一元一次方程不等式竞赛题

合集下载

(易错题精选)初中数学方程与不等式之一元一次方程经典测试题

(易错题精选)初中数学方程与不等式之一元一次方程经典测试题

(易错题精选)初中数学方程与不等式之一元一次方程经典测试题一、选择题1.足球比赛的记分办法为:胜一场得3分,平一场得1分,负一场得0分.一个队打了14场比赛,负5场,共得19分,那么这个队胜了A .3场B .4场C .5场D .6场【答案】C【解析】【分析】设共胜了x 场,本题的等量关系为:胜的场数×3+平的场数×1+负的场数×0=总得分,解方程即可得出答案.【详解】设共胜了x 场,则平了(14-5-x )场,由题意得:3x+(14-5-x )=19,解得:x=5,即这个队胜了5场.故选C .【点睛】此题考查了一元一次方程的应用,属于基础题,解答本题的关键是要掌握胜的场数×3+平的场数×1+负的场数×0=总得分,难度一般.2.在解分式方程31x -+21x x+-=2时,去分母后变形正确的是( ) A .()()3221x x -+=- B .()3221x x -+=-C .()322x -+=D .()()3221x x ++=- 【答案】A【解析】【分析】本题考查对一个分式确定最简公分母,去分母得能力.观察式子x-1和1-x 互为相反数,可得1-x=-(x-1),所以可得最简公分母为x-1,因为去分母时式子不能漏乘,所以方程中式子每一项都要乘最简公分母.【详解】方程两边都乘以x-1,得:3-(x+2)=2(x-1).故答案选A .【点睛】本题考查了解分式方程,解题的关键是方程两边都乘以最简公分母.3.某书店推出一种优惠卡,每张卡售价为50元,凭卡购书可享受8折优惠,小明同学到该书店购书,他先买购书卡再凭卡付款,结果省了10元。

若此次小明不买卡直接购书,则他需要付款()A.380元B.360元C.340元D.300元【答案】D【解析】【分析】此题的关键描述:“先买优惠卡再凭卡付款,结果节省了10元”,设出未知数,根据题中的关键描述语列出方程求解.【详解】解:设小明同学不买卡直接购书需付款是x元,则有:50+0.8x=x-10解得:x=300即:小明同学不凭卡购书要付款300元.故选:D.【点睛】本题考查一元一次方程的应用,关键在于找出题目中的等量关系,根据等量关系列出方程解答.4.某商品打七折后价格为a元,则原价为()A.a元B.107a元C.30%a元D.710a元【答案】B【解析】【分析】直接利用打折的意义表示出价格即可得出答案.【详解】设该商品原价为x元,∵某商品打七折后价格为a元,∴原价为:0.7x=a,则x=107a(元),故选B.【点睛】本题考查了一元一次方程的应用,弄清题意,找准等量关系列出方程是解题的关键.5.若x=-2是方程ax-b=1的解,则代数式4a+2b-3的值为()A.1 B.3-C.1-D.5-【答案】D【解析】【分析】把x=-2代入ax-b=1得到关于a和b的等式,利用等式的性质,得到整式4a+2b-3的值,即可得到答案.【详解】解:把x=-2代入ax-b=1得:-2a-b=1,等式两边同时乘以-2得:4a+2b=-2,等式两边同时减去3得:4a+2b-3=-2-3=-5,故选:D.【点睛】本题考查了一元一次方程的解和代数式求值,正确掌握代入法和等式的性质是解题的关键.6.已知△ABC的三边长分别为3,5,7,△DEF的三边长分别为3,3x﹣2,2x﹣1,若这两个三角形全等,则x为()A.B.4 C.3 D.不能确定【答案】C【解析】试题分析:根据三角形全等可得:3x-2=5且2x-1=7或3x-2=7且2x-1=5;第一个无解,第二个解得:x=3.考点:三角形全等的性质7.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是()A.2×1000(26﹣x)=800x B.1000(13﹣x)=800xC.1000(26﹣x)=2×800x D.1000(26﹣x)=800x【答案】C【解析】【分析】试题分析:此题等量关系为:2×螺钉总数=螺母总数.据此设未知数列出方程即可【详解】.故选C.解:设安排x名工人生产螺钉,则(26-x)人生产螺母,由题意得1000(26-x)=2×800x,故C答案正确,考点:一元一次方程.8.某学校,安排50人打扫校园卫生,20人拉垃圾,后因两边的人手不够,又增派30人去支援,结果打扫卫生的人数是拉垃圾人数的3倍,若设支援打扫卫生的同学有x人,则下列方程正确的是()A.50+x=3×30 B.50+x=3×(20+30-x)C .50+x =3×(20-x)D .50+x =3×20【答案】B【解析】【分析】 可设支援打扫卫生的人数有x 人,则支援拉垃圾的人数有(30﹣x )人,根据题意可得题中存在的等量关系:原来打扫卫生的人数+支援打扫卫生的人数=3×(原来拉垃圾的人数+支援拉垃圾的人数),根据此等量关系列出方程即可.【详解】解:设支援打扫卫生的人数有x 人,则支援拉垃圾的人数有(30﹣x )人,依题意有 50+x =3[20+(30﹣x )],故选:B .【点睛】本题考查了一元一次方程的应用,列方程解应用题的关键是找出题目中的相等关系,有的题目所含的等量关系比较隐蔽,要注意仔细审题,耐心寻找.9.A ,B 两地相距480 km ,一列慢车从A 地出发,每小时行驶60 km ,一列快车从B 地出发,每小时行驶90 km ,快车提前30 min 出发.两车相向而行,慢车行驶了多少小时后,两车相遇.若设慢车行驶了x h 后,两车相遇,则根据题意,下面所列方程正确的是( ) A .60(30)90480x x ++=B .6090(30)480x x ++=C .160()904802x x ++=D .16090()4802x x ++= 【答案】D【解析】【分析】【详解】解:慢车行驶了x 小时后,两车相遇,根据题意得出:16090()4802x x ++=. 故选D .【点睛】本题考查由实际问题抽象出一元一次方程.10.某商店销售一批服装,每件售价150元,可获利25%,求这种服装的成本价.设这种服装的成本价为x 元,则得到方程( )A .0150250x =⨯B .0251500x ⋅= C .0015025x x-= D .0150250x -= 【答案】C【解析】【分析】等量关系为:成本×(1+利润率)=售价,把相关数值代入即可【详解】解:设这种服装的成本价为x 元,那么根据利润=售价-成本价,可得出方程:150-x=25%x ;15025%x x-= 故应选C11.寒假期间,小刚组织同学一起去看科幻电影《流浪地球》,票价每张45元,20张以上(不含20张)打八折,他们一共花了900元,则他们买到的电影票的张数是( ) A .20B .22C .25D .20或25【答案】D【解析】【分析】本题分票价每张45元和票价每张45元的八折两种情况讨论,根据数量=总价÷单价,列式计算即可求解.【详解】①若购买的电影票不超过20张,则其数量为900÷45=20(张);②若购买的电影票超过20张,设购买了x 张电影票,根据题意,得:45×x ×80%=900,解得:x =25;综上,共购买了20张或25张电影票;故选D .【点睛】本题考查了一元一次方程的应用,注意分类思想的实际运用,同时熟练掌握数量,总价和单价之间的关系.12.某公园门票的收费标准如下:有两个家庭分别去该公园游玩,每个家庭都有5名成员,且他们都选择了最省钱的方案购买门票,结果一家比另一家少花40元,则花费较少的一家花了( )元.A .300B .260C .240D .220【答案】B【解析】【分析】 根据题意,分情况讨论:若花费较少的一家的购票方案为5人团购,则另一家花费340元,据此组合验证是否能凑成整数张成人票和儿童票;若花费较少的一家的购票方案是成人票和儿童票分开购买,则可根据题意设未知数,列方程求解并验证.【详解】若花费较少的一家是60×5=300(元),则花费较多的一家为340元,经检验可知,成人和儿童共5张票无法组合成340元.设花费较少的一家花了x 元,则另一家花了40x +元,根据题意得:40=605x +⨯解得:260x =检验可知,该家庭有1个成人,4个儿童,共花费100+40×4=260(元);故选:B .【点睛】本题考查一元一次方程应用,理清题意,找准等量关系,正确列出方程是解题关键.13.我国古代名著《九章算术》中有一题“今有凫起南海,七日至北海;雁起北海,九日至南海.今凫雁俱起,问何日相逢?”(凫:野鸭)设野鸭大雁与从北海和南海同时起飞,经过x 天相遇,可列方程为( )A .179x x -= B .179x x += C .7x+9x=1 D .9x-7x=1 【答案】B【解析】【分析】 直接根据题意得出野鸭和大雁的飞行速度,进而利用它们相向而行何时相逢进而得出等式.【详解】 解:野鸭大雁与从北海和南海同时起飞,经过x 天相遇,可列方程为:11179x ⎛⎫+= ⎪⎝⎭,即179x x +=, 故选B.【点睛】此题主要考查了由实际问题抽象出一元一次方程,正确表示出每天飞行的距离是解题关键.14.若代数式x +2的值为1,则x 等于( )A .1B .-1C .3D .-3【答案】B【解析】【分析】列方程求解.【详解】解:由题意可知x+2=1,解得x=-1,故选B.【点睛】本题考查解一元一次方程,题目简单.15.下列等式变形错误的是( )A.若x=y,则x-5=y-5 B.若-3x=-3y,则x=yC.若xa=ya,则x=y D.若mx=my,则x=y【答案】D【解析】【分析】等式两边同时加上或减去同一个数,等式依然成立;等式两边同时乘以或除以同一个不为0的数,等式依然成立;据此对各选项进行分析判断即可.【详解】A:等式两边同时减去了5,等式依然成立;B:等式两边同时除以3-,等式依然成立;C:等式两边同时乘以a,等式依然成立;D:当0m=时,x不一定等于y,等式不成立;故选:D.【点睛】本题主要考查了等式的性质,熟练掌握相关概念是解题关键.16.若12xy=⎧⎨=-⎩是关于x和y的二元一次方程1ax y+=的解,则a的值等于()A.3 B.1 C.1-D.3-【答案】A【解析】【分析】将方程的解代入所给方程,再解关于a的一元一次方程即可.【详解】解:将12xy=⎧⎨=-⎩代入1ax y+=得,21a-=,解得:3a =.故选:A .【点睛】本题考查的知识点是二元一次方程的解以及解一元一次方程,比较基础,难度不大.17.我国古代名著《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四,问人数几何?原文意思是:现在有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?如果假设共有x 人,则可列方程为( )A .8374x x +=+B .8374x x -=+C .8374x x +=-D .8374x x -=-【答案】B【解析】【分析】根据这个物品的价格不变,列出一元一次方程进行求解即可.【详解】解:设共有x 人,可列方程为:8x-3=7x+4.故选:B【点睛】本题考查了一元一次方程的应用,解题的关键是明确题意,找出合适的等量关系,列出相应的方程.18.今年学校举行足球联赛,共赛17轮(即每队均需参赛17场),记分办法是:胜1场得3分,平1场得1分,负1场得0分.在这次足球比赛中,小虎足球队得16分,且踢平场数是所负场数的整数倍,则小虎足球队所负场数的情况有( )A .2种B .3种C .4种D .5种【答案】B【解析】【分析】设小虎足球队踢平场数是所负场数的k 倍,依题意建立方程组,解方程组从而得到用k 表示的负场数,因为负场数和k 均为整数,据此求得满足k 为整数的负场数情况.【详解】解:设小虎足球队胜了x 场,平了y 场,负了z 场,依题意得 17316x y z x y y kz ++=⎧⎪+=⎨⎪=⎩①②③,把③代入①②得(1)17316x k z x kz ++=⎧⎨+=⎩,解得z=3523k +(k 为整数). 又∵z 为正整数,∴当k=1时,z=7;当k=2时,z=5;当k=16时,z=1. 综上所述,小虎足球队所负场数的情况有3种情况.故选B .【点睛】本题考查了二元一次方程组的应用.解答方程组是个难点,用了换元法.19.如果关于x 的方程()32019a x -=有解,那么实数a 的取值范围是( ) A .3a <B .3a =C .3a >D .3a ≠ 【答案】D【解析】【分析】根据方程有解确定出a 的范围即可.【详解】∵关于x 的方程(a-3)x=2019有解,∴a-3≠0,即a≠3,故选:D .【点睛】此题考查了一元一次方程的解,弄清方程有解的条件是解本题的关键.20.方程834x ax -=-的解是3x =,则a 的值是( ).A .1B .1-C .3-D .3【答案】A【解析】【分析】把3x =代入方程834x ax -=-,得出一个关于a 的方程,求出方程的解即可.【详解】把3x =代入方程834x ax -=-得:8-9=3a-4解得:a=1故选:A .【点睛】本题考查了解一元一次方程和一元二次方程的解,能够得出关于a 的一元一次方程是解此题的关键.。

计算力专训18 一元一次方程的实际应用—比赛积分类问题(解析版)

计算力专训18 一元一次方程的实际应用—比赛积分类问题(解析版)

计算力专训18 一元一次方程的实际应用—比赛积分类问题1.为了提升学生体育锻炼意识,七年一班进行了一次投掷实心球的测试,老师在操场上画出了A ,B ,C 三个区域,每人投掷5次,实心球落在各个区域的分值各不相同,落在C 区域得3分.甲、乙、丙三位同学投掷后其落点如图所示,已知甲同学的得分是19分.请解答下列问题:(1)设投进B 区域得x 分,则投进A 区域的得分是 (用含x 的式子表示) (2)若乙同学的得分是21分,求投进B 区域的得分及丙同学的得分. 【答案】(1)()132x -分;(2)4分,20分.【分析】(1)利用甲同学的得分和投掷落点分布图即可得;(2)结合(1)的结论,先根据乙同学的得分建立关于x 的一元一次方程,再解方程求出x 的值,然后根据丙同学的投掷落点分布图列出式子求解即可得.【详解】(1)由题意得:投进A 区域得分是19322132x x -⨯-=-(分), 故答案为:()132x -分;(2)由题意得:()21322321x x -++=, 解得4x =,则投进B 区域的得分是4分,丙同学的得分是()()2132442321384620⨯-⨯++⨯=⨯-++=(分), 答:投进B 区域的得分是4分,丙同学的得分是20分.【点睛】本题考查了列代数式、一元一次方程的实际应用等知识点,依据题意,正确列出方程是解题关键. 2.下表是某年篮球世界杯小组赛C 组积分表: 排名 国家 比赛场数 胜场 负场 总积分 1美国5510(1)由表中信息可知,胜一场积几分?你是怎样判断的?(2)m= ;n= ;(3)若删掉美国队那一行,你还能求出胜一场、负一场的积分吗?怎样求?(4)能否出现某队的胜场积分与负场积分相同的情况,为什么?【答案】(1)胜一场积2分,理由见解析;(2)m=4,n=6;(3)胜一场积2分,负一场积1分;(4)不可能,理由见解析【分析】(1)由美国5场全胜积10分,即可得到答案;(2)由比赛场数减去胜场,然后计算m、n的值;(3)由题意,设胜一场积x分,然后列出方程组,即可求出胜一场、负一场的积分;(4)由题意,列出方程,解方程即可得到答案.【详解】解:(1)根据题意,则∵美国5场全胜积10分,∴1052÷=,∴胜一场积2分;(2)由题意,514m=-=;设负一场得x分,则3228x⨯+=;∴1x=;∴12416n=⨯+⨯=;故答案为:6;4;(3)设胜一场积x分,由土耳其队积分可知负一场积分832x-,根据乌克兰队积分可列方程:8323()72xx-+=,解得:2x=,此时831 2x-=;即胜一场积2分,负一场积1分;(4)设某球队胜y场,则21(5)y y=⨯-,解得:53y=;∴不可能出现某队的胜场积分与负场积分相同的情况.【点睛】本题考查了一元一次方程的应用,根据数量关系列出一元一次方程是解题的关键.3.一名篮球运动员在一次比赛中20投12中得24分,投中的两分球的个数是投中三分球个数的4倍,则投中的三分球、两分球、罚球分别是几个?【答案】三分球2个,两分球8个,罚球2个【分析】设运动员三分球投中x球,则两分球投中4x球,罚球投中(12-x-4x)球,根据24分列出方程,求出方程的解即可得到结果.【详解】解:设运动员三分球投中x球,则两分球投中4x球,罚球投中(12-x-4x)球,,根据题意得:3x+2×4x+14-x-4x=24,整理得:2x+8x+14-5x=24,移项合并得:x=2,∴4x=8,12-x-4x=2,则该运动员三分球投中2球,两分球投中8球;罚球投中2球.【点睛】此题考查了一元一次方程的应用,弄清题意是解本题的关键.4.在学完“有理数的运算”后,我县某中学七年级每班各选出5名学生组成一个代表队,在数学老师的组织下进行一次知识竞赛.竞赛规则是:每队都必须回答50道题,答对一题得4分,不答或答错一题倒扣1分.(1)如果七年级一班代表队最后得分为190分,那么七年级一班代表队回答对了多少道题?(2)七年级二班代表队的最后得分有可能为142分吗?请说明理由.【答案】(1)48道;(2)不可能,理由见解析【分析】(1)由题意可得七年级一班代表队回答对了x道题,那么得分为4x分,扣分为(50-x)分.根据七年级一班代表队最后得分为190分列出方程求解;(2)设七年级二班代表队答对了y 道题,根据最后得分为142分列出方程,若结果为正整数解则能,否则不能.【详解】解:(1)设七年级一班代表队回答对了x 道题, 根据题意列方程:4x ﹣(50﹣x )=190, 解这个方程得:x=48.故七年级一班代表队回答对了48道题.(2)七年级二班代表队的最后得分不可能为142分.理由如下: 七年级二班代表队答对了y 道题, 根据题意列方程:4y ﹣(50﹣y )=142, 解这个方程得:y=3825. 因为题目个数必须是自然数,即y=3825不符合该题的实际意义, 所以此题无解.即七年级二班代表队的最后得分不可能为142.【点睛】本题考查了一元一次方程的应用,解题的关键是在解应用题时,答案必须符合实际问题的意义. 5.2019年国际泳联第十八届世界游泳锦标赛7月28日晚在韩国光州落下帷幕.中国队共获得了30枚奖牌,其中铜牌3枚,金牌比银牌多5枚,本次大赛中国队共获得了多少枚金牌? 【答案】本次大赛中国队共获得了16枚金牌【分析】设本次大赛中国队共获得了x 枚金牌,则银牌为(5x -) 枚,列方程即可求解. 【详解】设本次大赛中国队共获得了x 枚金牌. 由题意可列方程()5330x x +-+=, 解得:16x =.答:本次大赛中国队共获得了16枚金牌.【点睛】本题主要考查了一元一次方程的应用,根据已知表示出金、银牌的数量是解题的关键. 6.足球比赛的规则为:胜场得3分,平场得1分,负一场得0分,一支球队在某个赛季共需比赛14场,现已经赛了8场,输了一场,得17分,请问: (1)前8场比赛中胜了几场?(2)这支球队打满14场后最高得多少分?(3)若打14场得分不低于29分,则在后6场比赛中这个球队至少胜几场?【答案】(1)前8场比赛中胜了5场;(2)这支球队打满14场后最高得35分;(3)在后6场比赛中这个球队至少胜3场.【分析】(1)设这个球队胜x场,则平(8﹣1﹣x)场,根据题意可得等量关系:胜场得分+平场得分=17分,根据等量关系列出方程,再解即可;(2)由题意得:前8场得17分,后6场全部胜,求和即可;(3)根据题意可列出不等式进行分组讨论可解答.由已知比赛8场得分17分,可知后6场比赛得分不低于12分就可以,所以胜场≥4一定可以达标,而如果胜场是3场,平场是3场,得分3×3+3×1=12刚好也行,因此在以后的比赛中至少要胜3场.【详解】(1)设这个球队胜x场,则平(8﹣1﹣x)场,依题意可得3x+(8﹣1﹣x)=17,解得x=5.答:这支球队共胜了5场;(2)打满14场最高得分17+(14﹣8)×3=35(分).答:最高能得35分;(3)由题意可知,在以后的6场比赛中,只要得分不低于12分即可,所以胜场不少于4场,一定可达到预定目标.而胜3场,平3场,正好也达到预定目标.因此在以后的比赛中至少要胜3场.答:至少胜3场.【点睛】本题考查了一元一次方程的应用、逻辑分析.根据题意准确的列出方程和不等关系,通过分析即可求解,要把所有的情况都考虑进去是解题的关键.7.某班的一次数学小测验中,共有20道选择题,每题答对得相同分数,答错或不答扣相同分数.现从中抽出了四份试卷进行分析,结果如下表:(1)此份试卷的满分是多少分?如果全部答错或者不答得多少分? (2)如果小颖得了0分,那么小颖答对了多少道题?(3)小慧说她在这次测验中得了60分,她说的对吗?为什么?【答案】(1)此份试卷满分为120分,全部答错或者不答得-40分;(2)小颖答对了5道题;(3)小慧的说法是错误的.【分析】(1)根据D 的成绩即可得到此份试卷满分为120分,从而求出答对一题所得的分数,再设答错或者不答一题扣x 分,根据A 的得分情况列出方程即可求解;(2) 设小颖答对了y 道题,根据(1)求得的数值列出方程即可求解; (3) 设小慧答对了a 道题,根据题意列出方程求出a 即可判断. 【详解】解:(1)由D 可得,此份试卷满分为120分, ∴答对一题所得的分数为:120206÷=(分), 设答错或者不答一题扣x 分, ∴176396x ⨯-= 解得x=2,∴全部答错或者不答所得的分数是:22040-⨯=-(分)答:此份试卷满分为120分,全部答错或者不答得-40分; (2)设小颖答对了y 道题,由题知:62(20)0y y --=解得5y =答:小颖答对了5道题;(3)设小慧答对了a 道题,由题知:()622060a a --=解得:252a = ∵252a =不是整数,∴小慧的说法是错误的.【点睛】此题主要考查一元一次方程的应用,解题的关键是根据题意找到等量关系列方程.8.列方程解应用题:为提高学生的计算能力,我县某学校八年级在元旦之前组织了一次数学速算比赛。

