等离子技术课件
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
•朱倩 90513126
Biacore Control
工作仪器
Biacore 3000工作仪器
核心部件: 传感器芯片 液体处理系统 光学系统
其他: LED状态指示器 温度控制系统
Biacore 3000核心部件
Biacore 3000的光学系统
Biacore 3000传感器基本结构
1. 光波导耦合器件 2. 金属膜 3. 分子敏感膜
SPR的响应模式
n1 sinθ1 = n2 sinθ2 因为 sinθ2 = 1 所以 sinθ1 = n2/n1
SPR的检测模式
直接检测: 适用于大分子 (>1000 Da)
SPR的检测模式
抑制模式: 将待测小分子 固定在传感器 表面,在样品 中加入过量对 应大分子。
SPR仪的结构及工作原理
SPR用途简介
实时分析,简便快捷地监测DNA与蛋白质之间、蛋白质分 子之间以及药物—蛋白质、核酸—核酸、抗原—抗体、受 体—配体等等生物分子之间的相互作用,在生命科学、医 疗检测、药物筛选、食品检测、环境监测、毒品检测、法 医鉴定等领域具有广泛的应用需求。
表面等离子共振原理
• 1. 消逝波 • 2. 等离子波 • 3. SPR的光学原理
光源
• He2Ne激光器 • LED • 白炽灯——卤钨灯
传感芯片——金属膜
反射率高 化学稳定性好 厚度合适
金属材料的选择
Ag膜、Au膜的比较
金膜(实线) 和银膜(虚线) SPR 光谱理论值
恒定波长, 反射系数与入射角度关系 波长: 1 和2 为750nm,3 为600nm,
4 为500nm
恒定入射角度, 反射系数与波长关系 入射角度: 1 为80Ü, 2 为70Ü, 3 为72Ü, 4 为6815Ü,5 为6515Ü
金属膜厚度对SPR 谱的影响
λ= 63218nm 介质为水( n = 1.333) 棱镜折射率为1.515
50nm
传感芯片——分子敏感膜
成膜方法: 1. 金属膜直接吸附法 2. 共价连接法(生物素-亲和素、葡聚糖
2.等离子波
等离子体 等离子体通常是指由密度相当高的自由正、负 电荷组成的气体,其中正、负带电粒子数目几 乎相等。
金属表面等离子波 把金属的价电子看成是均匀正电荷背景下运动 的电子气体,这实际上也是一种等离子体。由 于电磁振荡形成了等离子波。
3.SPR光学原理
3.SPR光学原理
• 我们在前面提到光在棱镜与金属膜表面上发生全反射现 象时,会形成消逝波进入到光疏介质中,而在介质(假 设为金属介质)中又存在一定的等离子波。当两波相遇 时可能会发生共振。
•
SPR技术因其实时效性,高通量,特异性及
能在天然状态下研究药物分子与靶点的相互作用,
为新药研发提供了有力的工具
食品工业及环境监Baidu Nhomakorabea领域
• 维生素检测 • 生物毒素检测 • 细菌和病原菌检测 • 农、兽药残留量检测
凝胶、水凝胶、高分子膜、多肽等) 3. 单分子复合膜法 4. 分子印膜技术
Biacore 3000液体处理系统
Biacore 3000的LED状态指示器
LED(light-emitting diode)
• Ready:亮/灭 • Error:亮/灭 • Temperature:稳定/闪烁 • Sensor Chip:稳定/闪烁 • Run:亮/灭
3.SPR光学原理
• 当消逝波与表面等离子波发生共振时,检测到的反射光 强会大幅度地减弱。能量从光子转移到表面等离子,入 射光的大部分能量被表面等离子波吸收,使得反射光的 能量急剧减少。
3.SPR光学原理
• 可以从反射光强的响应曲线看到一个最小 的尖峰,此时对应的入射光波长为共振波 长,对应的入射角为SPR角。SPR角随金 表面折射率变化而变化,而折射率的变化 又与金表面结合的分子质量成正比。这就 是SPR对物质结合检测的基本原理。
传感芯片——光波导耦合器件
Krestschmann棱 镜型
Otto棱镜型
光纤在线传输式
光栅型
光纤终端反射式
金属膜 分子敏感膜
棱镜型装置工作原理
