性指数依次为( )
(A)2,0
(B)1,1
(C)2,1
(D)1,2
【答案】B
【解析】方法 1: f (x1, x2, x3) (x1 x2 )2 (x2 x3)2 (x3 x1)2 2x22 2x1x2 2x2x3 2x1x3 ,其二
)
(A)
lim
n
n k 1
f
2k 1 2n
1 2n
(B)
lim
n
n k 1
f
2k 1 1 2n n
(C)
lim
n
n k 1
f
k 1 2n
1 n
【答案】B
(D)
lim
n
n k 1
f
Hale Waihona Puke k 2 2n n【解析】由于
k n
k
2k 1 2n
k 1 n
,则 lim n
n k 1
f
t 1 1)et
t2
确定,则
d2y dx2
t0
.
【答案】 2 3
【解析】利用参数方程的求导公式
dy dx
yt xt
' '
4tet 2t 2et 1
,
d2y dx2
d dx
dy dx
d dx
4tet 2et
2t 1
d dt
2023年考研数学(二)答案解析
2023年全国硕士研究生统一入学考试数学(二)试题解析一、选择题:1-10小题,每小题5分,共50分,下列每题给出的四个选项中,只有一个选项是符合要求的请将所选项前的字母填在答题纸指定位置上.1.【答案】:B【解析】:1ln()11lim lim limln(11x x x x e y x k e x x x)11lim()lim[ln()]lim [ln()1]11x x x b y kx x e x x e x x 11lim ln[1]lim (1)(1)x x x x e x e x e所以斜渐近线方程为:1y x e2.【答案】:D 【解析】:当0x时1()ln(f x dx x C 当0x 时()(1)cos (1)sin sin f x dx x xdx x x xdx2(1)sin cos x x x C 原函数在(,) 内连续,则在0x处1122lim ln(,lim(1)sin cos 1x x x C C x x x C C所以121C C ,令2C C ,则11C C,故ln(1,0()(1)sin cos ,0x C x f x dx x x x C x结合选项,令0C ,则()f x的一个原函数为ln(1,0()()(1)sin cos ,0x x f x dx F x x x x x3.【答案】:B【解析】:在(0,2 中,2sin x x 故12sin n n nx x x112n n y y111112()()2444n nn n n n n n y yy y x x x xlim0nn ny x,故n y 是n x 的高阶无穷小4.【答案】:C【解析】:微分方程"'0y ay by 的特征方程为20a b ,当240a b 时,特征方程有2个不同的实数根12, ,则12, 至少有一个不等于零,若12,C C 都不为零,则微分方程的解1212xx y C eC e 在(,) 无界当240a b ,特征方程有2个相等的实根,1,22a若20C ,则微分方程的解212()ax y C C x e 在(,) 无界当240a b时,特征方程的根为1,222a i则通解为:212(cos sin )22ax y e C C 5.【答案】:C【解析】1)当0t 时,3sin cos ,sin 3x t dy t t ty t t dx;当0t 时,,sin sin sin x t dyt t t y t t dx;当0t 时,因为'00()(0)sin (0)lim lim 03x t f x f t tf x t'00()(0)sin (0)lim lim 0x t f x f t tf x t所以'(0)0f 2)0sin cos lim '()lim 0'(0)3x t t t t f x f;'00sin cos lim '()lim 0(0);3x t t t t f x f所以0lim '()'(0)0x f x f ,所以'()f x 在0x 处连续3)当0t 时,因为"00'()'(0)sin cos 2(0)lim lim 339x t f x f t t t f xt"00'()'(0)sin cos (0)lim lim 2x t f x f t t tf x t所以"(0)f 不存在6.【答案】:A【解析】当0 时,21211111()|(ln )(ln )(ln 2)f dx x x x所以211ln(ln 2)1111'()(ln ln 2)0(ln 2)(ln 2)(ln 2)f ,即01ln(ln 2)7.【答案】:C 【解析】方法一:已知 f x 没有极值点,等价于 '0fx 至多一个解, '220x f x x x a e 至多一个解即是:220x x a 至多一个解,那么判别式:4401a a ,另外曲线 y f x 有拐点,则等价于 ''2420x f x x x a e 有解,即是:164802a a ,则a 的取值范围是:12a 8.【答案】:D【解析】110000A E A E A E A E A B B B B B,另外:1234000X X A E E X X B E,解出111121340X X A A B X X B,则:0A E B****0B A A B A B9.【答案】:B【解析】:令:11221333y x x y x x y x ,22222212312121274,,4333y f x x x y y y y y y,可见规范形为2212y y 10.【答案】:D 【解析】根据题意,即是存在1234,,,k k k k ,使得11223344k k k k ,等价于求解12123434(,,,)0k k k k ,得到通解:12343111k k k k k,代入34,k k k k ,得到:15,8k k R二、填空题:11~16小题,每小题5分,共30分.请将答案写在答题纸指定位置上.11.【解析】:注意到22220ln 1ln 11limlim1cos 11cos x x x x ax bx x x x bx x a e xe x,首先得到:1a ,另外根据等价无穷小替换, 2222001ln 12lim lim 1311cos 2x x x b x x x bx x e x,得到:2b ,则2ab 12.【解析】:根据230t x ,则弧长计算为:s,进行换元:2sin t ,原积分为: 23344cos 3s d13.【解析】:两边同时对想求导两次得式子222220zz z z z z z e e x x x x x x 将x=1,y=1,z=0带入,223=-2|z x 1,114.【解析】两边分别对x 求导,可得'911y ,所以'911y,所以法线斜率为11915.【解析】32323112122121111u+2u+21=++2=++x =2f x dx f x dx f x dx f x dx f d f x dx f x dx f x dx f x dx dx 16.【解析】:由已知(A)(A,b)34r r ,故A,b 0,即14440111101110A,b 1(1)122(1)11012001202a a a a a a a a baa b所以111280a a a b三、解答题:17~22小题,共70分.请将解答写在答题纸指定位置上,解答应写出文字说明、证明过程或演算步骤.17.【解析】:(1)曲线L 在点 x,y P 处的切线方程为'y=y (X -x)Y ,令X=0,切线在y 轴上的截距为'Y y xy ,即'11y y x,解得 ln y x x c x ,由经过点 2,0e ,所以c=2,2ln y x x x 设曲线L 在点x,x(2lnx) 处的切线与坐标所围面积最小,此时切线方程为2ln =1-lnx (X -x)Y x x ,故切线与两坐标所围三角形面积为22ln 1x s x x令 3'20,s x x e ,由单调性知,最小值在32x e处取得,332s e e18.【解析】'cos 1'cos (,)0(((,)sin 0yx yy f x y e x x e x e k k f x y x ye y k y k 为奇数),为偶数),则''''cos ''cos 2(,)1(,)sin (,)(cos sin )xx y xy y yyf x y f x y yef x y xe y y ,代入1(,)e k 得2210,0A B AC B C e 故1(,)e k 不是极值点,代入(,)e k 得2210,0A B AC B C e且0A 故极小值为2(,)2e f e k ,其中k 为偶数.19.【解析】(1)由题设条件可知面积2111S (1)D x21112ln 1x t)(2)2222211111111arctan 11(14V dx dx dx x x x x x x20.【解析】332222002333222220011ln 33cos sin 11ln 2ln 21ln 2cos 3cos sin 223cos sin 23tan Ddxdy d r x y d dd3 21.【证明】(1)22111''()''()()(0)'(0)'(0),022f f f x f f x x f x x 介于与之间,则222''()()'(0),(0,)2f f a f a a a ,233''()()'(0),,0)2f f a f a a a (-,则223()()''()''()2a f a f a f f ,由()f x 在 ,a a 上具有2阶连续导数,故()f x 在 32, 上具有2阶连续导数,所以()f x 在 32, 上必存在最大值M 和最小值m ,使得 231''()''()2m f f M 由介值定理存在存在 32,(,)a a ,使得 23211''()''()''()()()2f f f f a f a a,得证.(2)设()f x 在x x 点处取得极值,则0'()0f x ,221100000010''()''()()()'()())()(),22f f f x f x f x x x x x f x x x x x介于与之间,220020''()()()(),,2f f a f x a x a x (),230030''()()()(),,2f f a f x a x a x (),222232003020''()''()1|()()||()()||''()|()|''()|()222f f f a f a a x a x f a x f a x 32(,),''()max{|''()|,|''()|}a a f f f ,故223020222001|()()||''()|()|''()|()2|''()|[()()]2|''()|2f a f a f a x f a x f a x a x a f命题得证。
考研数学二真题及答案解析
2015年全国硕士研究生入学统一考试数学二试题及答案解析一、选择题:1~8小题,每小题4分,共32分;下列每题给出的四个选项中,只有一个选项是符合题目要求的;1下列反常积分中收敛的是A ∫√x 2B ∫lnx x +∞2dxC ∫1xlnx +∞2dxD ∫x e x +∞2dx答案D;解析题干中给出4个反常积分,分别判断敛散性即可得到正确答案;∫√x2=2√x|2+∞=+∞; ∫lnx x +∞2dx =∫lnx +∞2d(lnx)=12(lnx)2|2+∞=+∞; ∫1xlnx +∞2dx =∫1lnx +∞2d(lnx)=ln?(lnx)|2+∞=+∞; ∫xe x +∞2dx =−∫x +∞2de −x =−xe −x |2+∞+∫e −x +∞2dx=2e −2−e −x |2+∞=3e −2, 因此D 是收敛的;综上所述,本题正确答案是D;考点高等数学—一元函数积分学—反常积分2函数f (x )=lim t→0(1+sin t x )x 2t在-∞,+∞内 A 连续 B 有可去间断点C 有跳跃间断点D 有无穷间断点答案B解析这是“1∞”型极限,直接有f (x )=lim t→0(1+sin t x )x 2t =e lim t→0x 2t (1+sin t x −1)=e x lim t→0sint t =e x (x ≠0),f (x )在x =0处无定义,且lim x→0f (x )=lim x→0e x =1,所以 x =0是f (x )的可去间断点,选B; 综上所述,本题正确答案是B;考点高等数学—函数、极限、连续—两个重要极限3设函数f (x )={x αcos 1x β,x >0,0,x ≤0α>0,β>0.若f ′(x )在x =0处连续,则 A α−β>1 B 0<α−β≤1C α−β>2D 0<α−β≤2答案A解析易求出f′(x )={αx α−1cos 1x β+βx α−β−1sin 1x β,x >0,0,x ≤0再有 f +′(0)=lim x→0+f (x )−f (0)x =lim x→0+x α−1cos 1x β={0, α>1,不存在,α≤1,f −′(0)=0 于是,f ′(0)存在α>1,此时f ′(0)=0.当α>1时,lim x→0x α−1cos 1x β=0,lim x→0βx α−β−1sin 1x β={0, α−β−1>0,不存在,α−β−1≤0, 因此,f′(x )在x =0连续α−β>1;选A综上所述,本题正确答案是C;考点高等数学—函数、极限、连续—函数连续的概念,函数的左极限和右极限4设函数f(x)在-∞,+∞内连续,其二阶导函数f ′′(x)的图形如右图所示,则曲线y =f(x)的拐点个数为A OB x A 0 B 1C 2D 3答案C解析f(x)在-∞,+∞内连续,除点x =0外处处二阶可导; y =f(x)的可疑拐点是f ′′(x )=0的点及f ′′(x)不存在的点;f ′′(x )的零点有两个,如上图所示,A 点两侧f ′′(x)恒正,对应的点不是y =f (x )拐点,B 点两侧f ′′(x )异号,对应的点就是y =f (x )的拐点;虽然f ′′(0)不存在,但点x =0两侧f ′′(x)异号,因而0,f(0) 是y =f (x )的拐点;综上所述,本题正确答案是C;考点高等数学—函数、极限、连续—函数单调性,曲线的凹凸性和拐点5设函数f(μ,ν)满足f (x +y,y x )=x 2−y 2,则f μ|μ=1ν=1与f ν|μ=1ν=1依次是 A 12,0 B 0,12C −12,0D 0,−12答案D解析先求出f (μ,ν)令{μ=x +y,ν=y x ,{x =μ1+ν,y =μν1+ν, 于是 f (μ,ν)=μ2(1+ν)2−μ2ν2(1+ν)2=μ2(1−ν)1+ν=μ2(21+ν−1) 因此f μ|μ=1ν=1=2μ(21+ν−1)|(1,1)=0 f ν|μ=1ν=1=−2μ2(1+ν)2|(1,1)=−12 综上所述,本题正确答案是D;考点高等数学-多元函数微分学-多元函数的偏导数和全微分6设D 是第一象限中由曲线2xy =1,4xy =1与直线y =x,y =√3x 围成的平面区域,函数f(x,y)在D 上连续,则∬f (x,y )dxdy =DA ∫dθπ3π4∫f(r cos θ,r sin θ)1sin 2θ12sin 2θrdr B ∫dθπ3π4∫cos θ,r sin θ)√sin 2θ1√2sin 2θrdr C ∫dθπ3π4∫f(r cos θ,r sin θ)1sin 2θ12sin 2θdr D ∫dθπ3π4∫cos θ,r sin θ)1√sin 2θ√2sin 2θdr答案 B 解析D 是第一象限中由曲线2xy =1,4xy =1与直线y =x,y =√3x 围成的平面区域,作极坐标变换,将∬f (x,y )dxdy D化为累次积分; D 的极坐标表示为π3≤θ≤π4√sin 2θ≤θ≤√2sin 2θ因此 ∬f (x,y )dxdy D =∫dθπ3π4∫cos θ,r sin θ)1√sin 2θ√2sin 2θrdr综上所述,本题正确答案是B;考点高等数学—多元函数积分学—二重积分在直角坐标系和极坐标系下的计算;7设矩阵A=[11112a 14a 2],b =[1d d 2];若集合Ω={1,2},则线性方程 Ax =b 有无穷多解的充分必要条件为A aΩ,dΩB aΩ,d ∈ΩC a ∈Ω,dΩD a ∈Ω,d ∈Ω答案D解析Ax =b 有无穷多解?r (A |b )=r (A )<3|A |是一个范德蒙德行列式,值为(a −1)(a −2),如果a?Ω,则|A |≠0,r (A )=3,此时Ax =b 有唯一解,排除A,B类似的,若d?Ω,则r (A |b )=3,排除C当a ∈Ω,d ∈Ω时,r (A |b )=r (A )=2,Ax =b 有无穷多解综上所述,本题正确答案是D;考点线性代数-线性方程组-范德蒙德行列式取值,矩阵的秩,线性方程组求解;8设二次型f(x 1,x 2,x 3)在正交变换x =Py 下的标准形为2y 12+y 22−y 32,其中P =(e 1,e 2,e 3),若Q =(e 1,−e 3,e 2)在正交变换x =Qy 下的标准形为A 2y 12−y 22+y 32B 2y 12+y 22−y 32C 2y 12−y 22−y 32D 2y 12+y 22+y 32答案A解析设二次型矩阵为A ,则P −1AP =P TAP =[20001000−1]可见e 1,e 2,e 3都是A 的特征向量,特征值依次为2,1,-1,于是-e 3也是A 的特征向量,特征值为-1,因此Q T AQ =Q −1AQ =[2000−10001]因此在正交变换x =Qy 下的标准二次型为2y 12−y 22+y 32综上所述,本题正确答案是A;考点线性代数-二次型-矩阵的秩和特征向量,正交变换化二次型为标准形;二、填空题:9~14小题,每小题4分,共24分;9设{x =acr tan t ,y =3t +t 3,则d 2y dx 2|t=1=解析由参数式求导法dy dx =y t ′x t ′=3+3t 211+t 2=3(1+t 2)2再由复合函数求导法则得d 2ydx 2=d dx [3(1+t 2)2]=d dt [3(1+t 2)2]dt dx =6(1+t 2)2t1x t ′ =12t(1+t 2)2, d 2y dx 2|t=1=48综上所述,本题正确答案是48;考点高等数学-一元函数微分学-复合函数求导10函数f (x )=x 22x 在x =0处的n 阶导数f (n )(0)=答案n (n −1)(ln2)n−2(n =1,2,3,)解析解法1 用求函数乘积的n 阶导数的莱布尼茨公式在此处键入公式。
2019全国硕士研究生考研数学二真题及答案解析
x ⎰ ⎰ 2 2019 年全国硕士研究生入学统一考试数学(二)试题及答案解析一、选择题:1~8 小题,每小题 4 分,共 32 分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.1、当 x → 0 时,若 x - tan x 与 x k是同阶无穷小,则k = A. 1. B. 2. C. 3. D. 4.【答案】C3 【解析】 x - tan x ~ - ,所以选C. 32、设函数 y = x sin x + 2 cos x (- π x 3π) 的拐点π πA. ( , ).2 22 2 B. (0, 2). C. (π, -2).【答案】C.D. (3π , - 3π). 2 2【解析】令 y '' = -x sin x = 0 ,可得 x = π ,因此拐点坐标为(π,- 2). 3、下列反常积分发散的是A.+∞x e - xd xB.+∞x e - x 2d x 0 C. +∞ arctan x d xD. +∞ x d x⎰0 【答案】D 1+ x 2⎰1+ x 2+∞【解析】xd x = +∞ln(x 2 +1)= +∞ ,其他的都收敛,选D. 0 1+ x 2 04、已知微分方程 y '' + ay ' + by = ce x 的通解为 y = (C A 、1,0,1B 、 1,0, 2C 、2,1, 3D 、2,1, 4【答案】 D.+ C x )e- x+ e x ,则 a 、b 、c 依次为 【解析】由通解形式知, λ = λ = -1 , 故特征方程为(λ +1)2=λ 2+ 2λ +1=0 , 所以12a = 2,b = 1 ,又由于 y = e x 是 y '+2 y ' + y = ce x 的特解,代入得c = 4 .5 、 已 知 积 分 区 域D = {(x , y ) | x + y, I 1 = ⎰⎰D x 2 + y 2 d x d y ,2 π} 21 ⎰ 1D1 2 31 2 3 1 2 3I 2 = ⎰⎰D x d y , I 3 = ⎰⎰ (1-x d y ,试比较 I , I , I 的大小A. I 3 < I 2 < I 1C. I 2 < I 1 < I 3B. I 1 < I 2 < I 3D. I 2 < I 3 < I 1【答案】C【解析】在区域D 上0 ≤ x2+ y 2≤ π2 4,∴,进而 I 2 < I 1 < I 3.6 、已知 f (x ), g (x ) 的 二 阶导 数 在 x = a 处 连 续, 则 limx →af (x ) - g(x )(x - a )2= 0 是曲线y = f (x ), y = g (x ) 在 x = a 处相切及曲率相等的A. 充分非必要条件.B. 充分必要条件.C. 必要非充分条件.D. 既非充分又非必要条件. 【答案】A【解析】充分性:利用洛必达法则,有limf (x ) - g(x ) = lim f '(x ) -g '(x ) = lim f '(x ) - g '(x ) = 0.x →a(x - a )2 x →a 2(x - a ) x →a 2从而有 f (a ) = g (a ), f '(a ) = g '(a ), f '(a ) = g '(a ) ,即相切,曲率也相等. 反之不成立,这是因为曲率 K =f '(a ) = -g '(a ) ;选 A.3(1+ y '2 )2,其分子部分带有绝对值,因此 f '(a ) = g '(a ) 或7、设 A 是四阶矩阵, A *是 A 的伴随矩阵,若线性方程组 Ax = 0 的基础解系中只有 2 个向量,则 A *的秩是( ) A.0 B.1 C.2D.3【答案】 A.