北师大版八年级下册数学第二章一元一次不等式与一元一次不等式组测试题

北师大版八年级下册数学第二章一元一次不等式与一元一次不等式组测试题
A. B. Cห้องสมุดไป่ตู้ D.
7.公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1m,另一边减少了2m,剩余空地的面积为18m2,求原正方形空地的边长.设原正方形的空地的边长为xm,则可列方程为( )
A.(x+1)(x+2)=18B. x2﹣3x+16=0C.(x﹣1)(x﹣2)=18D. x2+3x+16=0
②购买多少本书法练习本时,两种方案所花费的钱是一样多?
③购买多少本书法练习本时,按方案二付款更省钱?
18、为了打造区域中心城市,实现攀枝花跨越式发展,我市花城新区建设正按投资计划有序推进.花城新区建设工程部,因道路建设需要开挖土石方,计划每小时挖掘土石方540m3,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如下表所示:
故答案为:5x+200,4.5x+225;
②依题意可得,5x+200=4.5x+225,
解得:x=50.
答:购买50本书法练习本时,两种方案所花费的钱是一样多;
③依题意可得,5x+200>4.5x+225,
解得:x>50.
答:购买超过50本书法练习本时,按方案二付款更省钱
18、解:(1)设甲、乙两种型号的挖掘机各需x台、y台.
(3)若商店要使销售该商品每天获得的利润不低于800元,则每天的销售量最少应为多少件?
24.△ABC中,AC=BC,∠ACB=α,点D是平面内不与点A和点B重合 一点,连接DB,将线段DB绕点D顺时针旋转α得到线段DE,连接AE、BE、CD.
(1)如图①,点D与点A在直线BC 两侧,α=60°时, 的值是;直线AE与直线CD相交所成的锐角的度数是度;

初中数学方程与不等式之一元一次方程专项训练解析含答案(1)

初中数学方程与不等式之一元一次方程专项训练解析含答案(1)

初中数学方程与不等式之一元一次方程专项训练解析含答案(1)一、选择题1.下面是一个被墨水污染过的方程: 11222x x -=-,答案显示此方程的解是x=-1,被墨水遮盖的是一个常数,则这个常数是( ) A .2B .﹣2C .﹣12D .12【答案】A【解析】【分析】 设被墨水覆盖的数是y ,将x=-1代入,解含有y 的方程即可得到答案.【详解】设被墨水覆盖的数是y ,则原方程为:11222x x y -=-, ∵此方程的解是x=-1,∴将x=-1代入得:11222y --=-- , ∴y=2,故选:A.【点睛】此题考查解一元一次方程,一元一次方程的解.2.一家商店将某款衬衫的进价提高40%作为标价,又以八折卖出,结果每件衬衫仍可获利15元,则这款衬衫每件的进价是( )A .120元B .135元C .125元D .140元【答案】C【解析】【分析】设这款衬衫每件的进价是x 元,则标价为(1+40%)x 元,根据售价-进价=15元,列出方程解方程即可.【详解】设这款衬衫每件的进价是x 元,则标价为(1+40%)x 元,根据题意得: ()140%0.815x x +?=解得:x=125故选:C【点睛】 本题考查的是一元一次方程的应用-利润问题,把握进价、标价、售价及利润的关系是关键.3.某种商品的进价为每件180元,按标价的九折销售时,利润率为20%,这种商品每件的标价为()元.A.200 B.240 C.245 D.255【答案】B【解析】【分析】设这种商品的标价是x元,根据某种商品每件的进价为180元,按标价的九折销售时,利润率为20%可列方程求解.【详解】设这种商品的标价是x元,90%x﹣180=180×20%x=240这种商品的标价是240元.故选:B.【点睛】本题考查一元一次方程的应用,关键知道利润=售价﹣进价,根据此可列方程求解.4.某商品的标价为200元,8折销售仍赚40元,则商品进价为()元.A.140B.120C.160D.100【答案】B【解析】【分析】设商品进价为x元,则售价为每件0.8×200元,由利润=售价-进价建立方程求出其解即可.【详解】解:设商品的进价为x元,售价为每件0.8×200元,由题意得5.某商品打七折后价格为a元,则原价为()A.a元B.107a元C.30%a元D.710a元【答案】B【解析】【分析】直接利用打折的意义表示出价格即可得出答案.【详解】设该商品原价为x元,∵某商品打七折后价格为a元,∴原价为:0.7x=a,则x=107a (元), 故选B .【点睛】 本题考查了一元一次方程的应用,弄清题意,找准等量关系列出方程是解题的关键.6.关于x 的方程1514()2323mx x -=-有负整数解,则所有符合条件的整数m 的和为( )A .5B .4C .1D .-1 【答案】D【解析】【分析】先解方程,再利用关于x 的方程15142323mx x ⎛⎫-=- ⎪⎝⎭有负整数解,求整数m 即可. 【详解】 解方程15142323mx x ⎛⎫-=- ⎪⎝⎭去括号得,15122323mx x -=- 移项得,11522233mx x -=-, 合并同类项得11122m x ⎛⎫-=⎪⎝⎭, 系数化为1,2 (1)1x m m =≠-,∵关于x 的方程15142323mx x ⎛⎫-=- ⎪⎝⎭有负整数解, ∴整数m 为0,-1.∴它们的和为:0+(-1)=-1.故选:D .【点睛】本题主要考查了一元一次方程的解,解题的关键是用m 表示出x 的值.7.关于x 的方程32x x a =+的解与3242x x -=的解相同,则a 的值为( ) A .2-B .2C .1-D .1【答案】B【解析】【分析】先求出第一个方程的解,再根据解的定义,把第一个方程的解代入第二个方程,得到关于a 的方程,即可求解.【详解】由32x x a =+,解得:x=a ,∵关于x 的方程32x x a =+的解与3242x x -=的解相同, ∴把x=a 代入3242x x -=得:3242a a -=, ∴a-2=0,解得:a=2.故选B .【点睛】本题主要考查解一元一次方程以及解的定义,掌握移项,去分母以及解的定义,是解题的关键.8.一个书包的标价为a 元,按八折出售仍可获利20%,该书包的进价为( ) A .23a B .34a C .45a D .56a 【答案】A【解析】【分析】设进价为x 元,根据题意可得820%10=-x a x ,解得23x a =,即为所求. 【详解】设进价为x 元 根据题意得:820%10=-x a x ∴41.25=x a ∴23x a = 故选:A【点睛】本题考查了一元一次方程的应用,理解题意,分清已知量和未知量,根据题目中的等量关系列出需要的代数式,进而列出方程,解所列的方程,求出未知数的值,检验所得的解是否符合实际问题的意义.9.一船由甲地开往乙地,顺水航行要4小时,逆水航行比顺水航行多用40分钟,已知船在静水中的速度为16千米/时,求水流速度. 解题时,若设水流速度为x 千米/时,那么下列方程中正确的是( )A .()()24164163x x ⎛⎫+=+- ⎪⎝⎭ B .()24164163x ⎛⎫⨯=+- ⎪⎝⎭C .()()()41640.416x x +=+-D .()24164163x ⎛⎫+=+⨯ ⎪⎝⎭ 【答案】A【解析】【分析】 由已知条件得到顺水航行的速度为(16+x )千米/时,逆水航行的速度为(16-x )千米/时,根据时间关系列方程即可.【详解】由题意得到:顺水航行的速度为(16+x )千米/时,逆水航行的速度为(16-x )千米/时, ∴()()24164163x x ⎛⎫+=+- ⎪⎝⎭, 故选:A.【点睛】此题考查一元一次方程的实际应用,正确理解顺水航行和逆水航行的速度是解题的关键.10.下列方程的变形中正确的是( )A .由567x x +=-得675x x -=-B .由2(1)3x --=得223x --=C .由310.7x -=得1030107x -= D .由139322x x +=--得212x =- 【答案】D【解析】【分析】根据解一元一次方程的一般步骤对各选项进行逐一分析即可.【详解】A .由567x x +=-得675x x -=--,故错误;B .由2(1)3x --=得223x -+=,故错误;C .由310.7x -=得103017x -=,故错误; D .正确.故选:D .【点睛】 本题考查的是解一元一次方程,熟知解一元一次方程的一般步骤是解答此题的关键.11.某车间有22名工人每人每天可以生产1200个螺钉或2000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套 ,设有x 名工人生产螺钉,其他工人生产螺母,根据题意列出方程( )A .20001200(22)x x =-B .212002000(22)x x ⨯=-C .220001200(22)x x ⨯=-D .12002000(22)x x =- 【答案】B【解析】【分析】首先根据题目中已经设出每天安排x 个工人生产螺钉,则(22-x )个工人生产螺母,由1个螺钉需要配2个螺母可知螺母的个数是螺钉个数的2倍从而得出等量关系,就可以列出方程【详解】设每天安排x 个工人生产螺钉,则(22-x )个工人生产螺母,利用一个螺钉配两个螺母. 由题意得:2×1200x=2000(22-x ),故选:B .【点睛】此题考查由实际问题抽象出一元一次方程,解题关键在于根据题意列出方程.12.若关于x 的一元一次方程x −m +2=0的解是负数,则m 的取值范围是A .m ≥2B .m >2C .m <2D .m ≤2【答案】C【解析】试题分析:∵程x ﹣m+2=0的解是负数,∴x=m ﹣2<0,解得:m <2,故选C . 考点:解一元一次不等式;一元一次方程的解.13.足球比赛的记分办法为:胜一场得3分,平一场得1分,负一场得0分.一个队打了14场比赛,负5场,共得19分,那么这个队胜了A .3场B .4场C .5场D .6场【答案】C【解析】【分析】设共胜了x 场,本题的等量关系为:胜的场数×3+平的场数×1+负的场数×0=总得分,解方程即可得出答案.【详解】设共胜了x 场,则平了(14-5-x )场,由题意得:3x+(14-5-x )=19,解得:x=5,即这个队胜了5场.故选C .此题考查了一元一次方程的应用,属于基础题,解答本题的关键是要掌握胜的场数×3+平的场数×1+负的场数×0=总得分,难度一般.14.下列是等式133223xx--=的变形,其中根据等式的性质2变形的是()A.133232xx--=+B.3(13)322xx--= C.3(13)64x x--=D.3(13)46x x--=【答案】C【解析】【分析】根据等式的性质2将原方程两边同时乘以2加以变形化简即可.【详解】原方程133223xx--=两边同时乘以2可得:3(13)64x x--=,故选:C.【点睛】本题主要考查了等式的性质,熟练掌握相关概念是解题关键.15.某公园门票的收费标准如下:有两个家庭分别去该公园游玩,每个家庭都有5名成员,且他们都选择了最省钱的方案购买门票,结果一家比另一家少花40元,则花费较少的一家花了()元.A.300 B.260 C.240 D.220【答案】B【解析】【分析】根据题意,分情况讨论:若花费较少的一家的购票方案为5人团购,则另一家花费340元,据此组合验证是否能凑成整数张成人票和儿童票;若花费较少的一家的购票方案是成人票和儿童票分开购买,则可根据题意设未知数,列方程求解并验证.若花费较少的一家是60×5=300(元),则花费较多的一家为340元,经检验可知,成人和儿童共5张票无法组合成340元.设花费较少的一家花了x 元,则另一家花了40x +元,根据题意得:40=605x +⨯解得:260x =检验可知,该家庭有1个成人,4个儿童,共花费100+40×4=260(元);故选:B .【点睛】本题考查一元一次方程应用,理清题意,找准等量关系,正确列出方程是解题关键.16.下列等式的变形中,正确的有( )①由53x =得53x =;②由a=b 得,-a=-b ;③由a b c c =得a b =;④由m n =得m 1n = A .1个B .2个C .3个D .4个 【答案】B【解析】【分析】本题需先根据等式的性质对每一选项灵活分析,即可得出正确答案.【详解】①若53x =,则35x =故本选项错误 ②若由a=b 得,-a=-b ,则-a=-b 故本选项正确③由a b c c=,说明c ≠0,得a b =故本选项正确 ④若m n =≠0时,则m 1n=故本选项错误 故选:B【点睛】 本题考查了等式的基本性质,在已知等式等号两边同时加减或乘除等式是否仍然成立.17.一件商品以进价120%的价格标价,后又打八折出售,最后这件商品是( ) A .赚了 B .亏了 C .不赚不亏 D .不确定盈亏【答案】B【解析】【分析】设这件商品进价为a 元,根据题意求得标价为120%a 元,打八折后的售价为0.96a ,比较即可解答.【详解】设这件商品进价为a元,则标价为120%a元,打八折后的售价为120%a×80%=0.96a.∵a>0.96a,∴这件商品亏了,亏了0.04a元.故选B.【点睛】本题考查了一元一次方程的应用,熟知售价、进价、利润之间的关系是解决问题的关键.18.已知∠1:∠2:∠3=2:3:6,且∠3比∠1大60°,则∠2=()A.10°B.60°C.45°D.80°【答案】C【解析】【分析】根据∠1:∠2:∠3=2:3:6,则设∠1=2x,∠2=3x,∠3=6x,再根据∠3比∠1大60°,列出方程解出x即可.【详解】解:∵∠1:∠2:∠3=2:3:6,设∠1=2x,∠2=3x,∠3=6x,∵∠3比∠1大60°,∴6x-2x=60,解得:x=15,∴∠2=45°,故选C.【点睛】本题是对一元一次方程的考查,准确根据题意列出方程是解决本题的关键.19.若方程组5133x y ax y a-=+⎧⎨+=-⎩的解x与y的差为3,则a的值为()A.0B.7C.7-D.8【答案】B【解析】【分析】先利用加减消元法解方程组得到37838axay-⎧=⎪⎪⎨+⎪=-⎪⎩,再根据已知条件列出关于参数a的方程,然后解一元一次方程即可得解.【详解】解:∵5133x y a x y a -=+⎧⎨+=-⎩①② ②-①×3得,38a y +=-①+②×5得,378a x -= ∴方程组的解为:37838a x a y -⎧=⎪⎪⎨+⎪=-⎪⎩∵方程组5133x y a x y a -=+⎧⎨+=-⎩的解x 与y 的差为3,即3x y -= ∴373388a a -+⎛⎫--= ⎪⎝⎭∴7a =.故选:B【点睛】本题考查了解含参数的二元一次方程组、列一元一次方程并解一元一次方程,能得到关于参数a 的方程是解决问题的关键.20.下列等式变形正确的是( )A .如果0.58x =,那么x=4B .如果x y =,那么-2-2x y =C .如果a b =,那么a b c c = D .如果x y =,那么x y = 【答案】B【解析】【分析】等式两边同时加上或减去同一个数,等式依然成立;等式两边同时除以一个不为0的数,等式依然成立;两个数的绝对值相等,其本身不一定相等,据此逐一判断即可.【详解】A :如果0.58x =,那么16x =,故选项错误;B :如果x y =,那么22x y -=-,故选项正确;C :如果a b =,当0c ≠时,那么a b c c=,故选项错误; D :如果x y =,那么x y =±,故选项错误;故选:B.【点睛】本题主要考查了等式的性质,熟练掌握相关概念是解题关键.。

专题11.6 用一元一次不等式解决问题(专项练习)七年级数学下册基础知识专项讲练(苏科版)

专题11.6 用一元一次不等式解决问题(专项练习)七年级数学下册基础知识专项讲练(苏科版)

