电流互感器极性及方向保护的问题
互感器极性及其接线安全技术
互感器极性及其接线安全技术互感器是电力系统中常见的电气设备,用于测量电流和电压,并将其转换成适合测量和保护装置使用的信号。
在使用互感器时,不仅需要了解其工作原理和性能特点,还需要掌握互感器的极性及其接线安全技术。
一、互感器极性互感器的极性指的是互感器的朝向和接线方式。
在工程实践中,为了保证电力系统的稳定和安全运行,互感器的极性需要正确配置。
在电流互感器(CT)中,通常规定将线圈的起点标记为极性端,线圈的末端标记为非极性端。
当经过绕组的电流方向与箭头方向一致时,将产生正向磁通,输出电压方向为正。
此时,将极性端连接到负载端,非极性端连接到电源端。
如果电流方向相反,输出电压方向将为负,因此需要将极性端和非极性端的连接方式进行调整。
在电压互感器(VT)中,通常规定将高压侧标记为极性端,低压侧标记为非极性端。
此时,当高压侧电压大于低压侧电压时,输出电压方向为正。
同样地,如果高压侧电压小于低压侧电压,输出电压方向将为负,需要调整接线方式。
二、互感器接线安全技术互感器的接线安全技术主要包括以下几个方面:1. 接线材料的选择:互感器的线圈通常采用铜线或铝线进行绕制,因此接线材料需要选择合适的铜或铝导线。
在选择导线时,需要考虑其截面积、导电性能、耐腐蚀性等因素。
2. 接线端子的选择:互感器的线圈和外部电气设备之间通过接线端子进行连接。
为确保接线可靠和安全,端子需要具有良好的接触性能和导电性能,且具有防震、防潮、防腐蚀等功能。
3. 接线方法的选择:互感器的接线方法有直接接线法和间接接线法两种。
直接接线法指的是将互感器与电气设备之间的线路直接连接,适用于小型电力系统和较短距离的电路。
间接接线法指的是通过继电器等中间设备来连接互感器和电气设备,适用于大型电力系统和较长距离的电路。
4. 接线标准的遵循:在进行互感器接线时,需要遵循相应的接线标准或规程,确保接线正确、可靠和安全。
例如,根据GB/T 23592-2009《互感器技术条件》的规定,CT的接线应符合Yyn0、Dyn11、Yd11等标准。
电流互感器知识点总结
电流互感器知识点1、定义电流互感器是将交流大电流变成小电流(5A或1A),供电给测量仪表和保护装置的电流线圈。
可以把高电压与仪表和保护装置等二次设备隔开,保证了测量人员与仪表的安全。
使用电流互感器时,应将一次绕组与被测回路串联,电流互感器工作时相当于普通变压器短路运行状态。
电流互感器的二次电流和一次电流的关系是随着一次电流的大小而变化。
2、运行1)电流互感器不得超额定容量长期运行(长期过负荷【即通过的电流超过电流互感器的额定电流】会使误差增大,表计指示不正确;会使铁芯和绕组过热,绝缘老化快,甚至损坏电流互感器;);2)电流互感器二次侧电路应始终闭合;(运行中的CT上拆除电流表等仪表时,应先将二次绕组短路;二次绕组如有不用的,应采取短接处理。
)3)电流互感器二次侧线圈的一边和铁芯应同时接地;(CT二次侧接地是保护接地,防止一、二次绕组间因绝缘损坏而击穿时,二次绕组串入高电压,危机设备及人身安全)。
4)电流互感器的二次回路必须有且只能有一个接地点。
5)电流互感器二次回路切换时:应停用相应的保护装置;严禁操作过程中开路。
6)保护和仪表共用一套电流互感器时,当表计回路有工作,应注意必须在表计本身端子上短接,注意不要开路且不要把保护回路短路;现场工作时应根据实际接线确定短路位置和安全措施;在同一回路中如有零序保护、高频保护等,均应在短路之前停用。
3、极性1)电流互感器的极性是什么?何谓减极性和加极性?极性错误会有什么危害?答:规定电流互感器的一次线圈的首端标为L1,尾端标为L2,二次线圈的首端标为K1,尾端标为K2,在接线中L1 ,K1(L2 和K2)均为同极性端。