【解析】由于方程组基础解系中只有 2 个向量,则r ( A ) = 2 , r ( A ) < 3 , r ( A *) = 0 .8、设 A 是3 阶实对称矩阵, E 是3 阶单位矩阵. 若 A 2+ A = 2E ,且 A = 4 ,则二次型x T Ax 规范形为A. y 2 + y 2 + y 2.B. y 2 + y 2 - y 2. y ''1 2 3 1 2 3⎩ C. y 2 - y 2 - y 2. D. - y 2 - y 2 - y 2.【答案】C【解答】由 A 2+ A = 2E ,可知矩阵的特征值满足方程 λ 2+ λ - 2 = 0 ,解得, λ = 1 或λ = -2 . 再由 A = 4 ,可知λ = 1, λ = λ = -2 ,所以规范形为 y 2 - y 2 - y 2 . 故答案选C.123123二、填空题:9~14 小题,每小题 4 分,共 24 分. 29. lim(x + 2x) x= .x →02 2 x x lim ln(x +2 ) 【解析】lim(x + 2 ) x = e x →0 xx →02 x x + 2x -1 x其中lim ln(x + 2 ) = 2 l im = 2 lim(1+ 2 ln 2) = 2(1+ ln 2)x →0 x x →0 xx →02所以lim(x + 2x) x= e2+2ln 2= 4e 2x →0⎧x = t - sin t 310. 曲线 ⎨y = 1- cos t 在t = 2 π 对应点处切线在 y 轴上的截距 .【解析】d y= d x sin t 1- cos t 当t = 3 π 时, x = 3 π +1, y = 1, d y= -12 2 d x所以在t = 3 π 对应点处切线方程为 y = -x + 3π + 22 2所以切线在 y 轴上的截距为 3π + 22 y 2 ∂z ∂z11. 设函数 f (u ) 可导, z = yf ( x ),则2x ∂x + y ∂y= .∂z 【解析】 =' y 2- y 2= - y 3 ' y 2∂x yf ( )( x x 2) f ( ) x 2 x∂z = y 2' y 2 2 y y 2 2 y 2 ' y 2f ( ) + yf ∂y x ( )( x ) = f ( ) + x x xf ( )x∂z ∂z y 2 所以2x ∂x + y ∂y = yf ( x)12. 设函数 y = ln cos x (0 xπ) 的弧长为.66 ⎝ ⎭ ⎩πππ 1【解析】弧长 s =⎰61+ ( y ')2d x = ⎰61+ tan 2x d x = ⎰ 6d x0 cos x= ln |1 cos xπ+ tan x | = ln 0= 1 ln 3 2xsin t 2113. 已知函数 f (x ) = x⎰1td t ,则⎰0 f (x )d x =.xsin t 211【解析】设 F (x ) =⎰1td t ,则⎰0 f (x )d x = ⎰0 xF (x )d x = 1 1 F (x )d x 2 = 1 [x 2F (x )] 1 - 11 x 2d F (x )2 ⎰22 ⎰0= - 1 ⎰1 x 2 F '(x )d x = - 1 ⎰1 x 2 sin x 2 d x2 0 2 0 x = - 1 1 x sin x 2d x = 1 cos x 21 = 1 (cos1-1)2 ⎰04 04⎛ 1 -1 0 0 ⎫ -2 1 -11 ⎪14. 已知矩阵 A =⎪ , A 表示 | A | 中 (i , j ) 元的代数余子式, 则3 -2 2 -1⎪ ij0 0 3 4 ⎪A 11 - A 12 = .1 -1 0 0 1 0 0 0 -2 1-1 1-2 -1 -1 1【解析】 A 11 - A 12 =| A |= 3-2 2 -1 =3 1 2 -1 0 03 4 03 4-1 -1 1 -1 -1 1= 1 2 -1 = 0 1 0 = -4 0 3 4 0 3 4三、解答题:15~23 小题,共 94 分.解答应写出文字说明、证明过程或演算步骤.15、(本题满分 10 分)⎧⎪x 2 x , x > 0, 已知 f (x ) = ⎨⎪x e x +1, x 0, 求 f '(x ) ,并求 f (x ) 的极值.解: x > 0 时, f '(0) = (e2 x ln x)' = e 2 x ln x (2 ln x + 2) ;x < 0 时, f '(x ) = (x +1)e x ;3e xe + ⎩ ⎰ ⎰' f (x ) - f (0)e 2 x ln x -1又 f (0) = lim x →0+x - 0 = limx →0+x= lim 2x ln x = lim 2 l n x = -∞ ,x →0+xx →0+所以 f '(0) 不存在,因此'⎪⎧2x 2 x(1+ ln x ),x > 0,f (x ) = ⎨⎪(x +1)e x , x < 0. 令 f '(x ) = 0 ,得驻点 x = -1, x = 1;另外 f (x ) 还有一个不可导点 x = 0 ;1 3 e2又(-∞, -1) 为单调递减区间, (-1, 0) 为单调递增区间, (0, 1) 为单调递减区间, (1, +∞) 为单e e 1 1- 2 调递增区间;因此有极小值 f (-1) = 1- 和极小值 f ( ) = e e ,极大值 f (0) = 1.e e16、(本题满分 10 分) 3x + 6求不定积分(x -1)2(x 2+ x +1) d x .3x + 6232x +1解:⎰ (x -1)2(x 2+ x +1) d x = ⎰[- x -1 + (x -1)2+ x 2+ x + ]d x117、(本题满分 10 分)= -2 ln x -1 -3x -1+ ln(x 2 + x +1) + Cy = y (x ) 是微分方程 y ' - xy =x 2e 2 满足 y (1) = 的特解.(1) 求 y (x ) ;(2) 设平面区域 D = {(x , y }|1 x 2, 0 y y (x )} ,求 D 绕 x 轴旋转一周所得旋转体的体积.x 2解(1) y (x ) = e ⎰x d x[ e ⎰- x d x⋅1e 2 d x + C ] 2x 2= e 2 (⎰ x 2 d x + C ) = e 2(+ C ) ;又由 y (0) = 得C = 0 ,最终有2 x 2 x x 1 1sin 2 θ 2⎰π⎰πn n1 1(2)所求体积y (x ) = x 2 x e 2.V = ⎰ π( x 2x e 2 )2 d x = π⎰2x e x 2 d x= π e x 2 2 1 = π (e 4- e) . 218、已知平面区域 D 满足 xy ,(x 2+ y 2 )3y 4,求 ⎰⎰x d y .解:由 x y 可知区域 D 关于 y 轴对称,在极坐标系中,π θ3π;将 x = r cos θ , y = r sin θ代入(x 2+ y 2 )3由奇偶对称性,有44y 4 得 r ;x + yyπsin 2 θr sin θ ⎰⎰D x d y = ⎰⎰x d y = 2 2 d θ 04r d r rππ 43 2 = 2 sin 5 θ d θ = - 2 (1- cos 2 θ )2 dcos θ =1204419、设n 为正整数,记 S 为曲线 y = e - xsin x (0求lim S . n →∞x n π) 与 x 轴所围图形的面积,求 S n ,并解:设在区间[k π,(k +1)π] (k = 0,1, 2,L , n -1) 上所围的面积记为u k ,则u k =(k +1) π e - x| sin x | d x = (-1)kk π(k +1) π e - xsin x d x ;k π记 I = ⎰e- xsin x d x ,则 I = -⎰e - x d cos x = -(e - x cos x - ⎰ cos x de - x )= -e - x cos x - ⎰e - x dsin x = -e - x cos x - (e - x sin x - ⎰sin x de - x ) = -e - x (cos x + sin x ) - I ,所以 I = - 1e - x(cos x + sin x ) + C ;2因此u k= (-1)k(-1 )e -k (cos x + sin x )2 (k +1) πk π= 1(e -(k +1) π + e -k π ) ; 2(这里需要注意cos k π = (-1)k)x 2+ y 2x 2 + y 2x 2+ y 2⎰π ⎰⎰2⎰xx x 1因此n -11n-k π1 e -π - e -(n +1) πS n = ∑u k = 2 + ∑e = 2 + 1- e -π ;k =0k =11 e -π - e -(n +1) π1e -π 1 1 lim S n = + lim -π= + -π = + π n →∞2 n →∞ 1- e2 1- e 2 e -120 、已知函数 u (x , y ) 满足 2 ∂2u ∂x 2∂2u 2 ∂y 2 + 3 ∂u ∂x + 3 ∂u∂y = 0 ,求 a , b 的值, 使得在变换u (x , y ) = v (x , y )e ax +by 下,上述等式可化为v (x , y ) 不含一阶偏导数的等式.解: ∂u = v 'e ax +by + va e ax +by ,∂x ∂2u =x ' ax +by' ax +by ' ax +by2 ax +by ∂x 2v xx e + v x a e + v x a e + va e= v ' eax +by + 2av 'e ax +by + a 2v e ax +by∂u'ax +by ax +by ∂2u' ax +by ' ax +by 2 ax +by同理,可得 ∂y = v y e + bv e , ∂y 2= v yye + 2bv y e + b v e ;将所求偏导数代入原方程,有eax +by[2v ' - 2v ' + (4a + 3)v ' + (3 - 4b )v ' + (2a 2 - 2b 2+ 3a + 3b )v ] = 0 , xx yy x y从而4a + 3 = 0, 3 - 4b = 0 ,因此a = - 3 , b = 3.4 4121、已知函数 f (x , y ) 在[0,1] 上具有二阶导数,且 f (0) = 0, f (1) = 1, ⎰f (x )d x = 1 ,证明:(1)存在ξ ∈(0,1) ,使得 f '(ξ ) = 0 ;(2)存在η ∈(0,1) ,使得 f ''(η) < -2 .证明:(1)由积分中值定理可知,存在c ∈(0,1) ,使得⎰f (x )d x = (1- 0) f (c ) ,即 f (c ) = 1 .因此 f (c ) = f (1) = 1,由罗尔定理知存在ξ ∈(c ,1)(⊂ (0,1)) ,使得 f '(ξ ) = 0 .(2)设 F (x ) = f (x ) + x 2,则有 F (0) = 0, F (c ) = 1+ c 2, F (1) = 2 ;由拉格朗日中值定理可得:存在η ∈(0, c ) ,使得 F '(η = F (c ) - F (0) =c 2 +11 1 ) c - 0 c ;存在η ∈(c ,1) ,使得 F '(η = F (1) - F (c ) = 1- c 2 = +2 2 ) 1- c 1- c1 c ;-⎝ ⎭⎝ ⎭对于函数 F '(x ) ,由拉格朗然中值定理同样可得,存在η ∈ (η1,η2 (⊂ (0,1)) ,使得c 2 +1 1'' F '(η ) - F '(η ) (c +1) - 1- cc F (η) = 2 1 = = < 0 ,η2 -η1 η2 -η1 η2 -η1即 f ''(η) + 2 < 0 ;结论得证.⎡1 ⎤ ⎡1⎤ ⎡ 1 ⎤22. 已知向量组(Ⅰ) α = ⎢1 ⎥,α = ⎢0⎥ , α = ⎢ 2 ⎥,1 ⎢ ⎥ ⎢⎣4⎥⎦2 ⎢ ⎥ ⎢⎣4⎥⎦3 ⎢ ⎥⎢⎣a 2+ 3⎥⎦⎡ 1 ⎤ ⎡ 0 ⎤ ⎡ 1 ⎤(Ⅱ) β = ⎢ 1 ⎥ , β = ⎢ 2 ⎥ , β =⎢ 3 ⎥ , ,若向量组(Ⅰ)和向量组(Ⅱ)等价,1 ⎢ ⎥2 ⎢⎥ 3 ⎢ ⎥ ⎢⎣a + 3⎦⎥ ⎣⎢1- a ⎦⎥ ⎢⎣a 2+ 3⎥⎦求a 的取值,并将β3 用α1 , α2 , α3 线性表示.【解析】令 A = (α , α , α ) , B = ( β , β , β ) ,所以, A = 1- a 2 , B = 2(a 2-1) .123123因向量组 I 与 II 等价,故r ( A ) = r (B ) = r ( A , B ) ,对矩阵( A , B ) 作初等行变换.因为⎛ 1 1 1 1 0 1 ⎫ ⎛ 1 1 1 1 0 1 ⎫ ( A , B ) =1 02 1 23 ⎪ → 0 -1 1 0 2 2 ⎪.⎪ ⎪ 4 4 a 2 + 3 a + 3 1- a a 2 + 3⎪ 0 0 a 2 -1 a -1 1- a a 2 -1⎪ ⎝ ⎭ ⎝ ⎭当 a = 1时,r ( A ) = r (B ) = r ( A , B ) = 2 ;当a = -1 时,r ( A ) = r (B ) = 2 ,但r ( A , B ) = 3 ; 当 a ≠ ±1时, r ( A ) = r (B ) = r ( A , B ) = 3 . 综上,只需a ≠ -1即可. 因为对列向量组构成的矩阵作初等行变换,不改变线性关系.⎛ 1 0 2 3 ⎫ ①当a = 1时,(α , α , α , β ) → 0 1 -1 -2 ⎪,故 β = x α + x α + x α 的等价方程1 2 3 3 ⎪ 0 0 0 0 ⎪ 3 1 1 2 2 3 3⎧ x 1 = 3 - 2x 3 , 组为 故 β = (3 - k )α + (-2 + k )α + k α ( k 为任意常数); ⎨x = -2 + x . 3 1 2 3⎩ 23⎛ 1 0 0 1 ⎫ ②当a ≠ ±1时,(α , α , α , β ) →0 1 0 -1⎪ ,所以 β = α - α + α . 1 2 3 3 ⎪ 0 0 1 1 ⎪ 3 1 2 3⎩⎝ ⎭⎝ ⎭⎝ ⎭ ⎝ ⎭⎡-2 -2 1 ⎤ ⎡2 1 0⎤ 23.已知矩阵 A = ⎢ 2 x -2⎥ 与B = ⎢0 -1 0⎥ 相似, ⎢ ⎥ ⎢ ⎥(Ⅰ)求 x , y ;⎢⎣ 0 0 -2⎥⎦ ⎢⎣0 0 y ⎥⎦(Ⅱ)求可逆矩阵P 使得P -1AP = B⎧⎪-2 + x - 2 = 2 -1+ y ,解:(1)相似矩阵有相同的特征值,因此有⎨⎪ A = B ,又 A = -2(4 - 2x ) , B = -2 y ,所以 x = 3, y = -2 . (2)易知 B 的特征值为2, -1, -2 ;因此⎛ 2 1 0 ⎫ A - 2E ↓r↓→0 0 1 ⎪ ,取ξ = (-1, 2, 0)T ,⎪1 0 0 0 ⎪ ⎛ 12 0 ⎫ A+ E ↓r↓→0 0 1 ⎪ ,取ξ = (-2,1, 0)T ,⎪2 0 0 0 ⎪ ⎛ 4 0 1 ⎫ A+ 2E ↓r↓→0 2 -1⎪ ,取ξ = (-1, 2, 4)T⎪ 0 0 0 ⎪3⎛ 2 0 0 ⎫ 令 P = (ξ ,ξ ,ξ ) ,则有 P -1AP = 0 -1 0 ⎪;1 123 1 1 ⎪ 0 0 -2⎝ ⎭⎛ 1 -1 0 ⎫ ⎛ 2 0 0 ⎫ 同理可得,对于矩阵 B ,有矩阵 P = 0 3 0 ⎪ , P -1BP = 0 -1 0 ⎪ ,所以2 ⎪ 2 2 ⎪ 0 0 1 ⎪ 0 0 -2 ⎪ ⎝ ⎭ ⎝ ⎭ P -1 AP = P -1BP ,即 B = P P -1 APP -1 ,所以11222 11 2⎛ -1 -1-1⎫ P = PP-1 =2 1 2 ⎪ . 1 2⎪ 0 0 4 ⎪。
2020考研数学二真题含答案解析
2020年全国硕士研究生招生考试数学二试题一、选择题:1~8题,每小题4分,共32分。
下列每题给出的四个选项中,只有一个选项符合题目要求。
(1)当x 0时,下列无穷小量中最高阶的是A. ()x0(e 1)dte1x 1t 2 B.x0ln(1 t )dt3 C.sin x0sin t dt2 D.1 cos xsin 3tdt(2)函数f (x ) A.1个(3)ln1 x(e x 1)(x 2)的第二类间断点的个数为C.3个D.4个()B.2个arcsin xx (1 x )dx 1()2A.42 2B.8 C.(n )4D. 8()(4)已知函数f (x ) x ln(1 x ),当n 3时,f A.(0)(n 2)!nD.n !n 2B.n !n 2 C.(n 2)!n()xy ,xy 0 (5)关于函数f (x ,y )x ,y 0,给出下列结论: y ,x 0f ① x2f 1;②x yB.3(0,0)(0,0)1;③(x ,y ) (0,0)limf (x ,y ) 0;④lim lim f (x ,y ) 0.y 0x 0其中正确的个数为A.4(C.2D.1(D.)(6)设函数f (x )在区间 2,2 上可导,且f (x ) f (x ) 0.则A.)f ( 2)1f ( 1)B.f (0) e f ( 1)C.f (1) e 2f ( 1)f (2) e 3f ( 1)*(7)设4阶矩阵A (a ij )不可逆,a 12的代数余子式A 12 0, 1, 2, 3, 4为矩阵A 的列向量组,A 为A 的伴随矩阵,则方程组A *x 0的通解为A.x k 1 1k 22k 33,其中k 1,k 2,k 3为任意数B.x k 1 1k 22k 34,其中k 1,k 2,k 3为任意数C.x k 1 1k 23k 34,其中k 1,k 2,k 3为任意数D.x k 12k 23k 34,其中k 1,k 2,k 3为任意数()(8)设A 为3阶矩阵, 1, 2为A 的属于特征值1的线性无关的特征向量, 3为A 的属于特征值-1的特1001征向量,则满足P AP 0 10 的可逆矩阵P 可为001A.( 13, 2, 3)B.( 1 2, 2, 3)C.( 1 3, 3, 2)()D.( 1 2, 3, 2)二、填空题:9~14小题,每小题4分,共24分.请将答案写在横线上.x t 2 1d 2y (9)设,则22dxy ln(t t 1)(10) ________.t 110dy1yx 3 1dx ________.(0, )(11)设z arctan xy sin(x y ),则dz ________.(12)斜边长为2a 的等腰直角三角形平板铅直地沉没在水中,且斜边与水面相齐,记重力加速度为g ,水的密度为 ,则该平板一侧所受的水压力为________.(13)设y y (x )满足y 2y y 0,且y (0) 0,y (0) 1,则y (x )dx ________.a(14)行列式a1 1 11a 0110a________.0 11三、解答题:15~23小题,共94分.解答应写出文字说明、证明过程或验算步骤.(15)(本题满分10分)x 1 x求曲线y x 0 的斜渐近线方程. 1 x x(16)(本题满分10分)已知函数f x 连续且lim x 01f (x ) 1,g (x ) f (xt )dt ,求g (x )并证明g (x )在x 0处连续.0x求函数f x ,y x 8y xy 的极值.33(18)(本题满分10分)21 x 2x 设函数f (x )的定义域为 0, 且满足2f (x ) x f.求f (x ),并求曲线2 x 1 x 213y f (x ),y ,y 及y 轴所围图形绕x 轴旋转所成转体的体积.22(19)(本题满分10分)设平面区域D 由直线x 1,x 2,y x 与x 轴围成,计算Dx 2 y 2dxdy .x设函数f (x ) x 1e t dt .22(Ⅰ)证明:存在 (1,2),使得f ( ) (2 )e ;(Ⅱ)证明:存在 (1,2),使得f (2) ln 2 e .2(21)(本题满分11分)设函数f (x )可导,且f (x ) 0,曲线y f (x )(x 0)经过坐标原点O ,其上任意一点M 处的切线与x 轴交于T ,又MP 垂直x 轴与点P .已知由曲线y f (x ),直线MP 以及x 轴所围图形的面积与 MTP 的面积之比恒为3:2,求满足上述条件的曲线的方程.设二次型f (x 1,x 2,x 3) x 1 x 2x 3 2ax 1x 2 2ax 1x 3 2ax 2x 3经过可逆线性变换222 x 1 y 1222x P 2 y 2 化为二次型g (y 1,y 2,y 3) y 1 y 24y 3 2y 1y 2. x y 33(Ⅰ)求a 的值;(Ⅱ)求可逆矩阵P .(23)(本题满分11分)设A 为2阶矩阵,P ( ,A ),其中 是非零向量且不是A 的特征向量.(Ⅰ)证明P 为可逆矩阵;(Ⅱ)若A A 6 0,求P AP ,并判断A 是否相似于对角矩阵.2 12020考研数学真题(数学二)一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.请将所选项前的字母填在答题纸指定位置上....1.当x →0+时,下列无穷小量中最高阶的是()A.⎰x0(e -1)dtB.⎰ln(1+t )dtC.⎰0t 2x3sin x0sin t dtD.⎰21-cos xsin 3tdt解析:本题选D.考查了无穷小量的阶的比较,同时考查了变上限积分的函数的求导方法、洛必达法则等。
2010-2019(10套)考研数学二真题和答案详细解析--答案直接附在每年题后面方便查阅
1 1 0 (Ⅱ) β1 = 1 , β 2 = 2 , β3 = 3 ,若向量组(Ⅰ)和向量组(Ⅱ)等 2 + 3 a + 3 1 − a a
价,求 a 的取值,并将 β 用 α1 , α 2 , α 3 线性表示.