专题11.6 用一元一次不等式解决问题(专项练习)一、单选题1.(2020·浙江省杭州市萧山区高桥初级中学八年级期中)如果代数式32x-的值不小于3-,那么x 的取值范围是( ) A .0x ≥B .0x >C .12x ≤D .12x <-2.(2021·浙江湖州市·八年级期末)某超市开展促销活动,一次购买的商品超过88元时,就可享受打折优惠.小明同学准备为班级购买奖品.需买6本笔记本和若干支钢笔.已知笔记本每本4元.钢笔每支7元,如果小明想享受打折优惠,那么至少买钢笔( ) A .12支B .11支C .10支D .9支3.(2020·浙江杭州市·八年级期末)根据数量关系“y 与6的和不小于1”列不等式,正确的是( ) A .61y +>B .61y +≥C .61y +<D .61y +≤4.(2020·山东日照市·九年级二模)为了奉献爱心,贡献自己的一份力量,本次新冠状病毒疫情期间,九年级4班18名团员计划在家加工2250个口罩,奉献给社区志愿者,并规定每人每天加工a 个口罩(a 为整数),干了几天以后,其中4人因特殊情况没能继续,若剩下的同学每人每天多加工3个口罩,则提前完成了这次任务,由此可知a 的值最多是( ) A .8B .9C .10D .115.(2020·河北九年级其他模拟)x 的3倍与它的14的差不少于5,列出的关系式为( ) A .1354x x -≥ B .1354x x -≤C .1354x x ->D .1354x x -<6.(2019·山西七年级期末)太原市出租车的收费标准是:白天起步价8元(即行驶距离不超过3km 都需付8元车费),超过3km 以后,每增加1km ,加收1.6元(不足1km 按1km 计),某人从甲地到乙地经过的路程是xkm ,出租车费为16元,那么x 的最大值是( ) A .11B .8C .7D .57.(2020·瑞安市安阳实验中学八年级月考)商店为了对某种商品进行促销,将定价为5元的商品,以下列方式优惠销售:若购买不超过8件,则按原价付款;若一次性购买8件以上,则超出的部分打八折,小明带了70元钱,最多可以购买该商品( )A .14件B .15件C .16件D .17件8.(2021·全国七年级)在一次绿色环保知识竞赛中,共有20道题,对于每一道题,答对得10分,答错或不答扣5分,则至少答对多少题,得分才不低于80分?设答对x 题,可列不等式为( ) A .105(20)80x x -- B .105(20x x +- )80 C .105(20)80x x -->D .105(20x x +- )80>9.(2021·湖南益阳市·八年级期末)李老师网购了一本《好玩的数学》,让大家猜书的价格.甲说:“不少于10元”,乙说:“少于12元”.老师说:“大家说的都没有错”.则这本书的价格x (元)所在的范围为( ) A .10≤x <12B .10≤x ≤12C .10<x <12D .10<x ≤1210.(2021·浙江湖州市·八年级期末)假期,小云带150元去图书馆,下表记录了他当天的所有支出,其中小零食支出的金额不小心被涂黑了,如果平均每包小零食的售价为5元,那么小云可能剩下的金额是( )A .1元B .2元C .3元D .4元11.(2021·广东佛山市·八年级期末)某电信公司推出两种手机收费方案.方案A :月租费30元,本地通话话费0.15元/分;方案B :不收月租费,本地通话话费为0.3元/分.设婷婷的爸爸一个月通话时间为x 分钟,婷婷的爸爸一个月通话时间为多少时,选择方案A 比方案B 优惠?( ) A .100分钟B .150分钟C .200分钟D .250分钟12.(2021·全国八年级)运行程序如图所示,规定:从“输入一个值x ”到“结果是否26>”为一次程序操作,如果程序操作进行了1次后就停止,则x 最小整数值取多少( )A.7B.8C.9D.10 13.(2020·贵州黔西南布依族苗族自治州·八年级期末)等腰三角形的周长为20cm且三边均为整数,底边可能的取值有()个.A.1B.2C.3D.4 14.(2021·黑龙江齐齐哈尔市·九年级期末)某校组织10名党员教师和38名优秀学生团干部去某地参观学习.学校准备租用汽车,学校可选择的车辆(除司机外)分别可以乘坐4人或6人,为了安全每辆车上至少有1名教师,且没有空座,那么可以选择的方案有()A.2种B.3种C.4种D.5种15.(2021·广东潮州市·七年级期末)某次足球赛中,32支足球队将分为8个小组进行单循环比赛,小组比赛规则如下:胜一场得3分,平一场得1分,负一场得0分,若小组赛中某队的积分为5分,则该队必是().A.两胜一负B.一胜两平C.五平一负D.一胜一平一负二、填空题16.(2021·浙江杭州市·八年级期末)“比x小1的数大于x的2倍”用不等式表示为_________.17.(2020·山西七年级期末)某超市在一次促销活动中规定:消费者消费满300元或超过300元就可领取礼品.某人准备买15瓶啤酒和若干袋火腿肠,已知啤酒每瓶5元,火腿肠每袋15元,他至少买_______袋火腿肠才能领取礼品.18.(2020·全国课时练习)当x______________时,114x--的值是非负数.19.(2020·广西百色市·七年级期中)华润超市在2019年中从某商城购进一批智能扫地机器人,进价为800元,出售时标价为1200元,后来由于疫情影响,该商品积压,超市准备打折销售,但要保证利润率不低于5%,则至多可打____折20.(2020·浙江杭州市·八年级期末)一次生活常识知识竞赛一共有30道题,答对一题得4分,不答得0分,答错扣2分.小聪有2道题没答,竞赛成绩超过80分,则小聪至多答错了________道题.21.(2020·广东江门市·七年级期末)某商店对一商品进行促销活动,将定价为10元的商品,按以下方式优惠销售:若购买不超过5件按原价付款;若一次性购买5件以上,超过部分打8折,现有98元钱,最多可以购买该商品_______件.22.(2020·全国七年级课时练习)某商贩卖出两双皮鞋,相比进价,一双盈利30%,另一双亏本10%,两双共卖出200元.商贩在这次销售中要有盈利,则亏本的那双皮鞋的进价必须低于_________元23.(2020·湖北武汉市·七年级期末)某工厂计划m 天生产2160元个零件,若安排15名工人每人每天加工a 个零件(a 为整数)恰好完成.实际开工x 天后,其中3人外出培训,剩下的工人每人每天多加工2个零件,不能按期完成这次任务,则a 与m 的数量关系是_____________,a 的值至少为__________24.(2020·全国单元测试)当13x <<时,化简213x x -+-=________.25.(2020·四川巴中市·七年级期末)某同学设计了一个程序:对输入的正整数x ,首先进行奇偶识别,然后进行对应的计算,如下图所示.如果按1,2,3…的顺序依次逐个输入正整数x ,则首次输出大于100的y 的值是__________.26.(2020·江苏徐州市·七年级期末)疫情过后,地摊经济火爆,张阿姨以每件80元的价格购进50件衬衫,在地摊上以每件100元的价格出售,她至少销售__________件衬衫,所得销售额才能超过进货总价.27.(2020·河南洛阳市·七年级期末)现用甲、乙两种运输车将46吨救灾物资运往灾区,甲种车每辆载重5吨,乙种车每辆载重4吨,安排车辆不超过10辆,则甲种运输车至少需要安排 ________辆.28.(2020·洛阳市实验中学九年级月考)为改善教学条件,学校准备对现有多媒体设备进行升级改造,已知购买3个键盘和1个鼠标需要190元;购买2个键盘和3个鼠标需要220元.经过与经销商洽谈,键盘打八折,鼠标打八五折,若学校计划购买键盘和鼠标共50件,且总费用不超过1820元,则最多可购买键盘_____个.29.(2020·浙江省开化县第三初级中学八年级期中)“x 的4倍与1的差不大于3”用不等式表示为 ________________ .30.(2020·沙坪坝区·重庆八中八年级月考)今年立冬,某超市发起限时抢购饺子活动,规定立冬前一天(11月6日)价格打九折,立冬当天(11月7日)价格打八折,其余时间不打折,11月5日王老师在该超市选购甲、乙、丙三种饺子,他发现,2千克甲,4.2千克乙的总价和1千克甲,2千克乙,3千克丙在立冬当天(11月7日)的总价相等,都等于3千克甲,2.7千克乙,1.8千克丙在立冬前一天(11月6日)总价的2027,且4千克甲立冬前一天(11月6日)的总价不低于65元,也不超过100元.如果三种饺子每千克的价格均为正整数,则王老师11月5日买2千克甲,1千克乙,1千克丙共付款______元.三、解答题31.(2021·四川绵阳市·八年级期末)受“疫情”的影响,绵阳某水果批发市场某月只购进了两批相同品种的水果,第一批用了2000元,第二批用了5500元,第二批购进水果的重量是第一批的2.5倍.且进价比第一批每千克多1元.(1)求两批水果共购进了多少千克?(2)在这两批水果总重量正常损耗10%,其余全部售完的情况下,如果这两批水果的售价相同,且总利润率不低于26%,那么售价至少定为每千克多少元?(利润率=利润成本×100%)32.(2020·沙坪坝区·重庆八中八年级月考)受疫情影响,口罩价格不断走高.3月20日当天口罩的价格是年初的1.5倍;3月20日当天,王老师购买4盒口罩比年初多花了48元.(1)那么3月20日当天口罩的价格为每盒多少元?(2)3月20日,按照(1)中的口罩价格,某售卖点共卖出1000盒口罩.3月21日,政府决定投入储备口罩并规定其销售价在3月20日的基础上下调0.7%a出售.该售卖点按规定价出售一批储备口罩和非储备口罩,该售卖点的非储备口罩仍按3月20日的价格出售,3月21日当天的两种口罩总销量比3月20日增加了20%,且储备口罩的销量占总销量的56,两种口罩销售的总金额比3月20日至少提高了1%10a,求a的最大值.33.(2021·全国八年级)某班为了开展乒乓球比赛活动,准备购买一些乒乓球和乒乓球拍,通过去商店了解情况,甲乙两家商店出售同样品牌的乒乓球和乒乓球拍,乒乓球拍每副定价48元,乒乓球每盒定价12元,经商谈,甲乙两家商店给出了如下优惠措施:甲店每买一副乒乓球拍赠送一盒乒乓球,乙店全部按定价的9折优惠.现该班急需乒乓球拍5副,乒乓球x盒(不少于5盒).(1)请用含x的代数式表示:去甲店购买所需的费用;去乙店购买所需的费用.(结果要求化简)(2)当需要购买40盒乒乓球时,通过计算,说明此时去哪家商店购买较为合算;(3)试探究,当购买乒乓球的盒数x取什么值时,去哪家商店购买更划算?34.(2021·高台县城关初级中学)某社区要进行十九届五中全会会议精神宣讲,需要印刷宣传材料。

一元一次方程一元一次不等式应用题专题训练

一元一次方程一元一次不等式应用题专题训练

⼀元⼀次⽅程⼀元⼀次不等式应⽤题专题训练⼀元⼀次⽅程(组)应⽤题专题练习⼀、年龄问题1.⼩明今年6年,他爷爷今年72岁,问多少年之后⼩明年龄是他爷爷年龄的14倍?解:设x 年后⼩明的年龄是爷爷的14倍,根据题意得⽅程为: . ⼆、数字问题2.⼀个两位数它的个位数字⽐⼗位数字⼤3,那么这个两位数可以表⽰为什么?如果把个位数字和⼗位数字对调,新的两位数可以表⽰为什么?(添表格并完成解答过程)解:设这个数的⼗位数字是x ,根据题意得:解⽅程得:答:3.两个连续奇数的和为156,求这两个奇数,设最⼩的数为x ,列⽅程得 .4.⼀个五位数最⾼位上的数字是2,如果把这个数字移到个位数字的右边,那么所得的数⽐原来的数的3倍多489,求原数。

三、打折销售:公式:利润=售出价-进货价(成本价)利润率=×100%商品利润商品进价5、⼀只钢笔原价30元,现打8折出售,现售价是元;如果这⽀钢笔的成本价为12元,那么不打折前商家每⽀可以获利元,打折之后,商家每⽀还可以获利元.6、⼀件服装标价200元,①按标价的8折销售,仍可获利20元,该服装的进价是元;②按标价的8折销售,仍可获利10%,该服装的标价是元.7、⼀件商品在进价基础上提价20%后,⼜以9折销售,获利20元,则进价是______元.设进价x 元,根据题意列⽅程得 .8、服装店将某种服装按成本提⾼40%标价,⼜以⼋折优惠卖出,每件仍获利15元,则每件的成本为_________.9、某件商品9折降价销售后每件商品售价为a 元,则该商品每件原价为________.10、⼀种药物涨价25%的价格是50元,那么涨价前的价格x 满⾜的⽅程是____________.11、某商品的销售价格每件900元,为了参加市场竞争,商店按售价的九折再让利40元销售,些时仍可获利10%,此商品的进价为______.12、某商场出售某种⽂具,每件可盈利2元,为⽀援贫困⼭区的⼩朋友,按7折收给某⼭区学校,结果每件盈利0.20元。

八年级数学上册一元一次不等式专题卷(附答案)

八年级数学上册一元一次不等式专题卷(附答案)

八年级数学上册一元一次不等式专题卷(附答案)评卷人得分一、选择题(题型注释)1.如果不等式组无解,那么m 的取值范围是()A.m>5 B.m≥5 C.m<5 D.m≤52.不等式组840312xx-⎩≤-⎧⎨>的解集在数轴上表示为()3.如果不等式无解,则b的取值范围是()A.b>﹣2 B.b<﹣2 C.b≥﹣2 D.b≤﹣24.不等式2x﹣6<0的解集是()A.x>3 B.x<3 C.x>﹣3 D.x<﹣35.已知不等式组,其解集在数轴上表示正确的是()6.关于x的不等式x-b>0恰有两个负整数解,则b的取值范围是()A.-3<b<-2 B.-3<b≤-2C.-3≤b≤-2 D.-3≤b<-27.不等式组的解集在数轴上表示为()A. B .C . D.8.在数轴上表示不等式组202(1)1xx x+>⎧⎨-≤+⎩的解集,正确的是()A. B. C . D.9.不等式2x﹣6>0的解集是()A.x>1 B.x<﹣3 C.x>3 D.x<310.如果不等式组有解,那么m的取值范围是()A.m>8 B.m<8 C.m≥8 D.m≤811.已知不等式组1x a x >⎧⎨≥⎩的解集是x ≥1,则a 的取值范围是( ) A .a <1 B .a ≤1 C .a ≥1 D .a >1 评卷人得分二、填空题(题型注释) 12.学校举行百科知识抢答赛,共有20道题,规定每答对一题记10分,答错或放弃记﹣4分,八年级一班代表的得分目标为不低于88分,则这个队至少要答对 道题才能达到目标要求.13.不等式组⎩⎨⎧-≤->+x x x 81212的最大整数解是 .14.不等式组的解集为 .15.不等式组10241x x x +⎧⎨+-⎩>≥的解集为 . 16.定义新运算:对于任意实数a ,b 都有:a ⊕b=a (a ﹣b )+1,其中等式右边是通常的加法、减法及乘法运算.如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣5,那么不等式3⊕x <13的解集为 。

方程与不等式训练300题(学生版)

方程与不等式训练300题(学生版)

