一元一次方程和不等式复习

合集下载

专题:一次函数与方程、不等式【精品】

专题:一次函数与方程、不等式【精品】
是( B )
A
B
C
D
12.若以二元一次方程x+2y-b=0的解为坐标的点(x,y)都在直线y=-0.5x+b-1
上,则常数b等于( B )
A.0.5
B.2
C.-1
D.1
知识点4 一次函数与二元一次方程组
13.如图,直线y=ax-b与直线y=mx+1交于点A(2,3),则方程组maxxyyb1
的解为( A )
解:(1)x=-0.5.
(2)x=1.
(3)x<-0.5.
(4)0<x<2.
知识点3 一次函数与二元一次方程
10.直线l是以二元一次方程8x-4y=5的解为坐标所构成的直线,则该直线不经过的
象限是( B )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
11.下面四条直线,其中直线上每个点的坐标都是二元一次方程2x-y=2的解的
2.已知方程kx+b=0的解是x=3,则函数y=kx+b的图象可能是( C )
A
B
C
D
3.已知关于x的方程mx+n=0的解为x=-3,则直线y=mx+ n与x轴的交点坐标是 (-3,0) . 4.如图所示,已知直线y=ax-b,则关于x的方程 ax-b=1的解是 x=4 .
5.如图所示是一次函数y=kx+b在平面直角坐标系
14.若关于x,y的二元一次方程组
y=kx+b y=mx+n
的解为
x=1 y=2
则一次函数y=kx+b与y=mx+n的图象的交点坐标为( A )
A.(1,2) B.(2,1) C.(2,3) D.(1,3)
15.如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(1,b).
(1)求b的值;

中考数学复习第二章方程组与不等式组讲义

中考数学复习第二章方程组与不等式组讲义

第二章 方程(组)与不等式(组)第一节 一次方程与一次方程组【考点1】一元一次方程定义:只含有 未知数,并且未知数的次数都是 。

(系数不为0)的整式方程。

形式:一般形式ax+b=0 ; 最简形式 ax=b (a ≠0) 解 :abx(a ≠0) 【提示】判断一个方程是否为一元一次方程,一定要先把方程化简以后再用定义进行判别。

解一元一次方程的一般步骤:去分母;去括号;移项(移项要变号);合并同类项;化系数为1【考点2】二元一次方程组 1.二元一次方程定义:含有 个未知数,并且含有未知数的项的次数都是 的整式方程。

一般形式: ax+by=c ,有无数组解。

2. 二元一次方程组的解法⑴代入消元法:多适用于方程组中有一个未知数的系数是 或 的情形。

⑵ :多适用于方程组的两个方程中相同未知数的系数 或互为 的情形。

【考点3】一次方程(组)的应用 1.列方程组解应用题的一般步骤:⑴审:即审清题意,分清题中的已知量、未知量; ⑵设:即设关键未知数;⑶列:即找出适当等量关系,列出方程(组); ⑷解:即解方程(组);⑸验:即检验所解答案是否正确或是否符合题意; ⑹答:即规范作答,注意单位名称。

2.列一元一次方程常见的应用题类型及关系式 ⑴ 利润率问题:利润=售价-进价 ;利润率=进价利润×100﹪ (先确定售价、进价、再计算利润率,其中打折、降价的词义应清楚)⑵ 利息问题:利息=本金×利率×期数 ;本息和=本金+利息 ;利息税=利息×税率 ; 贷款利息=贷款数额×利率×期数⑶ 工程问题:工作量=工作效率× (把全部工作量看作单位1,各部分工作量之和=1)⑷ 浓度问题:浓度=溶液质量溶质质量×100﹪⑸ 行程问题:路程=速度×时间 ① 追击问题(追击过程时间相等)② 相遇问题 (甲走的路程 乙走的路程=A 、B 两地间的路程)③ 航行问题:顺水(风)速度= +静水(风);逆水(风)速度=船速-【中考试题精编】1.练习本比水性笔的单价少2元,小刚买了5本练习本和3支水性笔正好花去14元,如果设水性笔的单价为x 元,那么下列方程正确的是( )A. 5(x-2)+3x=14B. 5(x+2)+3x=14C. 5x+3(x+2)=14D. 5x+3(x-2)=142.某班在学校组织的某场篮球比赛中,小杨和小方一共投进篮球21个,小杨比小方多投进5个。

北师大数学中考一轮综合复习 方程(组)与不等式(组)

北师大数学中考一轮综合复习  方程(组)与不等式(组)