减极性:假定一次电流从L1流入,从L2流出,感应出的二次电流从K1流出,从K2流入,这种LH的极性称为减极性。
反之将K1与K2换位时,称为加极性。
危害:在使用中极性错误会引起保护误动作,尤其是两相三继电器的过电流保护,变压器的差动保护,母差保护等电流互感器极性和接线必须正确。
互感器极性及其接线安全
互感器极性及其接线安全
互感器极性及其接线安全
一、互感器的作用及分类
互感器是电力系统中的一个重要电气元器件,主要作用是将高电压变成低电压,或将低电压变成高电压。
互感器的分类:按变比分为定比互感器和变比互感器;按运行方式分为线路互感器和变压器型互感器。
二、互感器极性
互感器极性的定义是指在同一次极性激励时,次电缔结电压方向与对应的主电流方向之间的关系。
在互感器极性确定后,互感器再次接入时,主电流方向将被确定,如果主电流方向送错,那么电气设备运行稳定性会受到影响。
互感器极性标志通常用“S1”、“S2”等符号表示,S1表示短路侧的电压和电流的方向相反,S2表示短路侧的电压和电流的方向相同。
三、互感器接线安全
1、接地保护装置的设置:在互感器接线的两端应设置合适的保护装置,如超流保护、低压保护等,以防止接线短路、过载等故障发生,对运行安全造成影响。
2、接线过程中的绝缘措施:在接线过程中,应注重绝缘措施,避免接头松动、漏油、通风等问题造成设备故障。
3、接地电阻的测试:应定期对互感器的接地电阻进行测试,保
持接地电阻的标准,以预防接地故障。
在测试接地电阻的时候,要
将所有接线拆下,并且绝缘良好,以免造成危险。
4、接线的正确性:在接线的过程中要注意接线的正确性,根据
互感器极性确定接线的次序,避免接错相故障。
在检查接线的同时,应付清所有接点上的灰尘等物质,确保接点良好,避免因接点不良
而导致设备故障。
互感器有着重要的电力作用。
在使用它们的时候,需要我们注
意正确的接线安全,以确保设备的正常运行。
【电力技术】电流、电压互感器极性的规定意义及检测方法
【电力技术】电流、电压互感器极性的规定意义及检测方法1相量的起因大家知道,我们的发电机原理是导体切割磁力线产生电动势,而发电机定子绕组的三相排列是按照三相平均分360度排列的,随着发电机转子的转动,感应出三相电动势。
发电机顺时针转动,就产生了A相超前B相1200的相位,B相超前C相1200的相位,C相超前A 相1200的相位,发电机每分钟转动3000转,那么每秒转数就是3000/60秒=50周,这个就是我们说的50HZ的来由,反过来,每转一周的时间(T=1/f)就是1/50=0.02秒就是20毫秒,也就是说完成一个360度的变化需要20毫秒。
下面我们可以形象的从相量图和波形图看出相位关系。
当电动势作用在负载上时,由于负载的性质由电阻、电感、电容组成的阻抗决定,使得电流与电压之间表现出不同的相位:下面我们就沿着这个主线进一步分析相量在保护中的应用2电流、电压互感器减极性标记的含义及意义1电流、电压互感器减极性标记的含义及意电压互感器的接线及极性是保证全站所有保护相量正确的最基本的因素,所有需要判断方向的保护都必须首先要求电压极性正确,为了统一标准,我们现在规定:所有电压互感器不论是新投,还是因某种原因检修更换二次线,都必须保证电压互感器二次从极性端正出,也就是说电压互感器正极性。
请看如下示意图1-1:保证了电压互感器的正极性,就为我们在考虑变电站内各个保护装置的方向以及在带负荷测相量的时候,提供了一个基础,因为就算有的保护装置不需要判别方向,也需要通过电流、电压之间的相位关系来确定电流互感器极性是否正确,当做这个工作的时候,我们需要关注的是流经保护安装处的负荷性质、潮流流向、电压互感器极性,只有采集好全部信息,才能确定保护二次回路的接线的正确性。
因此,我们规定:要求电压互感器的正极性。