2 . ,使得 P AP 所以存在 P −1 1 = (α1 ,α 2 ,α 3 ) 1 =Λ = 2 −
(1)当 a 2 − 1 ≠ 0 ,即 a ≠ ±1 时, r (α1 , α 2 , α 3 ) 3, r ( β1 , β 2 , β3 ) 3 ,此时两个向 = = 量组必然等价,且 β3 =α1 − α 2 +α 3 .
1 1 1 1 0 1 (2)当 a =1时, (α1 , α 2 , α 3 , β1 , β 2 , β3 ) → 0 −1 1 0 2 2 0 0 0 0 0 0
6
17.
18.
I = ∫π dθ ∫
4 3 π 4 sin 2 θ 0
π π r sin θ 1 3 1 3 5 4 rdr = ∫π sin θ dθ = − ∫π4 sin 4 θ d cos θ r 2 4 2 4
2 1 3π 1 3π = − ∫π4 (1 − cos 2 θ ) d cos θ = − ∫π4 (1 − 2 cos 2 θ + cos 4 θ ) d cos θ 2 4 2 4
x2 2
{ x , y) =( 1 ≤ x ≤ 2 ,0 ≤ y ≤ y( x )},求 D 绕x 轴旋转一
周所得旋转体的体积. 18.(本题满分 10 分) 已知平面区域 D 满足
{(x , y ) | (x
考研数学二真题及参考答案
考研数学二真题及参考答案Last updated on the afternoon of January 3, 20212008年研究生入学统一考试数学二试题与答案一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内. (1)设2()(1)(2)f x x x x =--,则'()f x 的零点个数为()()A 0 ()B ()C ()D 3(2)曲线方程为()y f x =函数在区间[0,]a 上有连续导数,则定积分0()a t af x dx ⎰()()A 曲边梯形ABCD 面积.()B 梯形ABCD 面积.()C 曲边三角形ACD 面积. ()D 三角形ACD 面积.(3)在下列微分方程中,以123cos 2sin 2x y C e C x C x =++(123,,C C C 为任意常数)为通解的是()(5)设函数()f x 在(,)-∞+∞内单调有界,{}n x 为数列,下列命题正确的是()()A 若{}n x 收敛,则{}()n f x 收敛. ()B 若{}n x 单调,则{}()n f x 收敛. ()C 若{}()n f x 收敛,则{}n x 收敛.()D 若{}()n f x 单调,则{}n x 收敛.(6)设函数f连续,若22(,)uvD F u v =⎰⎰,其中区域uv D 为图中阴影部分,则Fu∂=∂ (7)设A 为n 阶非零矩阵,E 为n 阶单位矩阵.若30A =()A E A -不可逆,E A +不可逆. ()B E A -()C E A -可逆,E A +可逆.()D E A -可逆,E A +不可逆.(8)设1221A ⎛⎫= ⎪⎝⎭,则在实数域上与A 合同的矩阵为()()A 2112-⎛⎫⎪-⎝⎭.()B 2112-⎛⎫ ⎪-⎝⎭. ()C 2112⎛⎫⎪⎝⎭.()D 1221-⎛⎫⎪-⎝⎭.二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上. (9)已知函数()f x 连续,且21cos[()]lim1(1)()x x xf x e f x →-=-,则(0)____f =.(10)微分方程2()0x y x e dx xdy -+-=的通解是____y =.(11)曲线()()sin ln xy y x x +-=在点()0,1处的切线方程为 . (12)曲线23(5)y x x =-的拐点坐标为______.(13)设xyy z x ⎛⎫= ⎪⎝⎭,则(1,2)____z x ∂=∂.(14)设3阶矩阵A 的特征值为2,3,λ.若行列式248A =-,则___λ=.三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分9分)求极限()40sin sin sin sin lim x x x x x →-⎡⎤⎣⎦. (16)(本题满分10分)设函数()y y x =由参数方程20()ln(1)t x x t y u du =⎧⎪⎨=+⎪⎩⎰确定,其中()x t 是初值问题020xt dx te dtx --⎧-=⎪⎨⎪=⎩的解.求22y x ∂∂.(17)(本题满分9分)求积分1⎰.(18)(本题满分11分)求二重积分max(,1),Dxy dxdy ⎰⎰其中{(,)02,02}D x y x y =≤≤≤≤(19)(本题满分11分)设()f x 是区间[)0,+∞上具有连续导数的单调增加函数,且(0)1f =.对任意的[)0,t ∈+∞,直线0,x x t ==,曲线()y f x =以及x 轴所围成的曲边梯形绕x 轴旋转一周生成一旋转体.若该旋转体的侧面积在数值上等于其体积的2倍,求函数()f x 的表达式.(20)(本题满分11分)(1)证明积分中值定理:若函数()f x 在闭区间[,]a b 上连续,则至少存在一点[,]a b η∈,使得()()()ba f x dx fb a η=-⎰(2)若函数()x ϕ具有二阶导数,且满足32(2)(1),(2)()x dx ϕϕϕϕ>>⎰,证明至少存在一点(1,3),()0ξϕξ''∈<使得 (21)(本题满分11分)求函数222u x y z =++在约束条件22z x y =+和4x y z ++=下的最大值与最小值. (22)(本题满分12分)设矩阵2221212n na a aA a a ⨯⎛⎫⎪⎪= ⎪⎪⎝⎭,现矩阵A 满足方程AX B =,其中()1,,Tn X x x =,()1,0,,0B =,(1)求证()1n A n a =+;(2)a 为何值,方程组有唯一解,并求1x ;(3)a 为何值,方程组有无穷多解,并求通解. (23)(本题满分10分)设A 为3阶矩阵,12,αα为A 的分别属于特征值1,1-特征向量,向量3α满足323A ααα=+,(1)证明123,,ααα线性无关; (2)令()123,,P ααα=,求1P AP -.2008年全国硕士研究生入学统一考试数学二试题解析一、选择题 (1)【答案】D【详解】因为(0)(1)(2)0f f f ===,由罗尔定理知至少有1(0,1)ξ∈,2(1,2)ξ∈使12()()0f f ξξ''==,所以()f x '至少有两个零点.又()f x '中含有因子x ,故0x =也是()f x '的零点,D 正确.本题的难度值为. (2)【答案】C 【详解】00()()()()()()a a a aaxf x dx xdf x xf x f x dx af a f x dx '==-=-⎰⎰⎰⎰其中()af a 是矩形ABOC 面积,0()af x dx ⎰为曲边梯形ABOD 的面积,所以()axf x dx '⎰为曲边三角形的面积.本题的难度值为. (3)【答案】D【详解】由微分方程的通解中含有x e 、cos2x 、sin 2x 知齐次线性方程所对应的特征方程有根1,2r r i ==±,所以特征方程为(1)(2)(2)0r r i r i --+=,即32440r r r -+-=.故以已知函数为通解的微分方程是40y y y ''''''-+-= 本题的难度值为. (4)【答案】A【详解】0,1x x ==时()f x 无定义,故0,1x x ==是函数的间断点因为000ln 11lim ()lim lim lim csc |1|csc cot x x x x x xf x x x x x++++→→→→=⋅=-- 同理0lim ()0x f x -→=又1111ln 1lim ()lim lim sin lim sin1sin11x x x x x f x x x x ++++→→→→⎛⎫=⋅== ⎪-⎝⎭ 所以0x =是可去间断点,1x =是跳跃间断点. 本题的难度值为. (5)【答案】B【详解】因为()f x 在(,)-∞+∞内单调有界,且{}n x 单调.所以{()}n f x 单调且有界.故{()}n f x 一定存在极限.本题的难度值为. (6)【答案】A【详解】用极坐标得()222()2011,()vu uf r r Df u v F u v dv rdr v f r dr +===⎰⎰⎰所以()2Fvf u u∂=∂ 本题的难度值为. (7)【答案】C【详解】23()()E A E A A E A E -++=-=,23()()E A E A A E A E +-+=+= 故,E A E A -+均可逆. 本题的难度值为. (8)【答案】D【详解】记1221D -⎛⎫= ⎪-⎝⎭,则()2121421E D λλλλ--==---,又()2121421E A λλλλ---==----所以A 和D 有相同的特征多项式,所以A 和D 有相同的特征值.又A 和D 为同阶实对称矩阵,所以A 和D 相似.由于实对称矩阵相似必合同,故D 正确.本题的难度值为. 二、填空题 (9)【答案】2【详解】222220001cos[()]2sin [()2]2sin [()2]()lim lim lim ()[()2]4(1)()x x x x xf x xf x xf x f x x f x xf x e f x →→→-⋅==⋅- 所以(0)2f = 本题的难度值为. (10)【答案】()x x e C --+【详解】微分方程()20x y x e dx xdy -+-=可变形为x dy yxe dx x--= 所以111()dx dx x x x x xy e xe e dx C x xe dx C x e C x ----⎡⎤⎛⎫⎰⎰=+=⋅+=-+⎢⎥ ⎪⎝⎭⎣⎦⎰⎰本题的难度值为. (11)【答案】1y x =+【详解】设(,)sin()ln()F x y xy y x x =+--,则1cos()11cos()x y y xy F dy y x dx F x xy y x--'-=-=-'+-,将(0)1y =代入得01x dydx ==,所以切线方程为10y x -=-,即1y x =+ 本题的难度值为.(12)【答案】(1,6)-- 【详解】53235y x x =-⇒2131351010(2)333x y x x x -+'=-=1x =-时,0y ''=;0x =时,y ''不存在在1x =-左右近旁y ''异号,在0x =左右近旁0y ''>,且(1)6y -=- 故曲线的拐点为(1,6)-- 本题的难度值为. (13)【答案】21)2- 【详解】设,y xu v x y==,则v z u = 所以121()ln v v z z u z v y vu u u x u x v x x y-∂∂∂∂∂=⋅+⋅=-+⋅∂∂∂∂∂所以(1,2)21)2z x ∂=-∂ 本题的难度值为. (14)【答案】-1【详解】||236A λλ =⨯⨯=3|2|2||A A = 本题的难度值为. 三、解答题 (15)【详解】方法一:4300[sin sin(sin )]sin sin sin(sin )limlim x x x x x x x x x→→--= 方法二:331sin ()6x x x o x =-+331sin(sin )sin sin (sin )6x x x o x =-+本题的难度值为. (16)【详解】 方法一:由20x dxte dt--=得2x e dx tdt =,积分并由条件0t x =得21x e t =+,即2ln(1)x t =+所以2222ln(1)2(1)ln(1)21dydy t t dt t t dxt dx dt t +⋅===+++方法二:由20x dxte dt--=得2x e dx tdt =,积分并由条件0t x =得21x e t =+,即2ln(1)x t =+所以2222ln(1)2(1)ln(1)21x dydy t t dt t t e x dxt dx dt t +⋅===++=+所以22(1)x d ye x dx=+本题的难度值为. (17)【详解】 方法一:由于21x -→=+∞,故21⎰是反常积分.令arcsin x t =,有sin x t =,[0,2)t π∈方法二:21⎰12201(arcsin )2x d x =⎰ 令arcsin x t =,有sin x t =,[0,2)t π∈故,原式21164π=+ 本题的难度值为.(18)【详解】曲线1xy =将区域分成两 个区域1D 和23D D +,为了便于计算继续对 区域分割,最后为()max ,1Dxy dxdy ⎰⎰本题的难度值为.(19)【详解】旋转体的体积20()t V f x dx π=⎰,侧面积02(tS f x π=⎰,由题设条件知上式两端对t求导得2()(f t f t =y '=由分离变量法解得1ln(y t C =+,即t y Ce =将(0)1y =代入知1C =,故t y e =,1()2t t y e e -=+于是所求函数为1()()2x x y f x e e -==+本题的难度值为.(20)【详解】(I)设M 与m 是连续函数()f x 在[,]a b 上的最大值与最小值,即 由定积分性质,有()()()bam b a f x dx M b a -≤≤-⎰,即()baf x dx m M b a≤≤-⎰由连续函数介值定理,至少存在一点[,]a b η∈,使得()()b af x dx f b aη=-⎰即()()()ba f x dx fb a η=-⎰(II)由(I)的结论可知至少存在一点[2,3]η∈,使32()()(32)()x dx ϕϕηϕη=-=⎰又由32(2)()()x dx ϕϕϕη>=⎰,知23η<≤对()x ϕ在[1,2][2,]η上分别应用拉格朗日中值定理,并注意到(1)(2)ϕϕ<,()(2)ϕηϕ<得在12[,]ξξ上对导函数()x ϕ'应用拉格朗日中值定理,有 本题的难度值为. (21)【详解】方法一:作拉格朗日函数22222(,,,,)()(4)F x y z x y z x y z x y z λμλμ=++++-+++-令2222022020040x y z F x x F y y F z F x y z F x y z λμλμλμλμ'=++=⎧⎪'=++=⎪⎪'=-+=⎨⎪'=+-=⎪'=++-=⎪⎩ 解方程组得111222(,,)(1,1,2),(,,)(2,2,8)x y z x y z ==-- 故所求的最大值为72,最小值为6.方法二:问题可转化为求2242242u x y x x y y =++++在224x y x y +++=条件下的最值设44222222(,,)2(4)F x y u x y x y x y x y x y λλ==++++++++-令323222442(12)0442(12)040x y F x xy x x F y x y y y F x y x y λλλ'⎧=++++=⎪'=++++=⎨⎪'=+++-=⎩ 解得1122(,)(1,1),(,)(2,2)x y x y ==--,代入22z x y =+,得122,8z z == 故所求的最大值为72,最小值为6. 本题的难度值为. (22)【详解】(I)证法一:证法二:记||n D A =,下面用数学归纳法证明(1)n n D n a =+. 当1n =时,12D a =,结论成立. 当2n =时,2222132a D a aa==,结论成立.假设结论对小于n 的情况成立.将n D 按第1行展开得 故||(1)n A n a =+证法三:记||n D A =,将其按第一列展开得2122n n n D aD a D --=-, 所以211212()n n n n n n D aD aD a D a D aD ------=-=-即12122()2n n n n n n n n D a aD a a a aD a a D ----=+=++=++(II)因为方程组有唯一解,所以由Ax B =知0A ≠,又(1)n A n a =+,故0a ≠. 由克莱姆法则,将n D 的第1列换成b ,得行列式为 所以11(1)n n D nx D n a-==+ (III)方程组有无穷多解,由0A =,有0a =,则方程组为此时方程组系数矩阵的秩和增广矩阵的秩均为1n -,所以方程组有无穷多解,其通解为()()10000100,TTk k +为任意常数.本题的难度值为. (23)【详解】(I)证法一:假设123,,ααα线性相关.因为12,αα分别属于不同特征值的特征向量,故12,αα线性无关,则3α可由12,αα线性表出,不妨设31122l l ααα=+,其中12,l l 不全为零(若12,l l 同时为0,则3α为0,由323A ααα=+可知20α=,而特征向量都是非0向量,矛盾)∴32321122A l l αααααα=+=++,又311221122()A A l l l l ααααα=+=-+ ∴112221122l l l l ααααα-+=++,整理得:11220l αα+=则12,αα线性相关,矛盾.所以,123,,ααα线性无关.证法二:设存在数123,,k k k ,使得1122330k k k ααα++=(1)用A 左乘(1)的两边并由11,A αα=-22A αα=得1123233()0k k k k ααα-+++=(2)(1)—(2)得113220k k αα-=(3)因为12,αα是A 的属于不同特征值的特征向量,所以12,αα线性无关,从而130k k ==,代入(1)得220k α=,又由于20α≠,所以20k =,故123,,ααα线性无关.(II)记123(,,)P ααα=,则P 可逆,所以1100011001P AP --⎛⎫ ⎪= ⎪ ⎪⎝⎭.本题的难度值为.。
考研数学二真题及解析
2017年全国硕士研究生入学统一考试数学二试题解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1))若函数0(),0x f x b x >=⎪≤⎩在0x =处连续,则() (A)12ab =(B)12ab =-(C)0ab = (D)2ab =【答案】A【解析】001112lim lim ,()2x x xf x ax ax a ++→→-==Q 在0x =处连续11.22b ab a ∴=⇒=选A. (2)设二阶可导函数()f x 满足(1)(1)1,(0)1f f f =-==-且''()0f x >,则() 【答案】B【解析】()f x 为偶函数时满足题设条件,此时011()()f x dx f x dx -=⎰⎰,排除C,D.取2()21f x x =-满足条件,则()112112()2103f x dx x dx --=-=-<⎰⎰,选B. (3)设数列{}n x 收敛,则()()A 当limsin 0n n x →∞=时,lim 0n n x →∞=()B当lim(0n n x →∞=时,lim 0n n x →∞=()C 当2lim()0n n n x x →∞+=时,lim 0n n x →∞=()D 当lim(sin )0n n n x x →∞+=时,lim 0n n x →∞=【答案】D【解析】特值法:(A )取n x π=,有limsin 0,lim n n n n x x π→∞→∞==,A 错;取1n x =-,排除B,C.所以选D. (4)微分方程的特解可设为(A )22(cos 2sin 2)x x Ae e B x C x ++(B )22(cos 2sin 2)x x Axe e B x C x ++ (C )22(cos 2sin 2)x x Ae xe B x C x ++(D )22(cos 2sin 2)x x Axe e B x C x ++ 【答案】A【解析】特征方程为:21,248022i λλλ-+=⇒=±故特解为:***2212(cos 2sin 2),x x y y y Ae xe B x C x =+=++选C. (5)设(,)f x y 具有一阶偏导数,且对任意的(,)x y ,都有(,)(,)0,0f x y f x y x y∂∂>>∂∂,则(A )(0,0)(1,1)f f >(B )(0,0)(1,1)f f <(C )(0,1)(1,0)f f >(D )(0,1)(1,0)f f < 【答案】C 【解析】(,)(,)0,0,(,)f x y f x y f x y x y∂∂><⇒∂∂是关于x 的单调递增函数,是关于y 的单调递减函数,所以有(0,1)(1,1)(1,0)f f f <<,故答案选D.(6)甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m )处,图中实线表示甲的速度曲线1()v v t =(单位:/m s ),虚线表示乙的速度曲线2()v v t =,三块阴影部分面积的数值依次为10,20,3,计时开始后乙追上甲的时刻记为0t (单位:s ),则() (A )010t =(B )01520t <<(C )025t =(D )025t >【答案】B【解析】从0到0t 这段时间内甲乙的位移分别为0120(t),(t),t t v dt v dt ⎰⎰则乙要追上甲,则210(t)v (t)10t v dt -=⎰,当025t =时满足,故选C.(7)设A 为三阶矩阵,123(,,)P ααα=为可逆矩阵,使得1012P AP -⎛⎫⎪= ⎪ ⎪⎝⎭,则123(,,)A ααα=()(A )12αα+(B )232αα+(C )23αα+(D )122αα+ 【答案】B【解析】11231232300011(,,)(,,)12222P AP AP P A αααααααα-⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=⇒=⇒==+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,因此B 正确。