2020-1六下双基训练300题方程与不等式六年级·寒假·学生版九层之台,起于累土【练习1.1】 简单的一元一次方程1. ()()43206711y y y y --=--2. ()254(3)2(1)x x x --+=-3. 37(1)32(3)x x x --=-+4. 12(1)4()2x x x --=-5. 4(4)35(72)y y +=--6. 7 2.5 2.536x x -=⨯+7. 12(23)3(21)a a -+=-+ 8. 93(1)6x x --=9. 63(32)6(2)x x x --=-+ 10. 7104(0.5)x x -=-+方程与不等式补充材料千里之行,始于足下11. 3(8)64(11)y y y -=-- 12. 13(8)2(152)x x --=-13. 2(10)52(1)x x x x -+=+- 14.223046m m +--=15. 43(20)67(9)x x x x --=-- 16. 2(21)2(1)3(3)x x x -=+++17. 43(23)12(4)x x x +-=-- 18. ()()335225x x -=--19. ()()()243563221x x x --=--+ 20. ()()()321531152x x x --+=+六年级·寒假·学生版九层之台,起于累土【练习1.2】 一元一次方程——去分母21. 21101211364x x x --+-=- 22. 212153x x +--=23. 3157146y y ---= 24. 212134y y -+-=-25. 341125x x -+-= 26. 1112222x x x ⎡⎤⎛⎫---= ⎪⎢⎥⎝⎭⎣⎦27. 12233xx -=-+ 28.13216222x x x ⎛⎫--=+ ⎪⎝⎭方程与不等式补充材料千里之行,始于足下29. 21101136x x ++-= 30.211135x x +-=- 31. 121224x x+--=+ 32.42571510x x +--= 33. 124123x x ---= 34.213124x x--=- 35. 2123134x x ---= 36.3141136x x x ---=-六年级·寒假·学生版九层之台,起于累土37. 211135x x +-=- 38.+4122523x x x -+-=- 39. 25316412x x x ---+= 40. 2523163x x x +--=- 41. 431432x x -+-= 42.()()11212223x x x ⎡⎤--=+⎢⎥⎣⎦ 43. 141123x x --=- 44.5415513412y y y +--+=-方程与不等式补充材料千里之行,始于足下45. 121225x x ++-=- 46.()10532327x x x -++--=47. 7151322324x x x -++-=- 48.34113843242x x ⎧⎫⎡⎤⎛⎫--=⎨⎬ ⎪⎢⎥⎝⎭⎣⎦⎩⎭ 49. 248539x x -=- 50.3121134x x -+-= 51. 1122254x x x++--=+ 52.1328237x x x-+---=六年级·寒假·学生版九层之台,起于累土53. 248236x x ---=- 54.31322322105x x x +-+-=- 55. 225353x x x ---=- 56. 1212323x x x --+=- 57. 12136x x x -+-=- 58.3157146y y ---= 59. 131224x x+--=- 60.21101211364x x x -++-=-方程与不等式补充材料千里之行,始于足下61. 211011412x x x ++-=- 62.()()142113233x x x ⎡⎤+-=-+⎢⎥⎣⎦ 63. 312423(1)32x x x -+-+=- 64.49325532x x x ++--= 65. 4115(2)13212x x x +--+=-66. 113(23)(32)5(32)(23)32x x x x ---=-+-六年级·寒假·学生版九层之台,起于累土67. 22(31)253y y -=- 68.31242233x x ⎡⎤⎛⎫--= ⎪⎢⎥⎝⎭⎣⎦69. 21101211364x x x -++-=- 70.3213(1)(32)(1)45102x x x --+=-- 71. 431261345x ⎡⎤⎛⎫--= ⎪⎢⎥⎝⎭⎣⎦72.121146x x ++-= 73. 211011412x x x ++-=- 74.111(15)(7)523x x +=--方程与不等式补充材料75. 2110121123644x x x-++-=-76.2383236x x x-+-=-77. 1010210147x x+--=78. ()()137464722x x-=+-79.12223x xx-+-=-80.3221211245x x x+-+-=-81. 13533236524x x⎛⎫⎛⎫---=⎪ ⎪⎝⎭⎝⎭82.112132152yy-+-=六年级·寒假·学生版83. 343111243242x x⎡⎤⎛⎫--=+⎪⎢⎥⎝⎭⎣⎦84.111116412345x⎧⎫⎡⎤⎛⎫--+=⎨⎬⎪⎢⎥⎝⎭⎣⎦⎩⎭85.43254xxx x---=【练习1.3】一元一次方程——去分子、分母中的小数86. 0.10.20.710.30.4x x---=87.1.5 1.51.50.30.1x x--=88.2130.20.5x x-+-=89.0.30.2 1.5570.20.5x x--+=方程与不等式补充材料90. 0.20.10.010.0150.30.04x x---=91.0.010.030.40.110.020.5x x-+-=92.30.412.50.20.5x x+--=-93.341.60.50.2x x-+-=94. 2 1.633180.30.63x x x-+-=95.341.650.2y y-+-=96. 4 1.550.8 1.230.50.20.1x x x----=+97.1.5210.30.2x x--=六年级·寒假·学生版98. 3 1.50.20.1840.20.09x xx--+=+99.0.12230.30.6x xx-+-=100.341.60.50.2x x-+-=101.10.2110.40.7x x+--=102.0.230.210.50.03x x--=103.3 1.140.20.160.70.40.30.06x x x----=104. 1.510.530.6x x--=105.0.10.020.10.10.30.0020.05x x-+-=方程与不等式补充材料106. 0.030.010.170.050.10.020.070.030.09x x x +-+-=107. 0.10.20.0226.57.50.010.02x x---=-108.30.70.310.80.4x xx+-=-109. 0.40.50.20.5110.060.232x xx+-⎛⎫-=+⎪⎝⎭110.2651430.030.30.02x x-+-=【练习1.4】一元一次方程——巧算(整体法、拆括号、裂项、凑分子)111. 11311377325235x x⎛⎫⎛⎫--=--⎪ ⎪⎝⎭⎝⎭112. ()()15201520153411131717x x x---+=六年级·寒假·学生版113. ()()()()1131121132x x x x +--=--+ 114. 31333447167x x x x ⎡⎤⎛⎫⎛⎫---=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ 115. ()()1123233211191313x x x -+-+=116. ()()()()1120181120191120182019x x x x +--=--+ 117. 111123452345x x x x +++=+++方程与不等式补充材料118. ()()()()1111123201620162342017x x x x ++++++++= 119. 111133312222y ⎧⎫⎡⎤⎛⎫---=⎨⎬ ⎪⎢⎥⎝⎭⎣⎦⎩⎭120.111246819753x ⎧⎫⎡⎤+⎛⎫+++=⎨⎬⎪⎢⎥⎝⎭⎣⎦⎩⎭121. 2016122320162017x xx +++=⨯⨯⨯ 122. 1122320192020x xx+++=⨯⨯⨯123. 200613352003200520052007x x x x++++=⨯⨯⨯⨯六年级·寒假·学生版124.11 123234201720182019201820192020220192020 x x x x++++=-⨯⨯⨯⨯⨯⨯⨯⨯⨯125.3213201520162017x x x---++=126.201013201920092007x x x---++=127.2017130 1008620162014x x x---++=128.20181614125 357911x x x x x-----++++=方程与不等式补充材料129. 3x a b x b c x c ac a b------++= ()000a b c >>>、、 130.4x a b c x b c d x c d a x d a bd a b c------------+++= () a b c d 、、、均为正数【练习2.1】 较简单的二元一次方程131. 27325x y x y -=⎧⎨+=⎩132. 85765476x y x y +=⎧⎨-=⎩133. 293x y x y -=-⎧⎨+=⎩134. 53702370x y x y --=⎧⎨+-=⎩六年级·寒假·学生版135.5120311120x yy x-=⎧⎨-=⎩136.245x yx y+=⎧⎨-=⎩137.5210x yx y+=⎧⎨+=⎩138.25342x yx y-=⎧⎨+=⎩139.7423624x yx y+=⎧⎨-=⎩140.892317674x yx y+=⎧⎨-=⎩141.()()()()31445135y xx y⎧-=-⎪⎨-=+⎪⎩142.32222m nm n+=⎧⎨-=-⎩方程与不等式补充材料143.372513x yx y-=⎧⎨+=⎩144.25342x yx y-=⎧⎨+=⎩145.30327xx y-=⎧⎨-=⎩146.633594x yx y-=-⎧⎨-=⎩147.2114327x yx y+=⎧⎨+=⎩148.3(1)4(4)5(1)3(5)y xx y-=-⎧⎨-=+⎩149.()()()()4395211x y x yx y x y⎧+--=⎪⎨-++=⎪⎩150.()()()()337242233228x yx y⎧+=-+⎪⎨-+-=⎪⎩六年级·寒假·学生版【练习2.2】较复杂的二元一次方程组151.1234x yx y+=⎧⎪⎨+=⎪⎩152.1640.30.4 1.7x yx y⎧+=⎪⎨⎪+=⎩153.2320.40.7 2.8x yx y⎧+=⎪⎨⎪+=⎩154.35723423235x yx y++⎧+=⎪⎪⎨--⎪+=⎪⎩155.2()1346()4(2)16x y x yx y x y-+⎧=-⎪⎨⎪+=-+⎩156.2344143m n n mnm+-⎧-=⎪⎪⎨⎪+=⎪⎩方程与不等式补充材料157. 2153224111466x y x y ⎧+=-⎪⎪⎨⎪-=-⎪⎩158. 32212453231045x y x y --⎧+=⎪⎪⎨++⎪-=⎪⎩159. 252234m nm n ⎧-=⎪⎨⎪+=⎩160. ()()35724310413x y y x x y x y -+⎧+=-⎪⎪⎨---⎪=⎪⎩161. ()()()54723187323x y x y x y x y ⎧+-+=⎪⎪⎨⎪+--=⎪⎩162. 2164622372y x y x y x x y++⎧-=-⎪⎨⎪+=--⎩六年级·寒假·学生版163.1115212355x yyx+-⎧-=-⎪⎪⎨⎪+=-⎪⎩164.3223132x y x y-+==165.()5111562347 896x y y x x y---+++==【练习2.3】普通的三元一次方程组166.321x y zx y zx y-+=-⎧⎪+-=⎨⎪+=⎩167.324230140x yx zx y z=-⎧⎪-=⎨⎪++=⎩方程与不等式补充材料168.153241341013x y zx y zz-+=⎧⎪+-=-⎨⎪=⎩169.1225224x y zx y zx y++=⎧⎪++=⎨⎪=⎩170.3232443210x y zx y zx y z-+=⎧⎪+-=⎨⎪++=-⎩171. 235532z x yx y zx y z=+⎧⎪-+=⎨⎪+-=⎩172.52621212x yy zx z-=⎧⎪-=-⎨⎪+=⎩173.12232a b ca b ca b c++=⎧⎪+-=⎨⎪-+=⎩六年级·寒假·学生版174.3123325x y zx y zx y z+-=⎧⎪-+=⎨⎪+-=⎩175.261218x y zx yx y z++=⎧⎪-=⎨⎪-+=⎩176.102317328x y zx y zx y z++=⎧⎪++=⎨⎪+-=⎩177.42314235x y zx y zx y z--=⎧⎪++=⎨⎪+-=⎩178.4329253456218x y zx y zx y z-+=⎧⎪+-=⎨⎪+-=⎩179.24+393251156713x y zx y zx y z+=⎧⎪-+=⎨⎪-+=⎩方程与不等式补充材料180.232623343239x y zx y zx y z++=⎧⎪++=⎨⎪++=⎩181.3213272312x y zx y zx y z++=⎧⎪++=⎨⎪+-=⎩182.4239328a b ca b ca b c++=⎧⎪++=⎨⎪++=⎩183.261218x y zx yx y z++=⎧⎪-=⎨⎪-+=⎩184.56812412345x y zx y zx y z+-=⎧⎪+-=-⎨⎪+-=⎩185.24393251156713x y zx y zx y z++=⎧⎪-+=⎨⎪-+=⎩六年级·寒假·学生版186.9202325x y zx y zx y z-+=⎧⎪++=⎨⎪--=⎩187.261218x y zx yx y z++=⎧⎪-=⎨⎪-+=⎩188.231332163510x y zx y zx y z++=⎧⎪+-=⎨⎪+-=⎩189.3423126x y zx y zx y z-+=⎧⎪+-=⎨⎪++=⎩190.275323342y xx y zx z=-⎧⎪++=⎨⎪-=⎩191.344635511x y zx y zy z++=⎧⎪-+=-⎨⎪+=⎩方程与不等式补充材料192.42325560x y zx y zx y z-+=⎧⎪++=⎨⎪++=⎩193.52574313x yy zz x+=⎧⎪-=-⎨⎪+=⎩194.42325560a b ca b ca b c-+=⎧⎪++=⎨⎪++=⎩195.2343327231a b ca b ca b c-+=⎧⎪-+=⎨⎪+-=⎩【练习2.4】有技巧的多元一次方程组196.78388737x yx y+=⎧⎨+=⎩197.231763172357x yx y+=⎧⎨+=⎩六年级·寒假·学生版198.199519975989199719955987x yx y+=⎧⎨+=⎩199.354x yy zx z+=⎧⎪+=⎨⎪+=⎩200.222426x y zx y zx y z++=⎧⎪++=⎨⎪++=⎩201.1131x y zy z xz x y+-=⎧⎪+-=⎨⎪+-=⎩202.512x yy zz x+=⎧⎪+=-⎨⎪+=-⎩203. 2345238x y zx y z⎧==⎪⎨⎪+-=⎩方程与不等式补充材料204.::z1:2:32318x yx y z=⎧⎨-+=⎩205.:3:2:5:466x yy zx y z=⎧⎪=⎨⎪++=⎩206.323232y z x az x y bx y z c+-=⎧⎪+-=⎨⎪+-=⎩207.252821126x yy zz uu x+=⎧⎪+=⎪⎨+=⎪⎪+=⎩208.12323434545151212345x x xx x xx x xx x xx x x++=⎧⎪++=⎪⎪++=⎨⎪++=⎪⎪++=⎩209.12323434545151251532x x xx x xx x xx x xx x x++=⎧⎪++=⎪⎪++=-⎨⎪++=-⎪⎪++=⎩六年级·寒假·学生版210. 220240280+216023202640a b c d e f a b c d e f a b c d e f a b c d e f a b c d e f a b c d e f +++++=⎧⎪+++++=⎪⎪+++++=⎪⎨++++=⎪⎪+++++=⎪+++++=⎪⎩【练习3.1】 一元一次不等式 211. ()25321x x --≥ 212. 8156x x -≥-213. ()()3129x x -≤+ 214. ()()32232x x x x ⎡--⎤>--⎣⎦215. 3(2)152(2)x x -+-<-- 216.121123x x -++<方程与不等式补充材料217. 21433x x -≥-- 218. 3453172y y y --≤-219. 6721251423x x x --+-+>+- 220.121180.50.25x x -++>221. 124816x x x xx ++++> 222.12123x x +-≥223. 2354124463x x x ---+->+ 224. ()()52186117x x -+<-+六年级·寒假·学生版225. ()332524y y +≤- 226.()311212423x ⎡⎤--≥⎢⎥⎣⎦227. 11111112332x x ⎛⎫⎛⎫-≥-- ⎪ ⎪⎝⎭⎝⎭228. ()21035127x x x ---≥-229. 531132x x +--< 230. 22252y y y ---≤- 231. 123x x-< 232.2352x x -≥+方程与不等式补充材料233. 212(12)13x x --≥- 234.8111122x x x ++-≤-235. 422(2)x x -≥+ 236.3122123x x---≤237. 214432x x -+-< 238. 3(2)12(1)x x +>---239. 111(2)(3)248x x ->-+ 240. 533(2)x x +≤+六年级·寒假·学生版241. 14232x x -+->- 242.2432x x -≥- 243. 11132x x --≥ 244. 7(4)2(43)4x x x ---<245. 5(2)86(1)7x x -+<-+ 246.1132x x --< 247. 21211362x x x +--->- 248.3(1)5182x x x +-->-方程与不等式补充材料249.18136x xx+-+≤-250. 15(31)10(42)6(63)39x x x---≥--251. 0.40.210.20.5x x+->-252. 51531x x+>-253. 22123x x+-≥254.2(1)12xx---<255. 2152246x x-+-≥-256.3(1)12384x x+-+<-六年级·寒假·学生版257.121133x xx-+-≤+258.0.2 1.20.120.130.30.05x x---≤-259.()0.20.10.2 0.030.010.70.310.030.50.15x x x-+--<+260. 0.40.90.030.0250.50.032x x x++-->【练习3.2】一元一次不等式组261.3312183(1)xxx x-⎧+≥+⎪⎨⎪+<+-⎩262.253(2)12135x xx+≤+⎧⎪-⎨+>⎪⎩方程与不等式补充材料263. 22531323213x xx x--⎧-≤⎪⎨⎪->-⎩264. 3(1)954x x +≤⎧⎨+>⎩265. 3(1)702423x x x -->⎧⎪-⎨>⎪⎩266. 2362523x x x x +≤+⎧⎪+⎨<+⎪⎩267. 21390x x >-⎧⎨-+≥⎩268. 33(3)21123x x x x +≤+⎧⎪-+⎨>-⎪⎩269. ()()1032561x x x +⎧>⎪⎨⎪+≥-⎩270. 3150728x x x ->⎧⎨-<⎩六年级·寒假·学生版271.312342x xx x-≤-⎧⎨-+>-⎩272.1232(3)3(2)6x xx x⎧->-⎪⎨⎪--->-⎩273.593(1)311122x xx x-<-⎧⎪⎨-≤-⎪⎩274.328212xx-<⎧⎨->⎩275.523(4)131722x xx x-≤+⎧⎪⎨-<-⎪⎩276.328654x--≤--<-277.2632145x xx x-≤-⎧⎪+⎨->⎪⎩278.121233(2)54x xx x--⎧≤⎪⎨⎪+>+⎩方程与不等式补充材料千里之行,始于足下279. ()32421152x x x x ⎧--≥⎪⎨-+≤⎪⎩280. 513(1)23722x x x x ->+⎧⎪⎨-≤-⎪⎩281. 2132(1)5x x +⎧<⎪⎨⎪-≤⎩282. 312128x x x -≤+⎧⎨-<⎩283. 222212x x x x+⎧≥⎪⎨⎪-<-⎩284. 313112123x x x x +<-⎧⎪++⎨≤+⎪⎩285. 521262(3)4x x x x -⎧->⎪⎨⎪-≤-⎩ 286. 2153712x x x ->⎧⎪⎨-+≤⎪⎩六年级·寒假·学生版九层之台,起于累土287. 2(21)342151132x x x x -≤+⎧⎪-+⎨-≤⎪⎩288. 3(2)8143x x x x +>+⎧⎪-⎨≥⎪⎩289. 267442152x x x x +>-⎧⎪+-⎨≥⎪⎩290. 43213(1)6x x x x-⎧+≥⎪⎨⎪--<-⎩291. ()()35223141x x x x -⎧≤-⎪⎨⎪-<+⎩292. 543132(32)3x x x ->⎧⎨--≤⎩293. 2153112x x x ->⎧⎪⎨+-≥⎪⎩294. 253259837(4)2(43)4x x x x x x x +≤+⎧⎪->+⎨⎪---<⎩方程与不等式补充材料千里之行,始于足下295. ()1231121286432x x x x x x +>+-⎧⎪⎪+≥+⎨-<-⎪⎪⎩296. 8156212(12)133(2)152(2)x x x x x x -≥-⎧⎪-⎪-≥-⎨⎪-+-<--⎪⎩297. 36451322253522x x x x x x +>+-⎧⎪⎪+>+⎨<-⎪⎪⎩298. 18136212113620.40.210.20.5x x x x x x x x +-⎧+≤-⎪⎪+--⎪->-⎨⎪+-⎪>-⎪⎩299. 427323653453x x x x x x ⎧⎪+>++≥+≤-⎨-⎪⎩300. ()()32232217223x x x x x x ⎧⎪->++≤+≥+⎨-⎪⎩。

一元一次方程不等式计算题

一元一次方程不等式计算题

一元一次方程不等式计算题一、不等式计算题目1. 3x + 5>2x + 1- 解析:移项可得3x - 2x>1 - 5,即x>-4。

2. 2(x - 1)+3<5x- 解析:先展开括号得2x-2 + 3<5x,2x+1<5x。

移项得到2x - 5x<-1,-3x<-1,两边同时除以-3,不等号方向改变,得x>(1)/(3)。

3. (x + 1)/(2)-(x - 1)/(3)>1- 解析:先通分,等式左边变为(3(x + 1)-2(x - 1))/(6)=(3x+3 - 2x +2)/(6)=(x+5)/(6)。

则不等式变为(x + 5)/(6)>1,两边同时乘以6得x+5>6,移项得x>1。

4. 4 - 3x≤slant2x+6- 解析:移项可得-3x - 2x≤slant6 - 4,-5x≤slant2,两边同时除以-5,不等号方向改变,得x≥slant-(2)/(5)。

5. 3(2x - 1)-2(x + 2)≥slant1- 解析:展开括号得6x-3-2x - 4≥slant1,4x-7≥slant1。

移项得4x≥slant1 + 7,4x≥slant8,解得x≥slant2。

6. (2x - 1)/(3)<(x+1)/(2)- 解析:通分得到(2(2x - 1))/(6)<(3(x + 1))/(6),即4x-2<3x + 3。

移项得4x-3x<3 + 2,解得x<5。

7. 5x-3<2x+6- 解析:移项得5x - 2x<6+3,3x<9,解得x < 3。

8. 2x+1≥slant(1)/(2)x - 3- 解析:移项得2x-(1)/(2)x≥slant - 3 - 1,(3)/(2)x≥slant - 4,两边同时乘以(2)/(3),解得x≥slant-(8)/(3)。

北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组专项训练试题(含答案及详细解析)

北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组专项训练试题(含答案及详细解析)