从上图中可以看出电压互感器一次电流从一次线圈的极性端流入,这个不是刻意做的,而是一次必须要这么接线,这是一次安装的工艺所必须的,那么二次线圈的引出线就必须从极性端引出,非极性端结成N线在主控室一点接地,这样就能保证电压互感器UA、UB、UC的正极性。
怎样才能正确地确认差动保护所用TA极性的正确性
怎样才能正确地确认差动保护所用TA极性的正确性众所周知,发电机和变压器等电气设备所配置的差动保护工作原理就是比较各侧电流的大小和相位,比较电流的大小的概念大家都好理解,但比较电流的相位有时搞得我们的保护人员有些昏头转向,找不到头绪,下面就这一问题谈一下自己的理解和看法,以供参考。
一、首先要搞清楚几个概念1、同极性和反极性:在电流互感器上标注有一次绕组P1、P2和二次绕组S1、S2(有些电流互感器上标为L1、L2和K1、K2)。
P1和S1就是同极性,同样P2和S2也是同极性;反之P1和S2及P2和S1就是反极性。
什么意思呢?当电流从一次侧P1端流进的话,那么二次侧电流就会从S1端流出,这两个电流在TA的铁心中产生的磁通是相互抵消的,因此我们又称为减极性标注。
迄今为止,我国的电流互感器都是减极性标注。
2、正引出和反引出:指的是电流互感器二次绕组与保护装置的连接方式,所谓正引出就是TA的二次绕组S1端与保护装置的A或B或C端连接,S2与保护装置的同相的N端相连;而反引出的连接方式恰恰相反。
在实际的现场安装接线中,接线人员必须都要按照正引出的方式接线,今后至于需要反引出由保护人员来确认更改。
二、差动保护装置的差流计算公式每个保护厂家的保护装置差动电流计算公式各不相同,一般有两种:1、ID=|I1+I2|2、ID=|I1-I2|怎样理解呢?1、先看第一种ID=|I1+I2|,在电气设备正常运行或区外故障时,差流是不是应该为零(不计不平衡电流),答案是肯定的,那么你想想看,这时接入保护装置的两个电流流入的方向就必须是一个流进保护装置,一个流出保护装置(都是以同相的A或B或C为准)2、再看第二种ID=|I1-I2|,在电气设备正常运行或区外故障时,差流是不是应该为零(不计不平衡电流),答案是肯定的,那么你想想看,这时接入保护装置的两个电流流入的方向就必须是都是流进保护装置或者都是流出保护装置(都是以同相的A或B或C为准)三、关于RCS985发变组差动保护我们平时所说差动保护TA极性离不三个方面1、差动保护差流的计算公式。
浅谈电力系统继电保护在运行过程中的误动及解决措施
浅谈电力系统继电保护在运行过程中的误动及解决措施摘要:继电保护装置不正确动作的原因是多样的,有技术原因、设备原因、人为原因等。
通过分析保护装置误动,找出其解决措施,对进一步提高保护装置动作的正确率是至关重要的。
关键词:继电保护误动装置元件接线错误Abstract: the incorrect action of relay protection devices are a variety of reasons, there are technical reasons, equipment, human reason. Through the analysis of the protection device malfunction, find out the solutions, which is crucial to further improve the correct rate of protection device action.Keywords: relay misoperation of protection device connection error随着微电子技术的迅速发展,继电保护装置发生了新飞跃,计算机技术、网络技术等高新技术在继电保护应用中得到了广泛采用。