(a) Otto 型
(b)
Kretschmann 型
光纤型光波导耦合器
在线传输式SPR 光纤传感器
光纤型光波导耦合器
终端反射式SPR 光纤传感器
光栅型光波导耦合器
化学应用
通过检测共振角或共振波长的变化 来检测待测分子的成分、浓度以及 参与化学反应的特性
生物学应用
生物学应用
生物学应用
主要用于检测生物分子的结合作用或者 通过生物分子结合作用的检测来完成特 定生物分子的识别及其浓度的测定
生物学应用
药物领域
• 药物与蛋白之间的相互作用
• 药物筛选与新药开发
1.消逝波
菲涅尔定理: n1 sinθ1 = n2 sinθ2
• 当光从光密介质 密 入射到光疏介质 时(n1>n2)就 会有全反射现象 疏 的产生。
密
疏
1.消逝波
密
界面
疏
这表示沿X轴方向传播而振幅衰减的一个波,这就是消逝波。 全反射的光波会透过光疏介质约为光波波长的一个深度,再 沿界面流动约半个波长再返回光密介质。光的总能量没有发 生改变。透入光疏介质的光波成为消逝波。
Biacore 3000的温度控制系统
•
SPR 技术的应用
•黄辰90513125
物理学应用
• 若某种物理量会引起特定敏感膜折射率的 变化,就可以采用SPR 传感技术进行检测。
• 例如,基于温度变化引起特定敏感膜的吸 湿量变化,并导致其折射率变化,从而利 用SPR 传感技术进行检测的湿度传感系统, 以及基于氢化无定型硅的热光效应的温度 传感系统等。
简介
• 表面等离子共振技术(Surface Plasmon Resonance technology,SPR)是20世纪90年代发展起来的,应 用SPR原理检测生物传感芯片(biosensor chip)上配 位体与分析物作用的一种新技术。
发展简史
1902年,Wood在光学实验中发现SPR现象 1941年,Fano解释了SPR现象 1971年,Kretschmann为SPR传感器结构奠定了基础 1983年,Liedberg将SPR用于IgG与其抗原的反应测定 1987年,Knoll等人开始SPR成像研究 1990年,Biacore AB公司开发出首台商品化SPR仪器
Biacore Control
工作仪器
Biacore 3000工作仪器
核心部件: 传感器芯片 液体处理系统 光学系统
其他: LED状态指示器 温度控制系统
Biacore 3000核心部件
Biacore 3000的光学系统
Biacore 3000传感器基本结构
1. 光波导耦合器件 2. 金属膜 3. 分子敏感膜
SPR的响应模式
n1 sinθ1 = n2 sinθ2 因为 sinθ2 = 1 所以 sinθ1 = n2/n1
SPR的检测模式
直接检测: 适用于大分子 (>1000 Da)
SPR的检测模式
抑制模式: 将待测小分子 固定在传感器 表面,在样品 中加入过量对 应大分子。
SPR仪的结构及工作原理
SPR用途简介
实时分析,简便快捷地监测DNA与蛋白质之间、蛋白质分 子之间以及药物—蛋白质、核酸—核酸、抗原—抗体、受 体—配体等等生物分子之间的相互作用,在生命科学、医 疗检测、药物筛选、食品检测、环境监测、毒品检测、法 医鉴定等领域具有广泛的应用需求。
表面等离子共振原理
• 1. 消逝波 • 2. 等离子波 • 3. SPR的光学原理
光源
• He2Ne激光器 • LED • 白炽灯——卤钨灯
传感芯片——金属膜
反射率高 化学稳定性好 厚度合适
金属材料的选择
Ag膜、Au膜的比较
金膜(实线) 和银膜(虚线) SPR 光谱理论值
恒定波长, 反射系数与入射角度关系 波长: 1 和2 为750nm,3 为600nm,
4 为500nm
恒定入射角度, 反射系数与波长关系 入射角度: 1 为80Ü, 2 为70Ü, 3 为72Ü, 4 为6815Ü,5 为6515Ü
金属膜厚度对SPR 谱的影响
λ= 63218nm 介质为水( n = 1.333) 棱镜折射率为1.515
50nm
传感芯片——分子敏感膜
成膜方法: 1. 金属膜直接吸附法 2. 共价连接法(生物素-亲和素、葡聚糖
2.等离子波