2023考研数学二真题+详解答案解析(超清版)
2023年全国硕士研究生入学统一考试数学(二)试题及答案考试时间:180分钟,满分:150分一、选择题:1~10小题,每小题5分,共50分,下列每题给出的四个选项中,只有一个选项符合题目要求,请将所选项前的字母填在答题纸指定位置上.(1)曲线1ln()1yx e x =+−的斜渐近线方程为( ) (A)y x e =+ (B)1y x e=+(C)y x = (D)1y x e=−【答案】B 【解析】1limlimln()11x x y ke x x →∞→∞==+=−,11lim()lim()lim[ln(]lim [ln(ln ]11x x x x b y kx y x x e x x e e x x →∞→∞→∞→∞=−==−=+−=+−−−111lim ln(1lim (1)(1)x x x x e x e x e→∞→∞=+==−−,所以渐进线方程为1y x e =+,答案为B(2)设0()(1)cos ,0x f x x x x ≤=+>⎩的一个原函数为( )(A)),0()(1)cos sin ,0x x F x x x x x ⎧⎪−≤=⎨+−>⎪⎩(B))1,0()(1)cos sin ,0x x F x x x x x ⎧⎪−+≤=⎨+−>⎪⎩(C)),0()(1)sin cos ,0x x F x x x x x ⎧⎪+≤=⎨++>⎪⎩(D))1,0()(1)sin cos ,x x F x x x x x ⎧⎪++≤=⎨++>⎪⎩【答案】D【解析】根据原函数的连续性,可排除(A)(C);再根据原函数的可导性,可排除选项(B),答案为(D) (3)已知{}n x ,{}n y 满足1112x y ==,1sin n n x x +=,21(1,2,)n n y y n +== ,则当n →∞时( )(A)n x 是n y 的高阶无穷小(B)n y 是n x 的高阶无穷小(C)n x 与n y 是等价无穷小(D)n x 与n y 是同阶但不等价的无穷小【答案】B【解析】由已知可得,{}n x ,{}n y 均单调递减,且12n y ≤,又因为sin x x 在(0,2π上单调递减,故2sin 1x x π<<,所以2sin x x π>,所以21112sin sin 24n n n n nn n n n n ny y y y y y x x x x x ππ++==≤=,依次类推可得,111100()444n nn n n n y y y n x x x πππ++⎛⎫⎛⎫≤≤≤≤=→→∞ ⎪ ⎪⎝⎭⎝⎭,故n y 是n x 的高阶无穷小,答案为B (4)若微分方程0y ay by ′′′++=的解在(,)−∞+∞上有界,则( )(A)0,0a b <>(B)0,0a b >>(C)0,0ab =>(D)0,0ab =<【答案】C 【解析】0y ay by ′′′++=的解一共三种情形:①240a b Δ=−>,1212x xy C e C e λλ=+,但此时无论12,λλ取何值,y 在(,)−∞+∞上均无界;②240a b Δ=−=,12()xy C C x eλ=+,但此时无论λ取何值,y 在(,)−∞+∞上均无界;③240a b Δ=−<,12(cos sin )xy e C x C x αββ=+,此时若y 在(,)−∞+∞上有界,则需满足0α=,所以0,0a b =>,答案为(C)(5)设函数()y f x =由2sin x t ty t t⎧=+⎪⎨=⎪⎩确定,则( ) (A)()f x 连续,(0)f ′不存在(B)(0)f ′不存在,()f x ′在0x =处不连续(C)()f x ′连续,(0)f ′′不存在(D)(0)f ′′存在,()f x ′′在0x =处不连续【答案】C 【解析】当0t =时,有0x y ==①当0t>时,3sin x t y t t=⎧⎨=⎩,可得sin 33x xy =,故()f x 右连续;②当0t<时,sin x ty t t=⎧⎨=−⎩,可得sin y x x =−,故()f x 左连续,所以()f x 连续;因为0sin 033(0)lim 0x x x y x ++→−′==;0sin 0(0)lim 0x x x y x −−→−−′==,所以(0)0f ′=;③当0x >时,1sin sin cos 333393x x x x x y ′⎛⎫′==+ ⎪⎝⎭,所以0lim ()0x y x +→′=,即()f x ′右连续;④当0x <时,()sin sin cos y x x x x x ′′=−=−−,所以0lim ()0x y x −→′=,即()f x ′左连续,所以()f x ′连续;考虑01sin cos 23393(0)lim 9x x x xf x ++→+′′==;0sin cos (0)lim 2x x x x f x −−→−−′′==−,所以(0)f ′′不存在,答案为C(6)若函数121()(ln )f dx x x αα+∞+=⎰在0αα=处取得最小值,则0α=( ) (A)1ln(ln 2)−(B)ln(ln 2)− (C)1ln 2(D)ln 2【答案】A 【解析】当0α>时,121()(ln )f dx x x αα+∞+=⎰收敛, 此时21122111111()ln (ln )(ln )(ln )(ln 2)f dx d x x x x x ααααααα+∞+∞+∞++===−=⎰⎰,故211111ln ln 2()(ln 2)(ln 2)(ln 2)f ααααααα′⎡⎤−′==−⎢⎥⎣⎦,令()0f α′=,解得0α=1ln(ln 2)−(7)设函数2()()x f x x a e =+,若()f x 没有极值点,但曲线()y f x =有拐点,则a 的取值范围是( )(A)[0,1)(B)[1,)+∞(C)[1,2)(D)[2,)+∞【答案】C 【解析】2()()x f x x a e =+,2()(2)x f x x x a e ′=++,2()(42)x f x x x a e ′′=+++,因为()f x 没有极值点,所以440a −≤;又因为曲线()y f x =有拐点,所以164(2)0a −+>,联立求解得:[1,2)a ∈(8)设A ,B 为n 阶可逆矩阵,*M 为矩阵M 的伴随矩阵,则*A E OB ⎛⎫= ⎪⎝⎭( ) (A)****A B B A O B A ⎛⎫−⎪⎝⎭(B)****B A A B O A B ⎛⎫−⎪⎝⎭(C)****B A B A OA B ⎛⎫−⎪⎝⎭(D)****A B A B OB A ⎛⎫−⎪⎝⎭【答案】B【解析】*11111A E A E A E A AB A B O B O B O B O B −−−−−⎛⎫−⎛⎫⎛⎫== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭111***1*A B A A B A B B A A B O A B B OA B −−−−⎛⎫⎛⎫−−== ⎪ ⎪⎝⎭⎝⎭,答案为B (9)二次型222123121323(,,)()()4()f x x x x x x x x x =+++−−的规范形为( )(A)2212y y +(B)2212y y −(C)2221234y y y +−(D)222123y y y +−【答案】B 【解析】222123121323(,,)()()4()f x x x x x x x x x =+++−−222123121323233228x x x x x x x x x =−−+++二次型矩阵为211134143A ⎛⎫⎪=− ⎪ ⎪−⎝⎭,211134(7)(3)143E A λλλλλλλ−−−−=−+−=+−−−+ 故答案为B(10)已知向量1123α⎛⎫ ⎪= ⎪ ⎪⎝⎭,2211α⎛⎫ ⎪= ⎪ ⎪⎝⎭,1259β⎛⎫ ⎪= ⎪ ⎪⎝⎭,2101β⎛⎫ ⎪= ⎪⎪⎝⎭,若γ既可由12,αα线性表示,也可由12,ββ线性表示,则γ=( )(A)33,4k k R ⎛⎫⎪∈ ⎪ ⎪⎝⎭ (B)35,10k k R ⎛⎫ ⎪∈ ⎪ ⎪⎝⎭ (C)11,2k k R −⎛⎫ ⎪∈ ⎪ ⎪⎝⎭(D)15,8k k R ⎛⎫⎪∈ ⎪ ⎪⎝⎭【答案】D 【解析】令γ11221122k k l l ααββ=+=+,则有112211220k k l l ααββ+−−=,即12121212(,)0k k l l ααββ⎛⎫ ⎪ ⎪−−= ⎪ ⎪⎝⎭而121212211003(,)2150010131910011ααββ−−⎛⎫⎛⎫ ⎪ ⎪−−=−→− ⎪ ⎪⎪ ⎪−−⎝⎭⎝⎭所以1212(,,,)(3,1,1,1),TT k k l l c c R =−−∈,所以12(1,5,8)(1,5,8),T T c c c k k R γββ=−+=−=∈,答案为D二、填空题:11~16小题,每小题5分,共30分,请将答案写在答题纸指定位置上. (11)当0x →时,函数2()ln(1)f x ax bx x =+++与2()cos x g x e x =−是等价无穷小,则ab =________【答案】2−【解析】由已知可得:2222200022221(())()ln(1)2lim lim lim 1()cos (1())(1())2x x x x ax bx x x o x f x ax bx x g x e x x o x x o x →→→++−++++==−++−−+220221(1)(()2lim 13()2x a x b x o x x o x →++−+==+所以1310,22a b +=−=,即1,2a b =−=,所以2ab =−(12)曲线y =⎰的弧长为________43π【解析】由题意可得函数定义域为[x ∈,根据公式可得:2302sin 24cos L x t tdtπ====⎰304(1cos 2)t dt π=+=⎰43π+(13)设函数(,)z z x y =由2ze xz x y +=−确定,则2(1,1)2zx∂=∂_________【答案】32−【解析】代入(1,1)点可得,0z =,先代入1y =,可得21z e xz x +=−,两边对x 求导,2z e z z xz ′′++=,得(1)1z ′=两边再对x 求导,20z ze z e z z z xz ′′′′′′′++++=,代入(1,1)及0z =,(1)1z ′=得2(1,1)232zx∂=−∂(14)曲线35332x y y =+在1x =对应点处的法线斜率为________【答案】119−【解析】代入1x =得到1y =,两边对x 求导,242956x y y y y ′′=+,代入1x =,1y =可得:911y ′=,故1x =对应点处的法线斜率为1119y −=−′(15)设连续函数()f x 满足:(2)()f x f x x +−=,2()0f x dx =⎰,则31()f x dx =⎰_______【答案】12【解析】323211121()()()()(2)f x dx f x dx f x dx f x dx f x dx=+=++⎰⎰⎰⎰⎰[]2121111()()()022f x dx f x x dx f x dx xdx =++=+=+=⎰⎰⎰⎰(16)已知线性方程组13123123121202ax x x ax x x x ax ax bx +=⎧⎪++=⎪⎨++=⎪⎪+=⎩有解,其中,a b 为常数,若0111412a a a =,则11120a a ab =_______【答案】8【解析】由题意可得:方程组系数矩阵秩为3,可得增广矩阵的秩也为3,即011110012002a a a ab =按照第四列进行行列式展开可得:144411011(1)122(1)11012a a a a a b a ++⋅−+⋅−⋅=所以111280a a ab =三、解答题:17~22小题,共70分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(17)(本题满分10分)设曲线:()()L y y x x e =>经过点2(,0)e ,L 上任一点(,)P x y 到y 轴的距离等于该点处的切线在y 轴上的截距(1)求()y x ;(2)在L 上求一点,使得该点处的切线与两坐标轴所围三角形的面积最小,并求此最小面积【答案】(1)()(2ln )y x x x =− (2)33221(,)2e e ,最小面积是3e 【解析】(1)曲线L 上任一点(,)P x y 处的切线方程为()Y y y X x ′−=−,令0X =,则y 轴上的截距为Y y xy ′=−,则有x y xy ′=−,即11y y x′−=−,解得(ln )y x C x =−,其中C 为任意常数,代入2(,0)e 可得2C =,故()(2ln )y x x x =−(2)该点设为000(,(2ln ))x x x −,切线方程为0000(2ln )(1ln )()Y x x x X x −−=−− 令0X =,解得0Y x =;令0Y =,解得00ln 1x X x =−;所以该点处的切线与两坐标轴所围三角形的面积为:200011()22ln 1x S x XY x ==−求导00020(2ln 3)()2(ln 1)x x S x x −′=−,令0()0S x ′=,解得320x e =且为最小值点,最小面积为332()S e e =(18)(本题满分12分) 求函数2cos (,)2yx f x y xe=+的极值【答案】极小值为21(,2)2f e k e π−=−(k Z ∈) 【解析】先求驻点cos cos 0(sin )0y xy y f e x f xe y ⎧′=+=⎪⎨′=−=⎪⎩,解得驻点为1(,(21))e k π−−+和(,2)e k π−,其中k Z∈下求二阶偏导数,cos cos 2cos 1(sin )sin cos xx yxy y y yy f f e y f xe y xe y ⎧′′=⎪⎪′′=−⎨⎪′′=−⎪⎩代入1(,(21))e k π−−+(k Z ∈),解得210xxxy yy A f B f C f e −⎧′′==⎪⎪′′==⎨⎪′′==−⎪⎩,20AC B −<,故1(,(21))e k π−−+不是极值点; 代入(,2)e k π−(k Z ∈),解得210xxxy yy A f B f C f e ⎧′′==⎪⎪′′==⎨⎪′′==⎪⎩,20AC B −>且0A >,故(,2)e k π−是极小值点,其极小值为21(,2)2f e k e π−=−(k Z ∈) (19)(本题满分12分)已知平面区域{(,)01}D x y y x =≤≤≥(1)求D 的面积(2)求D 绕x 轴旋转所成旋转体的体积【答案】(1)ln(1S = (2)24V ππ=−【解析】(1)222214441tan sec csc ln csc cot tan sec D S x t tdt tdt t tt t ππππππ+∞====−⎰⎰⎰ln(1=+;(2)22222111111(1)1x V dx dx dx x x x x πππ+∞+∞+∞⎛⎫===− ⎪++⎝⎭⎰⎰⎰11arctan x x π+∞⎛⎫=−− ⎪⎝⎭24ππ=−(20)(本题满分12分)设平面有界区域D 位于第一象限,由曲线221x y xy +−=,222x y xy +−=与直线y =,0y =围成,计算2213Ddxdy x y +⎰⎰【解析】本题采用极坐标计算,322013Ddxdy d x y πθ=+⎰⎰⎰333222222000111ln 3cos sin 3cos sin 3cos sin d r d d πππθθθθθθθθθ===+++⎰⎰332220011111ln 2ln 2tan ln 22(3tan )cos 23tan 2d d ππθθθθθ=⋅=⋅==++⎰⎰(21)(本题满分12分) 设函数()f x 在[,]a a −上具有2阶连续导数,证明: (1)若(0)0f =,则存在(,)a a ξ∈−,使得21()[()()]f f a f a aξ′′=+−(2)若()f x 在(,)a a −内取得极值,则存在(,)a a η∈−,使得21()()()2f f a f a aη′′≥−−【答案】(1)利用泰勒公式在0x =处展开,再利用介值性定理; (2)利用泰勒公式在极值点处展开,再利用基本不等式进行放缩;【解析】(1)在0x =处泰勒展开,22()()()(0)(0)(0)2!2!f c f c f x f f x x f x x ′′′′′′=++=+, 其中c 介于0与x 之间;代入两个端点有:211()()(0),(0,)2!f f a f a a a ξξ′′′=+∈222()()(0)(),(,0)2!f f a f a a a ξξ′′′−=−+∈−两式相加可得:212()()()()2f f f a f a a ξξ′′′′++−=即122()()1[()()]2f f f a f a a ξξ′′′′++−=因为()f x 在[,]a a −上具有2阶连续导数,所以()f x ′′存在最大值M 与最小值m , 根据连续函数的介值性定理可得,12()()2f f m M ξξ′′′′+≤≤,所以存在(,)a a ξ∈−,使得12()()()2f f f ξξξ′′′′+′′=,即21()[()()]f f a f a aξ′′=+−成立;(2)若()f x 在(,)a a −内取得极值,不妨设0x 为其极值点,则由费马引理可得,0()0f x ′=将()f x 在0x 处泰勒展开,22000000()()()()()()()()()2!2!f d f d f x f x f x x x x x f x x x ′′′′′=+−+−=+−其中d 介于0x 与x 之间;代入两个端点有:210010()()()(),(,)2!f f a f x a x x a ηη′′=+−∈ 220020()()()(),(,)2!f f a f x a x a x ηη′′−=+−−∈−两式相减可得:221200()()()()()()22f f f a f a a x a x ηη′′′′−−=−−−−所以22120022()()11()()()()2222f f f a f a a x a x a a ηη′′′′−−=−−−− 22102021[()()()()]4f a x f a x aηη′′′′≤−++,记112()max[(),()]f f f ηηη′′′′′′=, 又因为22220000()()[()()]4a x a x a x a x a −++≤−++=,所以21()()()2f a f a f aη′′−−≤成立 (22)(本题满分12分)设矩阵A 满足对任意123,,x x x 均有112321233232x x x x A x x x x x x x ++⎛⎫⎛⎫ ⎪ ⎪=−+ ⎪ ⎪⎪ ⎪−⎝⎭⎝⎭(1)求A(2)求可逆矩阵P 与对角矩阵Λ,使得1P AP −=Λ【答案】(1)111211011A ⎛⎫⎪=− ⎪⎪−⎝⎭11 /11 (2)401310112P −⎛⎫ ⎪=− ⎪ ⎪⎝⎭,1221P AP −⎛⎫ ⎪=Λ=− ⎪ ⎪−⎝⎭【解析】(1)因为任意123,,x x x 均有112321233232x x x x A x x x x x x x ++⎛⎫⎛⎫ ⎪ ⎪=−+ ⎪ ⎪ ⎪ ⎪−⎝⎭⎝⎭,即112233*********x x A x x x x ⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪=− ⎪ ⎪⎪ ⎪ ⎪⎪−⎝⎭⎝⎭⎝⎭故可分别取单位向量100010001⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,可得100111100010211010001011001A ⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪=− ⎪ ⎪⎪ ⎪ ⎪⎪−⎝⎭⎝⎭⎝⎭所以111211011A ⎛⎫ ⎪=− ⎪ ⎪−⎝⎭(2)111101101211221(2)2110110(2)1011E A λλλλλλλλλλλ−−−−−−−−=−+−=−+−=+−−−+−++−+101(2)211(2)(2)(1)20λλλλλλ−−=+−−=+−+− 所以A 的特征值为21,2−−,,下求特征向量: 当2λ=−时,解方程组(2)0E A x −−=,可得基础解系为1(0,1,1)T ξ=−;当1λ=−时,解方程组()0E A x −−=,可得基础解系为2(1,0,2)Tξ=−当2λ=时,解方程组(2)0E A x −=,可得基础解系为3(4,3,1)T ξ=令401310112P −⎛⎫ ⎪=− ⎪ ⎪⎝⎭,有1221P AP −⎛⎫ ⎪=Λ=− ⎪ ⎪−⎝⎭成立。
考研数学真题及参考答案 数学二
⎛ 1 0 0⎞
⎛1 0 0⎞ ⎛ 1 0 0⎞⎛1
⎞⎛1 0 0⎞ ⎛1
⎞
故
Q −1
AQ
=
⎜ ⎜
−1
1
0
⎟ ⎟
P
−1
AP
⎜ ⎜
1
1
0
⎟ ⎟
=
⎜ ⎜
−1
1
0 ⎟⎟
⎜ ⎜
⎜⎝ 0 0 1 ⎟⎠
⎜⎝ 0 0 1 ⎟⎠ ⎜⎝ 0 0 1 ⎟⎠ ⎜⎝
1
2
⎟ ⎟⎟⎠
⎜ ⎜⎜⎝
1 0
1 0
0 1
⎟ ⎟⎟⎠
=
⎜ ⎜⎜⎝
已知函数 f (x) = 1+ x − 1 ,记 a = lim f (x)
sin x x,
x→0
(1)求 a 的值
(2)若当 x → 0 时, f (x) − a 是 xk 的同阶无穷小,求 k
【解析】:(1)
lim
x→0
f
(x)
=
1 lim( x→0 sin
x
−
1 x
+ 1)
=
lim
x→0
x
− sin x2
1
⎟ 2 ⎟⎟⎠
故选(B)。 二、填空题:9−14 小题,每小题 4 分,共 24 分,请将答案写在答.题.纸.指定位置上.