北师大数学中考一轮综合复习 方程(组)与不等式(组)知识点1 一元一次方程1.等式及其性质 ⑴ 等式:用等号“=”来表示等量关系的式子叫等式.⑵ 性质:① 如果,那么b ±c ;② 如果,那么bc ;如果,那么bc2. 方程、一元一次方程的解、概念(1) 方程:含有未知数的等式叫做方程;使方程左右两边的值相等的未知数的值,叫做方程的解;求方程解的过程叫做解方程. 方程的解与解方程不同.(2) 一元一次方程:在整式方程中,只含有一个未知数,并且未知数的次数是1,系数不等于0的方程叫做一元一次方程;它的一般形式为ax+b=0. 3. 解一元一次方程的步骤:①去分母;②去;③移;④合并;⑤系数化为1. 4. 一元一次方程的应用:(1)“审”是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,以及它们之间的关系,寻找等量关系.(2)“设”就是设未知数,一般求什么就设什么为x ,但有时也可以间接设未知数. (3)“列”就是列方程,即列代数式表示相等关系中的各个量,列出方程,同时注意方程两边是同一类量,单位要统一.(4)“解”就是解方程,求出未知数的值.(5)“检验”就是指检验方程的解是否符合实际意义,当有不符合的解时,及时指出,舍去即可.(6)“答”就是写出答案,注意单位要写清楚.b a ==±c a b a ==ac ba =()0≠c =c a ()0≠a【典例】例1(2021秋•营口期末)解下列方程:(1);(2).例2(2020秋•潮阳区期末)已知关于x的方程2(x+1)﹣m=−m−22的解比方程5(x﹣1)﹣1=4(x﹣1)+1的解大2.(1)求第二个方程的解;(2)求m的值.例3(2020秋•蓬江区校级月考)已知关于x的方程3x﹣6(x−b3)=4x和3x+b4−1−5x8=1有相同的解,求这个解.例4(2021春•绿园区期末)先阅读下列解题过程,然后解答问题.解方程:|x﹣5|=2.解:当x﹣5≥0时,原方程可化为x﹣5=2,解得x=7;当x﹣5<0时,原方程可化为x﹣5=﹣2,解得x=3.所以原方程的解是x=7或x=3.(1)解方程:|2x+1|=7.(2)已知关于x的方程|x+3|=m﹣1.①若方程无解,则m的取值范围是;②若方程只有一个解,则m的值为;③若方程有两个解,则m的取值范围是.例5(2021秋•佳木斯期末)第五中学计划加工一批校服,现有甲、乙两个工厂都想加工这批校服,已知甲工厂每天能加工16件,乙工厂每天能加工24件,且单独加工这批服装甲工厂比乙工厂要多用20天.在加工过程中,学校需付甲工厂每天费用80元,需付乙工厂每天费用120元. (1)求这批校服共有多少件;(2)为了尽快完成这批校服,先由甲、乙两个工厂按原生产速度合作一段时间后,甲工厂停工了,而乙工厂每天的生产速度提高25%,乙工厂单独完成剩余部分,且乙工厂的全部工作时间是甲工厂工作时间的2倍还多4天,求乙工厂共加工多少天;(3)经学校研究制定如下方案,方案一:由甲工厂单独完成;方案二:由乙工厂单独完成;方案三:按(2)问的方式完成.请你通过计算帮学校选择一种省钱的加工方案.例6(2020秋•道里区期末)为满足防控新冠疫情的需要,某医务物品供应商欲购买一批疫情防护套装.现有甲、乙两个医用物品生产厂家,均标价每套防护套装80元.甲的优惠方案:购买物品一律九折;乙的优惠方案:如果超出600套,则超出的部分打八折. (1)购进多少套防护套装时,从甲生产厂家与乙生产厂家的进货价钱一样?(2)第一次购进了1000套,第二次购进的数量比第一次购进数量的2倍多100套,求医务用品供应商两次购进防护套装最少花多少钱?【随堂练习】1.(2020秋•金安区校级期中)如果关于x 的方程x−43=8−x+22的解与方程4x ﹣(3a +1)=6x +2a ﹣1的解相同,求a 的值.2.(2020秋•建湖县校级月考)已知关于x 的一元一次方程1−x−mx3=0. (1)若该方程的解为x =1,求m 的值;(2)若该方程的解为正整数,求满足条件的所有整数m 的值.3.(2021秋•鱼台县期中)先阅读下列解题过程,然后解答后面两个问题. 解方程:|x ﹣3|=2.解:当x ﹣3≥0时,原方程可化为x ﹣3=2,解得x =5; 当x ﹣3<0时,原方程可化为x ﹣3=﹣2,解得x =1. 所以原方程的解是x =5或x =1. (1)解方程:|3x ﹣2|﹣4=0. (2)解关于x 的方程:|x ﹣2|=b .4.(2021秋•牡丹江期末)某体育用品商店销售足球和篮球,其中篮球的单价比足球多30元,已知购买4个足球和3个篮球的费用相等. (1)求购买每个足球、篮球的单价分别是多少元?(2)由于“双十二”的来临,商店决定对所售商品进行促销.现有两种促销方案可供选择:方案一:买5个篮球赠一个足球. 方案二:所购买的商品均打9折.当购买6个篮球和多少个足球时,两种促销方案所花费用一致?(3)在(2)条件下,购买10个篮球和5个足球最少费用为 元.5.(2020秋•讷河市期末)某班级组织学生集体春游,已知班级总人数多于20人,其中有15名男同学,景点门票全票价为30元,对集体购票有两种优惠方案. 方案一:所有人按全票价的90%购票;方案二:前20人全票,从第21人开始每人按全票价的80%购票; (1)若共有35名同学,则选择哪种方案较省钱? (2)当女同学人数是多少时,两种方案付费一样多?知识点2 一元二次方程1.一元二次方程:在整式方程中,只含一个未知数,并且未知数的最高次数是2的方程叫做一元二次方程.一元二次方程的一般形式是)0(02≠=++a c bx ax .其中2ax 叫做二次项,bx 叫做一次项,c 叫做常数项;a 叫做二次项的系数,b 叫做一次项的系数. 2. 一元二次方程的常用解法:(1)直接开平方法:形如或的一元二次方程,就可用直接开平方的方法.(2)配方法:用配方法解一元二次方程的一般步骤是:①化二次项系数为1,即方程两边同时除以二次项系数;②移项,使方程左边为二次项和一次项,右边为常数项,③配方,即方程两边都加上一次项系数一半的平方,④化原方程为的形式,⑤如果是非负数,即,就可以用直接开平方求出方程的解.如果n <0,则原方程无解.(3)公式法:一元二次方程的求根公式 .(4)因式分解法:因式分解法的一般步骤是:①将方程的右边化为0;②将方程的左边化成两个一次因式的乘积;③令每个因式都等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解. 3. 一元二次方程根的判别式:关于x 的一元二次方程的根的判别式为=∆. (1)>0一元二次方程有两个不相等的实数根,即.(2)=0一元二次方程有两个相等的实数根,即2ba-. (3)<0一元二次方程没有实数根.4. 一元二次方程根与系数的关系)0(2≥=a a x )0()(2≥=-a a b x ()02≠=++a o c bx ax 2()x m n +=0n ≥20(0)ax bx c a ++=≠21,240)x b ac =-≥()002≠=++a c bx ax ac b 42-ac b 42-⇔()002≠=++a c bx ax =2,1x ac b 42-⇔==21x x ac b 42-⇔()002≠=++a c bx ax关于x 的一元二次方程有两根分别为,,那么 a b -,c a. 【典例】例1(2020秋•合肥期末)用适当的方法解方程 (1)2(x +2)2﹣8=0 (1)2x 2+x −12=0.例2(2021秋•潍坊期中)解下列关于x 的方程: (1)3x 2﹣54=0;(2)(x ﹣1)(x +2)=2(x +2); (3)(x ﹣1)2﹣2(x ﹣1)=8.例3 (2020秋•兰州期中)解方程(x ﹣1)2﹣5(x ﹣1)+4=0时,我们可以将x ﹣1看成一个整体,设x ﹣1=y ,则原方程可化为y 2﹣5y +4=0,解得y 1=1,y 2=4.当y =1时,即x ﹣1=1,解得x =2;当y =4时,即x ﹣1=4,解得x =5,所以原方程的解为x 1=2,x 2=5.请利用这种方法求下列方程: (1)(2x +5)2﹣(2x +5)﹣2=0; (2)32x ﹣4×3x +3=0.例4(2021秋•金乡县期中)解方程(x ﹣1)2﹣5(x ﹣1)+4=0时,我们可以将x ﹣1看成一个整体,设x ﹣1=y ,则原方程可化为y 2﹣5y +4=0,解得y 1=1,y 2=4,当y =1时,即x ﹣1=1,解得:x =2;当y =4时,即x ﹣1=4,解得:x =5,所以原方程的解:x 1=2,x 2=5.请利用这种方法求方程(2x +5)2﹣7(2x +5)+12=0的解.20(0)ax bx c a ++=≠1x 2x =+21x x =⋅21x x例5(2020秋•白银期末)已知关于x的一元二次方程(x﹣3)(x﹣2)=m2(1)求证:对于任意实数m,方程总有两个不相等的实数根;(2)若方程的一个根是1,求m的值及方程的另一个根.例6(2021秋•长安区校级期末)某公司自主研发一款健康的产品﹣﹣燕窝饮品,主要成分是水果和燕窝.经过一段时间的门店销售发现,当售价是40元/杯,每天可售出60杯.若每杯每降低1元,就会多售出3杯.已知每杯饮品的实际成本是20元,每天的其他费用是300元,物价局规定每件销售品的利润率不得高于成本的80%.若每天的毛利润可达到600元.(1)求该饮品的售价;(2)为支持今年的“洪灾”行动,该门店每卖一杯饮品,向某救助基金会捐款1元,求该店每月(按30天计算)的捐款金额.【随堂练习】1.(2021秋•江油市期末)解下列一元二次方程:(1)x2+10x+16=0;(2)x(x+4)=8x+12.2.(2021秋•博兴县月考)解方程:(1)2x2﹣12x+5=0.(2)2x2﹣5x+1=0(用配方法).3.(2021秋•呼和浩特期末)已知关于x的一元二次方程x2+4x+2k=0有两个不相等的实数根x1,x2.(1)求k的取值范围;(2)若x12+x22=k2+2k,求出k的值.4.(2021秋•振兴区校级月考)华美科技大厦一商户销售一种电子产品,每件进价为50元,销售人员经调查发现,销售单价为100元时,每月的销售量为50件,而销售单价每降低2元,则每月可多售出10件,且要求销售单价不得低于成本.(1)求该商品每月的销售量y(件)与销售单价x(元)之间的函数关系式;(2)若使该商品每月的销售利润为4000元,并使顾客获得更多的实惠,销售单价应定为多少元?5.(2020秋•法库县期末)2020年突如其来的新型冠状病毒疫情,给生鲜电商带来了意想不到的流量和机遇,据统计某生鲜电商平台1月份的销售额是1440万元,3月份的销售额是2250万元.(1)若该平台1月份到3月份的月平均增长率都相同,求月平均增长率是多少?(2)市场调查发现,某水果在“盒马鲜生”平台上的售价为20元/千克时,每天能销售200千克,售价每降价2元,每天可多售出100千克,为了推广宣传,商家决定降价促销,同时尽量减少库存,已知该水果的成本价为12元/千克,若使销售该水果每天获利1750元,则售价应降低多少元?知识点3 分式方程1.分式方程:分母中含有未知数的方程叫分式方程.2.解分式方程的一般步骤:(1)去分母,在方程的两边都乘以最简公分母,约去分母,化成整式方程;(2)解这个整式方程;(3)验根,把整式方程的根代入最简公分母中,看结果是不是零,使最简公分母为零的根是原方程的增根,必须舍去.3. 用换元法解分式方程的一般步骤:①设辅助未知数,并用含辅助未知数的代数式去表示方程中另外的代数式;②解所得到的关于辅助未知数的新方程,求出辅助未知数的值;③把辅助未知数的值代入原设中,求出原未知数的值;④检验作答.4.分式方程的应用:分式方程的应用题与一元一次方程应用题类似,不同的是要注意检验:(1)检验所求的解,是否是所列分式方程的解;(2)检验所求的解,是否为增根.【典例】例1(2021秋•铁岭县期末)解下列分式方程:(1)+4=;(2)﹣1=.例2(2020春•百色期末)增根是一个数学用语,其定义为在方程变形时,有时可能产生不适合原方程的根.对于分式方程:2x−3+mxx2−9=3x+3.(1)若该分式方程有增根,则增根为.(2)在(1)的条件下,求出m的值,例3(2021春•平阴县期末)请阅读下面解方程(x2+1)2﹣2(x2+1)﹣3=0的过程.解:设x2+1=y,则原方程可变形为y2﹣2y﹣3=0.解得y1=3,y2=﹣1.当y=3时,x2+1=3,∴x=±.当y=﹣1时,x2+1=﹣1,x2=﹣2,此方程无实数解.∴原方程的解为:x1=,x2=﹣.我们将上述解方程的方法叫做换元法,请用换元法解方程:()2﹣2()﹣8=0.例4 (2020秋•河南期末)随着人们环保意识的增强,混动汽车也成了广大消费者的宠儿.某品牌油电混合动力汽车从甲地行驶到乙地,若完全用油做动力行驶,则费用为70元;若完全用电做动力行驶,则费用为30元,已知汽车行驶中每千米用油费用比用电费用多0.4元.(1)求:汽车行驶中每千米用电费用是多少元?甲、乙两地的距离是多少千米?(2)若汽车从甲地到乙地采用油电混合动力行驶,且所需费用不超过50元,则至少需要用电行驶多少千米?例5(2020秋•连山区期末)为应对新冠疫情,某药店到厂家选购A、B两种品牌的医用外科口罩,B品牌口罩每个进价比A品牌口罩每个进价多0.7元,若用7200元购进A品牌数量是用5000元购进B品牌数量的2倍.(1)求A、B两种品牌的口罩每个进价分别为多少元?(2)若A品牌口罩每个售价为2元,B品牌口罩每个售价为3元,药店老板决定一次性购进A、B两种品牌口罩共6000个,在这批口罩全部出售后所获利润不低于1800元.则最少购进B品牌口罩多少个?【随堂练习】1.(2021秋•黔西南州期末)解方程:(1);(2).2.(2021秋•攸县期中)已知关于x的方程无解,求m的值.3.(2021秋•庆阳期末)庆阳香包又称“绌绌”,是甘肃庆阳的一种民俗物品.某商店准备用3000元购进A、B两种香包共150个,已知购买A种香包与购买B种香包的费用相同,且A种香包的单价是B种香包单价的2倍.(1)求A、B两种香包的单价各是多少元;(2)若计划用4500元的资金再次购进A、B两种香包共200个,已知A、B两种香包的单价不变,求A,B两种香包各购进多少个.4.(2021秋•铁西区期末)元旦将至,天猫某电商用4400元购入一批玩具盲盒,然后以每个60元的价格出售,很快售完.电商又以9600元的价格再次购入该商品.数量是第一次购入数量的1.6倍,售价每个上调了16元,进价每个也上调了16元.(1)该电商第一次购入的玩具盲盒每个进价是多少元?(2)该电商既要尽快售完第二次购入的玩具盲盒,又要使在这两次销售中获得的总利润不低于4000元.打算将第二次购入的部分盲盒按每个九折出售,最多可将多少个盲盒打折出售?知识点4 方程组(1)二元一次方程:含有两个未知数(元)并且未知数的次数是2的整式方程.(2) 二元一次方程组:由2个或2个以上的含有相同未知数的二元一次方程组成的方程组叫二元一次方程组.(3)二元一次方程的解:适合一个二元一次方程的两个未知数的值叫做这个二元一次方程的一个解,一个二元一次方程有无数个解.(4)二元一次方程组的解:使二元一次方程组成立的未知数的值,叫做二元一次方程组的解.(5)①代入消元法、②加减消元法.【典例】例1(2021秋•甘州区校级期末)解方程组:(1);(2)例2(2021•饶平县校级模拟)已知关于x,y的方程组和有相同解,求(﹣a)b值.例3(2021秋•沙坪坝区校级期中)已知关于x,y的二元一次方程组的解满足x+y=2,求实数x,y,m的值.例4(2020秋•太原期末)某景点的门票价格如下表:(1)某校七年级1、2两个班共有102人去游览该景点,其中1班人数少于50人,2班人数多于50人且少于100人.如果两班都以班为单位单独购票,则一共支付4737元,两个班各有多少名学生?(2)该校八、九年级自愿报名浏览该景点,其中八年级的报名人数不超过50人,九年级的报名人数超过50人,但不超过80人.若两个年级分别购票,总计支付门票费4914元;若合在一起作为一个团体购票,总计支付门票费4452元,问八年级、九年级各报名多少人?例5(2020•越秀区校级二模)今年是脱贫攻坚最后一年,某镇拟修一条连通贫困山区村子的公路,现有甲、乙两个工程队.若甲、乙合作,36天可以完成,需用600万元;若甲单独做20天后,剩下的由乙做,还需40天才能完成,这样所需550万元.(1)求甲、乙两队单独完成此项工程各需多少天?(2)求甲、乙两队单独完成此项工程各需多少万元?【随堂练习】1.(2021秋•芗城区校级期中)解下列方程组:(1);(2).2.(2021春•沈丘县期末)已知方程组与有相同的解,求m,n的值.3.(2021秋•长丰县月考)已知关于x,y的二元一次方程组.(1)当方程组的解为时,求a的值.(2)当a=﹣2时,求方程组的解.(3)小冉同学模仿第(1)问,提出一个新解法:将代入方程x+2y=a中,即可求出a的值.小冉提出的解法对吗?若对,请完成解答;若不对,请说明理由.4.(2021秋•宝山区校级月考)某汽车公司有甲、乙两种货车可供租用,现有一批货物要运往某地,货主准备租用该公司货车,已知甲,乙两种货车运货情况如表:第一次第二次甲种货车(辆)25乙种货车(辆)36累计运货(吨)1328(1)甲、乙两种货车每辆可装多少吨货物?(2)王先生要租用该公司的甲、乙两种货车送一批货,如果租用甲种货车数量比乙种货车数量多1辆,而乙种货车每辆的运费是甲种货车的1.4倍,结果甲种货车共付运费800元,乙种货车共付运费980元,试求此次甲、乙两种货车每辆各需运费多少元?5.(2021•济宁模拟)某超市第一次用6000元购进甲、乙两种商品,其中甲商品件数的2倍比乙商品件数的3倍多20件,甲、乙两种商品的进价和售价如下表(利润=售价﹣进价):甲 乙 进价(元/件) 20 28 售价(元/件)2640(1)该超市第一次购进甲、乙两种商品的件数分别是多少?(2)该超市将第一次购进的甲、乙两种商品全部卖出后一共可获得多少利润? (3)该超市第二次以同样的进价又购进甲、乙两种商品.其中甲商品件数是第一次的2倍,乙商品的件数不变.甲商品按原价销售,乙商品打折销售.第二次甲、乙两种商品销售完以后获得的利润比第一次获得的利润多560元,则第二次乙商品是按原价打几折销售的?知识点5不等式(组)1. 用不等号连接起来的式子叫不等式;使不等式成立的未知数的值叫做不等式的解;一些使不等式成立的未知数的值叫做不等式的解集.求一个不等式的解的过程或证明不等式无解的过程叫做解不等式. 2.不等式的基本性质:(1)若<,则+<; (2)若>,>0则> (或> ); a b a c c b a b c ac bc c a cb(3)若>,<0则 < (或< ). 3.一元一次不等式:只含有一个未知数,且未知数的次数是一次且系数不等于0的不等式,称为一元一次不等式;一元一次不等式的一般形式为ax >b 或;解一元一次不等式的一般步骤:去分母、去括号 、移项、合并同类项、系数化为1.4.一元一次不等式组:几个含有相同未知数的一元一次不等式合在一起就组成一个一元一次不等式组.一般地,几个不等式的解集的公共部分,叫做由它们组成的不等式组的解集. 5.由两个一元一次不等式组成的不等式组的解集有四种情况:(已知)的解集是,即“小小取小”;的解集是,即“大大取大”;的解集是,即“大小小大中间找”;的解集是空集,即“大大小小取不了”. 6.求不等式(组)的特殊解:不等式(组)的解一般有无数多个,但其特殊解在某些范围内是有限的,如整数解,非负整数解,求这些特殊解应先确定不等式(组)的解集,然后再找到相应答案. 7.列不等式(组)解应用题的一般步骤:①审:审题,分析题中已知什么、求什么,明确各数量之间的关系;②找:找出能够表示应用题全部含义的一个不等关系;③设:设未知数(一般求什么,就设什么为;④列:根据这个不等关系列出需要的代数式,从而列出不等式(组);⑤解:解所列出的不等式(组),写出未知数的值或范围;⑥答:检验所求解是否符合题意,写出答案(包括单位).a b c ac bc c a cb ax b <a b <x a x b <⎧⎨<⎩x a <x ax b >⎧⎨>⎩x b >x ax b>⎧⎨<⎩a x b <<x ax b <⎧⎨>⎩x【典例】例1(2020秋•肇源县期末)若0<m <1,m 、m 2、1m的大小关系是( )A .m <m 2<1mB .m 2<m <1mC .1m<m <m 2D .1m<m 2<m例2(2020秋•嵊州市期中)解不等式(组)并把解表示在数轴上 (1)3x +2>14; (2)1+x 2−2x+13≤1.例3(2020春•海珠区校级月考)解下列不等式: (1)2x ﹣1<﹣6; (2)x−12<4x−53;(3)解不等式组:{x −3(x −2)≥41+2x 3>x −1,并在数轴上表示它的解集.例4(2020秋•道里区期末)某班班主任对在某次考试中取得优异成绩的同学进行表彰.她到商场购买了甲、乙两种笔记本作为奖品,若购买甲种笔记本15个,乙种笔记本20个,共花费250元;若购买甲种笔记本10个,乙种笔记本25个,共花费225元. (1)求购买一个甲种、一个乙种笔记本各需多少元?(2)班主任决定再次购买甲、乙两种笔记本共35个,如果班主任此次购买甲、乙两种笔记本的总费用不超过300元,求至多需要购买多少个甲种笔记本?【随堂练习】1.(2020秋•萧山区期中)解下列不等式 (1)3x ﹣4≤4+2(x ﹣2);(2)2+x 3>2x−15+12.(2020秋•江干区校级期中)求出不等式组的解集,并在数轴上表示出来. {5x −2>3(x +1)x−12≤1−1−x 33.(2020春•沙河口区期末)为了让居民早日用上天然气,市燃气公司要给某小区用户改装天然气.现有360户申请了但还未改装的用户,此外每天还有新的申请.已知燃气公司每个小组每天改装的数量相同,且每天新申请的户数也相同,若安排2个小组同时做,则30天可以改装完所有新、旧申请;若再增加3个小组同时做,则可以减少20天就改装完所有新、旧申请.(1)求该小区7天内有多少需要改装的新、旧申请用户?(2)如果要求在7天内改装完所有新、旧申请,但前3天只能安排4个小组改装,那么最后几天至少需要增加多少个小组,才能完成任务?4.(2020•广西)某市为创建“全国文明城市”,计划购买甲、乙两种树苗绿化城区,购买50棵甲种树苗和20棵乙种树苗需要5000元,购买30棵甲种树苗和10棵乙种树苗需要2800元.(1)求购买的甲、乙两种树苗每棵各需要多少元.(2)经市绿化部门研究,决定用不超过42000元的费用购买甲、乙两种树苗共500棵,其中乙种树苗的数量不少于甲种树苗数量的14,求甲种树苗数量的取值范围.(3)在(2)的条件下,如何购买树苗才能使总费用最低?综合运用1.(2020秋•常熟市期中)若关于x 的方程x+m 3=x −m2与方程3+4x =2(3﹣x )的解互为倒数,求m 的值.2.(2020秋•武都区期末)解方程: (1)x−12=4x 3;(2)5x+13−2x−16=1.3.(2020秋•武汉月考)解不等式组{3−2(x −1)<3x 1−x−13≥0,把其解集在数轴上表示出来,并写出它的整数解.4.(2020秋•白云区期中)已知方程x 2﹣(k +1)x +k ﹣1=0是关于x 的一元二次方程. (1)求证:对于任意实数k ,方程总有两个不相等的实数根; (2)若方程的一个根是2,求k 的值及方程的另一个根.5.(2020秋•朝阳县期末)某工厂生产一批小家电,2018年的出厂价是144元,2019年,2020年连续两年改进技术,降低成本,2020年出厂价调整为100元. (1)这两年出厂价下降的百分比相同,求平均下降率.(2)某商场今年销售这批小家电的售价为140元时,平均每天可销售20台,为了减少库存,商场决定降价销售,经调查发现小家电单价每降低5元,每天可多售出10台,如果每天盈利1250元,单价应降低多少元?6.(2020秋•鞍山期末)假期里,学校组织部分团员同学参加“关爱老年人”的爱心援助活动,计划分乘大、小两辆车前往相距140km 的乡村敬老院.(1)若小车速度是大车速度的1.4倍,则小车比大车早一个小时到达,求大、小车速度. (2)若小车与大车同时以相同速度出发,但走了60千米以后,发现有物品遗忘,小车准备加速返回取物品,要想与大车同时到达,应提速到原来的多少倍?7.(2020秋•本溪期末)某公司在手机网络平台推出的一种新型打车方式受到大众的欢迎.该打车方式的总费用由里程费和耗时费组成,其中里程费按x元/千米计算,耗时费按y元/分钟计算.小聪、小明两人用该打车方式出行,按上述计价规则,他们打车行驶里程数、所用时间及支付车费如下表:(1)求x,y的值;(2)该公司现推出新政策,在原有付费基础上,当里程数超过8千米后,超出的部分要加收0.6元/千米的里程费,小强使用该方式从三水荷花世界打车到大旗头古村,总里程为23千米,耗时30分钟,求小强需支付多少车费.8.(2020秋•长沙月考)我市创全国卫生城市,梅溪湖社区积极响应,决定在街道内的所有小区安装垃圾分类的温馨提示牌和垃圾箱,若购买4个垃圾箱比购买5个温馨提示牌多350元,垃圾箱的单价是温馨提示牌单价的3倍.(1)求温馨提示牌和垃圾箱的单价各是多少元?(2)如果该街道需购买温馨提示牌和垃圾箱共3000个.该街道计划费用不超过35万元,而且垃圾箱的个数不少于温馨提示牌的个数的1.5倍,求有几种可供选择的方案?并找出资金最少的方案,求出最少需多少元?。