等离子体 等离子体通常是指由密度相当高的自由正、负 电荷组成的气体,其中正、负带电粒子数目几 乎相等。
金属表面等离子波 把金属的价电子看成是均匀正电荷背景下运动 的电子气体,这实际上也是一种等离子体。由 于电磁振荡形成了等离子波。
3.SPR光学原理
3.SPR光学原理
• 我们在前面提到光在棱镜与金属膜表面上发生全反射现 象时,会形成消逝波进入到光疏介质中,而在介质(假 设为金属介质)中又存在一定的等离子波。当两波相遇 时可能会发生共振。
•
SPR技术因其实时效性,高通量,特异性及
能在天然状态下研究药物分子与靶点的相互作用,
为新药研发提供了有力的工具
食品工业及环境监Baidu Nhomakorabea领域
• 维生素检测 • 生物毒素检测 • 细菌和病原菌检测 • 农、兽药残留量检测
凝胶、水凝胶、高分子膜、多肽等) 3. 单分子复合膜法 4. 分子印膜技术
Biacore 3000液体处理系统
Biacore 3000的LED状态指示器
LED(light-emitting diode)
• Ready:亮/灭 • Error:亮/灭 • Temperature:稳定/闪烁 • Sensor Chip:稳定/闪烁 • Run:亮/灭
3.SPR光学原理
• 当消逝波与表面等离子波发生共振时,检测到的反射光 强会大幅度地减弱。能量从光子转移到表面等离子,入 射光的大部分能量被表面等离子波吸收,使得反射光的 能量急剧减少。
3.SPR光学原理
• 可以从反射光强的响应曲线看到一个最小 的尖峰,此时对应的入射光波长为共振波 长,对应的入射角为SPR角。SPR角随金 表面折射率变化而变化,而折射率的变化 又与金表面结合的分子质量成正比。这就 是SPR对物质结合检测的基本原理。
传感芯片——光波导耦合器件
Krestschmann棱 镜型
Otto棱镜型
光纤在线传输式
光栅型
光纤终端反射式
金属膜 分子敏感膜
棱镜型装置工作原理
(a) Otto 型
(b)
Kretschmann 型
光纤型光波导耦合器
在线传输式SPR 光纤传感器
光纤型光波导耦合器
终端反射式SPR 光纤传感器
光栅型光波导耦合器
化学应用
通过检测共振角或共振波长的变化 来检测待测分子的成分、浓度以及 参与化学反应的特性
生物学应用
生物学应用
生物学应用
主要用于检测生物分子的结合作用或者 通过生物分子结合作用的检测来完成特 定生物分子的识别及其浓度的测定
生物学应用
药物领域
• 药物与蛋白之间的相互作用
• 药物筛选与新药开发
1.消逝波
菲涅尔定理: n1 sinθ1 = n2 sinθ2
• 当光从光密介质 密 入射到光疏介质 时(n1>n2)就 会有全反射现象 疏 的产生。
密
疏
1.消逝波
密
界面
疏
这表示沿X轴方向传播而振幅衰减的一个波,这就是消逝波。 全反射的光波会透过光疏介质约为光波波长的一个深度,再 沿界面流动约半个波长再返回光密介质。光的总能量没有发 生改变。透入光疏介质的光波成为消逝波。
Biacore 3000的温度控制系统
•
SPR 技术的应用
•黄辰90513125
物理学应用
• 若某种物理量会引起特定敏感膜折射率的 变化,就可以采用SPR 传感技术进行检测。
• 例如,基于温度变化引起特定敏感膜的吸 湿量变化,并导致其折射率变化,从而利 用SPR 传感技术进行检测的湿度传感系统, 以及基于氢化无定型硅的热光效应的温度 传感系统等。
简介
• 表面等离子共振技术(Surface Plasmon Resonance technology,SPR)是20世纪90年代发展起来的,应 用SPR原理检测生物传感芯片(biosensor chip)上配 位体与分析物作用的一种新技术。
发展简史
1902年,Wood在光学实验中发现SPR现象 1941年,Fano解释了SPR现象 1971年,Kretschmann为SPR传感器结构奠定了基础 1983年,Liedberg将SPR用于IgG与其抗原的反应测定 1987年,Knoll等人开始SPR成像研究 1990年,Biacore AB公司开发出首台商品化SPR仪器