第二章一元一次不等式和一元一次不等式组专项训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如果a <b ,c <0,那么下列不等式成立的是( )A .a +c <bB .a ﹣c >b ﹣cC .ac +1<bc +1D .a (c ﹣2)<b (c ﹣2)2、不等式270x -<的最大整数解为( )A .2B .3C .4D .53、一次函数y =(m -2)x +m 2-3的图象与y 轴交于点M (0,6),且y 的值随着x 的值的增大而减小,则m 的值为( )A .6-B .C .3D .3-4、已知关于x 的不等式组3x x a≤⎧⎨>⎩有解,则a 的取值不可能是( ) A .0 B .1 C .2 D .35、若m <n ,则下列各式正确的是( )A .﹣2m <﹣2nB .33m n >C .1﹣m >1﹣nD .m 2<n 26、对有理数a ,b 定义运算:a ✬b =ma +nb ,其中m ,n 是常数,如果3✬4=2,5✬8>2,那么n 的取值范围是( )A .n >1-B .n <1-C .n >2D .n <27、若m >n ,则下列不等式不成立的是( )A .m +4>n +4B .﹣4m <﹣4nC .44m n >D .m ﹣4<n ﹣48、如果a >b ,下列各式中正确的是( )A .﹣2021a >﹣2021bB .2021a <2021bC .a ﹣2021>b ﹣2021D .2021﹣a >2021﹣b9、若整数a 使得关于x 的方程2(2)3x a -+=的解为非负数,且使得关于y 的一元一次不等式组322222010y y y a --⎧+>⎪⎪⎨-⎪≤⎪⎩至少有3个整数解.则所有符合条件的整数a 的和为( ) A .23 B .25 C .27 D .2810、若a >b ,则下列不等式一定成立的是( )A .﹣2a <﹣2bB .am <bmC .a ﹣3<b ﹣3D .3a +1<3b +1 第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、任何一个以x 为未知数的一元一次不等式都可以变形为_____(a ≠0)的形式,所以解一元一次不等式相当于在某个一次函数_____的值大于0或小于0时,求_____的取值范围.2、从2-,1-,0,13,1,2这六个数字中,随机抽取一个数记为a ,则使得关于x 的不等式组102321x a x ⎧->⎪⎨⎪-+≤⎩只有三个整数解的概率是 __. 3、已知a >b ,且c ≠0,用“>”或“<”填空.(1)2a ________a +b(2)2ac _______2b c(3)c -a _______c -b(4)-a |c |_______-b |c |4、大学城熙街新开了一家大型进口超市,开业第一天,超市分别推出三款纸巾:洁柔体验装、洁柔超值装、妮飘进口装进行促销活动,纸巾只能按包装整袋出售,每款纸巾的单价为整数,其中妮飘进口装的促销单价是其余两款纸巾促销单价和的4倍,同时妮飘进口装的促销单价大于40元且不超过60元,当天三款纸巾的销售数量之比为3:1:1第二天,超市对三款纸巾恢复原价,洁柔体验装比其促销价上涨50%,洁柔超值装的价格是其促销价的53,而妮飘进口装的价格在其第一天的基础上增加了14,第二天洁柔体验装与妮飘进口装的销量之比为4:3,洁柔超值装的销量比第一天的销量减少了20%.超市结算发现,第一天的销售总额比第二天洁柔体验装和妮飘进口装的销售总额之和多767元,第一天三款纸巾的总销量与第二天三款纸巾的总销量之差大于96件且小于120件,这两天妮飘进口装的总销售额为_______元.5、不等式组:3561162x x x x <+⎧⎪+-⎨≥⎪⎩,写出其整数解的和_____. 三、解答题(5小题,每小题10分,共计50分)1、若(m -2)23m x --2≥7是关于x 的一元一次不等式,求m 的值. 2、(1)解方程组:2523517x y x y +=⎧⎨-=⎩ (2)解不等式组()20 2131x x x +>⎧⎨+≥-⎩ 3、关于x 的方程6422x a x a +-=+的解大于1,求a 的取值范围.4、解不等式3x ﹣1≤x +3,并把解在数轴上表示出来.5、某学校计划购买若干台电脑,现在从两家商场了解到同一型号的电脑每台报价均为6000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一台按原报价收款,其余每台优惠25%;乙商场的优惠条件是:每台优惠20%.如果你是校长,你该怎么考虑,如何选择?-参考答案-一、单选题1、A【分析】根据不等式的性质,逐项判断即可求解.【详解】解:A、由a<b,c<0得到:a+c<b+0,即a+c<b,故本选项符合题意.B、当a=1,b=2,c=﹣3时,不等式a﹣c>b﹣c不成立,故本选项不符合题意.C、由a<b,c<0得到:ac+1>bc+1,故本选项不符合题意.D、由于c﹣2<﹣2,所以a(c﹣2)>b(c﹣2),故本选项不符合题意.故选:A【点睛】本题主要考查了不等式的性质,熟练掌握不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.2、B【分析】求出不等式的解集,然后找出其中最大的整数即可.【详解】x-<,解:270x<,277x<,2则符合条件的最大整数为:3,故选:B.【点睛】本题题考查了求不等式的整数解,能够正确得出不等式的解集是解本题的关键.3、D【分析】由一次函数y=(m-2)x+m2-3的图象与y轴交于点M(0,6),利用一次函数图象上点的坐标特征即可得出关于m的方程,解之即可得出m的值,由y的值随着x的值的增大而减小,利用一次函数的性质可得出m-2<0,解之即可得出m<2,进而可得出m=-3.【详解】解:∵一次函数y=(m-2)x+m2-3的图象与y轴交于点M(0,6),∴m2-3=6,即m2=9,解得:m=-3或m=3.又∵y的值随着x的值的增大而减小,∴m-2<0,∴m<2,∴m=-3.故选:D.【点睛】本题考查了一次函数图象上点的坐标特征以及一次函数的性质,利用一次函数图象上点的坐标特征及一次函数的性质,找出关于m的方程及一元一次不等式是解题的关键.4、D【分析】根据“同大取大,同小取小,大小小大取中间,大大小小无解”即可求出a 的取值范围,然后根据a 的取值范围解答即可.【详解】解:∵关于x 的不等式组3x x a ≤⎧⎨>⎩有解, ∴a <3,∴a 的取值可能是0、1或2,不可能是3.故选D .【点睛】本题考查了由不等式组的解集情况求参数,不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.5、C【分析】根据不等式的基本性质逐项判断即可.【详解】解:A :∵m <n ,∴﹣2m >﹣2n ,∴不符合题意;B :∵m <n , ∴33m n <, ∴不符合题意;C :∵m <n ,∴﹣m >﹣n ,∴1﹣m >1﹣n ,∴符合题意;D : m <n ,当10m n =-=,时,m 2>n 2, ∴不符合题意;故选:C .【点睛】本题主要考查了不等式的基本性质,熟练掌握不等式的3条基本性质是解题关键.6、A【分析】先根据新运算的定义和3✬4=2将m 用n 表示出来,再代入5✬8>2可得一个关于n 的一元一次不等式,解不等式即可得.【详解】解:由题意得:342m n +=, 解得243n m -=, 由5✬8>2得:582m n +>, 将243n m -=代入582m n +>得:5(24)823n n -+>, 解得1n >-,故选:A .【点睛】本题考查了一元一次不等式的应用,理解新运算的定义是解题关键.7、D【分析】根据不等式的基本性质对各选项进行逐一分析即可.【详解】解:A .∵m >n ,∴m +4>n +4,故该选项正确,不符合题意;B .∵m >n ,∴44m n -<-,故该选项正确,不符合题意;C .∵m >n , ∴44m n >,故该选项正确,不符合题意; D .∵m >n ,∴44m n ->-,故该选项错误,符合题意;故选:D .【点睛】本题考查不等式的基本性质.掌握不等式的基本性质“1.不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;2.不等式两边都乘(或除以)同一个正数,不等号的方向不变;3.不等式两边都乘(或除以)同一个负数,不等号的方向改变.”是解答本题的关键.8、C【分析】根据不等式的性质即可求出答案.【详解】解:A 、∵a >b ,∴−2021a <−2021b ,故A 错误;B、∵a>b,∴2021a>2021b,故B错误;C、∵a>b,∴a﹣2021>b﹣2021,故C正确;D、∵a>b,∴2021﹣a<2021﹣b,故D错误;故选:D.【点睛】本题考查不等式,解题的关键是熟练运用不等式的性质,本题属于基础题型.9、B【分析】表示出不等式组的解集,由不等式至少有四个整数解确定出a的值,再由分式方程的解为非负数以及分式有意义的条件求出满足题意整数a的值,进而求出之和.【详解】解:32222210y yy a--⎧+>⎪⎪⎨-⎪≤⎪⎩①②,解不等式①得:2y>-,解不等式②得:y a≤∴不等式组的解集为:1yy a>-⎧⎨≤⎩,∵由不等式组至少有3个整数解,∴2a≥,即整数a=2,3,4,5,…,∵()223x a -+=,∴243x a -+= 解得:72a x , ∵方程()223x a -+=的解为非负数,∴702a -≥, ∴7a ≤∴得到符合条件的整数a 为3,4,5,6,7,之和为25.故选B .【点睛】此题考查了解一元一次方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.10、A【分析】由题意直接依据不等式的基本性质对各个选项进行分析判断即可.【详解】解:A .∵a >b ,∴﹣2a <﹣2b ,故本选项符合题意;B .a >b ,当m >0时,am >bm ,故本选项不符合题意;C .∵a >b ,∴a ﹣3>b ﹣3,故本选项不符合题意;D .∵a >b ,∴33a b >, ∴1133ab +>+,故本选项不符合题意;故选:A .【点睛】本题考查不等式的基本性质,注意掌握不等式的基本性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.二、填空题1、ax +b >0或ax +b <0 y =ax +b 自变量【分析】根据一次函数图象与一元一次不等式的关系解答.【详解】解:任何一个以x 为未知数的一元一次不等式都可以变形为ax +b >0或ax +b <0 (a ≠0)的形式,所以解一元一次不等式相当于在某个一次函数y =ax +b 的值大于0或小于0时,求自变量的取值范围. 故答案为:ax +b >0或ax +b <0;y =ax +b ;自变量.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y =kx +b (k ≠0)的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y =kx +b (k ≠0)在x 轴上(或下)方部分所有的点的横坐标所构成的集合.2、13【分析】解关于x 的不等式组,由不等式组整数解的个数求出a 的范围,再从6个数中找到同时满足以上两个条件的情况,从而利用概率公式求解可得.【详解】解:解不等式组12321x ax⎧->⎪⎨⎪-+≤⎩,得:12a<x≤2,∵不等式组只有3个整数解,∴不等式组的整数解为2、1、0,则-1≤12a<0,即-2≤a<0∴在所列的六个数字中,同时满足以上两个条件的只有-2,-1,∴只有三个整数解的概率是21 = 63故答案为:13.【点睛】题主要考查的是解一元一次不等式组的解集和概率的知识,解题的关键是熟练掌握解一元一次不等式组的能力及概率公式的应用.3、>><<【分析】(1)根据不等式的性质:不等式两边同时加上一个数,不等号不变号,即可得;(2)根据不等式的性质:不等式两边同时除以一个正数,不等号不变号,即可得;(3)根据不等式的性质:不等式两边同时乘以一个负数,改变不等式的符号,再根据不等式两边同时加上一个数,不等号不变号,即可得;(4)根据不等式的性质:不等式两边同时乘以一个负数,改变不等式的符号,再根据不等式两边同时乘以一个正数,不等号不变号,即可得.【详解】解:(1)∵a b>,∴a a b a +>+,即:2a b a >+;(2)∵a b >,20c >, ∴22a b c c >; (3)∵a b >,∴a b -<-,∴c a c b -<-;(4)∵a b >,∴a b -<-,0c >, ∴a c b c -<-;故答案为:(1)>;(2)>;(3)<;(4)<.【点睛】题目主要考查不等式的基本性质,熟练掌握不等式的性质并综合运用是解题关键.4、14960【分析】设洁柔体验装的促销价为x 元,销售量为a 包,洁柔超值装的促销价为y 元,销售量为b 包,妮飘进口装的促销价为z 元,销售量为c 包,第二天,洁柔体验装的原价为: (150%)x +,销售量为1a 包,洁柔超值装的原价为: 53y ,销售量为1b 包,妮飘进口装的原价为: 1(1)4z +,销售量为 1c 包,根据第一天的销售总额比第二天洁柔体验装和妮飘进口装的销售总额之和多767元,可得()()175767x y c c +-=,进而可得 1755913x y c c +=⎧⎨-=⎩,x y 为整数,即可求得x y +,根据第一天三款纸巾的总销量与第二天三款纸巾的总销量之差大于96件且小于120件,解得 5135482828c <<,由 121753c c ,都是整数,则 5135482828c <<能被 3和5整除的数即能被15整除,即可求得c ,则这两天妮飘进口装的总销售额为11(1)4zc z c ++,即 ()()965x y c +-,代入数值求解即可. 【详解】解:设洁柔体验装的促销价为x 元,销售量为a 包,洁柔超值装的促销价为y 元,销售量为b 包,妮飘进口装的促销价为z 元,销售量为c 包,()44060::3:1:1z x y z a b c ⎧=+⎪<≤⎨⎪=⎩1015x y ∴<+≤,33a b c ==, 则35a b c c c c c ++=++=第二天,洁柔体验装的原价为:(150%)x +,销售量为1a 包,洁柔超值装的原价为:53y ,销售量为1b 包,妮飘进口装的原价为:1(1)4z +,销售量为1c 包, 11:=4:3a c ,即1143a c = ()1120%b b =-4=5b 4=5c 则11111144743535a b c c c c c c ++=++=+ 第一天的销售总额比第二天洁柔体验装和妮飘进口装的销售总额之和多767元∴()111150%17674ax by cz x a z c ⎡⎤⎛⎫++-+++= ⎪⎢⎥⎝⎭⎣⎦()()3(344)75ax by cz c x y z c x y x y c x y ++=++=+++=+()111150%14x a z c ⎛⎫+++ ⎪⎝⎭ 1151.54()4xa x y c =+⨯+1111.555xa xc yc =++111345523x c xc yc =⨯++ 1175xc yc =+()175x y c =+∴()111150%17674ax by cz x a z c ⎡⎤⎛⎫++-+++= ⎪⎢⎥⎝⎭⎣⎦即1(75)(75)c x y c x y +-+767=即()()175767x y c c +-=7671359=⨯1755913x y c c +=⎧∴⎨-=⎩或 1751359x y c c +=⎧⎨-=⎩ 1015x y <+≤505575x y ∴<+≤7550x y ∴+>1755913x y c c +=⎧∴⎨-=⎩ 5975x y -∴=,x y 为整数,解得29x y =⎧⎨=⎩或 72x y =⎧⎨=⎩洁柔体验装的原价为:(150%)x + 1.5x =是整数,则7x ≠,洁柔超值装的原价为:53y 是整数则2y ≠ ∴ 29x y =⎧⎨=⎩4()44z x y ∴=+=第一天三款纸巾的总销量与第二天三款纸巾的总销量之差大于96件且小于120件,∴()()11196120a b c a b c ≤++-++≤113c c -=1c c ∴>()()111a b c a b c ++-++=117421753553c c c c c ⎛⎫-+=-⎪⎝⎭ ∴217633591(13)5315153c c c ⎛⎫--=-+ ⎪⎝⎭2891153c =+ 即289196120153c <+< 解得5135482828c <<121753c c ,都是整数,则5135482828c <<能被3和5整除的数即能被15整除 ∴45c =11(1)4zc z c ++=()()11554444zc zc x y c x y c +=+++ ()()145x y c c =++()()4513x y c c =++-⎡⎤⎣⎦()()965x y c =+-44=⨯()94565⨯-14960=故答案为:14960【点睛】本题考查了二元一次方程,一元一次不等式组求整数解,理清题中数据关系是解题的关键. 5、0【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,即可求出整数解,最后相加即可.【详解】 解:3561162x x x x <+⎧⎪⎨+-≥⎪⎩①②,解不等式①,得3x >-;解不等式②,得2x ≤.∴不等式组的解集为32x -<≤,∴不等式组的整数解分别为-2、-1、0、1、2,∴不等式组的整数解的和为:210120--+++=.故答案为:0.【点睛】本题考查求不等式组的整数解.正确的求出不等式组中每一个不等式的解集是解答本题的关键.三、解答题1、m =-2【分析】由题意可知:m2-3=1,m-2≠0,即可解答.【详解】解∵不等式(m-2) 23mx- -2≥7是关于x的一元一次不等式,∴m2-3=1,m-2≠0,解得m=-2当m=-2时,不等式是关于x的一元一次不等式【点睛】此题考查了一元一次不等式的定义,熟练掌握一元一次不等式的定义是解本题的关键.2、(1)43xy=⎧⎨=⎩;(2)﹣2﹤x≤3.【分析】(1)方程运用加减消元法求解即可;(2)分别求出每个不等式的解集,再取它们的公共部分即可【详解】解:(1)2523 517x yx y+=⎧⎨-=⎩①②①+②×5得:27x=23+17×5,解得:x=4,将x=4代入②中,得:20﹣y=17,解得:y=3,∴原方程组的解为43xy=⎧⎨=⎩.(2)202(1)31xx x+>⎧⎨+≥-⎩①②,解:解①得:x﹥﹣2,解②得:x≤3,∴不等式组的解集为:﹣2﹤x≤3【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.3、a>0【分析】先解方程得出x=44a+,根据方程的解大于1得出关于a的不等式,解之即可.【详解】解:解不等式6x+a−4=2x+2a,得x=44a+,根据题意,得:44a+>1,解得a>0.【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.4、x≤2;数轴表示见解析.【分析】按移项、合并同类项、系数化为1的步骤求得不等式的解集,然后在数轴上表示出来即可.【详解】解:313x x -≤+,移项,得331x x -≤+,合并同类项,得24x ≤,系数化为1,得x ≤2,把解集在数轴上表示如图所示:【点睛】本题考查了解一元一次不等式,在数轴上表示不等式的解集,熟练掌握解一元一次不等式的基本步骤以及在数轴上表示解集的方法是解题的关键.5、当购买少于5台电脑时,学校选择乙商场购买更优惠;当购买5台电脑时,学校选择甲、乙两商场购买一样优惠;当购买多于5台电脑时,学校选择甲商场购买更优惠.【分析】设学校购买x 台电脑,在甲商场购买花费为1y ,在乙商场购买花费为2y ,根据题意可得甲乙两种购买方式得函数解析式,分三种情况讨论:当12y y >时;当12y y =时;当12y y <时;分别进行计算得出自变量的取值范围即可得出在什么情况下选择哪种方案更优惠.【详解】解:设学校购买x 台电脑,在甲商场购买花费为1y ,在乙商场购买花费为2y ,则根据题意可得:()()1600016000125%45001500y x x =+⨯⨯=+--(x 为正整数);()2·6000120%4800y x x =⨯=-(x 为正整数);当12y y >时,学校选择乙商场购买更优惠,即450015004800x x +>,解得5x <,即15x <<;当12y y =时,学校选择甲、乙两商场购买一样优惠,即450015004800x x +=,解得5x =;当12y y <时,学校选择甲商场购买更优惠,即450015004800x x +<,解得5x >.∴当购买数量少于5台电脑时,学校选择乙商场购买更优惠;当购买5台电脑时,学校选择甲、乙两商场购买一样优惠;当购买数量多于5台电脑时,学校选择甲商场购买更优惠.【点睛】题目主要考查一次函数应用中的方案选择,理解题意,列出相应函数解析式,求解不等式是解题关键.。

初二数学一元一次不等式与一元一次方程一次函数试题

初二数学一元一次不等式与一元一次方程一次函数试题

初二数学一元一次不等式与一元一次方程一次函数试题1.已知函数y=8x-11,要使y>0,那么x应取 ( )A.x>B.x<C.x>0D.x<0【答案】A【解析】由题意知,要使y>0,则8x-11>0,解不等式即可.函数y=8x-11,要使y>0,则8x-11>0,解得x>,故选A.【考点】本题考查的是一元一次不等式与一次函数点评:根据函数值的正负,把本题转化为不等式的问题,是解决本题的关键.2.已知一次函数y=kx+b的图像,如图所示,当x<0时,y的取值范围是()A.y>0B.y<0C.-2<y<0D.y<-2【答案】D【解析】通过观察图象得到x<0时,图象在y轴的左边,即可得到对应的y的取值范围.当x<0时,图象在y轴的左边,所以对应的y的取值范围为y<-2,故选D.【考点】本题考查了一次函数的图象点评:解答本题的关键是熟记x<0时,图象在y轴的左边,x>0时,图象在y轴的右边.3.已知y1=x-5,y2=2x+1.当y1>y2时,x的取值范围是().A.x>5B.x<C.x<-6D.x>-6【答案】C【解析】由题意得到x-5>2x+1,解不等式即可.∵y1>y2,∴x-5>2x+1,解得x<-6.故选C.【考点】本题考查的是一元一次不等式与一次函数点评:把比较函数值的大小问题,转化为不等式的问题,是解本题的关键.4.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论①k<0;②a>0;③当x<3 时,y1<y2中,正确的个数是()A.0B.1C.2D.3【答案】B【解析】根据y1=kx+b和y2=x+a的图象可知:k<0,a<0,所以当x<3时,相应的x的值,y1图象均高于y2的图象.∵y1=kx+b的函数值随x的增大而减小,∴k<0;∵y2=x+a的图象与y轴交于负半轴,∴a<0;当x<3时,相应的x的值,y1图象均高于y2的图象,∴y1>y2.故选B.【考点】本题考查了一次函数的性质点评:准确识图并熟练掌握一次函数的性质是解题的关键.本题的难点在于根据函数图象的走势和与y轴的交点来判断各个函数k,b的值.5.若一次函数y=(m-1)x-m+4的图象与y轴的交点在x轴的上方,则m的取值范围是________.【答案】m<4且m≠1【解析】根据一次函数的图象的性质知,一次函数y=(m-1)x-m+4的图象与y轴的交点在x轴的上方.则应有-m+4>0,求解即可.一次函数y=(m-1)x-m+4中,令x=0,解得:y=-m+4,与y轴的交点在x轴的上方,则有-m+4>0,解得:m<4,又m-1≠0,即m≠1,则m的取值范围是m<4且m≠1.【考点】本题考查的是一元一次不等式与一次函数点评:正确求出函数与y轴的交点,转化为解不等式的问题是解决本题的关键.同时熟记系数k 不能为0.6.当自变量x时,函数y=5x+4的值大于0;当x时,函数y=5x+4的值小于0.【答案】x>-,x<-【解析】函数y=5x+4的值大于0,则5x+4>0;函数y=5x+4的值小于0,则5x+4<0;分别求出两个不等式的解集,即可得出所求的自变量的取值范围.函数y=5x+4的值大于0,则5x+4>0,解得x>-,函数y=5x+4的值小于0,则5x+4<0,解得x<-.【考点】本题考查的是一元一次不等式与一次函数点评:根据函数值的正负,把本题转化为不等式的问题,是解决本题的关键.7.已知2x-y=0,且x-5>y,则x的取值范围是________.【答案】x<-5【解析】由2x-y=0,得y=2x,把y代入x-5>y求解即可.由于2x-y=0,则y=2x,∴x-5>y就是x-5>2x,解得x<-5,则x的取值范围是x<-5.【考点】本题考查的是一元一次不等式与一次函数点评:把2x-y=0,且x-5>y转化为关于x的不等式,是解决本题的关键.8.如图,已知函数y=3x+b和y=ax-3的图象交于点P(-2,-5),则根据图象可得不等式3x +b>ax-3的解集是_______________【答案】x>-2【解析】根据一次函数的图象和两函数的交点坐标即可得出答案.∵函数y=3x+b和y=ax-3的图象交于点P(-2,-5),则根据图象可得不等式3x+b>ax-3的解集是x>-2.【考点】本题考查的是一元一次不等式与一次函数点评:根据函数图象在上方的函数值比函数图象在下方的函数值大,利用数形结合求解是解题的关键.9.如图,一次函数y1=k1x+b1与y2=k2x+b2的图象相交于A(3,2),则不等式(k2-k1)x+b2-b1>0的解集为__________.【答案】x<3【解析】将所求不等式进行变形,可得:(k2-k1)x+b2-b1>0,k2x+b2-(k1x+b1)>0,即y2>y1;然后根据图象观察,得出符合条件的x的取值范围.由图知:x<3时,y1<y2,即y2-y1>0;∴当x<3时,k2x+b2-(k1x+b1)>0;化简得:(k2-k1)x+b2-b1>0;因此所求不等式的解集为:x<3.【考点】一元一次不等式与一次函数点评:解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.10.已知关于x的不等式kx-2>0(k≠0)的解集是x<-3,则直线y=-kx+2与x•轴的交点是__________.【答案】(-3,0)【解析】由不等式kx-2>0(k≠0)的解集是x<-3得到k的取值,求得直线y=-kx+2的解析式,再根据一次函数的图象的性质得到直线与x轴的交点坐标.解关于x的不等式kx-2>0,移项得到;kx>2,而不等式kx-2>0(k≠0)的解集是:x<-3,,解得,∴直线y=-kx+2的解析式是,在这个式子中令y=0,解得:x=-3,因而直线y=-kx+2与x轴的交点是(-3,0).【考点】本题考查的是一元一次不等式与一次函数点评:正确求出k的值是解决本题的关键,同时熟记x轴上的点的纵坐标为0.。