一元一次不等式(组)知识总结及经典例题分析

一元一次不等式(组)知识总结及经典例题分析

一元一次不等式(组)知识总结及经典例题分析一元一次不等式和不等式组【知识要点】一、一元一次不等式1. 一元一次不等式定义:含有一个未知数,并且未知数的最高次数是1的不等式叫做一元一次不等式。

2.一元一次不等式的解集:使一元一次不等式成立的每一个未知数的值叫做一元一次不等式的解。

一元一次不等式的所有解组成的集合是一元一次不等式的解集。

注:其标准形式: ax+b <0或ax+b ≤0, ax+b >0或ax+b ≥0(a ≠0).二、一元一次不等式的解法:解一元一次不等式,要根据不等式的性质,将不等式逐步化为x a<(x a >或)x a x a ≥≤或或的形式,其一般步骤为:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1。

说明:解一元一次不等式和解一元一次方程类似.不同的是:一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变,这是解不等式时最容易出错的地方.例如:131321≤---x x解不等式: 解:去分母,得 6)13(2)13≤---x x ((不要漏乘!x <a x >a x ≤a x ≥a五、不等式组解集的确定方法,可以归纳为以下四种类型(b a <)①⎩⎨⎧>>b x a x 的解集是b x >,如下图: ②⎩⎨⎧<<b x a x 的解集是a x <,如下图:同大取大 同小取小③⎩⎨⎧<>b xa x 的解集是b x a <<,如下图:④⎩⎨⎧><bx a x 无解,如下图:大小交叉取中间 大小分离解为空六、解一元一次不等式组的步骤(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些解集的公共部分,即这个不等式组的解集.七、一元一次不等式的综合应用1.列不等式解决问题比列方程解决问题的应用更广泛、更实际。

有些问题用方程不能解决,而用不等式却能轻易解决。

方程应用(复习讲义)(一元一次方程、二元一次方程、一元一次不等式、分式方程、一元二次方程应用)原卷版

方程应用(复习讲义)(一元一次方程、二元一次方程、一元一次不等式、分式方程、一元二次方程应用)原卷版

题型三--方程应用(复习讲义)【考点总结|典例分析】考点01一次方(组)程应用1.列方程(组)解应用题的一般步骤(1)审题;(2)设出未知数;(3)列出含未知数的等式——方程;(4)解方程(组);(5)检验结果;(6)作答(不要忽略未知数的单位名称).2.一次方程(组)常见的应用题型×100%;售价=标价×折扣;销售(1)销售打折问题:利润 售价-成本价;利润率=利润成本额=售价×数量.(2)储蓄利息问题:利息=本金×利率×期数;本息和=本金+利息=本金×(1+利率×期数);贷款利息=贷款额×利率×期数.(3)工程问题:工作量=工作效率×工作时间.(4)行程问题:路程=速度×时间.(5)相遇问题:全路程=甲走的路程+乙走的路程.(6)追及问题(同地不同时出发):前者走的路程=追者走的路程.(7)追及问题(同时不同地出发):前者走的路程+两地间距离=追者走的路程.(8)水中航行问题:顺水速度=静水速度+水流速度;逆水速度=静水速度-水流速度.1.(2022·山东泰安)泰安某茶叶店经销泰山女儿茶,第一次购进了A种茶30盒,B种茶20盒,共花费6000元;第二次购进时,两种茶每盒的价格都提高了20%,该店又购进了A 种茶20盒,B种茶15盒,共花费5100元.求第一次购进的A、B两种茶每盒的价格.2.(2022·湖南常德)小强的爸爸平常开车从家中到小强奶奶家,匀速行驶需要4小时,某天,他们以平常的速度行驶了12的路程时遇到了暴雨,立即将车速减少了20千米/小时,到达奶奶家时共用了5小时,问小强家到他奶奶家的距离是多少千米?3.(2021·重庆中考真题)重庆小面是重庆美食的名片之一,深受外地游客和本地民众欢迎.某面馆向食客推出经典特色重庆小面,顾客可到店食用(简称“堂食”小面),也可购买搭配佐料的袋装生面(简称“生食”小面).已知3份“堂食”小面和2份“生食”小面的总售价为31元,4份“堂食”小面和1份“生食”小面的总售价为33元.(1)求每份“堂食”小面和“生食”小面的价格分别是多少元?(2)该面馆在4月共卖出“堂食”小面4500份,“生食”小面2500份,为回馈广大食客,该面馆从5月1日起每份“堂食”小面的价格保持不变,每份“生食”小面的价格降低3a% 4.统计5月的销量和销售额发现:“堂食”小面的销量与4月相同,“生食”小面的销量在4月的基础上增加5%2a,这两种小面的总销售额在4月的基础上增加5%11a.求a的值.4.(2020•安徽)某超市有线上和线下两种销售方式.与2019年4月份相比,该超市2020年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.(1)设2019年4a元,线上销售额为x元,请用含a,x的代数式表示2020年4月份的线下销售额(直接在表格中填写结果);时间销售总额(元)线上销售额(元)线下销售额(元)2019年4月份a x a﹣x2020年4月份 1.1a 1.43x 1.04(a﹣x)(2)求2020年4月份线上销售额与当月销售总额的比值.5.(2020•江西)放学后,小贤和小艺来到学校附近的地摊上购买一种特殊型号的笔芯和卡通笔记本,这种笔芯每盒10支,如果整盒买比单支买每支可优惠0.5元.小贤要买3支笔芯,2本笔记本需花费19元;小艺要买7支笔芯,1本笔记本需花费26元.(1)求笔记本的单价和单独购买一支笔芯的价格;(2)小贤和小艺都还想再买一件单价为3元的小工艺品,但如果他们各自为要买的文具付款后,只有小贤还剩2元钱.他们要怎样做才能既买到各自的文具,又都买到小工艺品,请通过运算说明.6.(2020•重庆)“中国人的饭碗必须牢牢掌握在咱们自己手中”.为优选品种,提高产量,某农业科技小组对A,B两个小麦品种进行种植对比实验研究.去年A,B两个品种各种植了10亩.收获后A,B两个品种的售价均为2.4元/kg,且B的平均亩产量比A的平均亩产量高100kg,A,B两个品种全部售出后总收入为21600元.(1)请求出A,B两个品种去年平均亩产量分别是多少?(2)今年,科技小组加大了小麦种植的科研力度,在A,B种植亩数不变的情况下,预计A,B两个品种平均亩产量将在去年的基础上分别增加a%和2a%.由于B品种深受市场的欢迎,预计每千克价格将在去年的基础上上涨a%,而A品种的售价不变.A,B两个品种全部售出后总收入将在去年的基础上增加209a%.求a的值.考点02不等式的应用3、列不等式(组)解决实际问题列不等式(组)解应用题的基本步骤如下:①审题;②设未知数;③列不等式(组);④解不等式(组);⑤检验并写出答案.考情总结:列不等式(组)解决实际问题常与一元一次方程、一次函数等综合考查,涉及的题型常与方案设计型问题相联系,如最大利润、最优方案等.列不等式时,要抓住关键词,如不大于、不超过、至多用“≤”连接,不少于、不低于、至少用“≥”连接.1.(2022·四川泸州)某经销商计划购进A,B两种农产品.已知购进A种农产品2件,B 种农产品3件,共需690元;购进A种农产品1件,B种农产品4件,共需720元.(1)A,B两种农产品每件的价格分别是多少元?(2)该经销商计划用不超过5400元购进A,B两种农产品共40件,且A种农产品的件数不超过B种农产品件数的3倍.如果该经销商将购进的农产品按照A种每件160元,B种每件200元的价格全部售出,那么购进A,B两种农产品各多少件时获利最多?2.(2021·四川成都市·中考真题)为改善城市人居环境,《成都市生活垃圾管理条例》(以下简称《条例》)于2021年3月1日起正式施行.某区域原来每天需要处理生活垃圾920吨,刚好被12个A型和10个B型预处置点位进行初筛、压缩等处理.已知一个A型点位比一个B型点位每天多处理7吨生活垃圾.(1)求每个B型点位每天处理生活垃圾的吨数;(2)由于《条例》的施行,垃圾分类要求提高,现在每个点位每天将少处理8吨生活垃圾,同时由于市民环保意识增强,该区域每天需要处理的生活垃圾比原来少10吨.若该区域计划增设A型、B型点位共5个,试问至少需要增设几个A型点位才能当日处理完所有生活垃圾?3.(2021·四川眉山市·中考真题)为进一步落实“德、智、体、美、劳”五育并举工作,某中学以体育为突破口,准备从体育用品商场一次性购买若千个足球和篮球,用于学校球类比赛活动.每个足球的价格都相同,每个篮球的价格也相同.已知篮球的单价比足球单价的2倍少30元,用1200元购买足球的数量是用900元购买篮球数量的2倍.(1)足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共200个,但要求足球和篮球的总费用不超过15500元,学校最多可以购买多少个篮球?4.(2021·浙江温州市·中考真题)某公司生产的一种营养品信息如下表.已知甲食材每千克的进价是乙食材的2倍,用80元购买的甲食材比用20元购买的乙食材多1千克.(1)问甲、乙两种食材每千克进价分别是多少元?(2)该公司每日用18000元购进甲、乙两种食材并恰好全部用完.①问每日购进甲、乙两种食材各多少千克?②已知每日其他费用为2000元,且生产的营养品当日全部售出.若A的数量不低于B的数量,则A为多少包时,每日所获总利润最大?最大总利润为多少元?5.(2021·四川资阳市·中考真题)我市某中学计划举行以“奋斗百年路,启航新征程”为主题的知识竞赛,并对获奖的同学给予奖励.现要购买甲、乙两种奖品,已知1件甲种奖品和2件乙种奖品共需40元,2件甲种奖品和3件乙种奖品共需70元.(1)求甲、乙两种奖品的单价;(2)根据颁奖计划,该中学需甲、乙两种奖品共60件,且甲种奖品的数量不少于乙种奖品数量的12,应如何购买才能使总费用最少?并求出最少费用.6.(2021·江苏连云港市·中考真题)为了做好防疫工作,学校准备购进一批消毒液.已知2瓶A型消毒液和3瓶B型消毒液共需41元,5瓶A型消毒液和2瓶B型消毒液共需53元.(1)这两种消毒液的单价各是多少元?(2)学校准备购进这两种消毒液共90瓶,且B型消毒液的数量不少于A型消毒液数量的1 3,请设计出最省钱的购买方案,并求出最少费用.考点03分式方程的应用4.分式方程的应用(1)分式方程的应用主要涉及工程问题,有工作量问题、行程问题等.每个问题中涉及到三个量的关系,如:工作时间=工作量工作效率,时间=路程速度等.(2)列分式方程解应用题的一般步骤:①设未知数;②找等量关系;③列分式方程;④解分式方程;⑤检验(一验分式方程,二验实际问题);⑥答.1.(2022·重庆)在全民健身运动中,骑行运动颇受市民青睐,甲、乙两骑行爱好者约定从A地沿相同路线骑行去距A地30千米的B地,已知甲骑行的速度是乙的1.2倍.(1)若乙先骑行2千米,甲才开始从A地出发,则甲出发半小时恰好追上乙,求甲骑行的速度;(2)若乙先骑行20分钟,甲才开始从A地出发,则甲、乙恰好同时到达B地,求甲骑行的速度.2.(2020•泰州)近年来,我市大力发展城市快速交通,小王开车从家到单位有两条路线可选择,路线A为全程25km的普通道路,路线B包含快速通道,全程30km,走路线B比走路线A平均速度提高50%,时间节省6min,求走路线B的平均速度.3.(2020•常德)第5代移动通信技术简称5G,某地已开通5G业务,经测试5G下载速度是4G下载速度的15倍,小明和小强分别用5G与4G下载一部600兆的公益片,小明比小强所用的时间快140秒,求该地4G与5G的下载速度分别是每秒多少兆?4.(2020•广东)某社区拟建A,B两类摊位以搞活“地摊经济”,每个A类摊位的占地面积比每个B类摊位的占地面积多2平方米.建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元.用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的35.(1)求每个A,B类摊位占地面积各为多少平方米?(2)该社区拟建A,B两类摊位共90个,且B类摊位的数量不少于A类摊位数量的3倍.求建造这90个摊位的最大费用.5.(2021·山东聊城市·中考真题)为迎接建党一百周年,我市计划用两种花卉对某广场进行美化.已知用600元购买A种花卉与用900元购买B种花卉的数量相等,且B种花卉每盆比A种花卉多0.5元.(1)A,B两种花卉每盆各多少元?(2)计划购买A,B两种花卉共6000盆,其中A种花卉的数量不超过B种花卉数量的1 3,求购买A种花卉多少盆时,购买这批花卉总费用最低,最低费用是多少元?6.(2021·湖南中考真题)“七一”建党节前夕,某校决定购买A,B两种奖品,用于表彰在“童心向党”活动中表现突出的学生.已知A奖品比B奖品每件多25元预算资金为1700元,其中800元购买A奖品,其余资金购买B奖品,且购买B奖品的数量是A奖品的3倍.(1)求A,B奖品的单价;(2)购买当日,正逢该店搞促销活动,所有商品均按原价八折..销售,学校调整了购买方案:不超过...720元,A,B两种奖品共100件.求购买A,...预算资金且购买A奖品的资金不少于B两种奖品的数量,有哪几种方案?7.(2020•牡丹江)某商场准备购进A,B两种书包,每个A种书包比B种书包的进价少20元,用700元购进A种书包的个数是用450元购进B种书包个数的2倍,A种书包每个标价是90元,B种书包每个标价是130元.请解答下列问题:(1)A,B两种书包每个进价各是多少元?(2)若该商场购进B种书包的个数比A种书包的2倍还多5个,且A种书包不少于18个,购进A,B两种书包的总费用不超过5450元,则该商场有哪几种进货方案?(3)该商场按(2)中获利最大的方案购进书包,在销售前,拿出5个书包赠送给某希望小学,剩余的书包全部售出,其中两种书包共有4个样品,每种样品都打五折,商场仍获利1370元.请直接写出赠送的书包和样品中,B种书包各有几个?8.(2020•黔西南州)随着人们“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行,也给自行车商家带来商机.某自行车行经营的A型自行车去年销售总额为8万元.今年该型自行车每辆售价预计比去年降低200元.若该型车的销售数量与去年相同,那么今年的销售总额将比去年减少10%,求:(1)A型自行车去年每辆售价多少元?(2)该车行今年计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A 型车数量的两倍.已知A型车和B型车的进货价格分别为1500元和1800元,计划B型车销售价格为2400元,应如何组织进货才能使这批自行车销售获利最多?考点04二次方程的应用5、利用一元二次方程解决实际问题列一元二次方程解应用题步骤和列一元一次方程(组)解应用题步骤一样,即审、设、列、解、验、答六步.列一元二次方程解应用题,经济类和面积类问题是常考内容.6.增长率等量关系(1)增长率=增长量÷基础量.(2)设a 为原来量,m 为平均增长率,n 为增长次数,b 为增长后的量,则()1n a m b +=;当m 为平均下降率时,则有()1n a m b -=.7.利润等量关系(1)利润=售价-成本.(2)利润率=利润成本×100%.8.面积问题(1)类型1:如图1所示的矩形ABCD 长为a ,宽为b ,空白“回形”道路的宽为x ,则阴影部分的面积为()(22)a x b x --.(2)类型2:如图2所示的矩形ABCD 长为a ,宽为b ,阴影道路的宽为x ,则空白部分的面积为()()a x b x --.(3)类型3:如图3所示的矩形ABCD 长为a ,宽为b ,阴影道路的宽为x ,则4块空白部分的面积之和可转化为()()a x b x --.1.(2022·四川眉山)建设美丽城市,改造老旧小区.某市2019年投入资金1000万元,2021年投入资金1440万元,现假定每年投入资金的增长率相同.(1)求该市改造老旧小区投入资金的年平均增长率;(2)2021年老旧小区改造的平均费用为每个80万元.2022年为提高老旧小区品质,每个小区改造费用增加15%.如果投入资金年增长率保持不变,求该市在2022年最多可以改造多少个老旧小区?2.(2022·湖北宜昌)某造纸厂为节约木材,实现企业绿色低碳发展,通过技术改造升级,使再生纸项目的生产规模不断扩大.该厂3,4月份共生产再生纸800吨,其中4月份再生纸产量是3月份的2倍少100吨.(1)求4月份再生纸的产量;(2)若4月份每吨再生纸的利润为1000元,5月份再生纸产量比上月增加%m .5月份每吨再生纸的利润比上月增加%2m ,则5月份再生纸项目月利润达到66万元.求m 的值;(3)若4月份每吨再生纸的利润为1200元,4至6月每吨再生纸利润的月平均增长率与6月份再生纸产量比上月增长的百分数相同,6月份再生纸项目月利润比上月增加了25%.求6月份每吨再生纸的利润是多少元?3.(2021·四川遂宁市·中考真题)某服装店以每件30元的价格购进一批T 恤,如果以每件40元出售,那么一个月内能售出300件,根据以往销售经验,销售单价每提高1元,销售量就会减少10件,设T 恤的销售单价提高x 元.(1)服装店希望一个月内销售该种T 恤能获得利润3360元,并且尽可能减少库存,问T 恤的销售单价应提高多少元?(2)当销售单价定为多少元时,该服装店一个月内销售这种T 恤获得的利润最大?最大利润是多少元?4.(2021·重庆中考真题)重庆小面是重庆美食的名片之一,深受外地游客和本地民众欢迎.某面馆向食客推出经典特色重庆小面,顾客可到店食用(简称“堂食”小面),也可购买搭配佐料的袋装生面(简称“生食”小面).已知3份“堂食”小面和2份“生食”小面的总售价为31元,4份“堂食”小面和1份“生食”小面的总售价为33元.(1)求每份“堂食”小面和“生食”小面的价格分别是多少元?(2)该面馆在4月共卖出“堂食”小面4500份,“生食”小面2500份,为回馈广大食客,该面馆从5月1日起每份“堂食”小面的价格保持不变,每份“生食”小面的价格降低3a% 4.统计5月的销量和销售额发现:“堂食”小面的销量与4月相同,“生食”小面的销量在4月的基础上增加5%2a,这两种小面的总销售额在4月的基础上增加5%11a.求a的值.5.(2021·重庆中考真题)某工厂有甲、乙两个车间,甲车间生产A产品,乙车间生产B 产品,去年两个车间生产产品的数量相同且全部售出.已知A产品的销售单价比B产品的销售单价高100元,1件A产品与1件B产品售价和为500元.(1)A、B两种产品的销售单价分别是多少元?(2)随着5G时代的到来,工业互联网进入了快速发展时期.今年,该工厂计划依托工业互联网将乙车间改造为专供用户定制B产品的生产车间.预计A产品在售价不变的情况下产量将在去年的基础上增加a%;B产品产量将在去年的基础上减少a%,但B产品的销售单价将提高3a%.则今年A、B两种产品全部售出后总销售额将在去年的基础上增加2925 a%.求a的值.。