现代的微机保护在继电保护的可靠性上是越来越强,但据国家电网统计,全国还是有2%左右的不正确动作,对电力系统的安全、稳定运行危害很大;尤其是超高压系统的继电保护不正确动作,往往使事故扩大、造成电网稳定性破坏、大面积停电、设备损坏等,对国民经济造成严重损失,教训是沉痛的。
有些不正确动作,多少年来,虽经多次反事故措施,仍不断重复发生,如TV二次回路需在继电保护小室一点接地,至今仍因TV二次回路在升压站、继电保护小室多点接地,造成继电保护不正确动作的事故时有发生。
还有元器件质量、二次回路设计不当等也使继电保护常常不正确动作。
提高继电保护正确动作率需要科研制造、设计、运行单位的共同努力。
电流互感器极性判别
知道CT绕组极性接线原则后,我们就很容易确定 其接法了,如前所述,差动保护和后备保护的保 护对象都是变压器,所以其接法是一样的,我们 在考虑CT绕组极性接法时,都是假设被保护对象 故障后,其电流的走向(一次电流),然后确定其二 次电流的走向。如图1所示,高压侧套管CT极性 端P 在母线侧,P2在变压器侧。当变压器内部发 生故障时,其一次电流从P1流向P2(P1一P2),规 定其为正方向,而对于保护装置x来说,当变压器 故障时,其二次电流应该是A一N 为正方向,如图 2所示。根据同名端原理,此时CT绕组极性采用 正极性接法。相反如果高压侧套管CT极性端P1。
在变压器侧,P2在母线侧时,其CT绕组极性就应 该采用反极性接法。中压侧套管CT接法原理与上 面一样。
试验人员使用仪器进行极性测量
测量 计量用CT绕组极性接法则是以能够正确反映
其功率为事实。原则是从母线流出为送有功,其有 功功率及无功功率则为正,流进母线为受有功,其 有功功率及无功功率则为负。如图1所示,正常运 行时,高压侧电流,1从母线流出到变压器,对高
谢谢观看,敬请指导!
2).差动保护、后备保护用电流互感器可以采用 全星形接线,也可以采用常规接线。
3). 差动保护、后备保护用电流互感器采用全星 形接线时,可通过修改定值由保护软件自动对各 侧电流实现相位和幅值补偿。
4). 对全星形接线的变压器,各侧电流互感器必 须角接,以防止外接地故障时差动保护误动,也 可以各侧电流互感器星接,由软件实现角接。
量、计量CT绕组极性接法一致为正极性接法。
3.3母差CT绕组极性接法
母差保护保护的对象是母线,因此所有母
差CT绕组极性接法统一就行了,即全部正极性接
法或者全部反极性接法。
① 变压器差动保护、后备保护用的电流互感器极性接 法是:CT极性端P1在母线侧,P2在变压器侧时,CT绕 组极性采用正极性接法;当CT极性端P 1在变压器侧, P2在母线侧时,CT绕组极性采用反极性接法。 ② 变压器测量、计量用的电流互感器极性接法与变压 器 差动保护用的电流互感器极性接法一样。
升压站电流互感器极性的几点看法
升压站电流互感器极性的几点看法500kV开关站的CT极性比较重要,涉及保护测量的相关设计,极性接反可能导致差动保护误动,测量极性接反,会导致后台显示的有功、无功数据与实际相反,导致方向误判。
用于保护的CT极性是否正确,可通过现场调试试验验证。
但测量、计量CT的极性不能单靠试验验证,同时还需根据电网的潮流方向进行核实。
在图中主变高压侧CT“一次潮流是从主变流向电网,500kV主接线图上测量和计量CT的P2朝向主变,汇控柜端接图纸取S1接相,S2接N。
在倒送电时,电流和功率极性是发电状态,所以需要修改为取S2接相,S1接N ”。
广东中调自动化明确,对于500kV开关站和发变组是独立的系统,500kV开关站所有出线正方向均为由母线指向线路或变压器,发电机流出恒为正。