(9)设 y = y(x) 是由方程 x2 − y +1 = ey 所确定的隐函数,则 dy = ________。 dx
2x
【答案】:
ey +1
【解析】:方程 x2 − y +1 = ey 两端对 x 求导,有 2x − dy = e y dy dx dx
考研数学二真题及解析
15.(本题满分10分)
当 时, 与 是等价无穷小,求常数 .
16.(本题满分10分)
(C) 在 连续但不可导.(D) 在 可导.
4.设函数 ,且反常积分 收敛,则()
(A) (B) (C) (D)
5.设函数 ,其中 可微,则 ()
(A) (B) (C) (D)
6.设 是圆域 的第 象限的部分,记 ,则()
(A) (B) (C) (D)
7.设A,B,C均为 阶矩阵,若AB=C,且B可逆,则
5.设函数 ,若 ,则 ()
(A) (B) (C) (D)
6.设 在平面有界闭区域D上连续,在D的内部具有二阶连续偏导数,且满足 及 ,则().
(A) 的最大值点和最小值点必定都在区域D的边界上;
(B) 的最大值点和最小值点必定都在区域D的内部;
(C) 的最大值点在区域D的内部,最小值点在区域D的边界上;
三、解答题:15~23小题,共94分.请将解答写在答题纸指定位置上.解答应写出文字说明、证明过程或演算步骤.
(15) (本题满分10分)
设函数 , .若 与 在 时是等价无穷小,求 的值.
(16) (本题满分10分)
设A>0,D是由曲线段 及直线 , 所围成的平面区域, , 分别表示D绕 轴与绕 轴旋转成旋转体的体积,若 ,求A的值.
(21) (本题满分10分)
已知函数 在区间 上具有2阶导数, , , ,设 ,曲线 在点 处的切线与 轴的交点是 ,证明 .
(22) (本题满分11分)
设矩阵 且 .
(1)求 的值;
(2)若矩阵 满足 , 为3阶单位阵,求 .
(23) (本题满分11分)
设矩阵 相似于矩阵 .
考研数学二试题及答案
2012年全国硕士研究生入学统一考试数学二试题一、选择题:18小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)曲线221x xy x +=-渐近线的条数( )(A) 0 (B ) 1 (C) 2 (D) 3 【答案】C【考点】函数图形的渐近线 【难易度】★★【详解】本题涉及到的主要知识点:(i)当曲线上一点M沿曲线无限远离原点时,如果M 到一条直线的距离无限趋近于零,那么这条直线称为这条曲线的渐近线。
(i i)渐近线分为水平渐近线(lim ()x f x b →∞=,b 为常数)、垂直渐近线(0lim ()x x f x →=∞)和斜渐近线(lim[()()]0x f x ax b →∞-+=,,a b 为常数)。
(i ii)注意:如果(1)()limx f x x→∞不存在;(2)()lim x f x a x→∞=,但lim[()]x f x ax →∞-不存在,可断定()f x 不存在斜渐近线。
在本题中,函数221x x y x +=-的间断点只有1x =±.由于1lim x y →=∞,故1x =是垂直渐近线.(而11(1)1lim lim(1)(1)2x x x x y x x →-→-+==+-,故1x =-不是渐近线).又211lim lim111x x x y x→∞→∞+==-,故1y =是水平渐近线.(无斜渐近线) 综上可知,渐近线的条数是2.故选C. (2) 设函数2()(1)(2)()xxnx f x e ee n =---,其中n 为正整数,则(0)f '=( )(A) 1(1)(1)!n n --- (B) (1)(1)!n n -- (C) 1(1)!n n --(D) (1)!nn -【答案】A【考点】导数的概念 【难易度】★★【详解一】本题涉及到的主要知识点:00000()()()limlimx x f x x f x yf x x x→→+-'==. 在本题中,按定义200()(0)(1)(2)()(0)lim lim0x x nx x x f x f e e e n f x x →→----'==-1(1)(2)[(1)](1)(1)!n n n -=-⨯-⨯⨯--=--.故选A .【详解二】本题涉及到的主要知识点:()[()()]()()()()f x u x v x u x v x u x v x ''''==+.在本题中,用乘积求导公式.含因子1xe -项在0x =为0,故只留下一项.于是20(0)[(2)()]x x nx x f e e e n ='=--1(1)(2)[(1)](1)(1)!n n n -=-⨯-⨯⨯--=--故选(A ).(3) 设0(1,2,)n a n >=,123n n S a a a a =++++,则数列{}n S 有界是数列{}n a 收敛的( ) (A )充分必要条件 (B )充分非必要条件(C )必要非充分条件 (D )既非充分也非必要条件 【答案】B【考点】数列极限 【难易度】★★★【详解】因0(1,2,)n a n >=,所以123n n S a a a a =++++单调上升.若数列{}n S 有界,则lim n n S →∞存在,于是11lim lim()lim lim 0n n n n n n n n n a S S S S --→∞→∞→∞→∞=-=-=反之,若数列{}n a 收敛,则数列{}n S 不一定有界.例如,取1n a =(1,2,)n =,则n S n =是无界的.因此,数列{}n S 有界是数列{}n a 收敛的充分非必要条件.故选(B). (4)设20sin (1,2,3)k x K e xdx k π==⎰I 则有 ( )(A)123I I I << (B) 321I I I << (C) 231I I I << (D)213I I I << 【答案】D【考点】定积分的基本性质 【难易度】★★★【详解】本题涉及到的主要知识点: 设a c b <<,则()()()bc baacf x dx f x dx f x dx =+⎰⎰⎰.在本题中,210sin x I e xdx π=⎰,2220sin x I e xdx π=⎰,2330sin x I e xdx π=⎰222121sin 0x I I e xdx I I ππ-=<⇒<⎰,2332322sin 0x I I e xdx I I ππ-=>⇒>⎰,222323312sin sin sin x x x I I e xdx e xdx e xdx ππππππ-==+⎰⎰⎰2233()22sin()sin t x e t dt e xdx ππππππ-=-+⎰⎰223()312[]sin 0x x e e xdx I I πππ-=->⇒>⎰因此213I I I <<.故选D .(5)设函数(,)f x y 可微,且对任意的,x y 都有(,)0f x y x∂>∂,(,)0f x y y ∂<∂,则使不等式1122(,)(,)f x y f x y <成立的一个充分条件是( )(A)12x x >,12y y < (B )12x x >,12y y > (C )12x x <,12y y < (D )12x x <,12y y > 【答案】D【考点】多元函数的偏导数;函数单调性的判别【难易度】★★★【详解】本题涉及到的主要知识点:函数单调性的判定法 设函数()y f x =在[,]a b 上连续,在(,)a b 内可导. ①如果在(,)a b 内()0f x '>,那么函数()y f x =在[,]a b 上单调增加; ②如果在(,)a b 内()0f x '<,那么函数()y f x =在[,]a b 上单调减少. 在本题中,因(,)0f x y x∂>∂,当y 固定时对x 单调上升,故当12x x <时1121(,)(,)f x y f x y < 又因(,)0f x y y∂<∂,当x 固定时对y 单调下降,故当12y y >时2122(,)(,)f x y f x y < 因此,当12x x <,12y y >时112122(,)(,)(,)f x y f x y f x y << 故选D .(6)设区域D 由曲线sin y x =,2x π=±,1y =围成,则5(1)Dx y dxdy -=⎰⎰( )(A)π(B )2(C )-2ﻩ(D )π-【答案】D【考点】二重积分的计算 【难易度】★★★【详解】本题涉及到的主要知识点:10,(,)(,)2(,),(,)DD f x y x y f x y dxdy f x y dxdy f x y x y ⎧⎪=⎨⎪⎩⎰⎰⎰⎰对或为奇函数,对或为偶函数在本题中,11555222sin sin 221(1)(1)()2x x Dx y dxdy dx x y dy x y y dx ππππ---=-=-⎰⎰⎰⎰⎰5222221(1sin )(1sin )2x x dx x dx πππππ--=---=-⎰⎰ 其中521(1sin )2x x -,sin x 均为奇函数,所以52221(1sin )02x x dx ππ--=⎰,22sin 0xdx ππ-=⎰ 故选(D )(7)设1100c α⎛⎫⎪= ⎪ ⎪⎝⎭,2201c α⎛⎫ ⎪= ⎪ ⎪⎝⎭ ,3311c α⎛⎫ ⎪=- ⎪ ⎪⎝⎭ ,4411c α-⎛⎫ ⎪= ⎪ ⎪⎝⎭ ,其中1234,,,c c c c 为任意常数,则下列向量组线性相关的为( )(A)123,,ααα (B ) 124,,ααα (C)134,,ααα (D)234,,ααα 【答案】C【考点】向量组的线性相关与线性无关 【难易度】★★【详解】本题涉及到的主要知识点:n 个n 维向量相关12,,,0n ααα⇔=在本题中,显然134123011,,0110c c c ααα-=-=, 所以134,,ααα必线性相关.故选C.(8) 设A 为3阶矩阵,P 为3阶可逆矩阵,且1100010002p AP -⎛⎫ ⎪= ⎪ ⎪⎝⎭.若P=(123,,ααα),1223(,,)ααααα=+,则1Q AQ -= ( )(A ) 100020001⎛⎫ ⎪ ⎪ ⎪⎝⎭ (B) 100010002⎛⎫ ⎪ ⎪ ⎪⎝⎭ (C ) 200010002⎛⎫ ⎪ ⎪ ⎪⎝⎭ (D)200020001⎛⎫⎪ ⎪ ⎪⎝⎭【答案】B【考点】矩阵的初等变换;初等矩阵 【难易度】★★★【详解】本题涉及到的主要知识点:设A 是一个m n ⨯矩阵,对A 施行一次初等行变换,相当于在A 的左边乘以相应的m 阶初等矩阵;对A 施行一次初等列变换,相当于在A 的右边乘以相应的n 阶初等矩阵. 在本题中,由于P 经列变换为Q ,有12100110(1)001Q P PE ⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦,那么111112121212[(1)][(1)](1)()(1)Q AQ PE A PE E P AP E ----==100110011101110100120012⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦故选B.二、填空题:914小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9)设()y y x =是由方程21yx y e -+=所确定的隐函数,则22x d ydx== .【答案】1【考点】隐函数的微分 【难易度】★★【详解】本题涉及到的主要知识点: 隐函数求导的常用方法有:1. 利用复合函数求导法,将每个方程两边对指定的自变量求偏导数(或导数),此时一定要注意谁是自变量,谁是因变量,对中间变量的求导不要漏项。
2014-2015年考研数学二真题及答案解析
精选文档2014 年全国硕士研究生入学一致考试数学二试题一、选择题 :1 8 小题,每题 4分,共 32 分 . 以下每题给出的四个选项中 , 只有一个选项切合题 目要求的 , 请将所选项前的字母填在答题纸 指定地点上 ....1(1) 当 x 0时,若 ln (1 2x) ,(1 cos x) 均是比 x 高阶的无量小, 则的取值范围是 ( ) (A) (2,)(B) (1,2)(C)(1,1)(D)(0, 1)22(2) 以下曲线中有渐近线的是()(A) y x sin x(B) y x 2 sin x(C) yxsin1(D)y x 2sin1xx(3) 设函数 f ( x) 拥有 2 阶导数, g( x)f (0)(1 x) f (1)x ,则在区间 [0,1] 上()(A) 当 f ( x) 0 时, f ( x) g ( x) (B) 当 f ( x) 0 时, f ( x) g ( x)(C) 当 f ( x) 0 时, f (x) g ( x) (D) 当 f ( x)0 时, f (x)g ( x)(4) x t 2 7 上对应于 t1 的点处的曲率半径是()曲线t 2 4ty 1(A)10(B)10(C) 10 10(D) 5 1050100设函数 f ( x)arctan x ,若 f ( x)xf ( ) ,则 mil2(5) 0x 2()x(A)1(B) 2(C) 1(D)1323(6) 设函数 u( x, y) 在有界闭地区D 上连续, 在 D 的内部拥有 22u阶连续偏导数, 且知足x y及2u 2u0 ,则()x2y2(A) u(x, y) 的最大值和最小值都在 D 的界限上获得精选文档(C) u(x, y) 的最大值在 D 的内部获得,最小值在 D 的界限上获得(D) u(x, y) 的最小值在 D 的内部获得,最大值在D 的界限上获得0 a b 0(7)a 0 0b 队列式c d 0 ()c 0 0 d(A) (adbc) 2(B)(adbc)2(C) a 2d2b 2c 2(D) b 2 c 2a 2d 2(8) 设 1, 2,3均为 3 维向量, 则对随意常数k, l ,向量组 1 k 3 , 2 l 3 线性没关是向量组1, 2,3 线性没关的( )(A) 必需非充足条件(B) 充足非必需条件(C) 充足必需条件(D) 既非充足也非必需条件二、填空题: 914小题,每题 4 分,共 24 分 . 请将答案写在答题纸 指定地点上 .1...((9)1dx__________.x 2 2x5(10) 设 f ( x) 是周期为 4 的可导奇函数, 且 f (x)2( x 1),x [0, 2] ,则 f 7)(__________.(11) 设 zz(x, y) 是由方程 e2 yzx y2z7确立的函数,则dz( 1 , 1 )__________.42 2(12) 曲线 rr ( ) 的极坐标方程是 r,则 L 在点 (r , )( , ) 处的切线的直角坐标方程是 __________.2 2(13) 一根长为 1 的细棒位于 x 轴的区间 [0,1] 上 , 若其线密度 xx 22x 1, 则该细棒的质心坐标 x__________.(14) 设二次型 fx 1 , x 2 , x 3 x 12 x 2 2 2ax 1x 3 4x 2x 3 的负惯性指数为1,则 a 的取值范围为_______.三、解答题: 15~ 23 小题 , 共 94 分 . 请将解答写在答题纸 指定地点上 . 解答应写出文字说明、证...明过程或演算步骤 . (15)( 此题满分 10 分)精选文档x 12e t 1 t dtt1求极限 lim x2 ln 1 .x 1x(16)( 此题满分10 分)已知函数 y y x 知足微分方程x2 y2 y 1 y ,且y 2 0 ,求 y x 的极大值与极小值 .(17)( 此题满分10 分)设平面地区 D x, y 1 x2 y2 4, x 0, y 0 , 计算x sin x2 y2dxdy.x yD(18)( 此题满分 10 分)设函数 f (u) 拥有二阶连续导数,z f (e x cosy) 知足 2 z 2z (4 z e x cos y) e2x,若x2 y2f (0) 0, f ' (0) 0,求 f (u) 的表达式.(19)( 此题满分 10 分)设函数 f ( x), g (x) 的区间 [a,b] 上连续,且 f (x) 单一增添, 0 g( x) 1.证明:(I) 0 xx a, x [ a, b] , g(t )dtaa bbg(t ) dtf (x)d x f ( x)g( x)dx .(II) aa a(20)( 此题满分 11 分)设函数 f (x) x , x 0,1 ,定义函数列 f ( x) f ( x), f ( x) f ( f (x)),,1 x 12 1f n (x) f ( f n 1 (x)), ,记 S n是由曲线 y f n ( x) ,直线x 1 及 x 轴所围成平面图形的面积,求极限 lim nS n.n(21)( 此题满分 11 分)已知函数 f ( x, y) 知足 f 2( y 1) ,且 f ( y, y) ( y 1) 2 (2 y)ln y, 求曲线 f ( x, y) 0y所围成的图形绕直线y 1旋转所成的旋转体的体积.精选文档(22)( 此题满分 11 分)1 2 34 设矩阵A 0 11 1 , E 为三阶单位矩阵 . 1 23(I) 求方程组 (II) 求知足Ax 0的一个基础解系;AB E 的全部矩阵 .(23)( 此题满分 11 分)1 1 1 0 0 1 1 110 2证明 n 阶矩阵与相像 .1 1 1 0 0 n2014 年全国硕士研究生入学一致考试数学二试题答案一、选择题 :1 8 小题,每题 4 分,共 32 分 . 以下每题给出的四个选项中 , 只有一个选项切合题 目要求的 , 请将所选项前的字母填在答题纸 指定地点上 ....1(1) 当 x0 时,若 ln (1 2x) ,(1 cos x) 均是比 x 高阶的无量小, 则 的取值范围是 ( )(A)(2, )(B) (1,2)(C)(1,1) (D) (0, 1)【答案】 B22【分析】由定义lim ln (1 2x) lim (2 x)lim 2 x 1x 0x xxx 01 0 1 .所以,故精选文档12x2当 x0 时, (1 cos x) ~ 1 是比 x 的高阶无量小,所以10,即2.2应选 B(2) 以下曲线中有渐近线的是()(A) y x sin x(B) y x 2 sin x(C)y x sin1(D) yx2sin1xx【答案】 C11x sinsin【分析】对于 C 选项: limxlim1 lim x 1 0 1 .xxx xxlim[ x sin1x] limsin 1 0 ,所以 y x sin 1存在斜渐近线 yx .xxxx x应选 C(3) 设函数 f ( x) 拥有 2 阶导数, g( x)f (0)(1 x)f (1)x ,则在区间 [0,1] 上()(A) 当 f ( x) 0 时, f ( x) g ( x)(B) 当 f ( x) 0 时, f ( x) g ( x)(C) 当 f ( x) 0 时, f (x)g ( x)(D) 当 f ( x) 0 时, f (x)g ( x)【答案】 D【分析】令 F ( x) g (x) f ( x)f (0)(1 x) f (1)x f ( x) ,则F (0) F (1) 0 ,F ( x) f (0) f (1) f ( x) , F ( x)f ( x) .