一次函数与一元一次方程及不等式复习教案

一次函数与一元一次方程及不等式复习教案

一次函数与一元一次方程及不等式复习教案沂南三中张继学联系电话: 131********一、【教材分析】二、【教学流程】合运用是8.3、根据图象,你能直接说出一元一次方程x+3=0的解吗?4、直线y=x-1上的点在x轴上方时对应的自变量的范围是()A.x>1 B.x≥1C.x<1 D.x≤15、已知直线y=2x+k与x轴的交点为(-2,0),则关于不等式2x+k<0的解集是()A.x>-2 B.x≥-2C.x<-2 D.x≤-26、已知函数y=x-3,当x时,y>0,当x时,y<0.7、已知一次函数y=kx+b的图象如图所示,则不等式kx+b>0解集是()A.x>-2 B.x<-2C.x>-1 D.x<-18、如图是一次函数y=kx+b(k≠0)的图象,则关于x的方程kx+b=0的解为;关于x的不等y=x+3的图象与x轴交点坐标为(-3,0 ),这说明方程x+3=0的解是x=-3.让学生体会解一元一次不等式与求一定条件下自变量的取值范围的关系.解一元一次不等式从函数值的角度看,就是寻求使一次函数y=ax+b的值大于或小于零的自变量的取值范围.通过图象让学生认识不等式的解集与图象3xxy3式kx+b>0的解集为;关于x的不等式kx+b <0的解集为 .9、根据下列一次函数的图像,直接写出下列不等式的解集(1)3x+6>0 (3) –x+3 ≥0(2)3x+6 ≤0 (4) –x+3<0上点的坐标的联系学生独立完成问题,然后师生共同归纳得到,解一元一次不等式从形的角度看,就是确定直线y=kx+b在x轴上(或下)部分所有点的横坐标所构成的集合。

归纳总结:一次函数、一元一次方程、一元一次不等式有着紧密的联系.已知一次函数的表达式,当其中一个变量的值确定时,可以由相应的一元一次方程确定另一个变量的值.当其中一个变量的取值范围确定时,可以由相应的一元一次不等式确定另一个变量的取值范围.1.直线y=ax+b过点A(0,2)和点B(﹣3,0),则方程ax+b=0的解是()学生是能灵活运用一元一次方程、一元一-2 y=3x+6y=-x+3三、【板书设计】四、【教后反思】学生的认识是在不断实践、摸索中得以提高的,同样老师的教学能力也是通过不断的反思和反思之后的再实践得以提升的。

人教版七年级下册数学期末考复习专题05一元一次不等式及不等式组(知识点串讲)(解析版)

人教版七年级下册数学期末考复习专题05一元一次不等式及不等式组(知识点串讲)(解析版)

专题05 一元一次不等式及不等式组知识框架重难突破一、一元一次不等式1. 一元一次不等式定义:含有一个未知数,并且未知数的最高次数是1的不等式叫做一元一次不等式。

2.一元一次不等式的解及解集(1)使一元一次不等式成立的每一个未知数的值叫做一元一次不等式的解。

(2) 一元一次不等式的所有解组成的集合是一元一次不等式的解集。

(3)解集在数轴上表示3、一元一次不等式的解法:解一元一次不等式,要根据不等式的性质,将不等式逐步化为x a <(x a >或)x a x a ≥≤或或的形式,其一般步骤为:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1。

备注:解一元一次不等式和解一元一次方程类似.不同的是:一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变,这是解不等式时最容易出错的地方.例如:131321≤---x x 解不等式: 解:去分母,得 6)13(2)13≤---x x ((不要漏乘!每一项都得乘) 去括号,得 62633≤+--x x (注意符号,不要漏乘!)移 项,得 23663-+≤-x x (移项,每一项要变号;但符号不改变)a a a a < > ≤ ≥合并同类项,得 73≤-x (计算要正确)系数化为1, 得 37-≥x (同除负,不等号方向要改变,分子分母别颠倒了) 例1.(2019·湖南广益实验中学初一期中)下列不等式中,是一元一次不等式的是( )A .1x >3B .x 2<1C .x +2y >0D .x <2x +1【答案】D【解析】解:A 、1x 是分式,因此1x>3不是一元一次不等式,故此选项不合题意; B 、x 2是2次,因此x 2<1不是一元一次不等式,故此选项不合题意;C 、x +2y >0含有2个未知数,因此不是一元一次不等式,故此选项不合题意;D 、x <2x +1是一元一次不等式,故此选项符合题意;故选:D .练习1.(2018·六安市裕安中学初一期中)下列不等式中,一元一次不等式有( )①2x 32x +> ②130x -> ③ x 32y -> ④x 15ππ-≥ ⑤ 3y 3>- A .1 个B .2 个C .3 个D .4 个 【答案】B【解析】详解:①不是,因为最高次数是2;②不是,因为是分式;③不是,因为有两个未知数;④是;⑤是.综上,只有2个是一元一次不等式.故选B .例2.(2019·洋县教育局初二期中)若437m x -+≤是关于x 的一元一次不等式,则m =__________.【答案】3【解析】解:∵437m x -+≤是关于x 的一元一次不等式,∴4-m =1,∴m=3,故答案为:3.练习1.(2019·山东省初二期中)已知12(m+4)x|m|﹣3+6>0是关于x的一元一次不等式,则m的值为()A.4 B.±4 C.3 D.±3【答案】A【解析】根据题意|m|﹣3=1且m+4≠0解得:|m|=4,m≠﹣4所以m=4.故选:A.例3.(2018·浙江省初二期中)一元一次不等式2(x﹣1)≥3x﹣3的解在数轴上表示为()A.B.C.D.【答案】B【解析】解: 2(x﹣1)≥3x﹣3去括号, 得2x-2≥3x-3,移项, 合并同类项, 得-x≥-1,得:x≤1故在数轴上表示为:故选B.练习1.(2020·万杰朝阳学校初一期中)如图,张小雨把不等式3x>2x-3的解集表示在数轴上,则阴影部分盖住的数字是____.【答案】-3【解析】由3x>2x-3,解得:x>-3,∴阴影部分盖住的数字是:-3.故答案是:-3.例4.(2020·监利县新沟新建中学初一期中)解不等式:14232-+->-x x . 【答案】x <−2【解析】解:去分母:2(x −1)−3(x +4)>−12,去括号:2x −2−3x −12>−12,合并同类项:−x >2,系数化1:x <−2. 练习1.(2018·福建省永春第二中学初一期中)解不等式3(21)x +<13(43)x --,并把解集在数轴上表示出来.【答案】x <2,数轴见解析【解析】去括号,得 6x +3<13-4+3x ,移项,得 6x -3x <13-4-3,即3x <6,两边同除以3,得x <2,在数轴上表示不等式的解集如下:例5.(2019·重庆市凤鸣山中学初一期中)关于x 的不等式22x a -+≥的解集如图所示,则a 的值是( )A .0B .2C .2-D .4- 【答案】A【解析】解:解不等式22x a -+≥,得22a x- ,∵由数轴得到解集为x ≤-1, ∴212a -=- ,解得:a =0. 故选:A .练习1.(2019·陕西省初二期中)不等式-4x -k ≤0的负整数解是-1,-2,那么k 的取值范围是( ) A .812k ≤<B .812k <≤C .23k ≤<D .23k <≤ 【答案】A【解析】解:∵-4x -k ≤0,∴x ≥-4k , ∵不等式的负整数解是-1,-2,∴-3<-4k ≤-2, 解得:8≤k <12,故选:A .二、一元一次不等式组1、一元一次不等式组定义: 含有同一个未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组。

一次函数与一元一次方程和不等式同步辅导(含答案)--绝对经典

一次函数与一元一次方程和不等式同步辅导(含答案)--绝对经典

11.3.1 -11.3.2 一次函数与一元一次方程和不等式重点知识讲解1.一元一次方程ax+b=0(a≠0)与一次函数y=ax+b(a≠0)的关系(1)一元一次方程ax+b=0(a≠0)是一次函数y=ax+b(a≠0)的函数值为0时的特殊情形.(2)直线y=ax+b与x轴交点的横坐标就是一元一次方程ax+b=0的解x=-ba。

2.一元一次不等式与一次函数的关系(1)一元一次不等式ax+b>0或ax+b<0(a≠0)是一次函数y=ax+b(a≠0)•的函数值不等于0的情形.(2)直线y=ax+b上使函数值y>0(x轴上方的图像)的x的取值范围是ax+b>0的解集;使函数值y<0(x轴下方的图像)的x的取值范围是ax+b<0的解集.经验与方法技巧1.利用一次函数求一元一次方程的解题步骤(1)将一元一次方程化成ax+b=0的形式.(2)画出y=ax+b的图像,确定其与x轴交点的横坐标.2.利用一次函数求一元一次不等式的解集的技巧根据不等式的特点,灵活采用求解方法:(1)利用一个一次函数;(2)•利用两个一次函数.典型例题例1画出y=-3x+5的图象,利用图像求方程-3x+5=0的解.解析取点(0,5),(53,0),图像如图所示.∵直线y=-3x+5与x轴交点的横坐标为53,∴方程-3x+5=0的解为x=53。