故在机组发电时,发电机组为正,是发电状态,主变出口(主变低压侧)为正(主变低压侧),功率流入厂内架空线;开关站主变出线为负,功率流入开关站,线路出线为正,功率流出开关站;在倒送电时,线路出线为负,功率流入开关站,开关站主变出线为正,功率流入厂内架空线,主变出口(主变低压侧)为负,功率流入主变;而按照调换主变高压侧的测量CT极性后,导致倒送电时开关站主变出线和线路出线功率均为负,调度自动化图显示错误。
所以要求重新调回主变高压侧测量CT接线极性,保留计量CT接线极性。
1、极性接法原理分析(1)计量、测量互感器极性接法电流互感器的计量绕组必须掌握两点确定接线,一是确定电流互感器P1的安装位置,二是确定绕组功能类型,我们知道计量、测量都反映功率事实,电度表是功率的时间累计,而功率由电流、电压及相位组成。
一般定性的规定电厂输出功率为正,吸收功率为负,功率计算一般以电压为参考方向,在发电机电压正方向确定的前提下,电流互感器以发电机指向母线为正方向。
(2) 差动、后备保护极性接法要正确完成差动及后备保护CT极性接法,必须先弄清楚其保护对象,还有它的一次极性端朝向,差动保护及后备保护要求CT一次必须以流入设备的电流方向为正方向,极性不能接错。
电流互感器极性讲解
1电流互感器极性定义1.1什么是电流互感器的极性•首先为什么电流互感器会有极性这样的概念,电流互感器相当于小的变压器,都是基于电磁感应原理工作的,一次电压/电流经过变比感应出小的二次电压/电流,用于测量、计量、保护等的作用。
•在一次二次线圈只有少量的匝数缠绕,我们可以通过右手螺旋定则判定出二次线圈中电流的方向,但是电流互感器一次二次线圈是多匝数的,而且外部又有绝缘材料的覆盖,所以是不能看出一次和二次电流的走向的和关系的,所以这个时候我们就需要通过专业的方法去测量确定二次电流和一次电流的方向关系,所以我们把电流互互感器的方向关系称为电流互感器的极性。
1.2电流互感器的极性分为几种,叫什么?•通过上面的了解,我们就清楚了互感器的极性概念,那么也就能想到有几种了,对,就是两种,一种一次和二次电流方向是一致的,一种是相反的,叫加极性和减极性。
1.3电流互感器极性的测量。
•上面了解到了极性的概念,那应该怎么测量呢,我想大家应该都想到了最简单和最早期的做法了,是对的,就是那样的,给一次侧通流,然后用电流表去测量二次侧的方向,就能确定一次二次电流的方向关系,后来为了方便,电力测试厂家发明了电流互感器综合测试仪,这个可以比较快、比较方便的测量出极性,但其实原理还是一样的,大家看他是怎么测量的,是给电流互感器一次电缆两端夹上夹子给他通流,然后将二次对应端子接入综合测试仪对应端子,就能测出极性,其实里面就是一个电子回路模拟万用表测出二次电流的方向,然后将结果经过对比打印出来,这样的设备操作非常简单,我相信大家用一次就会使用,很多工程测试人员是不明白其原理的,但是会用,能测出来,这是没有技术含量的,作为运维人员还是要清楚真正的原理的。
• 2 差动保护中极性的使用2.1差动保护原理•差动保护很多人都知道是两侧的电流做对比来定位故障点是区内还是区外,一些学过保护原理的同事知道差动保护中有差动电流和制动电流,差动电流等于两侧电流相量相加的绝对值,制动电流一般是两侧电流相量差绝对值的二分之一(也有用单侧电流最大值的)。
电流互感器极性及方向保护的问题
谈谈对于极性和方向保护的理解以电流互感器为例,我们常说要以减极性方式接线,为什么要这样规定呢所谓减极性接线就是在某一个瞬间(因为交流电方向随着时间变化,但某一个时刻还是具备明确的方向性的)电流互感器一次侧感受到的电流方向如果是流入,那么二次侧应该是流出;一次侧如果是流出,那么二次侧就是流入。
为什么一次电流和二次侧电流要相反呢其实这个相反是针对电流互感器而言的,再想一想二次侧电流要接到哪个装置保护装置!这样当电流互感器一次侧感受到电流流入,二次侧则流出,那么对于保护装置又是流入了!!因此,减极性的接法的目的是要保证二次设备(例如保护装置)感受到的电流方向要与一次电流方向一致!!减极性具体接线接线具体来说比方说当流变P1侧指向母线,则二次上应该将三根S1 和短接三根S2成为一根后总计4根线接入保护装置。