人教版七年级数学下册第九章第二节一元一次不等式考试习题(含答案) (25)

人教版七年级数学下册第九章第二节一元一次不等式考试习题(含答案) (25)

人教版七年级数学下册第九章第二节一元一次不等式考试题(含答案)(阅读理解)1989年5月20日全国启动了“中国学生营养日”活动,并确定每年5月20日为中国学生营养日,至今已29个春秋.某校社会实践小组在这天开展活动,调查快餐营养情况.他们从食品安全监督部门获取了一份快餐的信息.根据信息,解答下列问题.信息:①.快餐的成分:蛋白质、脂肪、矿物质、碳水化合物;②.快餐总质量为400克;③.脂肪所占的百分比为5%;④.所含蛋白质质量是矿物质质量的4倍.(问题解决)(1)求这份快餐中所含脂肪质量;(2)若碳水化合物占快餐总质量的40%,求这份快餐所含蛋白质的质量;(3)若这份快餐中蛋白质和碳水化合物所占百分比的和不高于85%,求其中所含碳水化合物质量的最大值.【答案】(1)20(2)176(3)180【解析】分析:(1)利用质量分数求脂肪质量.(2) 设所含矿物质的质量为x克,列方程解应用题.(3) 设所含矿物质的质量,所含蛋白质的质量,根据题意列不等式,求最大值.详解:(1)400×5℅=20(克),即这份快餐中所含脂肪质量为20克.(2)设所含矿物质的质量为x 克,由题意得x +4x +20+400×40℅=400,解得x =44.所以4x =176,即这份快餐所含蛋白质的质量176克.(3)解法一:设所含矿物质的质量为y 克,则所含蛋白质的质量为4y 克,碳水化合物的质量为(400-20-5y )克.由题意得,4y +(380-5y )≤400×85℅.解得y ≥40,所以380-5y ≤180,故所含碳水化合物质量的最大值为180克.解法二:设所含矿物质的质量为y 克,则由题意得y ≥(1-5℅-85℅) ×400.解得y ≥40.所以4y ≥160,故400×85℅-4y ≤180,即所含碳水化合物质量的最大值为180克.点睛:应用题中,这几个式子变形一定要非常熟练(1)100%%a ⨯=部分总体, (2)%a 部分=总体, (3)部分=总体%a ⨯. 一般计算同理:a abc c b ÷=⇔=,a b c ⇒=,a b c=,(b 0,c 0,,,a b c ≠≠可以是数也可以是式子).需熟练掌握.42.按要求解下列不等式(组)(1)x 32x -< (2)()1x 6x 323+-≥ (3)解不等式组:3150728x x x -≥⎧⎨-<⎩并在数轴上表示不等式的解集. (4)解不等式组: 21218x x +>⎧⎨-≤⎩并求其最大整数解. 【答案】(1)x>-3 (2) 1x 3≥(3) -3<x ≤1(4)1 【解析】分析:(1)(2)直接解不等式.(3)(4)分别解不等式,再取公共部分,就是不等式的解集.(1)x>-3 (2) 1x 3≥ ((1)、(2)过程略) (3)解不等式①得x ≤1解不等式②得,所以,原不等式组的解集为在同一条数轴上表示出①②得解集为:(4)解:解不等式3x ﹣1<x+3,得:x <2,解不等式2(2x ﹣5)≤5x-6,得:x ≥﹣4 ,则不等式组的解集为:﹣4≤x <2,所以不等式组的最大整数解为1.点睛:①若两个未知数的解集在数轴上表示同向左,就取在左边的未知数的解集为不等式组的解集,此乃“同小取小”,如图所示:②若两个未知数的解集在数轴上表示同向右,就取在右边的未知数的解集为不等式组的解集,此乃“同大取大”,如图所示:③若两个未知数的解集在数轴上相交,就取它们之间的值为不等式组的解集.若x表示不等式的解集,此时一般表示为a<x<b,或a≤x≤b.此乃“相交取中”,如图所示:④若两个未知数的解集在数轴上向背,那么不等式组的解集就是空集,不等式组无解.此乃“向背取空”如图所示:43.平房区政府为了“安全,清激、美丽”河道,计划对何家沟平房区河段进行改造,现有甲乙两个工程队参加改造施工,受条件阻制,每天只能由一个工程队。

一元一次不等式与一元一次不等式组典型例题

一元一次不等式与一元一次不等式组典型例题

一元一次不等式与一元一次不等式组的解法知识点回顾1.不等式用不等号连接起来的式子叫做不等式.常见的不等号有五种: “≠”、 “>” 、 “<” 、 “≥”、 “≤”. 2.不等式的解与解集不等式的解:使不等式成立的未知数的值,叫做不等式的解.不等式的解集:一个含有未知数的不等式的解的全体,叫做不等式的解集.不等式的解集可以在数轴上直观的表示出来,具体表示方法是先确定边界点。

解集包含边界点,是实心圆点;不包含边界点,则是空心圆圈;再确定方向:大向右,小向左。

说明:不等式的解与一元一次方程的解是有区别的,不等式的解是不确定的,是一个范围,而一元一次方程的解则是一个具体的数值. 3.不等式的基本性质(重点)(1)不等式的两边都加上(或减去)同一个数或同一个整式.不等号的方向不变.如果a b >,那么__a c b c ±±(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.如果,0a b c >>,那么__ac bc (或___a b c c) (3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.如果a b >,0c <那么__ac bc (或___a b c c) 说明:常见不等式所表示的基本语言与含义还有:①若a -b >0,则a 大于b ;②若a -b <0,则a 小于b ;③若a -b ≥0,则a 不小于b ;④若a -b≤0,则a 不大于b ;⑤若ab >0或0a b>,则a 、b 同号;⑥若ab <0或0ab <,则a 、b 异号。

任意两个实数a 、b 的大小关系:①a -b>O ⇔a>b ;②a -b=O ⇔a=b ;③a-b<O ⇔a<b .不等号具有方向性,其左右两边不能随意交换:但a <b 可转换为b >a ,c ≥d 可转换为d ≤c 。

4.一元一次不等式(重点)只含有一个未知数,且未知数的次数是1.系数不等于0的不等式叫做一元一次不等式. 注:其标准形式:ax+b <0或ax+b ≤0,ax+b >0或ax+b ≥0(a ≠0). 5.解一元一次不等式的一般步骤(重难点)(1)去分母;(2)去括号;(3)移项; (4)合并同类项;(5)化系数为1.例:131321≤---x x 解不等式:6.一元一次不等式组含有相同未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组.说明:判断一个不等式组是一元一次不等式组需满足两个条件:①组成不等式组的每一个不等式必须是一元一次不等式,且未知数相同;②不等式组中不等式的个数至少是2个,也就是说,可以是2个、3个、4个或更多.7.一元一次不等式组的解集一元一次不等式组中,几个不等式解集的公共部分.叫做这个一元一次不等式组的解集.一元一次不等式组的解集通常利用数轴来确定.9.解一元一次不等式组的步骤(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些解集的公共部分,即这个不等式组的解集.(三)常见题型归纳和经典例题讲解 1.常见题型分类(加粗体例题需要作答) 1.下列不等式中,是一元一次不等式的是( ) A.x1+1>2 B.x 2>9 C.2x +y ≤5D.21(x -3)<0 2.若51)2(12>--+m x m 是关于x 的一元一次不等式,则该不等式的解集为 .a 与6的和小于5; x 与2的差小于-1;1.a ,b 两个实数在数轴上的对应点如图所示:用“<”或“>”号填空:a __________b ; |a |__________|b |; a +b __________0 a -b __________0; a +b __________a -b ; ab __________a .2.已知实数a 、b 在数轴上对应的点如图所示,则下列式子正确的是( )A 、ab >0B 、a b >C 、a -b >0D 、a +b >01.与2x <6不同解的不等式是( )A.2x +1<7B.4x <12C.-4x >-12D.-2x <-6): (这类试题在中考中很多见)1.(2010湖北随州)解不等式组110334(1)1x x +⎧-⎪⎨⎪--<⎩≥ 2.(2010福建宁德)解不等式215312+--x x ≤1,并把它的解集在数轴上表示出来. 3.(20XX 年绵阳市)12(1)1,1.23x x x -->⎧⎪⎨-≥⎪⎩此类试题易错知识辨析(1)解字母系数的不等式时要讨论字母系数的正、负情况. 如不等式ax b >(或ax b <)(0a ≠)的形式的解集:当0a >时,b x a >(或b x a<) 当0a <时,bx a <(或b x a >)当0a <时,b x a <(或b x a>) 4 若不等式(a +1)x >a +1的解集是x <1,则a 必满足( ).(A)a <0 (B)a >-1 (C)a <-1 (D)a <15 若m >5,试用m 表示出不等式(5-m )x >1-m 的解集______.6.如果不等式(m -2)x >2-m 的解集是x <-1,则有( ) A.m >2 B.m <2 C.m =2 D.m ≠27.如果不等式(a -3)x <b 的解集是x <3-a b,那么a 的取值范围是________. 1.不等式3(x -2)≤x +4的非负整数解有几个.( ) A.4 B.5 C.6D.无数个2.不等式4x -41141+<x 的最大的整数解为( ) A.1B.0C.-1D.不存在|x |<37的整数解是________.不等式|x |<1的解集是________.已知ax <2a (a ≠0)是关于x 的不等式,那么它的解集是( )A.x <2B.x >-2C.当a >0时,x <2D.当a >0时,x <2;当a <0时,x >21. 若x +y >x -y ,y -x >y ,那么(1)x +y >0,(2)y -x <0,(3)xy ≤0,(4)yx<0中,正确结论的序号为________。

第8章 一元一次不等式 华东师大版七年级数学下册测试题(一)及答案

第8章 一元一次不等式 华东师大版七年级数学下册测试题(一)及答案

第8章 一元一次不等式测试题(一)一、选择题(每小题3分,共30分)1. 语句“x 的18与x 的和不超过5”可以表示为( ) A.8x +x≤5 B. 8x +x≥5 C. 85x +≤5 D. 8x +x=5 2. 已知a <b ,下列不等式中正确的是( ) A.3a >3b B. a -3<b -3 C. a +3>b +3 D. -3a <-3b3. 不等式2x-6>0的解集在数轴上表示正确的是( )A B C D4. 如果关于x 的不等式 (a+2020)x >a+2020的解集为x <1,那么a 的取值范围是( ) A. a >-2020B. a <2020C. a >2020D. a <-20205. 如图1是小芳同学解不等式的过程,其中错误步骤共有( ) A. 1个B. 2个C. 3个D. 4个图16. 某次知识竞赛共有30道题,每一题答对得5分,答错或不答都扣3分,小亮得分要超过70分,他至少要答对 多少道题?如果设小亮答对了x 道题,根据题意列式得( )A. 5x -3(30+x )≥70B. 5x +3(30-x )≤70C. 5x +3(30-x )>70D. 5x -3(30-x )>707. 已知点M (5-m ,m +3)在第一象限,则下列关系式正确的是( ) A. 3<m <5B. -3<m <5C. -5<m <3D. -5<m <-38. (2019•恩施州)已知关于x 的不等式组2113320x x a x -⎧⎪⎨⎪-⎩--≤<,恰有3个整数解,则a 的取值范围为( ) A. 1<a ≤2B. 1<a <2C. 1≤a <2D. 1≤a ≤29.下面是创意机器人大观园中十种类型机器人套装的价目表:类型①②③④⑤⑥⑦⑧⑨⑩价格/元180013501200800675516360300280188“六一”儿童节期间,小明在这里看好了类型④机器人套装,爸爸说:“今天有促销活动,九折优惠呢!你可以再选1套,但两套最终不超过1200元. ”那么小明再买第二套机器人可选择价格最贵的类型是()A. ④B. ⑤C. ⑥D. ⑧10. 如图2是李强同学设计的一个计算机程序,规定从“输入一个值x”到判断“结果是否≥15”为一次运行过程. 如果程序运行两次就停止,那么x的取值范围是()A. x≥3B. 3≤x<7C. 3<x≤7D. x≤7图2二、填空题(每小题3分,共18分)11. 若(m-1)x|m|+3>0是关于x的一元一次不等式,则m的值为.12. 若4x-32的值不小于3x+5,则满足条件的x的最小整数是.13. 若关于x,y的二元一次方程组32133x y mx y-=+⎧⎨-+=⎩,的解满足x-y>0,则m的取值范围为.14. 若不等式组2x ab x-⎧⎨-⎩>,>的解集是0<x<2,则(a+b)2019=.15. 小明说不等式a>2a永远不会成立,因为如果在这个不等式两边同时除以a,就会出现1>2这样的错误结论.小明的说法(填写正确或不正确);如果正确请说明理由,不正确请举一个反例说明:.16. 小菲受《乌鸦喝水》故事的启发,利用量筒和体积相同的小球进行了如下操作,请根据图3中给出的信息,量筒中至少放入个小球时有水溢出.图3三、解答题(共52分)17. (每小题4分,共8分)解下列不等式(组):(1)3(x+2)-9≥-2(x-1);(2)12x+-1<x-233x+.18. (6分)放学时,小刚问小东今天数学作业是哪几题,小东回答说:“不等式组231213(1)8xxx x-⎧+≥+⎪⎨⎪--<-⎩,的正整数解就是今天数学作业的题号. ”聪明的你知道今天的数学作业是哪几题吗?19.(8分)已知关于y的方程4y+2m+1=2y+5的解是负数.(1)求m的取值范围;(2)当m取最小整数时,解关于x的不等式:x-1>1 2mx+.20. (8分)如果一元一次方程的解是一元一次不等式组的解,则称该一元一次方程为该不等式组的相伴方程.(1)在方程①3x-2=0,②2x+1=0,③x-(3x+1)=-5中,其中是不等式组25312x xx x-+-⎧⎨--+⎩>,>的相伴方程的是_____________. (填序号)(2)写出不等式组213133xx x-⎧⎨+-+⎩<,>的一个相伴方程,使得它的解是整数:.(3)若方程x=1,x=2都是关于x的不等式组22x x mx m-⎧⎨-⎩<,≤的相伴方程,求m的取值范围.21. (10分)已知x,y满足3x-4y=5.(1)用含x的式子表示y为;(2)若y满足-1<y≤2,求x的取值范围;(3)若x,y满足x+2y=a,且x>2y,求a的取值范围.22. (12分)某乡镇风力资源丰富,为了实现“低碳环保”,该乡镇决定开展风力发电,打算购买10台风力发电机组. 现有A,B两种型号机组,其中A型机组价格为12万元/台,月均发电量为2.4万kW・h;B型机组价格为10万元/台,月均发电量为2万kW・h. 经预算该乡镇用于购买风力发电机组的资金不高于105万元.(1)请你为该乡镇设计几种购买方案;(2)如果该乡镇每月用电量不低于20.4万KW・h月,为了节省资金,应选择哪种购买方案?附加题(共20分,不计入总分)1. (8分)我们知道,适合二元一次方程的一对未知数的值叫做这个二元一次方程的一个解. 同样地,适合二元一次不等式的一对未知数的值叫做这个二元一次不等式的一个解. 对于二元一次不等式2x+3y≤10,它的正整数解有()A. 4个B. 5个C. 6个D. 无数个2. (12分)阅读下列材料:我们知道|x|的几何意义是在数轴上数x对应的点与原点的距离,即|x|=|x-0|,也就是说,|x1-x2|表示在数轴上数x1 与数x2对应的点之间的距离.例1 解方程|x|=2,因为在数轴上到原点的距离为2的点对应的数为±2,所以方程|x|=2的解为x=±2.例2 解不等式|x-1|>2,在数轴上找出|x-1|=2的解(如图),因为在数轴上到1对应的点的距离等于2的点对应的数为-1或3,所以方程|x-1|=2的解为x=-1或x=3,因此不等式|x-1|>2的解集为x<-1或x>3.参考阅读材料,解答下列问题:(1)方程|x+3|=5的解为;(2)解不等式:|x-2|≤3;(3)解不等式:|x-4|+|x+2|>8.第8章一元一次不等式测试题(一)一、1. A 2. B 3. A 4. D 5. C 6. D 7. B8. A9. C10. B二、11. -1 12. 713. m>1 14. 015. 不正确当a=-2时,2a=-4,-2>-4,所以a>2a 16. 10三、17. 解:(1)去括号,得3x+6-9≥-2x+2.移项,得3x+2x≥2-6+9.合并同类项,得5x≥5.系数化为1,得x≥1.(2)去分母,得3(x+1)-6<6x-2(2x+3). 去括号,得3x+3-6<6x-4x-6.移项、合并同类项,得x<-3.18. 解:231213(1)8xxx x-⎧+≥+⎪⎨⎪--<-⎩②.,①由①,得x≤2;由②,得x>-2.所以不等式组的解集为-2<x≤2,其正整数解为1,2,所以今天的数学作业是第1,2题.19. 解:(1)解方程4y+2m+1=2y+5,得y=2-m.根据题意,得2-m<0,解得m>2.(2)因为m>2时,m的最小整数解为3,所以将m=3代入x-1>12mx+,得x-1>312x+,解得x<-3.20. 解:(1)③(2)答案不唯一,如x-1=0(3)不等式组的解集为m<x≤m+2.因为x=1,x=2是不等式组的解,所以122mm+⎧⎨⎩<,≥,解得0≤m<1.21. 解:(1)354xy-=(2)根据题意,得-1<354x-≤2.解得13<x≤133.(3)解方程组3452x yx y a-=⎧⎨+=⎩,,得25535.10axay+⎧=⎪⎪⎨-⎪=⎪⎩,因为x>2y,所以255a+>2×3510a-,解得a<10.22. 解:(1)设购买A型发电机x台,则购买B型发电机(10-x)台. 根据题意,得12x+10(10-x)≤105.解得x≤2.5.因为x为非负整数,所以x的值为0,1或2.有三种购买方案:方案一:购买A型发电机0台,B型发电机10台;方案二:购买A型发电机1台,B型发电机9台;方案三:购买A型发电机2台,B型发电机8台.(2)设购买A型发电机x台,则购买B型发电机(10-x)台.根据题意,得2.4x+2(10-x)≥20.4.解得x≥1.由(1),得x≤2.5,且x为非负整数,所以x的值为1或2.当购买A型发电机1台,B型发电机9台时,所需费用为12+10×9=102(万元);当购买A型发电机2台,B型发电机8台时,所需费用为12×2+10×8=104(万元).因为102<104,所以为了节省资金,选择购买A型发电机1台,B型发电机9台这种方案.附加题1. B 提示:由2x+3y≤10,得x≤1032y-=5-32y. 因为x,y是正整数,所以5-32y>0,0<y<103,即y只能取1,2,3,当y=1时,0<x≤3.5,正整数解为11xy=⎧⎨=⎩,,21xy=⎧⎨=⎩,,31xy=⎧⎨=⎩,;当y=2时,0<x≤2,正整数解为12xy=⎧⎨=⎩,,22xy=⎧⎨=⎩,;,当y=3时,0<x≤12,无正整数解;综上,它的正整数解有5个.2. 解:(1)x=2或x=-8(2)因为在数轴上到2对应的点的距离等于3的点对应的数为-1或5,所以方程|x-2|=3的解为x=-1或x=5,所以不等式|x-2|≤3的解集为-1≤x≤5.(3)方程|x-4|+|x+2|=8的解就是在数轴上到4和-2对应的点的距离之和等于8的点对应的x的值.因为在数轴上4和-2对应点的距离为6,所以满足方程的x的对应点在4的右边或-2的左边.若x对应的点在4的右边,可得x=5;若x对应的点在-2的左边,可得x=-3,所以方程|x-4|+|x+2|=8的解是x=5或x=-3.所以不等式|x-4|+|x+2|>8的解集为x>5或x<-3.。

人教版七年级数学下册第九章第二节一元一次不等式复习试题(含答案) (65)

人教版七年级数学下册第九章第二节一元一次不等式复习试题(含答案) (65)