评注画函数图像时要准确,求出直线y=-3x+5与x•轴交点的横坐标即为方程的解.例2画出函数y=-3x+12的图像,利用图像求:(1)不等式-3x+12>0的解集.(2)不等式-3x+12≤0的解集.(3)如果y的值在-6≤y≤6的范围内,那么相应的x的值在什么范围内?解析取点(0,12),(4,0),作出函数图像,如图所示,由图像可以看出:(1)当y>0时,x的取值范围为x<4,∴不等式-3x+12>0的解集为x<4.(2)当y≤0时,x的取值范围为x≥4.∴不等式-3x+12≤0的解集为x≥4.(3)当-6≤y≤6时,x的取值范围为2≤x≤6.评注借助图像求不等式的解集,关键是要清楚以下几点:①y>0时,x•的取值范围就是x轴上方的图像所对应的x的取值范围.②y<0时,x的取值范围就是x•轴下方的图像所对应的x的取值范围.③y=0时,x的值就是图像与x轴交点的横坐标.④当y>a或y<a(a≠0)时,应先确定当y=a时对应的x值,然后再进一步确定x的取值范围.例3若y1=-x+3,y2=3x-4,当x取何值时,y1<y2?解析∵y1<y2,∴-x+3<3x-4,解得x>74,∴当x>74时,y1<y2.评注此题是两个一次函数之间的关系,可以直接借助一元一次不等式求出x的取值范围.教材例题习题的变形题例(P41例2)用画图像的方法解下列各题:(1)解不等式:5x+4>2x+10.(2)解方程:5x+4=2x+10.解析(1)如图,原不等式可化为3x-6>0,画出直线y=3x-6,由图像可以看出,当x>2时,这条直线上的点在x轴的上方,即这时y=3x-6>0,所以不等式的解集为x>2.(2)原方程可化为3x-6=0.由图像可以看出,y=3x-6与x轴交点的横坐标为2,所以原方程的解为x=2.评注①从函数的角度看问题,能发现一次函数与一元一次不等式、•一元一次方程之间的联系,体现了数形结合的思想.②本题求不等式的解集时,还可将不等式的两边分别看作两个一次函数,画出两条直线,比较直线上点的位置的高度,也可求得不等式的解集.学科内综合题例1甲、乙两辆摩托车分别从相距20km的A,B两地出发,相向而行,图中的L1,L2分别表示甲、乙两辆摩托车离开A地的距离s(km)与行驶时间t(h)•之间的函数关系.(1)哪辆摩托车的速度较快?(2)经过多长时间,甲摩托车行驶到A,B两地的中点?解析(1)由图像可以看出,甲摩托用了0.6h行驶了20km,而乙摩托车用了0.•5h 行驶了20km,所以乙摩托车的速度较快.(2)设L1的关系式为y=kx,把x=0.6,y=20代入,得20=0.6k,解得k=1003,∴y=1003x.当y=10时,10=1003x.所以经过0.3h,甲摩托车行驶到A,B两地的中点.评注本题第(1)题是比较速度的大小,这一点可以通过图像提供的数量直接分析出来.第(2)题的关键是要分析出甲摩托车行驶到中点时所行驶的路程为10km.例2已知y=12x-2.(1)x取何值时,y>0?(2)x取何值时,y<0?(3)当x>4时,求y的取值范围.解析作出y=12x-2的图像,如图所示.(1)当x>4时,y>0.(2)当x<4时,y<0.(3)当x>4时,y的取值范围是y>0.评注本题可以通过图像直观地得出结论.综合应用题例1某单位计划在新年期间组织员工到某地旅游,参加旅游的人数估计为10~20人,甲、乙两家旅行社的服务质量相同,且报价都是每人200元.经过协商,•甲旅行社表示可给予每位游客七五折优惠;乙旅行社表示可先免去一位游客的旅游费用,再给其余游客八折优惠.该单位选择哪一家旅行社支付的旅游费用较少?解析设该单位参加这次旅游的人数是x人,选择甲旅行社时所需的费用为y1元,选择乙旅行社时所需的费用为y2元,则y1=200×0.75x,即y1=150x;y2=200×0.8(x-1),即y2=160x-160.由y1=y2,得150x=160x-160,解得x=16;由y1>y2,得150x>160x-160,解得x<16;由y1<y2,得150x<160x-160,解得x>16.因为参加旅游的人数估计为10~20人,所以,当x=16时,甲、•乙两家旅行社的收费相同;当17≤x≤20时,选择甲旅行社费用较少;当10≤x≤15时,选择乙旅行社费用较少.评注已知前提条件,设计方案是解决实际问题的一种常见形式.明确每一种收费方式占优势时对应的自变量的取值范围是解决此类问题的关键,•借助不等式就可确定自变量的取值范围.例2兄弟俩赛距,哥哥先让弟弟跑9m,然后自己才开始跑.已知弟弟每秒跑3m,•哥哥每秒跑4m.列出函数关系式,作出函数图像,观察图像回答下列问题:(1)何时弟弟跑在哥哥前面?(2)何时哥哥跑在弟弟前面?(3)谁先跑过20m?谁先跑过100m?解析设哥哥跑了ts,则哥哥所跑的路程与时间的关系式为s1=4t;弟弟所跑的路程与时间的关系为s2=3t+9.图像如图所示.当s1=s2时,4t=3t+9,t=9.(1)当0≤t<9时,弟弟跑在哥哥的前面.(2)当t>9时,哥哥跑在弟弟的前面.(3)∵20<36,∴弟弟先跑过20m.∵100>36,∴哥哥先跑过100m.评注本题可以从时间或路程两个角度进行分析.在同一时间内,谁跑的路程远,谁就在前面,谁就先跑过20m,100m.也可比较他们各自所用的时间,谁用的时间短,•谁就先跑过.本题既可以通过计算来进行比较,也可通过图像直观地进行判断.创新题例(探究题)我边防局接到情报,在离海岸5海里处有一可疑船只A•正向公海方向行驶,边防局迅速派出快艇B追赶.图中L1,L2分别表示两船相对于海岸的距离s(海里)与追赶时间t(min)之间的关系.(1)A,B哪一个的速度快?(2)至少要用多长时间才能追上可疑船只A?解析由图像可确定L表示快艇B的图像,L表示可疑船只A的图像.(1)快艇10min行驶了5海里,所以其速度为5÷10=0.5(海里/min).可疑船只10min行驶了7-5=2(海里),所以其速度为2÷10=0.2(海里/min).所以快艇B的速度快.(2)设L1的关系式为y1=kx,把(10,5)代入,得5=10k,解得k=0.5,∴y1=0.5x.设L2的关系式为y2=kx+5,把(10,7)代入,得7=10k+5,解得k=0.2,∴y2=0.2x+5.当y1≥y2,即0.5x≥0.2x+5时,0.3x≥5,x≥503.所以至少需要503min,快艇才能追上可疑船只.中考题例(2004年苏州卷)如图,平面直角坐标系中画出了函数y=kx+b的图像.(1)根据图像,求k和b的值.(2)在图中画出函数y=-2x+2的图像.(3)求x的取值范围,使函数y=kx+b的函数值大于函数y=-2x+2的函数值.解析(1)∵直线y=kx+b经过点(-2,0),(0,2).∴02,20,k bb=-+⎧⎨=+⎩解得1,2,kb=⎧⎨=⎩∴y=x+2.(2)y=-2x+2经过(0,2),(1,0),图像如图所示.(3)当y=kx+b 的函数值大于y=-2x+2的函数值时,也就是x+2>-2x+2,解得x>0,•即x 的取值范围为x>0.11.3.1 一次函数与一元一次方程同步练习[要点再现]1.由于任何一元一次方程都可以转化为 的形式,所以解一元一次方程可以转化为:当 时,求 的值。

一元一次不等式和一元一次不等式组的复习

一元一次不等式和一元一次不等式组的复习

a 2 > 0 (2)例 2:在 2 y 2- 3 y + 1 > 0 , y 2+ 2 y + 1 = 0 , - 6 < -2 , ab 2 , 3x 2 + 2 - 1 ,3- y < 0 ,7 x + 5 ≥ 5x + 6 中,是一元一次不等式的是 1 - a 则 a 的取值范围是 n > a ,那么 a 的取值范围是(a , a 之间的大小关系是 m - 3 ,则 m 的取值范围是b > 1 ,则下列各式正确的是( A. a B. a C. a b > -1 b < -1 b > 1 b < 1 b > 0 1、例 1:解不等式① x + 1 2 - x + 23 < x + 52 ② 学习好资料欢迎下载第一章 一元一次不等式和一元一次不等式组的复习一、 不等式的概念和性质 (一)不等式的概念(1)例 1:已知① x + y = 1 ;② x > y ;③ x + 2 y ;④ x 2 - y ≥ 1 ;⑤ x < 0 其中属于不等式的有()A. 2 个B. 3 个C.4 个 D.5 个2 x72 y - 1(二)不等式的性质:1、例:如果不等式 (a - 1) x > a - 1 的解集是 x < 1 ,那么 a 的取值范围是。

2、练习:A. ab 2>0B. a 2+ab >0C.a +b >0D. b⑽当 a <0,b >0,a +b >0 时,把 a 、b 、-a 、-b 四个数用“<”连接是⑾若 x > y ,则 ax > ay ,那么一定有( )A. a >0B. a <0C. a ≥0D. a ≤0⑿若 x > y 则 ax ≤ ay ,那么一定有( )A. a >0B. a <0C. a ≥0D. a ≤0⒀若 x < y ,则 a 2 x < a 2 y 那么一定有( )A. a>0B. a<0C. a ≠0D. a 是任意实数 ⒁若 4a >5a 成立,那么一定有( )A. a >0B. a <0C. a ≥0D. a ≤0⒂ 已 知 x < 0 , - 1<y < 0 , 将 x , xy , xy 2 从 小 到 大 依 次 排⑴已知关于 x 的不等式 (1 - a) x > 2 的解集为 x < 2⑵如果 m < n < 0 那么下列结论错误的是( )。