当流变P2侧指向母线,则二次上应该将三根S2 和短接三根S1成为一根线后总计4根线接入保护装置。
对于电压互感器而言也存在一个极性问题,采用减极性接线的目的也是要保证二次设备感受到的电压要和一次电压相一致。
再说说方向保护对于方向过电流保护,一次侧感受到的电流电压之间的相位关系具有明显的规律性:当正方向故障时一次侧电压超前电流30°左右当反方向故障时一次侧电流超前电压150°左右(150°=180°-30°)既然流变和压变均采用减极性接法,也就是说它们能够原封不动地将一次侧的相位关系搬到二次侧,那么保护装置就可以利用一次侧的电流电压相位关系来对方向进行判断了!再想一想,如何才能够原封不动地将一次侧的电流电压关系照搬到二次侧我们必须遵循一定的规范,这个规范就是减极性接法!!如果一旦流变或压变二次接线接错了,那么保护装置判断为正方向的可能实际是反方向,判断为反方向其实为正方向,那么就乱了套了!这就再一次印证了我们经常说的对于方向性保护,一定要注意二次接线,极性不要搞错了交流电每时每刻电流、电压的大小和方向均是在不停变化的,我们常说假设电流由母线流向线路为正,其实是指某个瞬间交流电流由母线流向线路。
电流互感器的安装、调试要求及反措要求
电流互感器的安装、调试要求及反措要求1、在电流互感器安装调试时应进行电流互感器出线端子标志检验,核实每个电流互感器二次绕组的实际排列位置与电流互感器铭牌上的标志、施工设计图纸是否一致,防止电流互感器绕组图实不符引起的接线错误。
新投产的工程应认真检查各类继电保护装置用电流互感器二次绕组的配置是否合理,防止存在保护动作死区。
以上检验记录须经工作负责人签字,作为工程竣工资料存档。
2、保护人员应结合电流互感器一次升流试验,检查每套保护装置使用的二次绕组和整个回路接线的正确性。
反措要求1、检查中发现主保护或断路器失灵保护存在保护死区,可通过更改电流互感器二次绕组接线予以解决的,应立即进行整改。
2、由于电流互感器二次绕组排列不满足1.1条二次绕组配置原则等原因,无法通过更改二次绕组接线予以解决的保护死区问题,按以下原则处理:①仅在二次绕组内部故障时存在保护死区的,可结合电流互感器的更新改造进行整改;②非二次绕组内部故障(如断路器本体故障)时亦存在保护死区的,应立即进行整改。
3、电流互感器二次绕组更改接线后,按相关规程规定做好带负荷测试及图纸修改等工作,确认无误后方可将保护装置投入运行。
更换电流互感器要注意的事项更换运行中的电流互感器组中的一个互感器时,要选择变比、极性、电压等级都相同的电流互感器,伏安特性也应不相上下,这些参数都要经过试验合格。
电流互感器的更换,必须停电进行。
如果由于容量或变比不能满足使用需要而更换电流互感器,则除了应考虑上述几项要求之外,还应检查电流互感器所带保护装置的整定值以及所带仪表的倍率。
此外,更换后要将电流互感器接地(保护接地),以防止一次绝缘击穿和高压窜入二次侧而威胁人身安全和损坏设备。
在变电安装、检修工作中,对新投运变电所的电流互感器和新更换的电流互感器都要作10%误差曲线,以确保电流互感器在允许的误差范围内工作,特别是对于母差保护、变压器差动保护,以避免保护装置的不正确动作。
电流互感器的极性
电流互感器的极性、接线方式及其应用摘要:介绍了电流互感器的极性和常用的几种接线方式的,分析其应用以及运行中应注意的问题。
关键词:极性;电流互感器;接线方式1 引言在电力系统中电流互感器的作用是把大电流变成小电流,将连接在继电器及测量仪器仪表的二次回路与一次电流的高压系统隔离,并将一次电流变换到5A 或1A 两种标准的二次电流值。