若 f ( x) 0 ,则 F (x) 0 , F (x) 在 [0,1] 上为凸的 .又 F(0) F (1) 0 ,所以当 x [0,1] 时, F (x) 0 ,进而 g(x)f ( x) .应选 D.(4) 曲线x t 2 7上对应于 t1 的点处的曲率半径是()y t 2 4t 1(A)10(B)10(C) 10 10(D) 5 1050100【答案】 C精选文档【分析】dy t 12t 4 3dx 2t t 1d 2 ydy ' 2t 2 12 t 1dxt 12tt 1dxky ''1,R 1 10 10y '233k121 q 2应选 C2(5) 设函数 f ( x) arctan x ,若 f (x) xf ( ) ,则 milx2x(A) 1(B) 2(C) 1(D)13 23【答案】 D【分析】因为f ( x)f ' ( )1 2 ,所以 2x f (x) x1f (x)2x f (x)x arctanx1111 x 2lim lim lim lim x22 f ( x)2 arctanx 3x 23x 0 x 0 x x 0 x x 0应选 D.(6) 设函数 u( x, y) 在有界闭地区D 上连续, 在 D 的内部拥有 2 阶连续偏导数, 且知足2u2u0 ,则及y 2x 2(A) u(x, y) 的最大值和最小值都在 D 的界限上获得 (B) u(x, y) 的最大值和最小值都在 D 的内部上获得( )2ux y()(C) u(x, y) 的最大值在 D 的内部获得,最小值在 D 的界限上获得(D) u(x, y) 的最小值在D 的内部获得,最大值在D 的界限上获得精选文档【答案】 A【分析】记 A2u 2 , B2u ,C2u2 , B 0, A, C 相反数xx yy则 =AC-B2 0 , 所以 u(x, y) 在 D 内无极值,则极值在界限处获得 .应选 A0 a b 0(7) a 0 0 b ( )队列式c d 0 0c 0 0 d(A) ( ad bc )2 (B) ( ad bc)2(C) a 2d 2 b 2 c 2(D) b 2c 2a 2 d 2【答案】 B【分析】由队列式的睁开定理睁开第一列0 a b 0 a b 0 a b 0 a 0 0 b a cd 0c 0 0 b 0 cd 0 0 0 dc dc0 0 dad (ad bc) bc(ad bc)(ad bc) 2 .(8) 设 a 1 , a 2 , a 3 均为三维向量,则对随意常数 k, l , 向量组 a 1 ka 3 , a 2 la 3 线性没关是向量组a 1, a 2 ,a 3 线性没关的( )(A) 必需非充足条件 (B) 充足非必需条件(C) 充足必需条件 (D) 既非充足也非必需条件【答案】 A1 0【分析】1k32l31231 .k l1 0) 记 A1k32l3 ,B123 ,C0 1.若1,2, 3 线性无k l精选文档关,则 r ( A) r ( BC ) r (C ) 2 ,故1k3,2l 3 线性没关 .) 举反例.令30 ,则1,2 线性没关,但此时1,2, 3 却线性有关 .综上所述, 对随意常数 k ,l ,向量1k3,2l 3 线性没关是向量1, 2,3 线性没关的必要非充足条件 . 应选 A二、填空题: 914 小题 , 每题 4 分, 共 24 分 . 请将答案写在答题纸 指定地点上 ....(9)11 dx __________.x 22x5【答案】38【分析】111x 1 111x 2dxx 1 2dx arctan 2 2 x 542132 428(10) 设 f ( x) 是周期为 4 的可导奇函数, 且 f (x) 2( x 1), x [0, 2] ,则 f 7)(__________.【答案】 1【分析】 f ' x 2 x 1 , x0,2 且为偶函数则 f ' x 2 x 1 ,x 2,0又 fxx 2 2x c 且为奇函数,故 c=0f xx 2 2x ,x2,0又f x 的周期为 4,f7 f1 1(11) 设 zz(x, y) 是由方程 e 2 yz x y 2z7 确立的函数,则 dz1 1)__________.4( ,2 2 【答案】1(dx dy)27【分析】对 e 2 yz x y 2z方程两边同时对 x, y 求偏导4精选文档e 2 yz2y z 1 zx xe 2 yz (2z 2 y z ) 2 yz 0y y当 x11z, y时 ,22故z1 11 , z 1 11 x ( 2,2)2 y ( 2 , 2 )2故dz1 11dx (1)dy1(dx dy)2 2222( , )(12) 曲线 lim nS n 的极坐标方程是 r,则 L 在点 (r , ) ( ,) 处的切线的直角坐标方程是n2 2__________.【答案】 y2 x2【分析】由直角坐标和极坐标的关系x r cos cosy r sin,sin于是 r ,, 2 , 对应于 x, y 0,,22切线斜率 dydycos sin dy ddx dxcossindxd20,2所以切线方程为 y2x 022x即y=2(13) 一根长为 1 的细棒位于 x 轴的区间 [0,1] 上 , 若其线密度x x 2 2x 1, 则该细棒的质心坐标 x __________.【答案】1120精选文档1x dxx【分析】质心横坐标 x1 x dx1 1 x 2x 3 x 2 10 5x dx=2x 1 dxx3 311 2x 4 2 3 x 2 1 11 xx dx= x x2x 1 dx x 0 04 3 21211x 12=115203(13) 设二次型 f x 1 , x 2 , x 3x 1 2x 22 2ax 1 x 3 4x 2 x 3 的负惯性指数是 1 ,则 a 的取值范围_________.【答案】2,2f x 1, x 2 , x 3x 12a 2 x 32 x 224x 32【分析】配方法:ax 32x 3因为二次型负惯性指数为 1,所以 4 a 20 ,故 2 a 2.三、解答题: 15~ 23 小题,共 94 分 . 请将解答写在答题纸 指定地点上 . 解答应写出文字说明、证 ... 明过程或演算步骤 .(15)( 此题满分 10 分)x 2 1et1 t dtt1求极限 lim1 .xx 2ln 1xx1dtx1dt【分析】1t 2 (e t 1) tlim1 t 2(e t 1) tlim1 )1xx 2ln(1xx2xx1lim[ x 2 (e x 1) x]x1 tttxlime1 t lim e1 lim t1 .tt 2t 02t t 0 2t 2(16)( 此题满分 10 分)精选文档已知函数 y y x 知足微分方程x2 y2 y 1 y ,且y 2 0 ,求 y x 的极大值与极小值 .【分析】由 x2 y2 y 1 y ,得( y2 1) y 1 x2①此时上边方程为变量可分别方程,解的通解为1y3y x 1 x3 c3 3由 y(2) 0 得 c 2321 x当 y (x) 0 时,x 1 ,且有:x1, y ( x)01 x 1,y ( x)0x 1, y ( x)0所以 y(x) 在x 1 处获得极小值,在x 1 处获得极大值y( 1) 0, y(1) 1即: y(x) 的极大值为1,极小值为0.(17)( 此题满分10 分)设平面地区【分析】 D对于x, y 1 x2 y2x sin x2 y2D 4, x 0, y 0 , 计算x ydxdy .Dy x 对称,知足轮换对称性,则:xsin( x2 y2 ) ysin( x2 y2 )x y dxdyx ydxdyD DIxsin( x2 y2 ) 1 x sin( x2 y2 ) ysin( x2 y2 ) x ydxdy2 x y x ydxdy D D1 sin( x2 y2 )dxdy2 D精选文档1d2rdr2sin r 21 )1r(rd cos24 11 cos r r |122 cos rdr4 11 2 1 1sin r |124 34(18)( 此题满分 10 分)设函数 f (u) 拥有二阶连续导数,zxcosy) 知足2z 2z(4 z e xcos y) e 2x,若f (e 2y 2xf (0)0, f ' (0) 0,求 f (u) 的表达式 .【分析】由 zfe x cos y , zf (e x cos y) e xcos y, zf (e x cos y)e x sin yxy2zf (e x cos y) e x cos y e x cos y f (e x cos y) e x cos y ,x 22 zf xxxsin yf (e xcos y)xcos yy 2( e cos y)e sin ye e2z2zxcos y e 2x由2+y 24z e,代入得,xfe x cos y e 2x[4 f e x cos y e x cos y]e 2 x即f e x cos y 4 f e x cos y e x cos y ,令 e x cos y=t , 得 f t 4 f tt特点方程24 0,2得齐次方程通解y c 1e 2tc 2e 2t精选文档设特解 y * at b ,代入方程得 a1 , b 0 ,特解 y * 1 t4 1 t4则原方程通解为 y=f tc 1e 2t c 2 e 2t4由 f0, f '0 0 ,得 c 11 ,c 21, 则16 16y=f u1 e2 u 1 e 2 u 1u . (19)(10 分)16 164此题满分设函数 f ( x), g( x) 在区间 [a,b] 上连续,且 f ( x) 单一增添, 0g ( x) 1 ,证明: ( I )xxa, x [ a,b] ,g(t) dt aab bg (t )dtf ( x)d xf ( x)g( x)dx.(II )aaa【分析】( I )由积分中值定理x dt gxa ,[ a, x]g ta0 g x 1 ,0 gx ax ax t dtxaga( II )直接由 0 g x1,获得x dtx1dt = x ag t aauau( II )令 F u f x g x dxaaaF ' u f u g uf aug t dtaug t dtf x dxg ug uf uf ag t dta由( I )知 0uu aaau g t dtg t d t uaa又因为 fx 单增,所以 fuf au0 g t dtaF ' u0, F u 单一不减, F uF a取 ub ,得 F b 0 ,即( II )建立 .(20)( 此题满分 11 分)设函数 f (x)x, x 0,1 ,定义函数列1 xf 1 ( x) f ( x), f 2 ( x) f ( f 1 ( x)), , f n ( x) f ( f n 1( x)),及 x 轴所围成平面图形的面积,求极限lim nS n .n【分析】 f 1 (x)x, f 2 ( x)x, f 3 ( x)x,1 x1 2x 1 3x精选文档,记 S n 是由曲线 y f n ( x) ,直线 x 1, f n ( x)x, 1 nxxx1 1S n 1 f n ( x) dx1 dx1n ndx11nxnx111 1 111 ln(11n1dxn1dx n n 2 nx) 0nx112 ln(1 n) n nlim nS n 1lim ln(1n) 1lim ln(1x) 1 lim1 1 0 1nnnxxx1 x(21)( 此题满分 11 分)已 知 函 数 f ( x, y) 满 足f 2 (y 1 ,) 且 f ( y, y)( y 2 1 )( 2y )求yl n 曲 线,yf ( x, y) 0 所围成的图形绕直线 y1 旋转所成的旋转体的体积 .【分析】因为f 2( y 1) ,所以 f ( x, y) y 2 2 y ( x), 此中 ( x) 为待定函数 .y又因为 f ( y, y)( y 1)22 y ln y, 则 ( y) 12 y ln y ,进而f ( x, y) y 2 2y 12 x ln x ( y 1)22 x ln x .令 f ( x, y)0, 可得 ( y 1)22 x ln x ,当 y1时, x 1 或 x 2 ,进而所求的体积为V2 y 1 22 2 x ln xdx1 dx12x 2ln xd2x12x 2 22ln x(2x )12 12ln 2 (2x x2 ) 124 (22)( 此题满分11 分)精选文档2xdx22ln 2 5 2ln 25.4 41 2 3 4设矩阵A 0 1 1 1 ,E为三阶单位矩阵.1 2 0 3(I)求方程组(II)求知足【分析】Ax 0的一个基础解系;AB E 的全部矩阵 B .1 2 3 4 1 0 0 1 2 3 4 1 0 0A E 01 110 1 0 01 110 1 01 2 0 3 0 0 1 0 4 3 1 1 0 11 2 3 4 1 0 0 1 0 0 1 2 6 10 1 1 1 0 1 0 0 1 0 2 1 3 1 ,0 0 1 3 1 4 1 0 0 1 3 1 4 1(I) Ax 0 的基础解系为1,2,3,1T(II) e1T T0,0,1T 1,0,0 , e2 0,1,0 , e3Ax e1的通解为x k1 2, 1, 1,0 T 2 k1, 1 2k1 , 1 3k1, k1 TAx e2的通解为x k2 6, 3, 4,0 T6 k2 , 3 2k2 , 4T3k2 , k2Ax e3的通解为x k3T1 k3,1 2k3,1T 1,1,1,0 3k3 , k32 k1 6 k2 1 k3B 1 2k1 3 2k2 1 2k3(k1 , k2 , k3为随意常数)1 3k1 4 3k2 1 3k3k1 k2 k3(23)( 此题满分11 分)1 1 1 0 0 11 1 1 0 0 2相像 .证明 n 阶矩阵与1 1 1 0 0 n11 【分析】已知 A1 1 21 ,,B =01n则 A 的特点值为 n , 0 ( n 1重 ).A 属于n 的特点向量为 (1,1, ,1)T ; r ( A) 1 ,故 Ax 0 基础解系有 n1个线性没关的解向量,即 An=属 于0 有 n 1 个 线 性 无 关 的 特 征 向 量 ; 故 A 相 似 于 对 角 阵.B 的特点值为 n , 0 ( n 1重 ) ,同理 B 属于0 有 n 1 个线性没关的特点向量,故 B 相似于对角阵.由相像关系的传达性,A 相像于B .2015 年全国硕士研究生入学一致考试数学二试题及答案分析一、选择题:( 1~ 8 小题 , 每题 4 分,共 32 分。
考研数学历年真题2017年2018年2019年真题和答案(数学二)
目录2017年全国硕士研究生招生考试数学(二)试题 (1)2018年全国硕士研究生招生考试数学(二)试题 (8)2019年全国硕士研究生招生考试数学(二)试题 (15)2017年全国硕士研究生招生考试数学(二)试题一、选择题(1~8小题,每小题4分,共32分。
下列每题给出的四个选项中,只有一个选项是符合题目要求的,请将所选项的字母填在答题纸指定的括号内。
)1.若函数10,(), 0x f x axb x ⎧->⎪=⎨⎪≤⎩0x =在处连续,则( ) A.12ab =B.12ab =-C.0ab =D.2ab =2.设二阶可导函数()f x 满足(1)(1)1,(0)1,0,f f f f x ''=-==->且()则( ). A.1-1()0f x dx >⎰B.1-1()0f x dx <⎰C.11()()f x dx f x dx ->⎰⎰ D.110()()f x dx f x dx -<⎰⎰3.设数列{}n x 收敛,则( ).A.n n limsin 0lim 0n n x x →∞→∞==当时,B.(lim 0lim 0n n n n x x →∞→∞==当时,C.()2lim 0lim 0n n n n n x x x →∞→∞+==当时,D.()lim sin 0lim 0n n n n n x x x →∞→∞+==当时, 4.微分方程()24+81cos2xy y y e x '''-=+的特解可设为*y =().A.()22cos2sin 2xx Ae e B x C x ++ B.()22cos2sin 2xx Axee B x C x ++ C.()22cos2sin 2xx Aexe B x C x ++D.()22cos2sin 2xx Axexe B x C x ++5.设(),f x y 具有一阶偏导数,且任意的(),x y 都有()(),,0,0,f x y f x y x y∂∂><∂∂则( ).A.()()0,01,1f f >B.()()0,01,1f f <C.()()0,11,0f f >D.()()0,11,0f f <6.甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m),图中,实践表示甲的速度曲线()1v v t =(单位m/s ),虚线表示乙的速度曲线 ()2,v v t = 三块阴影部分面积的数值依次为10,20,3,计时开始后乙追甲的时刻为0t (单位:s),则( ).A.010t =B.01520t <<C.025t =D.025t >7.设A 为3阶矩阵, ()123,,P ααα= 为可逆矩阵,使得1000010,002P AP -⎛⎫ ⎪= ⎪ ⎪⎝⎭则()123A ααα++=( ).A.12+ααB.13+2ααC.23+ααD.13+2αα8.已知矩阵200210100021020020001001002A B C ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,则( ).A. A C B C 与相似,与相似B. A C B C 与相似,与不相似C. A C B C 与不相似,与相似D. A C B C 与不相似,与不相似二、填空题(9~14小题,每小题4分,共24分。
考研数学二答案解析
20
20
x
= − 1
2
1 x sin x2dx = 1 cos x2
0
4
1 0
=
1 4
(cos1−1)
1 −1 0 0
14. 已 知 矩 阵
A
=
−2
3
1 −2
−1 2
1
−1
,
Aij
表示
|
A|
中
(i,
j)
元的代数余子式,则
0
0
3
4
A11 − A12 = ___________.
【解析】 x − tan x ~ − x3 ,所以选 C. 3
2、设函数 y = x sin x + 2 cos x(− π x 3π) 的拐点 22
A. ( π , π ). 22
B. (0, 2).
C. (π, −2).
D. (3π , − 3π ). 22
【答案】C.
【解析】令 y = −x sin x = 0 ,可得 x = π ,因此拐点坐标为(π,− 2).
f (x) − f (0) x−0
= lim e2xln x −1
x→0+
x
2x ln x
= lim
= lim 2 ln x = − ,
x x→0+
x→0+
所以 f (0) 不存在,因此
f
(
x)
=
2x2x (1+
(
x
+
1)e
x
ln ,
x),
x 0, x 0.