最新初中数学方程与不等式之一元一次方程知识点总复习附答案解析

最新初中数学方程与不等式之一元一次方程知识点总复习附答案解析

最新初中数学方程与不等式之一元一次方程知识点总复习附答案解析一、选择题1.已知今年甲的年龄比乙的年龄多12岁,4年后甲的年龄恰好是乙的年龄的2倍,则甲今年的年龄是( )A .20岁B .16岁C .15岁D .12岁【答案】A【解析】【分析】设乙今年的年龄是x 岁,则甲今年的年龄是(x+12)岁.根据等量关系:4年后甲的年龄恰好是乙的年龄的2倍,列出方程进行求解即可.【详解】设乙今年的年龄是x 岁,根据题意得:(x+12)+4=2(x+4),解得:x=8,则:x+12=20,即甲今年的年龄是20岁,故选A.【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.2.关于x 的方程50x a -=的解比关于y 的方程30y a +=的解小2,则a 的值为( ) A .415 B .415- C .154 D .154- 【答案】D【解析】【分析】把a 当做已知数分别表示出x 与y 的值,根据关于x 的方程5x-a=0的解比关于y 的方程3y+a=0的解小2,得到关于a 的一元一次方程,求出方程的解即可得到a 的值.【详解】解:∵5x-a=0,∴x= 5a , ∵3y+a=0, ∴y= 3a -, ∴a 3--a 5=2, 去分母得:-5a-3a=30,合并得:-8a=30,解得:a=154 .故选:D.【点睛】此题考查了一元一次方程的解,用a表示出x与y的值是解本题的关键.3.如图,有一内部装有水的直圆柱形水桶,桶高20dm;另有一直圆柱形的实心铁柱,柱高30dm,直立放置于水桶底面上,水桶内的水面高度为12dm,且水桶与铁柱的底面半径比为2:1.今小贤将铁柱移至水桶外部,过程中水桶内的水量未改变,若不计水桶厚度,则水桶内的水面高度变为()A.4.5dm B.6dm C.8dm D.9dm【答案】D【解析】【分析】由水桶底面半径:铁柱底面半径=2:1,得到水桶底面积:铁柱底面积=4:1,设铁柱底面积为a(dm2),水桶底面积为4a(dm2),于是得到水桶底面扣除铁柱底面部分的环形区域面积为4a-a=3a(dm2),,根据原有的水量为3a×12=36a (dm3),列出方程,即可得到结论.【详解】∵水桶底面半径:铁柱底面半径=2:1,∴水桶底面积:铁柱底面积=4:1,设铁柱底面积为a(dm2),则水桶底面积为4a(dm2),∴水桶底面扣除铁柱底面部分的环形区域面积为4a−a=3a(dm2),∴原有的水量为:3a×12=36a (dm3),设水桶内的水面高度变为xdm,则4ax=36a,解得:x=9,∴水桶内的水面高度变为9dm.故选D.【点睛】本题主要考查用一元一次方程解决圆柱体的等积变形问题,掌握圆柱体的体积公式是解题的关键.4.某种商品的进价为每件180元,按标价的九折销售时,利润率为20%,这种商品每件的标价为()元.A .200B .240C .245D .255【答案】B【解析】【分析】 设这种商品的标价是x 元,根据某种商品每件的进价为180元,按标价的九折销售时,利润率为20%可列方程求解.【详解】设这种商品的标价是x 元,90%x ﹣180=180×20%x =240这种商品的标价是240元.故选:B .【点睛】本题考查一元一次方程的应用,关键知道利润=售价﹣进价,根据此可列方程求解.5.下列说法正确的是( )A .若a c =b c,则a=b B .若-12x=4y ,则x=-2y C .若ax=bx ,则a=bD .若a 2=b 2,则a=b 【答案】A【解析】【分析】按照分式和整式的性质解答即可.【详解】 解:A .因为C 做分母,不能为0,所以a=b ;B .若-x=4y ,则x=-8y ;C .当x=0的时候,不论a ,b 为何数,00a b ⨯=⨯,但是a 不一定等于b ;D .a 和b 可以互为相反数.故选 :A【点睛】本题考查了整式和分式的性质,掌握整式和分式的性质是解答本题的关键.6.一个书包的标价为a 元,按八折出售仍可获利20%,该书包的进价为( ) A .23a B .34a C .45a D .56a 【答案】A【解析】【分析】设进价为x 元,根据题意可得820%10=-x a x ,解得23x a =,即为所求. 【详解】设进价为x 元 根据题意得:820%10=-x a x ∴41.25=x a ∴23x a = 故选:A【点睛】本题考查了一元一次方程的应用,理解题意,分清已知量和未知量,根据题目中的等量关系列出需要的代数式,进而列出方程,解所列的方程,求出未知数的值,检验所得的解是否符合实际问题的意义.7.对于方程5112232x x -+-=,去分母后,得到方程正确的是( ) A .51212x x --=+ B .()51312x x -=+C .()()2516312x x --=+D .()()25112312x x --=+ 【答案】D【解析】【分析】方程的两边同时乘以各分母的最小公倍数.【详解】解:方程的两边同时乘以6,得2(5x-1)-12=3(1+2x).故选D .【点睛】本题考查了解一元一次方程.去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.8.若关于x 的不等式组12246x k x k k -⎧≥⎪⎨⎪-≤+⎩有解,且关于x 的方程()()2232kx x x =--+有非负整数....解,则符合条件的所有整数k 的和为( ) A .-5 B .-9 C .-12D .-16【答案】B【解析】【分析】先根据不等式组有解得k 的取值,利用方程有非负整数解,将k 的取值代入,找出符合条件的k 值,并相加.【详解】12246x k x k k -⎧≥⎪⎨⎪-≤+⎩①②, 解①得:x≥1+4k ,解②得:x≤6+5k ,∴不等式组的解集为:1+4k≤x≤6+5k ,1+4k≤6+5k ,k≥-5,解关于x 的方程kx=2(x-2)-(3x+2)得,x=-61k +, 因为关于x 的方程kx=2(x-2)-(3x+2)有非负整数解,当k=-4时,x=2,当k=-3时,x=3,当k=-2时,x=6,∴-4-3-2=-9;故选B .【点睛】本题考查了解一元一次不等式组、方程的解,有难度,熟练掌握不等式组的解法是解题的关键.9.甲、乙两人环湖竞走,环湖一周为400米,乙的速度是80米/分,甲的速度是乙的54倍,且甲在乙前100米处,多少分钟后,两人第一次相遇?设经过x 分钟两人第一次相遇,所列方程为( )A .580100804x x +=⨯B .580300804x x +=⨯ C .580100804x x -=⨯ D .580300804x x -=⨯ 【答案】B【解析】【分析】根据题意表示出甲的速度为80×54米/分,然后根据题意可得等量关系:甲x 分钟的路程-乙x 分钟的路程=400-100,根据等量关系列出方程即可.【详解】解:设经过x 分钟两人第一次相遇,由题意得: 80×54x-80x=400-100, 变形得:80x+300=54×80x , 故选:B .【点睛】本题主要考查由实际问题抽象出一元一次方程,解题的关键是正确理解题意,找出题目中等量关系,列出方程.10.下列是等式133223x x --=的变形,其中根据等式的性质2变形的是( )A .133232x x --=+ B .3(13)322x x --= C .3(13)64x x --=D .3(13)46x x --= 【答案】C【解析】【分析】根据等式的性质2将原方程两边同时乘以2加以变形化简即可.【详解】 原方程133223x x --=两边同时乘以2可得:3(13)64x x --=,故选:C.【点睛】本题主要考查了等式的性质,熟练掌握相关概念是解题关键.11.根据等式性质,下列结论正确的是( )A .如果22a b -=,那么=-a bB .如果22a b -=-,那么=-a bC .如果22a b =-,那么a b =D .如果122a b =,那么a b = 【答案】A【解析】【分析】根据等式的性质,可得答案.【详解】A.两边都除以-2,故A 正确;B.左边加2,右边加-2,故B 错误;C.左边除以2,右边加2,故C错误;D.左边除以2,右边乘以2,故D错误;故选A.【点睛】本题考查了等式的性质,熟记等式的性质是解题的关键.12.在如图的2016年6月份的日历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是()A.27 B.51 C.69 D.72【答案】D【解析】设第一个数为x,则第二个数为x+7,第三个数为x+14.列出三个数的和的方程,再根据选项解出x,看是否存在.解:设第一个数为x,则第二个数为x+7,第三个数为x+14故三个数的和为x+x+7+x+14=3x+21当x=16时,3x+21=69;当x=10时,3x+21=51;当x=2时,3x+21=27.故任意圈出一竖列上相邻的三个数的和不可能是72.故选D.“点睛“此题主要考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.13.若一个数的平方根为2a+3和a-15,则这个数是()A.-18 B.64 C.121 D.以上结论都不是【答案】C【解析】【分析】根据正数有两个平方根,这两个平方根互为相反数,据此即可得到关于a的方程,从而可求得a的值,进而求得这个数.【详解】解:根据题意得:2a+3+(a-15)=0,则这个数是(2a+3)2=121.故选:C .【点睛】本题主要考查了平方根的性质,正数的两个平方根互为相反数,据此把题目转化为解方程的问题,这是考试中经常出现的问题.14.一轮船从甲码头到乙码头顺水航行,用了2小时,从乙码头到甲码头逆水航行,用了2.5小时.已知水流速度为3千米/时,设轮船在静水中的速度为x 千米/时,根据题意可列方程为( )A .23 2.53x x +=-B .2(3) 2.5(3)x x +=-C .23 2.53x x -=+D .2(3) 2.5(3)x x -=+【答案】B【解析】【分析】顺流:速度=船在静水中的速度+水流的速度;逆流:速度=船在静水中的速度-水流的速度.【详解】顺流:速度=船在静水中的速度+水流的速度;逆流:速度=船在静水中的速度-水流的速度.在顺流和逆流航行过程中不变的是路程:路程=速度⨯时间顺流路程=()23x + 逆流路程=()2.53x -所以:()23x +=()2.53x -,选B .【点睛】掌握船在顺流和逆流时的速度计算公式,注意航行过程中不变的是路程建立等量关系即可.15.已知∠1:∠2:∠3=2:3:6,且∠3比∠1大60°,则∠2=( )A .10°B .60°C .45°D .80°【答案】C【解析】【分析】根据∠1:∠2:∠3=2:3:6,则设∠1=2x ,∠2=3x ,∠3=6x ,再根据∠3比∠1大60°,列出方程解出x 即可.【详解】解:∵∠1:∠2:∠3=2:3:6,设∠1=2x ,∠2=3x ,∠3=6x ,∵∠3比∠1大60°,解得:x=15,∴∠2=45°,故选C.【点睛】本题是对一元一次方程的考查,准确根据题意列出方程是解决本题的关键.16.下列等式变形错误的是( )A.若x=y,则x-5=y-5 B.若-3x=-3y,则x=yC.若xa=ya,则x=y D.若mx=my,则x=y【答案】D【解析】【分析】等式两边同时加上或减去同一个数,等式依然成立;等式两边同时乘以或除以同一个不为0的数,等式依然成立;据此对各选项进行分析判断即可.【详解】A:等式两边同时减去了5,等式依然成立;B:等式两边同时除以3-,等式依然成立;C:等式两边同时乘以a,等式依然成立;D:当0m=时,x不一定等于y,等式不成立;故选:D.【点睛】本题主要考查了等式的性质,熟练掌握相关概念是解题关键.17.某药店经营的抗病毒药品,在市场紧缺的情况下提价100%,物价部门查处后,•限定其提价的幅度只能是原价的10%,则该药品现在降价的幅度是()A.45% B.50% C.90% D.95%【答案】A【解析】试题分析:设药品的原价为a元,药品现在降价x,则根据题意可得:a(1+100%)(1-x)=a(1+10%),解得x=45%,故选;A.考点:一元一次方程的应用.18.寒假期间,小刚组织同学一起去看科幻电影《流浪地球》,票价每张45元,20张以上(不含20张)打八折,他们一共花了900元,则他们买到的电影票的张数是()A.20 B.22 C.25 D.20或25【答案】D【解析】【分析】本题分票价每张45元和票价每张45元的八折两种情况讨论,根据数量=总价÷单价,列式计算即可求解.【详解】①若购买的电影票不超过20张,则其数量为900÷45=20(张);②若购买的电影票超过20张,设购买了x 张电影票,根据题意,得:45×x ×80%=900,解得:x =25;综上,共购买了20张或25张电影票;故选D .【点睛】本题考查了一元一次方程的应用,注意分类思想的实际运用,同时熟练掌握数量,总价和单价之间的关系.19.在《九章算术》方田章“圆田术”中指出:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”,这里所用的割圆术所体现的是一种无限与有限的转化的思想,比如在234111112222+++++…中,“…”代表按规律不断求和,设234111112222x +++++⋅⋅⋅=.则有112x x =+,解得2x =,故2341111122222+++++⋅⋅⋅=.类似地2461111333++++⋅⋅⋅的结果为( ) A .43 B .98 C .65 D .2【答案】B【解析】【分析】 设2461111333x ++++⋅⋅⋅=,仿照例题进行求解. 【详解】 设2461111333x ++++⋅⋅⋅=, 则246224611111111113333333⎛⎫++++⋅⋅⋅=+++++⋅⋅⋅ ⎪⎝⎭, 2113x x ∴=+,解得,98x ,故选B.【点睛】本题考查类比推理,一元一次方程的应用,理解题意,正确列出方程是解题的关键.20.如图,平行四边形ABCD中,AB=8cm,AD=12cm,点P在AD 边上以每秒1cm的速度从点A向点D运动,点Q在BC边上,以每秒4cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q也停止),在运动以后,以P、D、Q、B四点组成平行四边形的次数有()A.4次B.3次C.2次D.1次【答案】B【解析】【分析】【详解】试题解析:∵四边形ABCD 是平行四边形,∴BC=AD=12,AD∥BC,∵四边形PDQB是平行四边形,∴PD=BQ,∵P的速度是1cm/秒,∴两点运动的时间为12÷1=12s,∴Q运动的路程为12×4=48cm,∴在BC上运动的次数为48÷12=4次,第一次PD=QB时,12-t=12-4t,解得t=0,不合题意,舍去;第二次PD=QB时,Q从B到C的过程中,12-t=4t-12,解得t=4.8;第三次PD=QB时,Q运动一个来回后从C到B,12-t=36-4t,解得t=8;第四次PD=QB时,Q在BC上运动3次后从B到C,12-t=4t-36,解得t=9.6.∴在运动以后,以P、D、Q、B四点组成平行四边形的次数有3次,故选:B.考点:平行四边形的判定与性质。

中考数学复习:第二章:方程与不等式专题复习

中考数学复习:第二章:方程与不等式专题复习

分式方程及其应用
•中考预知 •1、分式方程的解法; •2、分式方程实际的应用。
考点1:分式方程的解法
• 1.分式方程:分母中含有字母的方程叫分式方程. • 2.解分式方程的一般步骤: • (1)去分母,在方程的两边都乘以分母的最小公倍数,约去分母,
化成整式方程;
• (2)解这个整式方程; • (3)验根,把整式方程的根代入最简公分母,看结果是不是零,使
一次方程,它们的解就是原一元二次方程的解.
典例精讲
• 1、下列方程是一元二次方程的是( )
• A.ax2 bx c 0
• B.x2 2x x2 1
• C.x 1x 3 0
• D. 1 x 2 x2
• 2、分别用下列方法解方程
• (1)(2x 1) 2 9(直接开平方法)
(2)4x2–8x+1=0(配方法)
2cx+a=0,cx2+2ax+b=0,不可能都有两个相等的实数根.
• 七、判定三角形的形状 • 例7 设a、b、c是△ABC的三边长,且关于x的方程c(x2+n)+b(x2-n)
-2ax=0(n>0)有两个相等的实数根,试判断△ABC的形状.
• 八、讨论方程有理根的问题 • 例8 m为有理数,讨论后为何值时,方程x2+4(1-m)x+3m2-2m+4k=0
典例精讲
• 1、已知a,b,c均为实数,若a>b,c≠0,下列结论不一定正确的 是( )
• A.a+c>b+c
B.c-a<c-b
• C.
D.a2>ab>b2
• 2、若a>b,则下列不等关系一定成立的是( )
• A. ac bc
B. a b cc
C. c a c b D. a c b c