电流互感器的极性与电流保护密切相关,特别是在农电系统中,电流保护起主导作用,因此必须掌握好极性与保护的关系。
本文分析了电流互感器的极性和常用电流保护的关系,以及易出错的二次接线。
2 电流互感器的极性电流互感器在交流回路中使用,在交流回路中电流的方向随时间在改变。
电流互感器的极性指的是某一时刻一次侧极性与二次侧某一端极性相同,即同时为正、或同时为负,称此极性为同极性端或同名端,用符号"*"、"-" 或"."表示。
(也可理解为一次电流与二次电流的方向关系)。
按照规定,电流互感器一次线圈首端标为L1,尾端标为L2;二次线圈的首端标为K1,尾端标为K2。
在接线中L1 和K1 称为同极性端,L2 和K2 也为同极性端。
其三种标注方法如图1 所示。
电流互感器同极性端的判别与耦合线圈的极性判别相同。
较简单的方法例如用 1.5V 干电池接一次线圈,用一高内阻、大量程的直流电压表接二次线圈。
当开关闭合时,如果发现电压表指针正向偏转,可判定 1 和 2 是同极性端,当开关闭合时,如果发现电压表指针反向偏转,可判定1 和 2 不是同极性端。
3 电流互感器的极性与常用电流保护以及易出错的二次接线3.1 一相接线图 1 电流互感器的三种极性标注图 2 一相接线一相式电流保护的电流互感器主要用于测量对称三相负载或相负荷平衡度小的三相装置中的一相电流。
电流互感器的接线与极性的关系不大,但需注意的是二次侧要有保护接地,防止一次侧发生过电流现象时,电流互感器被击穿,烧坏二次侧仪表、继电设备。
电流互感器二次侧极性接反故障分析
电力设备的安全、可靠运行向来被视为企业生产顺行的动力生命 线。随着冶金行业的发展,如何保证供电系统的安全、可靠和连续运行 是钢铁企业必须重视的一个重要课题。莱钢电力设备种类繁多,电力设 备故障存在着多变性,在多年设备管理经验的基础上,依托 “操检合 一”的方式,采用设备专业化点检与维修的管理模式,使得各类电气设 备隐患与故障能够及时、有效地分析与处理,锻炼了日常维护人员的专 业技术水平,总结了一些管理经验。
图 1-1 二次测量回路展开图
电流互感器一次和二次线圈间的极性,按照减极性标注,参照图 1- 1 所示。L1 和 K1 为同极性端子,当一次侧电流从 L1 流向 L2 时, 二次侧电流从 K1 经过负载回到 K2,中性线上流过的电流 iN=iA+iC= - iB,对比相量分析 (如图 1- 2 所示),电流表所测量的电流数值就是 中性线上电流的绝对值 (也是 B 相电流的绝对值),与 A、C 两相电流 数值相等。
113 TECHNOLOGY WIND
图 1-3 相电流与线电流分析图
3 故障处理 专业维护技术人员最终将 A相电流互感器极性 K1、K2 的两个接 线端子 (N411,A411) 对调重新连接后,再次使用相位仪测量了电流 互感器二次侧 C、A两相电流相位,相位差显示为 120°,电流表与微 机保护装置所显示的测量电流数值基本相同,这样该起故障得到了有效 处理,同时保证了该 6KV配电系统的稳定、安全和可靠运行。 4 防范措施 1) 在故障得到及时有效处理后,专业技术人员没有放弃对该起故障 的进一步总结,通过详细形成故障案例,意识到:如果电流互感器二次 侧极性接反故障出现在保护回路中,尤其是这种错误发生在差动保护中, 那么极易引起保护装置误动作而发生跳闸,从设备故障变为设备事故。 2) 因此,该电力车间从这例故障分析、处理中吸取教训,举一反三, 总结经验,建立了该故障处理案例,使得电力点检人员、维护人员充分 认识到了电流互感器极性及接线的重要性。3) 在今后工作中,要求专 业维护技术人员强化工作的责任心,严格按照施工设计图实施,认真做 好电流互感器的极性试验,避免同类事故的再次发生。 作者简历:薛鹏,1982 年生,男,2005 年毕业于东北大学自动化 专业,现为莱芜钢铁集团有限公司机械动力部,工程师,主要从事冶金 设备的检修与管理工作。