令
f
2007-2010年考研数学二真题及部分答案
2010年考研数学二真题(强烈推荐)一填空题(8×4=32分)2009年全国硕士研究生入学统一考试数学二试题一、选择题:1~8小题,每小题8分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内。
(1)函数3()sin x x f x nx-=与2()ln(1)g x x bx =-是等价无穷小,则()(A )1(B )2(C )3(D )无穷多个(2)当0x →时,()sin f x x ax =-与2()ln(1)g x x bx =-是等价无穷小,则() (A )11,6a b ==-(B )11,6a b == (C )11,6a b =-=-(D )11,6a b =-= (3)设函数(,)z f x y =的全微分为dz xdx ydy =+,则点(0,0)() (A )不是(,)f x y 的连续点 (B )不是(,)f x y 的极值点 (C )是(,)f x y 的极大值点(D )是(,)f x y 的极小值点(4)设函数(,)f x y 连续,则222411(,)(,)yxydx f x y dy dy f x y dx -+⎰⎰⎰⎰=()(A )2411(,)ydx f x y dy -⎰⎰(B )241(,)xx dx f x y dy -⎰⎰(C )2411(,)ydx f x y dx -⎰⎰(D )221(,)ydx f x y dx ⎰⎰(5)若()f x ''不变号,且曲线()y f x =在点(1,1)的曲率圆为222x y +=,则()f x 在区间(1,2)内()(A )有极值点,无零点 (B )无极值点,有零点(C )有极值点,有零点(D )无极值点,无零点(6)设函数()y f x =在区间[-1,3]上的图形为则函数0()()xF x f t dt =⎰为()(7)设A、B 均为2阶矩阵,,A B **分别为A 、B 的伴随矩阵。
考研数学二试题及标准答案
2002年全国硕士研究生入学统一考试数学二试题解析一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上.)(1)设函数⎪⎪⎩⎪⎪⎨⎧≤>-=0,e ,0,2arcsin e 1)(2tan x a x x xf xx在0=x 处连续,则=a ______.【答案】2-【考点】函数的左极限和右极限、函数连续的概念 【难易度】★★【详解】本题涉及到的主要知识点:若函数)(x f 在0x x =处连续,则有;)()(lim )(lim 00x f x f x f x x x x ==+-→→解析:tan 0001tan lim ()lim lim 2arcsin22x x x x e xf x x x+++→→→--=-== 20lim ()lim ,(0),xx x f x ae a f a --→→===()f x 在0x =处连续(0)(0)(0),f f f +-⇔==即 2.a =- (2)位于曲线xxe y -=,+∞<≤x 0下方,x 轴上方的无界图形的面积是______.【答案】1【考点】定积分的几何应用—平面图形的面积 【难易度】★★【详解】解析:所求面积为1)(00=-=+-=-==+∞-∞+-+∞--∞+∞+-⎰⎰⎰xx xx xedx e xee xd dx xe S .其中,()01lim lim lim =--=-+∞→+∞→-+∞→xx xx xx e e x xe洛必达.(3)微分方程02='+"y yy 满足初始条件10==x y,21|0='=x y 的特解是______.【答案】y =【考点】可降阶的高阶微分方程 【难易度】★★★【详解】本题涉及到的主要知识点:可降阶的高阶微分方程,若缺x ,则令dydp py p y =''=',. 解析:方法1:将20yy y '''+=改写为()0yy ''=,从而得1yy C '=.以初始条件1(0)1,(0)2y y '==代入,有1112C ⨯=,所以得12yy '=.即21yy '=,改写为2()1y '=.解得2,y x C =+y =再以初值代入,1=""+且21C =.于是特解y =方法2:这是属于缺x 的类型(,)y f y y '''=.命,dp dp dy dpy p y p dx dy dx dy'''====. 原方程20yy y '''+=化为20dp ypp dy +=,得0p =或0dp y p dy+= 0p =即0dy dx =,不满足初始条件1'02y x ==,弃之, 由0dp yp dy +=按分离变量法解之,得1.C y 由初始条件11,'002y y x x ====可将1C 先定出来:1111,212C C ==.于是得12dy dx y =,解之,得22,y x C y =+=以01x y ==代入,得1=,所以应取“+”号且21C =.于是特解是y =(4)++++∞→nn n n π2cos 1πcos 1[1lim=++]πcos 1n n ______.【考点】定积分的概念 【难易度】★★★【详解】解析:记1n u n =11n i n ==所以011lim lim n n n n i u n →∞→∞===⎰11coscos22xxdx dx ππ===⎰12sin2x πππ==.(5)矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----222222220的非零特征值是______.【答案】4【考点】矩阵的特征值的计算 【难易度】★★【详解】解析:22222220222222E A λλλλλλλλ-=--=--200011(4)222λλλλλ==--故4λ=是矩阵的非零特征值.(另一个特征值是0λ=(二重))二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1)设函数)(u f 可导,)(2x f y =当自变量x 在1-=x 处取得增量1.0-=∆x 时,相应的函数增量y ∆的线性主部为1.0,则)1(f '=( ) (A )-1. (B )0.1.(C )1.(D )0.5.【答案】D【考点】导数的概念、复合函数的求导法则 【难易度】★★★【详解】本题涉及到的主要知识点: ①dy 为y ∆的线性主部; ②)()]([))]([(x g x g f x g f ''='; 解析:在可导条件下,0()x x dyy x o x dx=∆=∆+∆.当00x x dy dx =≠时0x x dy x dx =∆称为y ∆的线性主部, 现在2()2dy x f x x x dx '∆=∆,以1,0.1x x =-∆=-代入得(1)0.2dy x f dx'∆=⨯,由题设它等于0.1,于是(1)0.5f '=,应选(D ).(2)设函数)(x f 连续,则下列函数中必为偶函数的是( ) (A ).d )(20t t f x⎰(B ).d )(20t t f x⎰(C ).d )]()([0t t f t f t x--⎰(D ).d )]()([0t t f t f t x-+⎰【答案】D【考点】函数的奇偶性、积分上限的函数及其导数 【难易度】★★【详解】解析:[()()]t f t f t +-为t 的奇函数,[()()]xt f t f t dt +-⎰为x 的偶函数,(D )正确,(A )、(C )是x 的奇函数,(B )可能非奇非偶.例如()1f t t =+,均不选.(3)设)(x y y =是二阶常系数微分方程xqy py y 3e =+'+"满足初始条件=)0(y0)0(='y 的特解,则当0→x 时,函数)()1ln(2x y x +的极限 ( )(A )不存在. (B )等于1.(C )等于2.(D )等于3.【答案】C【考点】洛必达法则、佩亚诺型余项泰勒公式 【难易度】★★【详解】解析:方法1:220000ln(1)222limlim lim lim 2()()()()1x x x x x x x y x y x y x y x →→→→+==='''洛洛 方法2:由(0)(0)0,(0)1y y y '''===.由佩亚诺余项泰勒公式展开,有22()00()2x y x o x =+++,代入,有222000222ln(1)1lim lim lim 211()()()22x x x x x o x y x x o x x→→→+==++=. (4)设函数)(x f y =在),0(+∞内有界且可导,则( ) (A )当0)(lim =+∞→x f x 时,必有.0)(lim ='+∞→x f x(B )当)(lim x f x '+∞→存在时,必有.0)(lim ='+∞→x f x(C )当0)(lim 0=+→x f x 时,必有.0)(lim 0='+→x f x(D )当)(lim 0x f x '+→存在时,必有.0)(lim 0='+→x f x【答案】B【考点】导数的概念 【难易度】★★★★【详解】解析:方法1:排斥法 (A )的反例21()sin ,f x x x =它有界,221()sin 2cos ,lim ()0x f x x x f x x→+∞'=-+=,但lim ()x f x →+∞'不存在.(C)与(D)的反例同(A )的反例.0lim ()0x f x →+=,但0lim ()10x f x →+'=≠,(C )不成立;0lim ()10x f x →+'=≠,(D )也不成立.(A )、(C )、(D )都不对,故选(B ). 方法2:证明(B )正确.设lim ()x f x →+∞'存在,记为A ,求证0A =.用反证法,设0A ≠.若0A >,则由保号性知,存在00x >,当0x x >时()2Af x '>,在区间0[,]x x 上对()f x 用拉格朗日中值定理知,有00000()()()()()(),.2Af x f x f x x f x x x x x ξξ'=+->+-<<,x →+∞,从而有()f x →+∞,与()f x 有界矛盾.类似可证若0A <亦矛盾.(5)设向量组321,,ααα线性无关,向量1β可由321,,ααα线性表示,而向量2β不能由321,,ααα线性表示,则对于任意常数k ,必有( ) (A )321,,ααα21,ββ+k 线性无关. (B )321,,ααα21,ββ+k 线性相关. (C )321,,ααα21,ββk +线性无关. (D )321,,ααα21,ββk +线性相关.【答案】A【考点】向量的线性表示 【难易度】★★★【详解】解析:方法1:对任意常数k ,向量组123,,ααα,12k ββ+线性无关.用反证法,若123,,ααα,12k ββ+线性相关,因已知123,,ααα线性无关,故12k ββ+可由123,,ααα线性表出.设12112233k ββλαλαλα+=++,因已知1β可由123,,ααα线性表出,设为1112233l l l βααα=++代入上式,得2111222333()()()l l l βλαλαλα=-+-+-这和2β 不能由123,,ααα线性表出矛盾.故向量组123,,ααα,12k ββ+线性无关, 应选(A ).方法2:用排除法取0k =,向量组123,,ααα,12k ββ+即123,,ααα,2β线性相关不成立,排除(B ).取0k =,向量组123,,ααα,12k ββ+,即123,,ααα,1β线性无关不成立,排除(C ).0k ≠时,123,,ααα,12k ββ+线性相关不成立(证法与方法1类似,当1k =时,选项(A )、(D )向量组是一样的,但结论不同,其中(A )成立,显然(D )不成立.) 排除(D ).三、(本题满分6分)已知曲线的极坐标方程是θcos 1-=r ,求该曲线上对应于6π=θ处的切线与法线的直角坐标方程. 【考点】平面曲线的切线、平面曲线的法线 【难易度】★★★【详解】本题涉及到的主要知识点:①切线方程:)(000x x y y y -'=- ②法线方程:)(1000x x y y y -'-=- 解析:极坐标曲线1cos r θ=-化成直角坐标的参数方程为(1cos )cos (1cos )sin x y θθθθ=-⎧⎨=-⎩ 即2cos cos sin cos sin x y θθθθθ⎧=-⎨=-⎩ 曲线上6πθ=的点对应的直角坐标为31,,)2424-- 22666cos sin cos 1.sin 2cos sin dy dyd dx dxd ππθθπθθθθθθθθθ===+-===-+于是得切线的直角坐标方程为13(()2424y x --=--,即504x y -=法线方程为113()(()),24124y x --=---即1044x y +-+=. 四、(本题满分7分)设⎪⎪⎩⎪⎪⎨⎧≤≤+<≤-+=,10,)1e (e ,01,232)(22x x x x x x f x x 求函数t t f x F x d )()(1⎰-=的表达式. 【考点】定积分的分部积分法、积分上限的函数及其导数 【难易度】★★★ 【详解】解析: 当10x -≤<时2233213111()(2)().12222xx F x t t dt t t x x -=+=+=+--⎰ 当01x ≤<时,011()()()()xxF x f t dt f t dt f t dt --==+⎰⎰⎰23200000111()12(1)2(1)11021121111ln(1)ln(1)ln 202121t x x t t tx x t t x tt x x x te t t dt tde e x t dt xe dt e e e e x x x e e e e ----=++=---++=--+=--+++++=---+=---++++⎰⎰⎰⎰所以3211,1022()1ln ln 2,01112xx x x x x F x e x x e e ⎧+--≤<⎪⎪=⎨⎪-+-≤<⎪++⎩当当 五、(本题满分7分)已知函数)(x f 在),0(+∞内可导,1)(lim ,0)(=>+∞→x f x f x ,且满足,e ))()((lim 110x hh x f hx x f =+→ 求)(x f .【考点】导数的概念、一阶线性微分方程【难易度】★★★【详解】本题涉及到的主要知识点:e =∆+∆→∆10)1(lim ;∆-∆+='→∆)()(lim)(0x f x f x f ,其中∆可以代表任何形式;解析:11()ln h ()()()f x hx hf x f x hx ef x ⎛⎫+ ⎪⎝⎭⎛⎫+= ⎪⎝⎭,001()1()()lim ln lim ln(1)()()h h f x hx f x hx f x h f x h f x →→⎛⎫++-=+ ⎪⎝⎭001()()()()lim ln()lim ()()()()(),0.()h h f x hx f x x f x hx f x h f x f x f x x f x x f x →→+-+-=='=≠从而得到 1()1()()lim ()xf x hf x x h f x hx e ef x '→⎛⎫+= ⎪⎝⎭由题设于是推得()1()xf x f x x '=, 即 2()1()f x f x x'= 解此微分方程,得 11ln ()f x C x=-+ 改写成 1()xf x Ce-=再由条件lim ()1x f x →+∞=,推得1C =,于是得1().xf x e -=六、(本题满分7分)求微分方程0)2(=-+dx y x xdy 的一个解)(x y y =,使得由曲线)(x y y =与直线2,1==x x 以及x 轴所围成的平面图形绕x 轴旋转一周的旋转体体积最小.【考点】旋转体的体积、一阶线性微分方程、函数的最大值与最小值 【难易度】★★★【详解】本题涉及到的主要知识点:dx x f V bax ⎰=)(2π解析:一阶线性微分方程21y y x'-=-,由通解公式有 22[]dx dx x x y eedx C ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭⎰⎰=-+⎰221[]x dx C x =-+⎰221(),12x C x Cx x x=+=+≤≤由曲线2y x Cx =+与1,2x x ==及x 轴围成的图形绕x 轴旋转一周所成的旋转体的体积为2222131157()()523V x Cx dx C C ππ=+=++⎰,令6215()052dV C dC π=+=,得75.124C =-又()0V C ''>,故75124C =-为V 的惟一极小值点,也是最小值点,于是所求曲线为275.124y x x =-七、(本题满分7分)某闸门的形状与大小如图所示,其中直线l 为对称轴,闸门的上部为矩形ABCD ,下部由二次抛物线与线段AB 所围成.当水面与闸门的上端相平时,欲使闸门矩形部分承受的水压力与闸门下部承受的水压力之比为4:5,闸门矩形部分的高h 应为多少m (米)?【考点】定积分的物理应用—压力 【难易度】★★★★【详解】解析:建立坐标系,细横条为面积微元,面积微元2dA xdy =, 因此压力微元 2(1)dp gx h y dy ρ=+- 平板ABCD 上所受的总压力为 1102(1)hP gx h y dy ρ+=+-⎰其中以1x =代入,计算得 21P gh ρ=.抛物板AOB 上所受的总压力为 1202(1),P gx h y dy ρ=+-⎰其中由抛物线方程知x y =2124()315P g h ρ=+,由题意12:5:4P P =,即,251244()315h h =+解之得2h =(米)(13h =-舍去),即闸门矩形部分的高应为2m . 八、(本题满分8分) 设),2,1()3(,3011=-=<<+n x x x x n n n ,证明数列}{n x 的极限存在,并求此极限.【考点】数列的极限 【难易度】★★★【详解】解析:方法1:考虑(1)19(3)3343222n n n x x x ----==222933()4203322n n n x x x -+---==≤ 所以132n x +≤(当1,2,n =),即32n x ≤(当2,3,n =),数列{}2,3,n x n =有上界32.再考虑(2)21n n n x x x --==0.=≥ 2,3,n =.所以{}n x 单调增加.单调增加数列{}n x 有上界,所以lim n n x →∞存在,记为.a(3)由1n x +a 2230,a a -=得32a =或0a =,但因0n x >且单调增,故0a ≠,所以3lim 2n n x →∞=.方法2:由103x <<知1x 及13x -()均为正数,故)211130(3).22x x x *<≤+-= 设302k x <≤,则113(3).22k k k x x x +≤+-= 由数学归纳法知,对任意正整数2n ≥有302n x <≤.210.n n n x x x +≤=≥-所以{}n x 单调增,单调增加数列{}n x 有上界,所以lim n n x →∞存在,记为a .再由1n x +=两边命n →∞取极限,得a =32a =或0a =, 但因0n x >且单调增加,故0a ≠,所以32a =. 九、(本题满分8分)设b a <<0,证明不等式⋅<--<+ab a b a b b a a 1ln ln 222【考点】函数单调性的判别【难易度】★★★【详解】解析:左、右两个不等式分别考虑先证左边不等式,方法1:由所证的形式想到试用拉格朗日中值定理.ln ln 1(ln ),0.x b a x a b b a ξξξ=-'==<<<-而22112a b a b ξ>>+. 其中第二个不等式来自不等式222a b ab +>(当0a b <<时),这样就证明了要证明的左边.方法2:用单调性证,将b 改写为x 并移项,命222()()ln ln a x a x x a a x ϕ-=--+,有()0a ϕ=. 22222124()()()a ax x a x x a x a x ϕ-'=-+++222222()4()0()()x a ax x a x a x a x --=+>++(当0a x <<), 而推知当0x a >>时()0x ϕ>,以xb =代入即得证明.再证右边不等式,用单调性证,将b 改写为x 并移项,命()ln ln ),x x a x aφ=--有()0a φ=,及21()0,x x φ'==< 所以当0x a >>时,()0x φ<,再以x b =代入,便得ln ln ),b a b a-<-即ln ln b a b a -<-右边证毕. 十、(本题满分8分)设函数)(x f 在0=x 的某邻域内具有二阶连续导数,且0)0(,0)0(,0)0(≠''≠'≠f f f .证明:存在惟一的一组实数321,,λλλ,使得当0→h 时,)0()3()2()(321f h f h f h f -++λλλ是比2h 高阶的无穷小.【考点】无穷小的比较,洛必达法则【难易度】★★★【详解】解析:方法1:由题目,去证存在唯一的一组123,,λλλ,12320()(2)(3)(0)lim 0h f h f h f h f L h λλλ→++-==由此知,分子极限应为0,由()f x 在0x =连续,于是推知,应有123 1.λλλ++= (1) 由洛必达法则,12320()(2)(3)(0)lim h f h f h f h f L hλλλ→++-=1230()2(2)3(3)lim 2h f h f h f h h λλλ→'''++= (2) 分子的极限为1231230lim(()2(2)3(3))(23)(0)h f h f h f h f λλλλλλ→''''++=++, 若不为0,则式(1)应为∞,与原设为0矛盾,故分子的极限应是0,即123230λλλ++= (3)对(2)再用洛必达法则,1231230()4(2)9(3)1lim (49)(0)22h f h f h f h L f λλλλλλ→''''''++''==++ 由(0)0f ''≠,故应有 123490λλλ++= (4)将(1)、(3)、(4)联立解之,由于系数行列式11112320,149=≠由克莱姆法则知,存在唯一的一组解满足题设要求,证毕.方法2:由佩亚诺余项泰勒公式2211()(0)(0)(0)(),2f h f f h f h o h '''=+++ 222(2)(0)2(0)2(0)(),f h f f h f h o h '''=+++2239(3)(0)3(0)(0)(),2f h f f h f h o h '''=+++ 代入12320()(2)(3)(0)0lim h f h f h f h f h λλλ→++-=2123123123201(1)(0)(23)(0)(49)(0)2lim h f f h f h h λλλλλλλλλ→⎡'''++-++++++⎢=⎢⎢⎣ 2221122332()()()o h o h o h h λλλ⎤+++⎥⎦, 上面[]中第二项极限为0,所以第一项中应有1231231231230490λλλλλλλλλ++=⎧⎪++=⎨⎪++=⎩ 由于系数行列式11112320,149=≠由克莱姆法则知,存在唯一的一组解满足题设要求,证毕.十一、(本题满分6分)已知B A ,为3阶矩阵,且满足E B B A 421-=-,其中E 是3阶单位矩阵.(1)证明:矩阵E A 2-可逆; (2)若⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=200021021B ,求矩阵A . 【考点】逆矩阵的概念、矩阵的计算【难易度】★★★【详解】本题涉及到的主要知识点:若有E AB =则称B A ,互逆.解析:(1)由题设条件124A B B E -=-两边左乘A ,得 24B AB A =-即 24AB B A -= (2)4884(2)8A E B A E E A E E -=-+=-+(2)(4)8A E B E E --=1(2)(4)8A EB E E --=得证2A E -可逆(且11(2)(4)8A EB E --=-). (2) 方法1:由(1)结果知 111(2)(4)8(4)8A E B E B E --⎡⎤-=-=-⎢⎥⎣⎦18(4)2A B E E -=-+ 1204003204120040120002004002B E ---⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=-=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦[]3201001200104120010320100002001002001B E E ⎡--⎤⎡-⎤⎢⎥⎢⎥-=-→--⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦0101200101201308013001008800110011000022⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥→-→--⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥-⎣⎦⎢⎥⎣⎦ 11044100130100880011002⎡⎤-⎢⎥⎢⎥⎢⎥→--⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦故 11104413(4)0881002B E -⎡⎤-⎢⎥⎢⎥⎢⎥-=--⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦10208(4)2110002A B E E -⎡⎤⎢⎥=-+=--⎢⎥⎢⎥-⎣⎦. 方法2:由题设条件 124A B B E -=-等式两边左乘A ,得 2(4)B A B E =-则12(4)A B B E -=-(求1(4)B E --过程见方法1) 11044120120220131212001201308840020020041002⎡⎤-⎢⎥---⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=--=--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥-⎢⎥⎣⎦ 08002014401104008002⎡⎤⎡⎤⎢⎥⎢⎥=--=--⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦. 