方程与不等式综合复习—知识讲解及经典例题解析

方程与不等式综合复习—知识讲解及经典例题解析

中考总复习:方程与不等式综合复习—知识讲解及经典例题解析【考纲要求】1.会从定义上判断方程(组)的类型,并能根据定义的双重性解方程(组)和研究分式方程的增根情况;2.掌握解方程(组)的方法,明确解方程组的实质是“消元降次”、“化分式方程为整式方程”、“化无理式为有理式”;3.理解不等式的性质,一元一次不等式(组)的解法,在数轴上表示解集,以及求特殊解集;4.列方程(组)、列不等式(组)解决社会关注的热点问题;5. 解方程或不等式是中考的必考点,运用方程思想与不等式(组)解决实际问题是中考的难点和热点.【知识网络】【考点梳理】考点一、一元一次方程1.方程含有未知数的等式叫做方程.2.方程的解能使方程两边相等的未知数的值叫做方程的解.3.等式的性质(1)等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式.(2)等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式.4.一元一次方程只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程,其中方程)为未知数,(0a x 0≠=+b ax 叫做一元一次方程的标准形式,a 是未知数x 的系数,b 是常数项. 5.一元一次方程解法的一般步骤整理方程 —— 去分母—— 去括号—— 移项—— 合并同类项——系数化为1——(检验方程的解).6.列一元一次方程解应用题(1)读题分析法:多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套”,利用这些关键字列出文字等式,并且根据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法:多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看作已知量),填入有关的代数式是获得方程的基础. 要点诠释:列方程解应用题的常用公式:(1)行程问题: 距离=速度×时间 时间距离速度= 速度距离时间=; (2)工程问题: 工作量=工效×工时 工时工作量工效=工效工作量工时=; (3)比率问题: 部分=全体×比率 全体部分比率= 比率部分全体=;(4)顺逆流问题: 顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度; (5)商品价格问题: 售价=定价·折·101,利润=售价-成本, %100⨯-=成本成本售价利润率;(6)周长、面积、体积问题:C 圆=2πR ,S 圆=πR 2,C 长方形=2(a+b),S 长方形=ab , C 正方形=4a ,S 正方形=a 2,S 环形=π(R 2-r 2),V 长方体=abh ,V 正方体=a 3,V 圆柱=πR 2h ,V 圆锥=31πR 2h.考点二、一元二次方程 1.一元二次方程含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程. 2.一元二次方程的一般形式)0(02≠=++a c bx ax ,它的特征是:等式左边是一个关于未知数x 的二次多项式,等式右边是零,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项. 3.一元二次方程的解法(1)直接开平方法利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法.直接开平方法适用于解形如b a x =+2)(的一元二次方程.根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根.(2)配方法配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用.配方法的理论根据是完全平方公式2222()a ab b a b ±+=±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±.(3)公式法公式法是用求根公式求一元二次方程的解的方法,它是解一元二次方程的一般方法.一元二次方程)0(02≠=++a c bx ax 的求根公式:21,240)2b x b ac a-±=-≥ (4)因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法.4.一元二次方程根的判别式一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“∆”来表示,即ac b 42-=∆. 5.一元二次方程根与系数的关系如果方程)0(02≠=++a c bx ax 的两个实数根是21x x ,,那么ab x x -=+21,a cx x =21.也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商. 要点诠释:一元二次方程的解法中直接开平方法和因式分解法是特殊方法,比较简单,但不是所有的一元二次方程都能用这两种方法去解,配方法和公式法是普通方法,一元二次方程都可以用这两种方法去解.(1)判断一个方程是不是一元二次方程,应把它进行整理,化成一般形式后再进行判断,注意一元二次方程一般形式中0≠a .(2)用公式法和因式分解的方法解方程时要先化成一般形式. (3)用配方法时二次项系数要化1.(4)用直接开平方的方法时要记得取正、负.考点三、分式方程 1.分式方程分母里含有未知数的方程叫做分式方程. 2.解分式方程的一般方法解分式方程的思想是将“分式方程”转化为“整式方程”.它的一般解法是:①去分母,方程两边都乘以最简公分母;②解所得的整式方程;③验根:将所得的根代入最简公分母,若等于零,就是增根,应该舍去;若不等于零,就是原方程的根.口诀:“一化二解三检验”.3.分式方程的特殊解法换元法:换元法是中学数学中的一个重要的数学思想,其应用非常广泛,当分式方程具有某种特殊形式,一般的去分母不易解决时,可考虑用换元法.要点诠释:解分式方程时,有可能产生增根,增根一定适合分式方程转化后的整式方程,但增根不适合原方程,可使原方程的分母为零,因此必须验根.增根的产生的原因:对于分式方程,当分式中,分母的值为零时,无意义,所以分式方程,不允许未知数取那些使分母的值为零的值,即分式方程本身就隐含着分母不为零的条件.当把分式方程转化为整式方程以后,这种限制取消了,换言之,方程中未知数的值范围扩大了,如果转化后的整式方程的根恰好是原方程未知数的允许值之外的值,那么就会出现增根.考点四、二元一次方程(组)1.二元一次方程含有两个未知数,并且未知项的最高次数是1的整式方程叫做二元一次方程,它的一般形式是ax+by=c(a≠0,b≠0).2.二元一次方程的解使二元一次方程左右两边的值相等的一对未知数的值,叫做二元一次方程的一个解.3.二元一次方程组两个(或两个以上)二元一次方程合在一起,就组成了一个二元一次方程组.4.二元一次方程组的解使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解.5.二元一次方程组的解法①代入消元法;②加减消元法.6.三元一次方程(组)(1)三元一次方程把含有三个未知数,并且含有未知数的项的次数都是1的整式方程叫三元一次方程.(2)三元一次方程组由三个(或三个以上)一次方程组成,并且含有三个未知数的方程组,叫做三元一次方程组.要点诠释:二元一次方程组的解法:消元:将未知数的个数由多化少,逐一解决的想法,叫做消元思想.(1)代入消元法:将一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法.(2)加减消元法:当两个方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,这种方法叫做加减消元法,简称加减法.(3)二元一次方程组的解有三种情况,即有唯一解、无解、无限多解.教材中主要是研究有唯一解的情况,对于其他情况,可根据学生的接受能力给予渗透.考点五、不等式(组)1.不等式的概念(1)不等式用不等号表示不等关系的式子,叫做不等式.(2)不等式的解集对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解.对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集.求不等式的解集的过程,叫做解不等式.2.不等式基本性质(1)不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;(2)不等式两边都乘以(或除以)同一个正数,不等号的方向不变;(3)不等式两边都乘以(或除以)同一个负数,不等号的方向改变.3.一元一次不等式(1)一元一次不等式的概念一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式.(2)一元一次不等式的解法解一元一次不等式的一般步骤:①去分母;②去括号;③移项;④合并同类项;⑤将x项的系数化为1.4.一元一次不等式组(1)一元一次不等式组的概念几个一元一次不等式合在一起,就组成了一个一元一次不等式组.几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集.求不等式组的解集的过程,叫做解不等式组.当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集.(2)一元一次不等式组的解法①分别求出不等式组中各个不等式的解集;②利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集.由两个一元一次不等式组成的一元一次不等式组的解集的四种情况如下表.注:不等式有等号的在数轴上用实心圆点表示.要点诠释:用符号“<”“>”“≤ ”“≥”“≠”表示不等关系的式子,叫做不等式.(1)不等式的其他性质:①若a >b ,则b <a ;②若a >b ,b >c ,则a >c ;③若a ≥b ,且b ≥a ,•则a=b ;④若a 2≤0,则a=0;⑤若ab >0或0a b >,则a 、b 同号;⑥若ab <0或0ab<,则a 、b 异号. (2)任意两个实数a 、b 的大小关系:①a -b >O ⇔a >b ;②a -b=O ⇔a=b ;③a-b <O ⇔a <b .不等号具有方向性,其左右两边不能随意交换:但a <b 可转换为b >a ,c ≥d 可转换为d ≤c .【典型例题】类型一、方程的综合运用1.如图所示,是在同一坐标系内作出的一次函数y 1、y 2的图象1l 、2l ,设111y k x b =+,222y k x b =+,则方程组111222,y k x b y k x b =+⎧⎨=+⎩的解是( )不等式组 (其中a >b )图示 解集 口诀x ax b >⎧⎨>⎩ bax a > (同大取大)x ax b <⎧⎨<⎩ b ax b <(同小取小) x ax b <⎧⎨>⎩ bab x a << (大小取中间)x ax b >⎧⎨<⎩ba无解 (空集) (大大、小小找不到)A .2,2x y =-⎧⎨=⎩ B .2,3x y =-⎧⎨=⎩ C .3,3x y =-⎧⎨=⎩ D .3,4x y =-⎧⎨=⎩【思路点拨】图象1l 、2l 的交点的坐标就是方程组的解. 【答案】B ;【解析】由图可知图象1l 、2l 的交点的坐标为(-2,3),所以方程组111222,y k x b y k x b =+⎧⎨=+⎩的解为2,3.x y =-⎧⎨=⎩【总结升华】方程组与函数图象结合体现了数形结合的数学思想,这也是中考所考知识点的综合与相互渗透.2.近年来,由于受国际石油市场的影响,汽油价格不断上涨.请你根据下面的信息,帮小明计算今年5月份汽油的价格.如图所示.【思路点拨】根据“用150元给汽车加油今年比去年少18.75升”列方程. 【答案与解析】解:设今年5月份汽油价格为x 元/升,则去年5月份的汽油价格为(x-1.8)元/升.根据题意,得15015018.751.8x x-=-,整理,得21.814.40x x --=.解这个方程,得x 1=4.8,x 2=-3.经检验两根都为原方程的根,但x 2=-3不符合实际意义,故舍去. 【总结升华】解题的关键是从对话中挖掘出有效的数学信息,构造数学模型,从而解决问题,让同学们更进一步地体会到数学就在我们身边.类型二、解不等式(组)3.已知A =a+2,B =a 2-a+5,C =a 2+5a-19,其中a >2. (1)求证:B-A >0,并指出A 与B 的大小关系; (2)指出A 与C 哪个大?说明理由. 【思路点拨】计算B-A 结果和0比大小,从而判断A 与B 的大小;同理计算C-A ,根据结果来比较A 与C 的大小. 【答案与解析】(1)证明:B-A =a 2-2a+3=(a-1)2+2.∵ a >2,∴ (a-1)2>0,∴ (a-1)2+2>0.∴ a 2-2a+3>0,即B-A >0. 由此可得B >A .(2)解:C-A =a 2+4a-21=(a+7)(a-3). ∵ a >2,∴ a+7>0.当2<a <3时,a-3<0, ∴ (a+7)(a-3)<0.∴ 当2<a <3时,A 比C 大;当a =3时,a-3=0, ∴ (a+7)(a-3)=0.∴ 当a =3时,A 与C 一样大;当a >3时,a-3>0, ∴ (a+7)(a-3)>0.∴ 当a >3时,C 比A 大. 【总结升华】比较大小通常用作差法,结果和0比大小,此时常常用到因式分解或配方法. 本题考查了整式的减法、十字相乘法分解因式,渗透了求差比较大小的思路及分类讨论的思想. 举一反三:【变式1】已知:A=222+-a a ,B=2, C=422+-a a ,其中1>a .(1)求证:A-B>0; (2)试比较A 、B 、C 的大小关系,并说明理由. 【答案】(1)A-B=222222(21)a a a a a a -+-=-=- ∵1>a ,∴0,210a a >-> ∴A-B>0(2) ∵C-B=22224222(1)10a a a a a -+-=-+=-+> ∴C>B∵A-C=22222242(2)(1)a a a a a a a a -+-+-=+-=+- ∵1>a ,∴20,10a a +>-> ∴A>C>B【变式2】如图,要使输出值y 大于100,则输入的最小正整数x 是______.【答案】解:设n 为正整数,由题意得 ⎩⎨⎧>+⨯>-.1001342,100)12(5n n 解得⋅>887n 则n 可取的最小正整数为11.若x 为奇数,即x =21时,y =105; 若x 为偶数,即x =22时,y =101. ∴满足条件的最小正整数x 是21.类型三、方程(组)与不等式(组)的综合应用4.宏志高中高一年级近几年来招生人数逐年增加,去年达到550名,其中有面向全省招收的“宏志班”学生,也有一般普通班的学生.由于场地、师资等限制,今年招生最多比去年增加100人,其中普通班学生可多招20%,“宏志班”学生可多招10%,问今年最少可招收“宏志班”学生多少名? 【思路点拨】根据招生人数列等式,根据今年招生最多比去年增加100人列不等式. 【答案与解析】设去年招收“宏志班”学生x 名,普通班学生y 名,由条件得550,10%20%100.x y x y +=⎧⎨+≤⎩将y =550-x 代入不等式,可解得x ≥100,于是(1+10%)x ≥110. 故今年最少可招收“宏志班”学生110名. 【总结升华】本题属于列方程与不等式组综合题. 举一反三:【变式】为了加强学生的交通安全意识,某中学和交警大队联合举行了“我当一日小交警”活动,星期天选派部分学生到交通路口值勤,协助交通警察维持交通秩序,若每一个路口安排4人,那么还剩下78人;若每个路口安排8人,那么最后一个路口不足8人,但不少于4人.求这个中学共选派值勤学生多少人?共有多少个交通路口安排值勤?【答案】设这个学校选派值勤学生x 人,共到y 个交通路口值勤.根据题意得478,48(1)8.x y x y -=⎧⎨≤--<⎩①②由①可得x =4y+78,代入②,得4≤78+4y-8(y-1)<8,解得19.5<y ≤20.5.根据题意y 取20,这时x 为158,即学校派出的是158名学生,分到了20个交通路口安排值勤.5.已知关于x 的一元二次方程 2(2)(1)0m x m x m ---+=.(其中m 为实数) (1)若此方程的一个非零实数根为k , ① 当k = m 时,求m 的值;② 若记1()25m k k k+-+为y ,求y 与m 的关系式;(2)当14<m <2时,判断此方程的实数根的个数并说明理由. 【思路点拨】(1)由于k 为此方程的一个实数根,故把k 代入原方程,即可得到关于k 的一元二次方程,①把k=m 代入关于k 的方程,即可求出m 的值;②由于k 为原方程的非零实数根,故把方程两边同时除以k ,便可得到关于y 与m 的关系式; (2)先求出根的判别式,再根据m 的取值范围讨论△的取值即可. 【答案与解析】(1)∵ k 为2(2)(1)0m x m x m ---+=的实数根,∴ 2(2)(1)0m k m k m ---+=.※① 当k = m 时,∵ k 为非零实数根,∴ m ≠ 0,方程※两边都除以m ,得(2)(1)10m m m ---+=.整理,得 2320m m -+=.解得 11m =,22m =.∵ 2(2)(1)0m x m x m ---+=是关于x 的一元二次方程, ∴ m ≠ 2. ∴ m= 1.② ∵ k 为原方程的非零实数根,∴ 将方程※两边都除以k ,得(2)(1)0mm k m k---+=. 整理,得 1()21m k k m k +-=-.∴ 1()254y m k k m k=+-+=+.(2)解法一:22[(1)]4(2)3613(2)1m m m m m m m ∆=----=-++=--+ .当14<m <2时,m >0,2m -<0.∴ 3(2)m m -->0,3(2)1m m --+>1>0,Δ>0.∴ 当14<m <2时,此方程有两个不相等的实数根.解法二:直接分析14<m <2时,函数2(2)(1)y m x m x m =---+的图象,∵ 该函数的图象为抛物线,开口向下,与y 轴正半轴相交,∴ 该抛物线必与x 轴有两个不同交点.∴ 当14<m <2时,此方程有两个不相等的实数根.解法三:222[(1)]4(2)3613(1)4m m m m m m ∆=----=-++=--+.结合23(1)4m ∆=--+关于m 的图象可知,(如图)当14<m ≤1时,3716<∆≤4; 当1<m <2时,1<∆<4.∴ 当14<m <2时,∆>0.∴ 当14<m <2时,此方程有两个不相等的实数根. 【总结升华】和一元二次方程的根有关的问题往往可以借助于二次函数图象解决,数形结合使问题简化. 举一反三:【变式1】已知关于x 的一元二次方程2x 2+4x+k ﹣1=0有实数根,k 为正整数.(1)求k 的值(2)当此方程有两个非零的整数根时,将关于x 的二次函数y=2x 2+4x+k ﹣1的图象向右平移1个单位,向下平移2个单位,求平移后的图象的解析式.【答案】解:(1)∵方程2x 2+4x+k ﹣1=0有实数根,∴△=42﹣4×2×(k ﹣1)≥0,∴k≤3.又∵k 为正整数,∴k=1或2或3.(2)当此方程有两个非零的整数根时,当k=1时,方程为2x 2+4x=0,解得x 1=0,x 2=﹣2;不合题意,舍去.当k=2时,方程为2x 2+4x+1=0,解得x 1=﹣1+,x 2=﹣1﹣;不合题意,舍去. 当k=3时,方程为2x 2+4x+2=0,解得x 1=x 2=﹣1;符合题意.因此y=2x 2+4x+2的图象向右平移1个单位,向下平移2个单位,得出y=2x 2﹣2.【变式2】已知:关于x 的方程()0322=-+-+k x k x (1)求证:方程()0322=-+-+k x k x 总有实数根;(2)若方程()0322=-+-+k x k x 有一根大于5且小于7,求k 的整数值; (3)在⑵的条件下,对于一次函数b x y +=1和二次函数2y =()322-+-+k x k x ,当71<<-x 时,有21y y >,求b 的取值范围.【答案】⑴证明:∵△=(k -2)2-4(k -3)=k 2-4k +4-4k +12= k 2-8k +16=(k -4)2≥0∴此方程总有实根。

《一元一次不等式与不等式组》知识讲解(1)

《一元一次不等式与不等式组》知识讲解(1)
【答案】D
3
初一实验班——荣伟伟
一元一次不等式的解法
要点一、一元一次不等式的概念 只含有一个未知数,未知数的次数是一次的不等式,叫做一元一次不等式,例如,
2 x 50 是一个一元一次不等式. 3
要点诠释: (1)一元一次不等式满足的条件:①左右两边都是整式(单项式或多项式);
②只含有一个未知数; ③未知数的最高次数为 1. (2) 一元一次不等式与一元一次方程既有区别又有联系: 相同点:二者都是只含有一个未知数,未知数的次数都是 1,“左边”和“右边”都是整式. 不同点:一元一次不等式表示不等关系,由不等号“<”或“>”连接,不等号有方向;一 元一次方程表示相等关系,由等号“=”连接,等号没有方向.
移项、合并同类项得: − 3 x 6 4
系数化 1,得 x −8 故原不等式的解集是 x −8
例 3.m 为何值时,关于 x 的方程: x − 6m −1 = x − 5m −1 的解大于 1?
63
2
【答案与解析】
解: x-12m+2=6x-15m+3
5x=3m-1
x = 3m −1 5
要点二、一元一次不等式的解法 1.解不等式:求不等式解的过程叫做解不等式. 2.一元一次不等式的解法:
与一元一次方程的解法类似,其根据是不等式的基本性质,将不等式逐步化为: x a (或 x a )的形式,解一元一次不等式的一般步骤为:
(1)去分母; (2)去括号; (3)移项;
(4)化为 ax b (或 ax b )的形式(其中 a 0 );

4.若关于
x、y
的二元一次方程组
3x + y x + 3y
=1+ =3

第7章一元一次不等式及不等式期末复习教学案

第7章一元一次不等式及不等式期末复习教学案

第七章 一元一次不等式及不等式组期末复习教学案【知识要点】、1.不等式: 式子叫做不等式。

2.表示不等式关系的符号及其意义.(1)“≠”读作“不等于”,它说明两个量之间的关系是不等的,但不能说明两个量谁大谁小; (2)“>”读作“大于”,它表示其左边的数比右边的数大; (3)“<”读作“小于”,它表示其左边的数比右边的数小;(4)“≥”读作“大于或等于”,其意义是指左边的数不小于右边的数; (5)“≤”读作“小于或等于”,其意义是指左边的数不大于右边的数;3.(1)不等式的解:能使不等式成立的未知数的值叫做 ;(2)不等式的解集:一个含有未知数的不等式的解的全集叫做 ; (3)解不等式:求不等式解集的过程叫做 . 4. 不等式解集的表示方法(1)用不等式表示:不等式的解集是一个范围,这个范围可以用一个最简单的不等式来表示.(2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,要注意一是定方向,二是定边界点,大于向右画,小于向左画;无等于号时边界点处画空心圆圈,有等于号时边界点处用实心圆点表示一定要注意不等号“ >” ,“ < ”与“ ≥" “≤”在数轴上画法的区别.5.等式的解与不等式的解集的联系与区别.(1)联系: ; (2)区别: .6.不等式的性质.(重点)不等式的性质 1 :不等式的两边 ,不等号的方向不变.不等式的性质 2 :不等式的两边都乘以(或除以)同一个正数,不等号的方向 ;不等式的两边都乘以(或除以)同一个负数,不等号的方向 .7.一元一次不等式 (重点):(1)只含一个未知数,并且未知数的最高次数是1系数不等于0不等式,叫做 . (2)一元一次不等式的一般形式为:b ax+>0或b ax +<0(0≠a )8. 叫做一元一次不等式组。