人教版七年级数学下册第九章第二节一元一次不等式习题(含答案)学校为美化环境,计划购进菊花和绿萝共30盆,菊花每盆16元,绿萝每盆8元,若购买菊花和绿萝的总费用不超过400元,则最多可以购买菊花多少盆?【答案】最多可以购买菊花20盆.【解析】【分析】设需要购买绿萝x 盆,则需要购买菊花(30-x )盆,根据“购买菊花和绿萝的总费用不超过400元”列出不等式并解答.【详解】解:设需要购买菊花x 盆,则需要购买绿萝()30x -盆,则()16830400x x +-≤,解之得:20x ≤.答:最多可以购买菊花20盆 .【点睛】考查了一元一次不等式的应用,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的数量关系.42.重百超市对出售A 、B 两种商品开展春节促销活动,活动方案有如下两种:(同一种商品不可同时参与两种活动)(1)某单位购买A商品50件,B商品40件,共花费9600元,试求a 的值;(2)在(1)的条件下,若某单位购买A商品x件(x为正整数),购买B 商品的件数比A商品件数的2倍还多一件,请问该单位该如何选择才能获得最大优惠?请说明理由.【答案】(1)a=10;(2)当0<x≤33时,选择方案一得最大优惠;当x >33时,采用方案二更加优惠,理由见解析【解析】【分析】(1)根据题意列出50×120×0.7+40×150×(1-a%)=9600方程解答即可;(2)根据题意列出两种方案的需付款,进而比较即可.【详解】解:(1)由题意有,50×120×0.7+40×150×(1﹣a%)=9600整理得,42+60(1﹣a%)=96则(1﹣a%)=0.9,所以a=10(2)根据题意得:x+2x+1=100得:x=33当总数不足101时,即只能即0<x≤33时,选择方案一得最大优惠;当总数达到或超过101,即x>33时,方案一需付款:120×0.7x+150×0.9(2x+1)=84x+270x+135=354x+135方案二需付款:[120x+150(2x+1)]×0.8=336x+120∵(354x+135)﹣(336x+120)=18x+15>0∴选方案二优惠更大综上所述:当0<x≤33时,选择方案一得最大优惠;当x>33时,采用方案二更加优惠,此时需付款336x+120(元)【点睛】本题考查一元一次方程和一元一次不等式的应用,解题的关键是明确题意,列出正确的方程或不等式,找出所求问题需要的条件.43.(1)计算:22(9)3---÷+(2)解不等式:2(5)4x->x>.【答案】(1)4;(2)7【解析】【分析】(1)先计算乘方、除法、二次根式化简,再将结果相加即可;(2)按照去括号、移项、系数化为1的步骤即可求出解集.【详解】(1)原式13344=++=4; (2)2(5)4x ->,2104x -> ,214x >,7x >.【点睛】此题考查计算能力,(1)考查实数的计算,按照计算顺序正确计算即可;(2)考查解不等式,根据计算顺序正确计算即可.44.m 是什么自然数时,关于x 的方程()18-82m x x m +=+的解不小于零【答案】m 的值为0,1,2.【解析】【分析】先将m 看成已知,然后解关于x的一元一次方程,然后根据解不小于零,x 的值,列出不等式并求解,最后结合m为自然数的条件即可解答.【详解】解:188()2m x x m -+=+188820m x x m ----=10188x m m -=-++10189x m =-18910m x -= 由题意得x 0≥即189010m -≥1890m -≥2m ≤∵m 为自然数∴m 的值为0,1,2【点睛】本题考查了解一元一次不等式和一元一次方程,弄清题意、列出关于m 的不等式是解答本题的关键.45.解不等式21232x x +--<,并求出非正整数解. 【答案】5x >-,非正整数解为-4,-3,-2,-1,0.【解析】【分析】先求出不等式的解集,然后确定不等式的非正整数解即可.【详解】解:2(2)3(1)12x x +--<243312x x +-+<5x >-非正整数解为-4,-3,-2,-1,0.【点睛】本题考查了解一元一次不等式和不等式的整数解,根据不等式的解集确定非正整数解是解本题的关键.46.某书店最近有,A B 两本散文集比较畅销,近两周的销售情况是:第一周A 销售数量是15 本,B 销售数量是10本,销售总价是230元;第二周A 销售数量是20本,B销售数量是10本,销售总价是280元.()1求,A B散文集的销售单价,()2若某班准备用不超过407元钱购买,A B散文集共45本,求最多能买多少本A散文集?【答案】(1)A散文集的销售单价为每本10元,B散文集的销售单价为每本8元;(2)最多能够买23本A散文集.【解析】【分析】(1)根据题意,列出二元一次方程组求解即可;(2)根据题意,列出不等式,求解即可.【详解】()1设A散文集的销售单价为每本x元,B散文集的销售单价为每本y元根据题意,得1510230 2010280x yx y+=⎧⎨+=⎩解得108 xy=⎧⎨=⎩答:A散文集的销售单价为每本10元,B散文集的销售单价为每本8元()2设能够买a本A散文集,得:()10845407a a+-≤,解得:23.5a≤,则最多能够买23本A散文集【点睛】此题主要考查二元一次方程组以及不等式的实际应用,解题关键是理解题意,列出关系式.47.某服装店因为换季更新,采购了一批新服装,有A、B两种款式共100件,花费了6600元,已知A种款式单价是80元/件,B种款式的单价是40元/件(1)求两种款式的服装各采购了多少件?(2)如果另一个服装店也想要采购这两种款式的服装共60件,且采购服装的费用不超过3300元,那么A种款式的服装最多能采购多少件?【答案】(1)A种款式的服装采购了65件,B种款式的服装采购了35件;(2)A种款式的服装最多能采购22件.【解析】【分析】(1)设A种款式的服装采购了x件,则B种款式的服装采购了(100﹣x)件,根据总价=单价×数量结合花费了6600元,即可得出关于x的一元一次方程,解之即可得出结论;(2)设A种款式的服装采购了m件,则B种款式的服装采购了(60﹣m)件,根据总价=单价×数量结合总费用不超过3300元,即可得出关于m的一元一次不等式,解之取其中最大的整数值即可得出结论.【详解】解:(1)设A种款式的服装采购了x件,则B种款式的服装采购了(100﹣x)件,依题意,得:80x+40(100﹣x)=6600,解得:x=65,∴100﹣x=35.答:A种款式的服装采购了65件,B种款式的服装采购了35件.(2)设A种款式的服装采购了m件,则B种款式的服装采购了(60﹣m)件,依题意,得:80m+40(60﹣m)≤3300,解得:m≤221.2∵m为正整数,∴m的最大值为22.答:A种款式的服装最多能采购22件.【点睛】本题考查的是一元一次方程以及不等式在实际生活中的应用,难度不高,认真审题,列出方程是解决本题的关键.48.某制笔企业欲将n件产品运往A,B,C三地销售,要求运往C地的件数是运往A地件数的2倍,各地的运费如图所示设安排x件产品运往A地,(1)当n=200时,①根据信息填表:②若运往B地的件数不多于运往C地的件数,求该企业最少需要多少运费?(2)若总运费为5800元,求n的最小值.【答案】(1)①见解析;②企业运费最少需要3840元;(2)n有最小值为221【解析】【分析】(1)①根据题意,直接把产品数量和运费填入表格,即可;②由“运往B 地的件数不多于运往C地的件数”,列出关于x的不等式,求出x的范围,再根据总运费的表达式,求出答案即可;(2)根据题意,列出关于n和x的等式,得到n与x关系式,结合n﹣3x ≥0,求出x的范围,进而即可求解.【详解】(1)①根据信息填表,如下:②由题意,得:200﹣3x≤2x,解得:x≥40,总运费=56x+1600,∵56>0,∴总运费随x增大而增大,∴x=40,该企业运费最少,最少总运费=56×40+1600=3840(元),答:企业运费最少需要3840元;(2)由题意,得:30x+8(n﹣3x)+50x=5800,整理,得n=725﹣7x,∵n﹣3x≥0,∴725﹣7x﹣3x≥0,∴﹣10x≥﹣725,∴x≤72.5,又∵x≥0,∴0≤x≤72.5且x为正整数,∵n随x的增大而减少,∴当x=72时,n有最小值为221.【点睛】本题主要考查一元一次不等式的实际应用,找出不等量关系,列出一元一次不等式,是解题的关键.49.某水果生产基地销售苹果,提供两种购买方式供客户选择方式1:若客户缴纳1200元会费加盟为生产基地合作单位,则苹果成交价为3元/千克.方式2:若客户购买数量达到或超过1500千克,则成交价为3.5元/千克;若客户购买数量不足1500千克,则成交价为4元/千克.设客户购买苹果数量为x (千克),所需费用为y (元).(1)若客户按方式1购买,请写出y (元)与x (千克)之间的函数表达式;(备注:按方式购买苹果所需费用=生产基地合作单位会费+苹果成交总价)(2)如果购买数量超过1500千克,请说明客户选择哪种购买方式更省钱;(3)若客户甲采用方式1购买,客户乙采用方式2购买,甲、乙共购买苹果5000千克,总费用共计18000元,则客户甲购买了多少千克苹果?【答案】(1)31200y x =+;(2)当2400x >时,客户按方式1购买更省钱;当2400x =时,按两种方式购买花钱一样多;当15002400x <<时,客户按方式2购买更省钱;(3)客户甲购买了1400千克苹果.【解析】【分析】(1)根据按方式1购买苹果所需费用=生产基地合作单位会费+苹果成交总价,即可得到答案;(2)设按方式1购买时所需费用记作1y 元,按方式2购买时所需费用记作2y 元,分别求出12y y <,12y y =,12y y >的解,即可得到答案;(3)设客户甲购买了x 千克苹果,则乙客户购买了(5000-x)千克苹果,分两种情况,分别列出方程,即可求解.【详解】(1)由题意得:31200y x =+;(2)设按方式1购买时所需费用记作1y 元,按方式2购买时所需费用记作2y元,当1500x >时,2 3.5y x =,若12y y <,则31200 3.5x x +<,解得2400x >,若12y y =,则31200 3.5x x +=,解得2400x =,若12y y >,则31200 3.5x x +>,解得2400x <.答:当2400x >时,客户按方式1购买更省钱;当2400x =时,按两种方式购买花钱一样多;当15002400x <<时,客户按方式2购买更省钱;(3)设客户甲购买了x 千克苹果,①若50001500x -<,即3500x >,由题意得:(31200)4(5000)18000x x ++-=,解得:3200x =,经检验,不合题意,舍去;②若50001500x -≥,即3500x ≤,由题意得:(31200) 3.5(5000)18000x x ++-=,解得:1400x =,经检验,符合题意.答:客户甲购买了1400千克苹果.【点睛】本题主要考查了一次函数和一元一次不等式的实际应用,根据数量关系,列出一次函数解析式和一元一次不等式,是解题的关键.50.今年受猪瘟影响,从年初开始,猪肉价格不断走高.消费者王阿姨发现,9月20日当天猪肉的价格是年初的1.5倍;9月20日当天,王阿姨购买4千克猪肉比年初多花了48元.(1)那么9月20日当天猪肉的价格为每千克多少元?(2)9月20日,按照(1)中的猪肉价格,某售卖点共卖出1000千克猪肉.9月21日,政府决定投入储备猪肉并规定其销售价在9月20日的基础上下调0.7%a 出售.该焦卖点按规定价出售一批储备猪肉和非储备猪肉,该售卖点的非储备猪肉仍按9月20日的价格出售,9月21日当天的两种猪肉总销量比9月20日增加了20%,且储备猪肉的销量占总销量的56,两种猪肉销售的总金额比9月20日至少提高了1%10a ,求a 的最大值. 【答案】(1)9月20日当天猪肉的价格为每千克36元;(2)a 的最大值为25.【解析】【分析】(1)设年初猪肉的价格为每千克x 元,则9月20日当天猪肉的价格为每千克1.5x 元,根据题意列出方程,求解即可;(2)根据题意,分别得出9月20日销售金额、储备猪肉每千克的销售价、9月21日当天的两种猪肉总销量、储备猪肉的销量和销售金额、非储备猪肉的销量和销售金额,列出总金额的不等式,解得即可.【详解】(1)设年初猪肉的价格为每千克x 元,则9月20日当天猪肉的价格为每千克1.5x 元,根据题意,得1.54448x x ⨯-=解得24x =经检验24x =是方程的解,∴1.5241.536x =⨯=答:9月20日当天猪肉的价格为每千克36元;(2)由题意,得9月20日销售金额为:36×1000=36000元 储备猪肉每千克的销售价:36(1-0.7%a )9月21日当天的两种猪肉总销量为:1000(1+20%)储备猪肉的销量为:1000(1+20%)×56储备猪肉销售金额为:36(1-0.7%a )×1000(1+20%)×56非储备猪肉的销量为:1000(1+20%)×16非储备猪肉销售金额为:36×1000(1+20%)×169月21日两种猪肉销售的总金额为:36(1-0.7%a )×1000(1+20%)×56+36×1000(1+20%)×16≥36000(1+1%10a ) 解得%25%a ≤故a 的最大值为25.【点睛】此题主要考查一元一次方程和不等式的实际应用,解题关键是理解题意,列出关系式.。