十二、(本题满分6分)已知4阶方阵43214321,,,),,,,(αααααααα=A 均为4维列向量,其中432,,ααα线性无关,,2321ααα-=如果4321ααααβ+++=,求线性方程组β=Ax 的通解.【考点】线性方程组解的性质和解的结构、非齐次线性方程组的基础解系和通解【难易度】★★★★【详解】解析:方法1:由234,,ααα线性无关,及123420,αααα=-+即1234,,,αααα线性相关,及1234βαααα=+++知[][][]12341234,,,()3,,,,r r A r Ar ααααβααααβ==== 故Ax β=有解,且其通解为k ξη*+,其中k ξ是对应齐次方程0Ax =的通解,η*是Ax β=的一个特解,因 123420,αααα=-+故 []123412341220,,,010αααααααα⎡⎤⎢⎥-⎢⎥=-+==⎢⎥⎢⎥⎣⎦故[]1,2,1,0Tξ=-是0Ax =的基础解系.又[]1234123411,,,11βαααααααα⎡⎤⎢⎥⎢⎥=+++=⎢⎥⎢⎥⎣⎦故[]1,1,1,1T η*=是Ax β=的一个特解,故方程组的通解为[][]1,2,1,01,1,1,1T Tk -+.(其中k 是任意常数)方法2:令[]1234,,,T x x x x x =则线性非齐次方程为 []112233441234,,,x x x x x ααααααααβ+++==已知1234βαααα=+++,故11223344x x x x αααα+++=1234αααα+++将1232ααα=-代入上式,得12213344(23)()(1)0x x x x x ααα+-+-++-=由已知234,,ααα线性无关,上式成立当且仅当1213423010x x x x x +=⎧⎪-+=⎨⎪-=⎩取自由未知量3x k =,则方程组有解431321,,,23x x k x x k x k =====-+即方程组Ax β=有通解123410232310101x k x k k x k x ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-+-⎢⎥⎢⎥⎢⎥⎢⎥==+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦.(其中k 是任意常数)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1996年全国硕士研究生入学统一考试数学二试题一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上.) (1) 设232()x y x e -=+,则0x y ='=______.(2)121(x dx -=⎰______.(3) 微分方程250y y y '''++=的通解为______.(4) 31lim sin ln(1)sin ln(1)x x x x →∞⎡⎤+-+=⎢⎥⎣⎦______. (5) 由曲线1,2y x x x=+=及2y =所围图形的面积S =______.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1) 设当0x →时,2(1)xe ax bx -++是比2x 高阶的无穷小,则 ( )(A) 1,12a b == (B) 1,1a b == (C) 1,12a b =-=- (D) 1,1a b =-=(2) 设函数()f x 在区间(,)δδ-内有定义,若当(,)x δδ∈-时,恒有2|()|f x x ≤,则0x = 必是()f x 的( )(A) 间断点 (B) 连续而不可导的点 (C) 可导的点,且(0)0f '= (D) 可导的点,且(0)0f '≠(3) 设()f x 处处可导,则 ( )(A) 当lim ()x f x →-∞=-∞,必有lim ()x f x →-∞'=-∞(B) 当lim ()x f x →-∞'=-∞,必有lim ()x f x →-∞=-∞ (C) 当lim ()x f x →+∞=+∞,必有lim ()x f x →+∞'=+∞(D) 当lim ()x f x →+∞'=+∞,必有lim ()x f x →+∞=+∞(4) 在区间(,)-∞+∞内,方程1142||||cos 0x x x +-= ( )(A) 无实根 (B) 有且仅有一个实根 (C) 有且仅有两个实根 (D) 有无穷多个实根(5) 设(),()f x g x 在区间[,]a b 上连续,且()()g x f x m <<(m 为常数),由曲线(),y g x =(),y f x x a ==及x b =所围平面图形绕直线y m =旋转而成的旋转体体积为 ( )(A) [][]2()()()()bam f x g x f x g x dx π-+-⎰(B) [][]2()()()()bam f x g x f x g x dx π---⎰(C) [][]()()()()bam f x g x f x g x dx π-+-⎰(D)[][]()()()()bam f x g x f x g x dx π---⎰三、(本题共6小题,每小题5分,满分30分.) (1)计算ln 0⎰.(2) 求1sin dxx +⎰.(3) 设2022(),[()],t x f u du y f t ⎧=⎪⎨⎪=⎩⎰其中()f u 具有二阶导数,且()0f u ≠,求22d y dx . (4) 求函数1()1xf x x-=+在0x =点处带拉格朗日型余项的n 阶泰勒展开式. (5) 求微分方程2y y x '''+=的通解.(6) 设有一正椭圆柱体,其底面的长、短轴分别为22a b 、,用过此柱体底面的短轴与底面成α角(02πα<<)的平面截此柱体,得一锲形体(如图),求此锲形体的体积V . 四、(本题满分8分)计算不定积分22arctan (1)xdx x x +⎰.五、(本题满分8分)设函数2312,1,(),12,1216, 2.x x f x x x x x ⎧-<-⎪=-≤≤⎨⎪->⎩(1) 写出()f x 的反函数()g x 的表达式;(2) ()g x 是否有间断点、不可导点,若有,指出这些点. 六、(本题满分8分)设函数()y y x =由方程3222221y y xy x -+-=所确定,试求()y y x =的驻点,并判别它是否为极值点.七、(本题满分8分)设()f x 在区间[,]a b 上具有二阶导数,且()()0f a f b ==,()()0f a f b ''>,试证明:存在(,)a b ξ∈和(,)a b η∈,使()0f ξ=及()0f η''=. 八、(本题满分8分)设()f x 为连续函数,(1) 求初值问题0(),0x y ay f x y ='+=⎧⎪⎨=⎪⎩的解()y x ,其中a 为正的常数;(2) 若|()|f x k ≤(k 为常数),证明:当0x ≥时,有|()|(1)ax ky x e a-≤-. 1996年全国硕士研究生入学统一考试数学二试题解析一、填空题(本题共5小题,每小题3分,满分15分.) (1)【答案】13【解析】132221132x xy x e e ,---⎛⎫⎛⎫'=+⋅- ⎪ ⎪⎝⎭⎝⎭02111323x y =⎛⎫'=-= ⎪⎝⎭.(2)【答案】2【解析】注意到对称区间上奇偶函数的积分性质,有原式()1122112121022x x dx dx --⎡⎤⎡⎤=+-==+=⎣⎦⎣⎦⎰⎰. 【相关知识点】对称区间上奇偶函数的积分性质:若()f x 在[,]a a -上连续且为奇函数,则()0aa f x dx -=⎰;若()f x 在[,]a a -上连续且为偶函数,则0()2()aaaf x dx f x dx -=⎰⎰.(3)【答案】()12cos2sin 2xy ec x c x -=+【解析】因为250y y y '''++=是常系数的线性齐次方程,其特征方程2250r r ++=有一对共轭复根1212r ,r i.=-±故通解为()12cos2sin 2x y e c x c x -=+.(4)【答案】2【解析】因为x →∞时,sin ln 1ln 1k k k x x x⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭::(k 为常数),所以, 原式3131lim sin ln 1lim sin ln 1lim lim 312x x x x x x x x x x x x →∞→∞→∞→∞⎛⎫⎛⎫⎛⎫⎛⎫=+-+=⋅-⋅=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. (5)【答案】1ln 22-【解析】曲线1y x ,x =+2y =的交点是()12,,2211,x y x x x '-⎛⎫'=+= ⎪⎝⎭当1x >时 1y x x=+(单调上升)在2y =上方,于是 二、选择题(本题共5小题,每小题3分,满分15分.) (1)【答案】(A)【解析】方法1:用带皮亚诺余项泰勒公式.由()()(222112b x a x x x οο⎛⎫=-+-+ ⎪⎝⎭令可得 10111202b ,a ,b .a ,-=⎧⎪⇒==⎨-=⎪⎩应选(A). 方法2:用洛必达法则.由 有 ()0lim210 1.xx eax b b b →--=-=⇒=又由 0022121limlim 02222x x x x e ax b e a a a x →→----===⇒=. 应选(A). (2)【答案】(C)【解析】方法一:首先,当0x =时,|(0)|0(0)0f f ≤⇒=. 而按照可导定义我们考察2()(0)()00(0)f x f f x x x x x x x-≤=≤=→→,由夹逼准则,()(0)(0)lim0x f x f f x→-'==,故应选(C).方法二:显然,(0)0f =,由2|()|f x x ≤,(,)x δδ∈-,得2()1(,0)(0,)f x x x δδ≤∈-U ,,即2()f x x有界,且200()(0)()(0)limlim 0x x f x f f x f x x x →→-⎛⎫'==⋅= ⎪⎝⎭. 故应选(C). 方法三:排除法.令3(),(0)0,f x x f '==故(A)、(B)、(D)均不对,应选(C). 【相关知识点】定理:有界函数与无穷小的乘积是无穷小. (3)【答案】(D)【解析】方法一:排除法.例如()f x x =,则(A),(C)不对;又令()xf x e -=,则(B)不对.故应选择(D).方法二:由lim ()x f x →+∞'=+∞,对于0M >,存在0x ,使得当0x x >时,()f x M '>.由此,当0x x >时,由拉格朗日中值定理,0000()()()()()()()f x f x f x x f x M x x x ξ'=+->+-→+∞→+∞,从而有lim ()x f x →+∞=+∞,故应选择(D).【相关知识点】拉格朗日中值定理:如果函数()f x 满足(1) 在闭区间[,]a b 上连续; (2) 在开区间(,)a b 内可导,那么在(,)a b 内至少有一点ξ(a b ξ<<),使等式 成立.(4)【答案】(C)【解析】令1142()||||cos f x x x x =+-,则()()f x f x -=,故()f x 是偶函数,考察()f x 在(0,)+∞内的实数个数:1142()cos f x x x x =+-(0x >).首先注意到(0)10f =-<,1142()()()10,222f πππ=+>>当02x π<<时,由零值定理,函数()f x 必有零点,且由314211()sin 042f x x x x --'=++>,()f x 在(0,)2π单调递增,故()f x 有唯一零点.当2x π≥时,11114242()cos ()()10,22f x x x x ππ=+-≥+->没有零点; 因此,()f x 在(0,)+∞有一个零点.又由于()f x 是偶函数,()f x 在(,)-∞+∞有两个零点.故应选(C). 【相关知识点】零点定理:设函数()f x 在闭区间[,]a b 上连续,且()f a 与()f b 异号(即()()0f a f b ⋅<),那么在开区间(,)a b 内至少有一点ξ,使()0f ξ=.(5)【答案】(B)【解析】见上图,作垂直分割,[2m π=于是 [][]2()()()()baV m g x f x f x g x dx π=--⋅-⎰,故选择(B).三、(本题共6小题,每小题5分,满分30分.) (1)【解析】方法一:换元法.u =,则221ln(1),21ux u dx du u=--=-, 所以2ln 220011111)2)11211u du du du u u u u==-=+----+⎰1ln(2222=-=+-. 方法二:换元法.令sin xet -=,则cos ln sin ,sin t x t dx dt t =-=-,:0ln 2:26x t ππ→⇒→,2266ln(csc cot )cos ln(22t t t ππππ=--=-. 方法三:分部积分法和换元法结合.原式ln 2ln 0()x e e --==-⎰⎰令xe t =,则:0ln 2:12x t →⇒→,原式2211ln(22t =-+=-+⎰ln(2=++. 【相关知识点】1.1csc ln csc cot sin xdx dx x x C x==-+⎰⎰, 2. 0a >时,ln x C =++.(2)【解析】方法一:2(1sin )1sin 1sin (1sin )(1sin )cos dx x dx xdx x x x x --==++-⎰⎰⎰1tan cos x C x=-+. 方法二:21sin (cos sin )22dx dxx x x =++⎰⎰ 222(1tan )sec 222(1tan )(1tan )1tan222xd x dx C x x x+===-++++⎰⎰.方法三:换元法.令tan2x t =,则22222tan 22arctan ,,sin 11tan 1t tx t dx x t t t====+++, 原式2221222221(1)111tan 12dt dt C C t xt t t t =⋅==-+=-+++++++⎰⎰. (3)【解析】这是由参数方程所确定的函数,其导数为22222()()24()()dydy f t f t tdt tf t dx dx f t dt'⋅⋅'===, 所以 2222221()(4())4()4()2()d y d dy dt d dt tf t f t tf t t dx dt dx dx dt dx f t ''''⎡⎤=⋅=⋅=+⋅⋅⎣⎦ 22224()2()()f t t f t f t '''⎡⎤=+⎣⎦. (4)【解析】函数()f x 在0x =处带拉格朗日余项的泰勒展开式为()(1)1(0)()()(0)(0),(01)!(1)!n n n n f f x f x f f x x x n n θθ++'=++++<<+L .对于函数1()1xf x x-=+,有 所以 ()(0)2(1)!,(1,2,3),n n fn n =-⋅ =L故 121112()122(1)2(1)(01)1(1)n n n n n x x f x x x x x x θθ+++-==-+++-+- <<++L . (5)【解析】方法一:微分方程2y y x ''+=对应的齐次方程0y y '''+=的特征方程为20r r +=,两个根为120,1r r ==-,故齐次方程的通解为12x y c c e -=+.设非齐次方程的特解2()Y x ax bx c =⋅++,代入方程可以得到1,1,23a b c ==-=, 因此方程通解为3212123x y c c e x x x -=++-+.方法二:方程可以写成2()y y x ''+=,积分得303x y y c '+=+,这是一阶线性非齐次微分方程,可直接利用通解公式求解.通解为32123x x x x c Ce -=-+++.方法三:作为可降阶的二阶方程,令y P '=,则y P '''=,方程化为2P P x '+=,这是一阶线性非齐次微分方程,可直接利用通解公式求解.通解为再积分得 321223xx y c c e x x -=++-+. 【相关知识点】1.二阶线性非齐次方程解的结构:设*()y x 是二阶线性非齐次方程()()()y P x y Q x y f x '''++=的一个特解.()Y x 是与之对应的齐次方程 ()()0y P x y Q x y '''++=的通解,则*()()y Y x y x =+是非齐次方程的通解.2. 二阶常系数线性齐次方程通解的求解方法:对于求解二阶常系数线性齐次方程的通解()Y x ,可用特征方程法求解:即()()0y P x y Q x y '''++=中的()P x 、()Q x 均是常数,方程变为0y py qy '''++=.其特征方程写为20r pr q ++=,在复数域内解出两个特征根12,r r ; 分三种情况:(1) 两个不相等的实数根12,r r ,则通解为1212;rx r x y C e C e =+(2) 两个相等的实数根12r r =,则通解为()112;rx y C C x e =+(3) 一对共轭复根1,2r i αβ=±,则通解为()12cos sin .xy eC x C x αββ=+其中12,C C 为常数.3.对于求解二阶线性非齐次方程()()()y P x y Q x y f x '''++=的一个特解*()y x ,可用待定系数法,有结论如下:如果()(),xm f x P x e λ=则二阶常系数线性非齐次方程具有形如*()()kxm y x x Q x eλ=的特解,其中()m Q x 是与()m P x 相同次数的多项式,而k 按λ不是特征方程的根、是特征方程的单根或是特征方程的重根依次取0、1或2.如果()[()cos ()sin ]xl n f x e P x x P x x λωω=+,则二阶常系数非齐次线性微分方程()()()y p x y q x y f x '''++=的特解可设为*(1)(2)[()cos ()sin ]k x m m y x e R x x R x x λωω=+,其中(1)()m R x 与(2)()m R x 是m 次多项式,{}max ,m l n =,而k 按i λω+(或i λω-)不是特征方程的根、或是特征方程的单根依次取为0或1.4. 一阶线性非齐次方程()()y P x y Q x '+=的通解为()()()P x dx P x dx y e Q x e dx C -⎛⎫⎰⎰=+ ⎪⎝⎭⎰, 其中C 为任意常数. (6)【解析】建立坐标系,底面椭圆方程为22221x y a b+=.方法一:以垂直于y 轴的平面截此楔形体所得的截面为直角三角形, 其中一条直角边长为22a x b y b=-22tan a b y bα-, 故截面面积为22221()()tan 2a S y b y bα=-⋅. 楔形体的体积为222220022()tan ()tan 3bb a V S y dy b y dy a b b αα==-=⎰⎰.方法二:以垂直于x 轴的平面截此楔形体所得的截面为矩形, 其中一条边长为222b y a x a=-另一条边长为tan x α⋅, 故截面面积为22()2tan bS x x a x aα=-,楔形体的体积为22200222()tan tan 3aa b V S x dx x a x dx a b a αα==-=⎰⎰.四、(本题满分8分)【解析】方法一:分部积分法. 22111arctan ln ln(1)arctan 22x x x x C x =-+-+-+. 方法二:换元法与分部积分法结合.令arctan x t =,则2tan ,sec x t dx tdt ==, 21cot ln sin 2t t t t C =-+-+.五、(本题满分8分)【分析】为了正确写出函数()f x 的反函数()g x ,并快捷地判断出函数()g x 的连续性、可导性,须知道如下关于反函数的有关性质.【相关知识点】反函数的性质:① 若函数()f x 是单调且连续的,则反函数()g x 有相同的单调性且也是连续的;② 函数()f x 的值域即为反函数()g x 的定义域;③ 1()()g x f x '=',故函数()f x 的不可导点和使()0f x '=的点x 对应的值()f x 均为()g x 的不可导点.【解析】(1) 由题设,函数()f x 的反函数为 (2) 方法一:考察()f x 的连续性与导函数.注意在(,1),(1,2),(2,)-∞--+∞区间上()f x 分别与初等函数相同,故连续.在1,2x x =-=处分别左、右连续,故连续.易求得由于函数()f x 在(,)-∞+∞内单调上升且连续,故函数()g x 在(,)-∞+∞上单调且连续,没有间断点. 由于仅有0x =时()0f x '=且(0)0f =,故0x =是()g x 的不可导点;仅有1x =-是()f x 的不可导点(左、右导数∃,但不相等),因此()g x 在(1)1f -=-处不可导. 方法二:直接考察()g x 的连续性与可导性.注意在(,1),(1,8),(8,)-∞--+∞区间上()g x 分别与初等函数相同,故连续.在1,8x x =-=处分别左、右连续,故连续,即()g x 在(,)-∞+∞连续,没有间断点.()g x 在(,1),(1,8),(8,)-∞--+∞内分别与初等函数相同,这些初等函数只有在0x =不可导,其余均可导.在1x =-处,(1)g '⇒-不∃.在8x =处, (8)g '⇒∃.因此,()g x 在(,)-∞+∞内仅有0x =与1x =-两个不可导点. 六、(本题满分8分)【解析】方程两边对x 求导,得22320,(32)0.y y yy xy y x y y x y y x ''''-++-=-++-= ①令0,y '=得y x =,代入原方程得32210x x --=,解之得唯一驻点1x =;对①两边再求导又得22(32)(32)10x y y x y y y x y y '''''-++-++-=. ②以1,0x y y '===代入②得1x =是极小点.【相关知识点】1.驻点:通常称导数等于零的点为函数的驻点(或稳定点,临界点).2.函数在驻点处取得极大值或极小值的判定定理.当函数()f x 在驻点处的二阶导数存在且不为零时,可以利用下述定理来判定()f x 在驻点处取得极大值还是极小值.定理:设函数()f x 在0x 处具有二阶导数且00()0,()0f x f x '''=≠,那么(1) 当0()0f x ''<时,函数()f x 在0x 处取得极大值;(2) 当0()0f x ''>时,函数()f x 在0x 处取得极小值.七、(本题满分8分)【解析】首先证明(,)a b ξ∃∈,使()0f ξ=:方法一:用零点定理.主要是要证明()f x 在(,)a b 有正值点与负值点.不妨设()0,f a '> ()0f b '>.由()()lim ()()0x a f x f a f a f a x a++→-''==>-与极限局部保号性,知在x a =的某右邻域,()()0f x f a x a ->-,从而()0f x >,因而111,,()0x b x a f x ∃>>>;类似地,由()0f b '>可证 2122,,()0x x x b f x ∃<<<.由零点定理,12(,)(,)x x a b ξ∃∈⊂,使()0f ξ=.方法二:反证法.假设在(,)a b 内()0f x ≠,则由()f x 的连续性可得()0f x >,或()0f x <,不妨设()0f x >.由导数定义与极限局部保号性,()()()()()lim lim 0x a x a f x f a f x f a f a x ax a +++→→-''===≥--, ()()()()()lim lim 0x b x b f x f b f x f b f b x b x b ---→→-''===≤--, 从而()()0f a f b ''≤,与()()0f a f b ''>矛盾.其次,证明(,)a b η∃∈,()0f η''=:由于()()()0f a f f b ξ===,根据罗尔定理,12(,),(,)a b ηξηξ∃∈∈,使12()()0f f ηη''==;又由罗尔定理,12(,)(,),()0a b f ηηηη''∃∈⊂=.注:由0()0f x '>可得:在000(,),()()x x f x f x δ-<;在000(,),()()x x f x f x δ+>.注意由0()0f x '>得不到()f x 在00(,)x x δδ-+单调增的结果!【相关知识点】1.零点定理:设函数()f x 在闭区间[,]a b 上连续,且()f a 与()f b 异号(即 ()()0f a f b ⋅<),那么在开区间(,)a b 内至少有一点ξ,使()0f ξ=.2.函数极限的局部保号性定理:如果0lim ()x x f x A →=,且0A >(或0A <),那么存在常数0δ>,使得当00x x δ<-<时,有()0f x >(或()0f x <).3. 函数极限局部保号性定理的推论:如果在0x 的某去心邻域内()0f x ≥(或()0f x ≤),而且0lim ()x x f x A →=,那么0A ≥(或0A ≤).4.罗尔定理:如果函数()f x 满足(1) 在闭区间[,]a b 上连续;(2) 在开区间(,)a b 内可导;(3) 在区间端点处的函数值相等,即()()f a f b =,那么在(,)a b 内至少有一点ξ(a b ξ<<),使得()0f ξ'=.八、(本题满分8分)【解析】(1) ()y ay f x '+=为一阶线性非齐次微分方程,可直接利用通解公式求解.通解为[]()()()ax ax ax y x e f x e dx C e F x C --⎡⎤=+=+⎣⎦⎰, 其中()F x 是()axf x e 的任一原函数,由(0)0y =得(0)C F =-,故 []0()()(0)()xax ax at y x e F x F e e f t dt --=-=⎰. (2) 当0x ≥时,00()()()x x ax at ax at y x e e f t dt e e f t dt --=⋅≤⎰⎰001(1)x x ax at ax at ax k ke e dt ke e e a a---⎛⎫≤⋅=⋅=- ⎪⎝⎭⎰. 【相关知识点】一阶线性非齐次方程()()y P x y Q x '+=的通解为()()()P x dx P x dx y e Q x e dx C -⎛⎫⎰⎰=+ ⎪⎝⎭⎰, 其中C 为任意常数.。