叫做这个不等式组的解集。

9.一元一次方程与一次函数、二元一次方程(组)与一次函数的联系.(重点)(1)任何一元一次方程都可以转化为)0,(0≠=+a b a bax 为常数,的形式,所以解一元一次方程可以转化为当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线b ax y +=,确定它与x 轴的交点的横坐标的值.(2)二元一次方程与一次函数的联系.若k ,b表示常数且k ≠0,则b kx y =-为二元一次方程,有无数个解,将其变形可得b kx y +=,将 x ,y 看作自变量、因变量,则b kx y +=是一次函数.事实上,以方程b kx y =-的解为坐标的点组成的图象与一次函数b kx y +=的图象相同.(3)二元一次方程组与一次函数的联系.二元一次方程组⎩⎨⎧=+=+222111c y b x a c y b x a 解一可以看作是两个一次函数1111b cx b a y +-=和2222b cx b a y +-=图像的交点.11.一元一次不等式与一次函数的联系. (重点)(1)任何一个一元一次不等式都可以转化为b ax+>0或b ax+<0(a ,b为常数,a ≠0)的形式,所以解一元一次不等式可以看作:当一次函数的值大(小)于0时,求自变量的取值范围. (2)一次函数b kx y +=与一元一次方程0=+b kx 和一元一次不等式的关系:函数b kx y +=的图象在x 轴上方的点所对应的自变量x 的值,即为不等式b kx+>0的解集;在x 轴上的点所对应的自变量x 的值,即为方程0=+b kx 的解;在x 轴下方的点所对应的自变量x 的值,即为不等式b kx +<0的解集.【典型例题】【例1】下列式子中哪些是不等式?(1)x+y=y+x (2)-4>-6 (3)x ≠5 (4)x +2>5 (5)3x<y (6)2a -b 解:是不等式的是: (填序号) 【例2】用不等式表示下列关系。

(易错题精选)初中数学方程与不等式之一元一次方程知识点总复习含答案

(易错题精选)初中数学方程与不等式之一元一次方程知识点总复习含答案

(易错题精选)初中数学方程与不等式之一元一次方程知识点总复习含答案一、选择题1.若关于x 的不等式组12246x k x k k -⎧≥⎪⎨⎪-≤+⎩有解,且关于x 的方程()()2232kx x x =--+有非负整数....解,则符合条件的所有整数k 的和为( ) A .-5 B .-9 C .-12 D .-16【答案】B 【解析】 【分析】先根据不等式组有解得k 的取值,利用方程有非负整数解,将k 的取值代入,找出符合条件的k 值,并相加. 【详解】12246x k x k k -⎧≥⎪⎨⎪-≤+⎩①②, 解①得:x≥1+4k , 解②得:x≤6+5k ,∴不等式组的解集为:1+4k≤x≤6+5k , 1+4k≤6+5k , k≥-5,解关于x 的方程kx=2(x-2)-(3x+2)得,x=-61k +, 因为关于x 的方程kx=2(x-2)-(3x+2)有非负整数解, 当k=-4时,x=2, 当k=-3时,x=3, 当k=-2时,x=6, ∴-4-3-2=-9; 故选B . 【点睛】本题考查了解一元一次不等式组、方程的解,有难度,熟练掌握不等式组的解法是解题的关键.2.一船由甲地开往乙地,顺水航行要4小时,逆水航行比顺水航行多用40分钟,已知船在静水中的速度为16千米/时,求水流速度. 解题时,若设水流速度为x 千米/时,那么下列方程中正确的是( ) A .()()24164163x x ⎛⎫+=+- ⎪⎝⎭B .()24164163x ⎛⎫⨯=+- ⎪⎝⎭C .()()()41640.416x x +=+-D .()24164163x ⎛⎫+=+⨯ ⎪⎝⎭【答案】A 【解析】 【分析】由已知条件得到顺水航行的速度为(16+x )千米/时,逆水航行的速度为(16-x )千米/时,根据时间关系列方程即可. 【详解】由题意得到:顺水航行的速度为(16+x )千米/时,逆水航行的速度为(16-x )千米/时, ∴()()24164163x x ⎛⎫+=+- ⎪⎝⎭, 故选:A. 【点睛】此题考查一元一次方程的实际应用,正确理解顺水航行和逆水航行的速度是解题的关键.3.关于x 的方程243x m +=和1x m -=有相同的解,则m 的值是( ) A .6 B .5C .52D .23-【答案】A 【解析】分析:根据同解方程,可得关于m 的方程,根据解方程,可得答案. 详解:由题意,得:x =m +1,2(m +1)+4=3m , 解得:m =6. 故选A .点睛:本题考查了同解方程,利用同解方程得出关于m 的方程是解题的关键.4.在解分式方程31x -+21x x+-=2时,去分母后变形正确的是( ) A .()()3221x x -+=- B .()3221x x -+=- C .()322x -+= D .()()3221x x ++=-【答案】A 【解析】 【分析】本题考查对一个分式确定最简公分母,去分母得能力.观察式子x-1和1-x 互为相反数,可得1-x=-(x-1),所以可得最简公分母为x-1,因为去分母时式子不能漏乘,所以方程中式子每一项都要乘最简公分母. 【详解】方程两边都乘以x-1,得:3-(x+2)=2(x-1). 故答案选A . 【点睛】本题考查了解分式方程,解题的关键是方程两边都乘以最简公分母.5.某书店推出一种优惠卡,每张卡售价为50元,凭卡购书可享受8折优惠,小明同学到该书店购书,他先买购书卡再凭卡付款,结果省了10元。

一元一次方程与不等式的解法与应用归纳

一元一次方程与不等式的解法与应用归纳

一元一次方程与不等式的解法与应用归纳一元一次方程与不等式是初中数学必学的重要内容,它们在实际生活中的应用也非常广泛。

本文将对一元一次方程与不等式的解法进行归纳,并探讨它们在实际问题中的应用。

一、一元一次方程的解法一元一次方程的一般形式为ax + b = 0,其中a和b为已知数,x为未知数。

解一元一次方程的基本思路是通过移项和合并同类项,将方程化为形如x = c的简单形式。

1. 直接移项法直接移项法即将已知数移至方程的另一侧。

例如,对于方程2x + 3= 7,我们可以通过将3移至等号右侧得到2x = 7 - 3,进而得到x的值。

2. 合并同类项法合并同类项法即将方程中相同类型的项合并。

例如,对于方程3x -5 + 2x = 4x - 1,我们可以将x的系数合并得到5x - 5 = 4x - 1,然后通过移项可以得到x的值。

3. 代入法代入法即通过将已知数代入方程,求解未知数的值。

例如,对于方程3x - 4 = 2(x - 1),我们可以将x - 1替换为已知数的值,然后通过解简单的一元一次方程得到x的值。

二、不等式的解法不等式是数学中的一种比较关系,也是实际问题中常见的表达方式。

解不等式可以通过绘制数轴、考虑数的正负等方法来实现。

1. 绘制数轴法绘制数轴法适用于解线性不等式。

通过将不等式转化为数轴上的点的区间来表示,从而确定不等式的解集。

例如,对于不等式3x - 2 > 0,我们可以绘制数轴,找到使不等式成立的数的范围。

2. 考虑数的正负法考虑数的正负法适用于解含有二次项或分式的不等式。

通过考虑方程中各部分的正负情况来确定不等式的解集。

例如,对于不等式(x -1)(x + 2) < 0,我们可以考虑(x - 1)和(x + 2)的正负情况,并确定使不等式成立的数的范围。

三、一元一次方程与不等式的应用一元一次方程与不等式在实际生活中有着广泛的应用,例如在经济学、物理学和生活中的问题求解等方面。

最新届中考数学方程(组)与不等式(组)复习知识点总结及经典考题选编

最新届中考数学方程(组)与不等式(组)复习知识点总结及经典考题选编

中考数学方程(组)与不等式(组)复习知识点总结一、方程【知识梳理】1、知识结构方程分式方程的应用分式方程的解法分式方程的概念分式方程的关系根的判别式,根与系数一元二次方程的解法念一元二次方程的有关概一元二次方程二元一次方程组的应用二元一次方程组的解法二元一次方程组一元一次方程的应用一元一次方程的解法一元一次方程整式方程2、知识扫描(1)只含有一个未知数,并且未知数的次数是1的整式方程,叫做一元一次方程。

(2)含有2个未知数,并且所含未知数的项的次数都是1次,这样的方程叫二元一次方程.(3)含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组.(4)二元一次方程组的解法有法和法.(5)只含有1 个未知数,并且未知数的最高次数是2且系数不为0的整式方程,叫做一元二次方程,其一般形式为)0(02a cbx ax。

(6)解一元二次方程的方法有:①直接开平方法;②配方法;③公式法;④因式分解法例:(1)042x(2)0342x x(3)4722x x (4)0232x x(7)一元二次方程的根的判别式:ac b42叫做一元二次方程的根的判别式。

对于一元二次方程)0(02a cbx ax当△>0时,有两个不相等的实数根;当△=0时,有两个相等的实数根;当△<0时,没有实数根;反之也成立。

(8)一元二次方程的根与系数的关系:如果)0(02acbx ax的两个根是21,x x 那么ab x x 21,ac x x 21(9)一元二次方程)0(02a cbx ax的求根公式:)04(2422ac baacb bx(10)分母中含有未知数的方程叫分式方程.(11)解分式方程的基本思想是将分式方程通过去分母转化为整式方程.◆解分式方程的步骤◆1、去分母,化分式方程为整式方程;◆2、解这个整式方程;◆3、验根。

注意:(1)解分式方程的基本思想是“转化”,即把分式方程化为我们熟悉的整式方程,转化的途径是“去分母”,即方程两边都乘以最简公分母.(2)因为解分式方程时可能产生增根,所以解分式方程必须检验,检验是解分式方程必要的步骤.二、不等式【知识梳理】1、知识结构解法性质概念不等式2、知识扫描(1) 只含有一个未知数,并且未知数的次数是1,系数不为 0 的不等式,叫做一元一次不等式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元一次方程和不等式复习
例题:
例1.解下列方程: (1)
35.0102.02.01.0=+--x x ; (2)01}1]1)12
1(21[21{21=----x ; (3)3(x+1)-31(x-1)=2(x-1)-2
1(x+1); (4)2(|x+1|-2)-3(2|x+1|-1)=7(1-|x+1|)-2 例2.已知关于x 的方程x a x x 4)]3(2[3=--和18
51123=--+x a x 有相同的解,那么这个解是什么? 例3.求关于x 的方程153+=+-bx a x (1)有唯一解的条件;(2)有无数解的条件;(3)无解的条件. 例4.某商场经销一种商品,由于进货时的价格比原来的进价降低了6.4%,使得利润增加了8个百分点,求经销这种商品原来的利润率是多少?
例6.一个五位数,左边三位数是右边两位数的5倍,如果把右边两位数移到前面,则新五位数比原来五位数的2倍多75,求原五位数.
例8.若0)23(2
=+++b ax x b a 是关于x 的一元一次方程,且x 有唯一解,求这个解.
例9.求同时满足2 x +3≥3(x +2)与33+x >3251+-x 的整数x . 【提示】解 ⎪⎩⎪⎨⎧+->++≥+32513
3)2(332x x x x 得,-4<x ≤-3. 【答案】x =-3.
例10.已知方程组⎩⎨⎧-=-+=+17
2652y x k y x 的解为负数,求k 的取值范围.
【提示】解方程组,得⎩⎨⎧+=-=.812m y m x 所以 ⎩
⎨⎧<+<-.08012m m 【答案】m <-8.
例11.已知a 是不等式组⎪⎩⎪⎨⎧-<-+>-a a a a 23712
1)1(315的整数解,x 、y 满足方程组⎩⎨⎧=+-=-43272y x y ax 例12.一批服装,进价是每套320元,进货过程中损耗2%,要使出售后赢利不低于15%,
应怎样定价?
【答案】(略解)设每套服装定价为x 元,
根据题意,得
320%2320320⨯--x ≥100
15. 解得
x ≥374.4.
答:定价应不低于374.4元.
课堂练习
一、填空题
1、方程x +2=3的解也是方程ax -3=5的解时,a = ;
2、方程|x -1|=1的解是 ;
3、|2x -3y |+(y -2)2 =0 成立时,x 2+y 2 =
4、|x-y|=y-x,是x___________y;
5、若a b b a a b a b >>---000022,则,,.
6、若代数式321x
-的值小于2,则x 的取值范围是___________________;
7、不等式3x -7<8的正整数解为_________________________;
8、x =9 是方程
b x =-231的解,那么=b ,当=b 1时,方程的解 ; 9、若是2ab 2c
3x -1与-5ab 2c 6x +3是同类项,则x = ; 10、x =4
3是方程|k |(x +2)=3x 的解,那么k = .. 11、如果方程(m -1)x |m| + 2 =0是表示关于x 的一元一次方程,那么m 的取值范围是 。

二.解下列方程和不等式:
1、
2
503.002.003.05.09.04.0-=+-+x x x ; 2、21)1(61)1(3121+-=-+x x x . 3、 x x x x 2121325+<->+⎧⎨⎪⎪⎩⎪⎪(),. 4、
2731250x x x +>--≥⎧⎨⎪⎩⎪ 3.下列判断错误的是( )
A.若a=b,则ac-5=bc-5
B.若a=b,则
1122+=+c b c a C.若x=2,则x x 22= D.若ax=bx,则a=b
4.关于x 的方程)()(m x m k x k -=-有唯一解,则k,m 应满足的条件是( )
A.k ≠0,m ≠0
B. k ≠0,m=0
C.k=0,m ≠0
D. k ≠m
三、解答题
1、果品公司购进苹果5.2万千克,每千克的进价是0.98元,付运费的开支1840元,预计损耗为1%,如果希望全部
销售后能获利17%,问每千克的零售价为多少元?
2、学生90人编成三组参加义务劳动,甲组与乙组的人数比为3:2,乙组与丙组的人数比为7:5,求各组各有多少人?
3、已知∣2x -5∣=5-2x ,求x 的取值范围。

4、已知关于x 的方程3M -5x =-8的解是非正数,求M 的取值范围
5、求不等式组2≤3x -7<8的整数解。

相关文档
最新文档