一元一次不等式测试题

一元一次不等式测试题

第2课时一元一次不等式的应用基础题知识点1 一元一次不等式的简单应用1.(台湾中考)如图为某餐厅的价目表,今日每份餐点价格均为价目表价格的九折.若恂恂今日在此餐厅点了橙汁鸡丁饭后想再点第二份餐点,且两份餐点的总花费不超过200元,则她的第二份餐点最多有几种选择?(C)A.5 .7C.9 D.112.(西宁中考)某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元.这批电话手表至少有(C)A.103块B.104块C.105块D.106块3.小明准备用22元钱买笔和笔记本,已知每支笔3元,每本笔记本2元,他买了3本笔记本后,用剩余的钱来买笔,那么他最多可以买(C)A.3支笔B.4支笔C.5支笔D.6支笔4.(黄冈校级期末)有10名菜农,每人可种茄子3亩或辣椒2亩,已知茄子每亩可收入0.5万元,辣椒每亩可收入0.8万元,要使总收入不低于15.6万元,则最多只能安排4人种茄子.5.(株洲中考)为了举行班级晚会,孔明准备去商店购买20个乒乓球做道具,并买一些乒乓球拍作奖品,已知乒乓球每个1.5元,球拍每个22元,如果购买金额不超过200元,且买的球拍尽可能多,那么孔明应该买多少个球拍?解:设孔明应该买x个球拍,根据题意,得1.5×20+22x≤200,解得x≤7811.由于x取整数,故x的最大值为7.答:孔明应该买7个球拍.知识点2 利用一元一次不等式设计方案6.某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案.方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?(2)请帮小敏算一算,所购买商品的价格在什么范围内时,采用方案一更合算?解:(1)120×0.95=114(元).答:实际应支付114元.(2)设购买商品的价格为x元,由题意得0.8x+168<0.95x,解得x>1 120.答:当购买商品的价格超过1 120元时,采用方案一更合算.7.为响应市政府“创建国家森林城市”的号召,某小区计划购进A、B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元.(1)若购进A 、B 两种树苗刚好用去1 220元,问购进A 、B 两种树苗各多少棵?(2)若购买B 种树苗的数量少于A 种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用. 解:(1)设购进A 种树苗x 棵,则购进B 种树苗(17-x)棵,根据题意,得 80x +60(17-x)=1 220, 解得x =10. ∴17-x =7.答:购进A 种树苗10棵,B 种树苗7棵.(2)设购进A 种树苗y 棵,则购进B 种树苗(17-y)棵,根据题意,得 17-y <y ,解得y >812.购进A 、B 两种树苗所需费用为80y +60(17-y)=20y +1 020,则费用最省需y 取最小整数9,此时17-y =8,这时所需费用为20×9+1 020=1 200(元). 答:费用最省方案为:购进A 种树苗9棵,B 种树苗8棵.这时所需费用为1 200元. 中档题8.(绵阳中考)某商品的标价比成本价高m%,根据市场需要,该商品需降价n%出售,为了不亏本,n 应满足(B )A .n ≤mB .n ≤100m100+mC .n ≤m 100+n D .n ≤100m100-m9.(雅安中考)“一方有难,八方支援”,雅安芦山4·20地震后,某单位为一中学捐赠了一批新桌椅,学校组织初一年级200名学生搬桌椅.规定一人一次搬两把椅子,两人一次搬一张桌子,每人限搬一次,最多可搬桌椅(一桌一椅为一套)的套数为(C )A .60B .70C .80D .9010.(南京中考)铁路部门规定旅客免费携带行李箱的长、宽、高之和不超过160 cm ,某厂家生产符合该规定的行李箱,已知行李箱的高为30 cm ,长与宽的比为3∶2,则该行李箱的长的最大值为78cm .11.(菏泽中考改编)2016年的5月20日是第16个学生营养日,我市某校社会实践小组在这天开展活动,调查快餐营养情况.他们从食品安全监督部门获取了一份快餐的信息(如图一矩形内).若这份快餐中所含的蛋白质与碳水化合物的质量之和不高于这份快餐总质量的70%,求这份快餐最多含有多少克的蛋白质?信息1.快餐成分:蛋白质、脂肪、碳水化合物和其他. 2.快餐总质量为400克.3.碳水化合物质量是蛋白质质量的4倍.解:设这份快餐含有x 克的蛋白质,则这份快餐含有4x 克的碳水化合物, 根据题意,得x +4x ≤400×70%, 解得x ≤56.答:这份快餐最多含有56克的蛋白质.12.某蔬菜加工厂承担出口蔬菜加工任务,有一批蔬菜产品需要装入某一规格的纸箱.供应这种纸箱有两种方案可供选择:方案一:从纸箱厂定制购买,每个纸箱价格为4元;方案二:由蔬菜加工厂租赁机器自己加工制作这种纸箱,机器租赁费按生产纸箱数收取.工厂需要一次性投入机器安装等费用16 000元,每加工一个纸箱还需成本费2.4元.假设你是决策者,你认为应该选择哪种方案?并说明理由.解:设纸箱的个数为x 个,则当两种方案费用一样时,4x =2.4x +16 000,解得x =10 000; 当方案一费用低时,4x <2.4x +16 000,解得x <10 000; 当方案二费用低时,4x >2.4x +16 000,解得x >10 000.答:当需要纸箱的个数为10 000时,两种方案都可以;当需要纸箱的个数小于10 000时,方案一便宜;当需要纸箱的个数大于10 000时,方案二便宜.综合题13.某体育用品商场采购员要到厂家批发购进篮球和排球共100个,付款总额不得超过11 815元.已知厂家两种球的批发价和商场两种球的零售价如下表,试解答下列问题:品名厂家批发价(元/个) 商场零售价(元/个)篮球130 160排球100 120(1)该采购员最多可购进篮球多少个?(2)若该商场把这100个球全部以零售价售出,为使商场获得的利润不低于2 580元,则采购员至少要购篮球多少个?该商场最多可盈利多少元?解:(1)设采购员最多可购进篮球x个,则排球是(100-x)个,依题意,得130x+100(100-x)≤11 815.解得x≤60.5.∵x是整数,∴x最大取60.答:该采购员最多可购进篮球60个.(2)设篮球x个,则排球是(100-x)个,则(160-130)x+(120-100)(100-x)≥2 580.解得x≥58.又由第(1)问得x≤60.5,∴正整数x的取值为58,59,60.即采购员至少要购篮球58个.∵篮球的利润大于排球的利润,∴这100个球中,当篮球最多时,商场可盈利最多,故篮球60个,排球40个,此时商场可盈利(160-130)×60+(120-100)×40=1 800+800=2 600(元),即该商场最多可盈利2 600元.人教版七年级上册期末测试卷一、选择题(每题3分,共30分)1.某天的最高气温是8℃,最低气温是-3℃,那么这天的温差是()A.-3℃B.8℃C.-8℃D.11℃2.下列立体图形中,从上面看能得到正方形的是()3.下列方程是一元一次方程的是()A.x-y=6 B.x-2=xC.x2+3x=1 D.1+x=34.今年某市约有108 000名应届初中毕业生参加中考,108 000用科学记数法表示为() A.0.108×106B.10.8×104C.1.08×106D.1.08×1055.下列计算正确的是()A .3x 2-x 2=3B .3a 2+2a 3=5a 5C .3+x =3xD .-0.25ab +14ba =06.已知ax =ay ,下列各式中一定成立的是( ) A .x =yB .ax +1=ay -1C .ax =-ayD .3-ax =3-ay7.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为( ) A .100元 B .105元 C .110元D .120元8.如果一个角的余角是50°,那么这个角的补角的度数是( ) A .130° B .40° C .90°D .140°9.如图,C ,D 是线段AB 上的两点,点E 是AC 的中点,点F 是BD 的中点,EF =m ,CD =n ,则AB 的长是( )A .m -nB .m +nC .2m -nD .2m +n10.下列结论:①若a +b +c =0,且abc ≠0,则a +c 2b =-12;②若a +b +c =0,且a ≠0,则x =1一定是方程ax +b +c =0的解; ③若a +b +c =0,且abc ≠0,则abc >0; ④若|a |>|b |,则a -ba +b >0.其中正确的结论是( ) A .①②③ B .①②④ C .②③④D .①②③④ 二、填空题(每题3分,共24分)11.-⎪⎪⎪⎪⎪⎪-23的相反数是________,-15的倒数的绝对值是________. 12.若-13xy 3与2x m -2y n +5是同类项,则n m =________.13.若关于x 的方程2x +a =1与方程3x -1=2x +2的解相同,则a 的值为________. 14.一个角的余角为70°28′47″,那么这个角等于____________.15.下列说法:①两点确定一条直线;②两点之间,线段最短;③若∠AOC=12∠AOB,则射线OC是∠AOB的平分线;④连接两点之间的线段叫做这两点间的距离;⑤学校在小明家南偏东25°方向上,则小明家在学校北偏西25°方向上,其中正确的有________个.16.在某月的月历上,用一个正方形圈出2×2个数,若所圈4个数的和为44,则这4个日期中左上角的日期数值为________.17.规定一种新运算:a△b=a·b-2a-b+1,如3△4=3×4-2×3-4+1=3.请比较大小:(-3)△4________4△(-3)(填“>”“=”或“<”).18.如图是小明用火柴棒搭的1条“金鱼”、2条“金鱼”、3条“金鱼”……则搭n条“金鱼”需要火柴棒__________根.三、解答题(19,20题每题8分,21~23题每题6分,26题12分,其余每题10分,共66分) 19.计算:(1)-4+2×|-3|-(-5);(2)-3×(-4)+(-2)3÷(-2)2-(-1)2 018.20.解方程:(1)4-3(2-x)=5x;(2)x-22-1=x+13-x+86.21.先化简,再求值:2(x2y+xy)-3(x2y-xy)-4x2y,其中x=1,y=-1.22.有理数b在数轴上对应点的位置如图所示,试化简|1-3b|+2|2+b|-|3b-2|.23.如图①是一些小正方体所搭立体图形从上面看得到的图形,方格中的数字表示该位置的小正方体的个数.请在如图②所示的方格纸中分别画出这个立体图形从正面看和从左面看得到的图形.24.已知点O是直线AB上的一点,∠COE=90°,OF是∠AOE的平分线.(1)当点C,E,F在直线AB的同侧时(如图①所示),试说明∠BOE=2∠COF.(2)当点C与点E,F在直线AB的两侧时(如图②所示),(1)中的结论是否仍然成立?请给出你的结论,并说明理由.25.为鼓励居民节约用电,某市电力公司规定了电费分段计算的方法:每月用电不超过100度,按每度电0.50元计算;每月用电超过100度,超出部分按每度电0.65元计算.设每月用电x度.(1)当0≤x≤100时,电费为________元;当x>100时,电费为____________元.(用含x的整式表示)(2)某用户为了解日用电量,记录了9月前几天的电表读数.该用户9月的电费约为多少元?(3)该用户采取了节电措施后,10月平均每度电费0.55元,那么该用户10月用电多少度?26.如图,O为数轴的原点,A,B为数轴上的两点,点A表示的数为-30,点B表示的数为100.(1)A,B两点间的距离是________.(2)若点C也是数轴上的点,点C到点B的距离是点C到原点O的距离的3倍,求点C表示的数.(3)若电子蚂蚁P从点B出发,以6个单位长度/s的速度向左运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向左运动,设两只电子蚂蚁同时运动到了数轴上的点D,那么点D表示的数是多少?(4)若电子蚂蚁P从点B出发,以8个单位长度/s的速度向右运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向右运动.设数轴上的点N到原点O的距离等于点P到原点O 的距离的一半(点N在原点右侧),有下面两个结论:①ON+AQ的值不变;②ON-AQ的值不变,请判断哪个结论正确,并求出正确结论的值.(第26题)答案一、1.D 2.A 3.D 4.D 5.D 6.D7.A8.D9.C10.B二、11.23;512.-813.-514.19°31′13″15.316.717.>18.(6n+2)三、19.解:(1)原式=-4+2×3+5=-4+6+5=7;(2)原式=12+(-8)÷4-1=12-2-1=9.20.解:(1)去括号,得4-6+3x=5x.移项、合并同类项,得-2x=2.系数化为1,得x=-1.(2)去分母,得3(x-2)-6=2(x+1)-(x+8).去括号,得3x-6-6=2x+2-x-8.移项、合并同类项,得2x=6.系数化为1,得x=3.21.解:原式=2x2y+2xy-3x2y+3xy-4x2y=(2x2y-3x2y-4x2y)+(2xy+3xy)=-5x2y+5xy.当x=1,y=-1时,原式=-5x2y+5xy=-5×12×(-1)+5×1×(-1)=5-5=0.22.解:由题图可知-3<b<-2.所以1-3b>0,2+b<0,3b-2<0.所以原式=1-3b-2(2+b)+(3b-2)=1-3b-4-2b+3b-2=-2b-5.23.解:如图所示.24.解:(1)设∠COF=α,则∠EOF=90°-α.因为OF是∠AOE的平分线,所以∠AOE=2∠EOF=2(90°-α)=180°-2α.所以∠BOE=180°-∠AOE=180°-(180°-2α)=2α.所以∠BOE =2∠COF . (2)∠BOE =2∠COF 仍成立. 理由:设∠AOC =β, 则∠AOE =90°-β,又因为OF 是∠AOE 的平分线, 所以∠AOF =90°-β2.所以∠BOE =180°-∠AOE =180°-(90°-β)=90°+β,∠COF =∠AOF +∠AOC =90°-β2+β=12(90°+β).所以∠BOE =2∠COF . 25.解:(1)0.5x ;(0.65x -15) (2)(165-123)÷6×30=210(度), 210×0.65-15=121.5(元).答:该用户9月的电费约为121.5元. (3)设10月的用电量为a 度. 根据题意,得0.65a -15=0.55a , 解得a =150.答:该用户10月用电150度. 26.解:(1)130(2)若点C 在原点右边,则点C 表示的数为100÷(3+1)=25; 若点C 在原点左边,则点C 表示的数为-[100÷(3-1)]=-50. 故点C 表示的数为-50或25.(3)设从出发到同时运动到点D 经过的时间为t s ,则6t -4t =130, 解得t =65.65×4=260,260+30=290, 所以点D 表示的数为-290. (4)ON -AQ 的值不变. 设运动时间为m s , 则PO =100+8m ,AQ =4m . 由题意知N 为PO 的中点, 得ON =12PO =50+4m ,所以ON +AQ =50+4m +4m =50+8m , ON -AQ =50+4m -4m =50.故ON-AQ的值不变,这个值为50.。

七年级数学竞赛题目

七年级数学竞赛题目

七年级数学竞赛题目一、有理数运算类。

1. 计算:(-2)+3-(-5)- 解析:- 根据有理数的加减法法则,减去一个负数等于加上它的相反数。

- 所以(-2)+3 - (-5)=(-2)+3+5。

- 先计算(-2)+3 = 1,再计算1 + 5=6。

2. 计算:-1^4-(1 - 0.5)×(1)/(3)×[2-(-3)^2]- 解析:- 先计算指数运算,-1^4=-1,(-3)^2 = 9。

- 再计算括号内的式子,1-0.5 = 0.5=(1)/(2)。

- 然后计算乘法,(1)/(2)×(1)/(3)=(1)/(6),2 - 9=-7。

- 接着计算(1)/(6)×(-7)=-(7)/(6)。

- 最后计算-1-(-(7)/(6))=-1+(7)/(6)=(1)/(6)。

二、整式运算类。

3. 化简:3a + 2b-5a - b- 解析:- 合并同类项,对于a的同类项3a和-5a,3a-5a=-2a。

- 对于b的同类项2b和-b,2b - b=b。

- 所以化简结果为-2a + b。

4. 先化简,再求值:(2x^2 - 3xy+4y^2)-3(x^2 - xy+(5)/(3)y^2),其中x = - 2,y = 1- 解析:- 先去括号:- 原式=2x^2-3xy + 4y^2-3x^2+3xy - 5y^2。

- 再合并同类项:- (2x^2-3x^2)+(-3xy + 3xy)+(4y^2-5y^2)=-x^2 - y^2。

- 当x=-2,y = 1时,代入可得:- -(-2)^2-1^2=-4 - 1=-5。

三、一元一次方程类。

5. 解方程:3x+5 = 2x - 1- 解析:- 移项,将含x的项移到等号左边,常数项移到等号右边,得到3x-2x=-1 - 5。

- 合并同类项得x=-6。

6. 某班有学生45人会下象棋或围棋,会下象棋的人数比会下围棋的多5人,两种棋都会下的有20人,问会下围棋的有多少人?设会下围棋的有x人,则可列方程为?- 解析:- 会下象棋的人数为x + 5人。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次方程、方程组与不等式、不等式组1.〖2006年陕西中考〗一件标价为600元的上衣,按8折销售仍可获利20元,设这件上衣的成本价为x元,根据题意,下面所列的方程正确的是()A.600×0.8一x=20 B.600×8一x=20C.600×0.8=x一20 D.600×8=x一20【答案】A【解析】根据利润=售价一成本,可知A正确.【考点】本题考察了一元方程在成本问题中的应用.2.〖第2届希望杯〗①若a=0,b≠0,方程ax=b无解;②若a=0,b≠0,不等式ax>b无解.③若a≠0,方程ax=b有唯一解x=;④若a≠0,不等式ax>b的解为x>.则(A)①、②、③、④都正确.(B)①、③正确,②、④不正确.(C)①、③不正确,②、④正确.(D)①、②、③、④都不正确.[答案]选(B)[解析]若a=0,b=-1,0x>-l,可见②有解;若a≠0,如a=-1,-x>b x<-b,④说法不正确.只有①,③是正确的.选(B).【考点】本题是对含字母系数的一元一次方程(不等式)解的情况的考察.3. 〖希望杯培训〗不等式21232x xx+-->+的解集是_________【答案】x<1【考点】本题主要考察学生解不等式的能力,注意去分母时,每一项的变化.4. 〖第6届希望杯〗某同学到集贸市场买苹果,买每千克3元的苹果用去所带钱数的一半,而其余的钱都买了每千克2元的苹果,则该同学所买的苹果的平均价格是每千克()元.(A)2.6.(B)2.5.(C)2.4.(D)2.3.【答案】选(C)【解析】5. 〖希望杯培训〗关于x 的不等式组⎩⎨⎧x +152>x -32x +23<x +a只有4个整数解,则a 的取值范围是( ).A . -5≤a ≤-143B . -5≤a <-143C . -5<a ≤-143D . -5<a <-143【答案】C【解析】先求不等式组的解集,根据题意,进一步确定a 的范围.解不等式组⎩⎨⎧x +152>x -32x +23<x +a 得,2132<<-x a ,由不等式组有4个整数解可知这4个解应是20,19,18,17,则a 32-应在16和17之间,即162317a ≤-<,解不等式可得a 的取值范围,选C .6.〖2003年海淀中考〗某同学在A 、B 两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元. (1)求该同学看中的随身听和书包单价各是多少元?(2)某一天该同学上街,恰好赶上商家促销,超市A 所有商品打八折销售,超市B 全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的这两样物品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?【详解】 (1)设书包的单价为x 元,则随身听的单价为(4x 一8)元. 根据题意,得4x 一8+x =452.解这个方程,得x =92. 4x 一8=4×92—8=360. 即:该同学看中的随身听单价为360元,书包单价为92元. (2)在超市A 购买随身听与书包各一件需花费现金:450×80%=361.6(元) 因为361.6<400,所以可以选择超市A 购买.在超市B 可先花费现金360元购买随身听,再利用得到的90元返券,加上2元现金购买书包,总计共花费现金:360+2=362(元)因为362<400,所以也可以选择在超市B 购买. 因为362>361.6,所以在超市A 购买更省钱.【考点】本题主要考察了一次方程的应用,本题的特点是:表述复杂,解答简单,重在分析.1. 〖第 17届希望杯〗初一(2)班的同学站成一排,他们先自左向右从“1”开始报数,然后又自右向左从“1”开始报数,结果发现两次报数时,报“20”的两名同学之间(包括这两名同学)恰有15人,则全班同学共有______人. 【答案】 55或25【解析】法一: 本题是发散性题目,应该分两种情况考虑.设全班一共有x 个人,根据题意可知有两种情况:(一)、从右向左报数时,报20的同学没有到达第一遍报数为20的同学所在的位置,则有: 20201555x =++=;(二)、从右向左报数时,报20的同学超过第一遍报数为20的同学所在的位置,则有401525x =-=.法二 : 画出线段图表示出两次报数为20的点,即可得到答案.2. 〖第2届希望杯〗①若a =0,b ≠0,方程ax =b 无解. ②若a =0,b ≠0,不等式ax >b 无解. ③若a ≠0,方程ax =b 有惟一解x = ④若a ≠0,不等式ax >b 的解为x >.则(A )①、②、③、④都正确. (B )①、③正确,②、④不正确. (C )①、③不正确,②、④正确. (D )①、②、③、④都不正确. 【答案】选 (B )【解析】若a =0,b =-1,0x >-l ,可见②有解,所以结论不真.若a ≠0,如a =-1,-x >bx <-b ,④不真.只有①,③是正确的.选 (B ). 【考点】本题是对含字母系数的一元一次方程(不等式)解的情况的考察.3.素A 及52 800单位的维生素B .求三种食物所需量与成本的关系式. 【详解】设需甲、乙两种食物分别为x y ,千克,则丙需(110)x y --千克,设共需成本z 元,应有400600400(110)48400800200400(110)52800654(110)x y x y x y x y z x y x y ++--⎧⎪++--⎨⎪=++--⎩≥ ≥【考点】本题考察了列不等式组的能力,解题关键应抓住体现不等关系的关键词语.如“至少”等.4. 〖2006年威海中考〗小明和小亮共下了10盘围棋,小明胜一盘计1分,小亮胜一盘计3分.当他俩下完第9盘后,小明的得分高于小亮;等下完第10盘后,小亮的得分高于小明.他们各胜过几盘?(已知比赛中没有出现平局)【分析】此题是一道反映不等关系的应用题,抓住“当他俩下完第9盘后,小明的得分高于小亮;等下完第10盘后,小亮的得分高于小明”这样的关键语句表示不等关系;另外应当明确在比赛中,小明赢的盘数恰好等于小亮输的盘数.【详解】设下完10盘棋后,小亮胜了x 盘,根据题意得,⎩⎨⎧<-->-x x x x 310)1(310,解得25<<x 413,则不等式组的正整数解为3=x , 所以小亮胜3盘,小明胜7盘.5. 〖第7届希望杯〗在某种浓度的盐水中加入“一杯水”后,得到新盐水,它的浓度为20%,又在新盐水中加入与前述“一杯水”的质量相等的纯盐后,盐水浓度变为,那么原来盐水的浓度是 ( ) (A )23%. (B )25%. (C )30%. (D )32%. 【答案】选 (B )【解析】【考点】本题考察了含有参数(设而不求)的二元一次方程组的应用.6. 〖2006年衡阳中考〗市政公司为绿化一段沿江风光带,计划购买甲、乙两种树苗共500株,甲种树苗每株50元,乙种树苗每株80元.有关统计表明:甲、乙两种树苗的成活率分别为90%和95%.(1)若购买树苗共用了28000元,求甲、乙两种树苗各多少株? (2)若购买树苗的钱不超过34000元,应如何选购树苗?(3)若希望这批树苗的成活率不低于92%,且购买树苗的费用最低,应如何选购树苗? 【分析】:由题意可知,第一题存在等量关系,考虑用方程来解决;后两个问题存在不等关系,可用不等式来解决.【详解】(1)设购甲种树苗x 株,则乙种树苗为(500-x )株.依题意得50x +80(500—x )=28000 解之得:x =400 ∴500-x =500-400=100 即:购买甲种树苗400株,乙种树苗100株.(2)由题意得 : 50x +80(500-x )≤34000. 解之得x ≥200 即:购买甲种树苗不小于200株.(3)由题意可得90%x +95%(500—x )≥92%·500 ∴≤x 300设购买两种树苗的费用之和为y 元,则 y =50x +80(500-x )=40000-30x所以y =40000-30x ,其中y 的值随x 的增大而减小,所以x =300时y 有最小值,y =40000-30⨯300=31000.【考点】本题考察了方程与不等式知识在实际问题中的应用.1.〖2006年河北中考〗某城市2003年底已有绿化面积300公顷,经过两年绿化,绿化面积逐年增加,到2005年底增加到363公顷,设绿化面积平均每年的增长率为x ,由题意所列方程正确的是 ( )A .300(1+x )=363B .300()21x +=363 C .300(1+2x )=363 D .363()21x -=300 【答案】B【解析】 由题意知2004年底绿化面积为300(1+x )公顷,2005年底绿化面积为3002(1)x +公顷,所以列方程为300(1+x )2=363.【考点】本题是列方程类题目,将(1+x )看作整体是关键,可能导致错误的原因是对03、04、05这三年绿化面积的数量关系理解不清.2.〖第 14届希望杯〗 The admission price per child at all amusement park is0f the admissionprice per adult .If the admission prioe for 6 adults and 3 ! children is ¥276,then the admission price per adult is ( ) (admission price 入场费,门票;amusement park :游乐园)(A )¥24. (B )¥32. (C )¥36. (D )¥40. 【答案】C 【解析】【考点】本题是针对一元一次方程的应用技巧与英语阅读能力的综合考察.3.〖第5届希望杯〗一次考试共需做20个小题,做对一个得8分,做错一个减5分,不做的得0分.某学生共得13分.那么这个学生没有做的题目有______个.【答案】7【解析】4.〖第7届希望杯〗在某种浓度的盐水中加入“一杯水”后,得到新盐水,它的浓度为20%,又在新盐水中加入与前述“一杯水”质量相等的纯盐后,盐水浓度变为,那么原来盐水的浓度是()(A)23%.(B)25%.(C)30%.(D)32%.【答案】选(B)【解析】【考点】本题考察了含有参数(设而不求)的二元一次方程组的应用.5. 〖第9届希望杯〗一个布袋中装有红、黄、蓝三种颜色的大小相同的木球,红球上标有数字1,黄球上标有数字2,蓝球上标有数字3,小明从布袋中摸出10个球,它们上面所标数字的和等于21,则小明摸出的球中红球的个数最多不超过______.【答案】4【解析】【考点】本题考察了含参方程组的应用,同时考察了应用加减消元法求解方程组.6. 〖第5届希望杯〗长度相等,粗细不同的两支蜡烛,其中的一支可燃3小时.另一支可燃4小时.将这两支蜡烛同时点燃,当余下的长度中,一支是另一支的3倍时,蜡烛点燃了______小时.【答案】2 2 3【解析】【考点】本题考察了一次方程在实际问题中的应用(为便于学生理解,也可以设出蜡烛长度,以此说明设而不求的本质,加深理解).。

相关文档
最新文档