电力系统继电保护典型故障分析案例
电力系统继电保护典型故障分析案例线路保护实例一:单相故障跳三相某220kV线路发生A相单相接地故障,第一套主保护(CKJ—2).发出A相跳闸令,第二套主保护(WXB—101)发出三跳相跳闸令由于两面保护屏的重合闸工作方式选择开关把手不一致造成.保护是否选相跳闸,与重合闸工作方式有关.当重合闸方式选择为单重和综重时,单相故障跳开单相,而当重合闸方式选择为三重和停用时,任何故障都跳开三相两套保护时一般只投入一套重合闸。
另一套保护屏的重合闸出口压板应在断开位置。
由于另一套保护的中重合闸方式选择放在停用位置,致使该保护发出三跳命令。
线路保护实例二:未接入外部故障停信开关量某变电所母线PT爆炸,CT与开关之间发生三相短路,电厂侧高频保护拒动。
由后备保护距离II段跳闸.(3)故障发生后,由于对高频保护来说,认为是外部故障,变电所侧高频保护一直处于发信状态。
将电厂侧高频保护闭锁。
变电所侧认为母线故障,母差保护动作。
事故后检查发现,高频保护没有接入母差停信和断路器位置停信.微机保护的停信接口:1、本侧正方向元件动作保护停信。
2、其它保护动作停信(一般接母差保护的出口).3、断路器跳闸位置停信。
线路保护实例三微机保护没有经过方向元件控制而误动出口。
问题:整定中,方向元件没有投入。
硬压板,软压板(由控制字整定)1、二者之间具有逻辑“与”的关系。
缺一不可.2、硬压板:保护屏上的实际压板。
3、软压板:在软件中通过定值单中的控制字的某位为1或0控制保护功能的投退。
线路保护实例四:1993年11月19日,葛双II回发生A相单相接地故障,线路两侧主保护60ms动作跳开A相。
葛厂侧过电压保护(1.4U N/0.3S)于420ms动作跳开三相,重合闸被闭锁。
联切葛厂两台机投水阻600MW,切鄂东负荷200MW.事故原因分析1、PT接线图2、接线的问题:(1)PT三点接地,违反《反措要点》,PT二次侧中性线只允许一点接地。
(2)开口三角的N与两星形中性线相连,违反《反措要点》,PT二次回路与三次回路独立。
电流互感器(加极性、减极性)相关知识
电流互感器(加极性、减极性)相关知识-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN极性标志有加极性和减极性,常用的电流互感器一般都是减极性,即当使一次电流自L1端流向L2。
时,二次电流自K1端流出经外部回路到K2。
L1和K1,L2和K2分别为同极性端。
反之,就是加极性。
低压电流互感器实用技术问答30例(之一)刘国宏马晓文河北省康保供电分公司(076650)1.电流互感器铭牌上额定电流比的含义是什么答:额定电流比系指一次额定电流与二次额定电流之比。
通常用不约分的分数表示。
所谓额定电流就是在这个电流下互感器可以长期运行而不会同发热损坏。
2.何为电流互感器的准确等级答:电流互感器变换电流存在着一定的误差,根据电流互感器在额定工作条件下所产生的变比误差规定了准确等级。
0.l级以上电流互感器主要用于试验,进行精密测量或者作为标准用来校验低等级的互感器,也可以与标准仪表配合用来校验仪表,常被称为标准电流互感器;0.2级和0.5级常川来连接电气计量仪表;3级及以下等级电流互感器主要连接某些继电保护装置和控制设备。
3.电流互感器的极性标志是怎样规定的答:极性标志有加极性和减极性,常用的电流互感器一般都是减极性,即当使一次电流自L1端流向L2。
时,二次电流自K1端流出经外部回路到K2。
L1和K1,L2和K2分别为同极性端。
4.电流互感器额定容量的含义是什么答:电流互感器的额定容量就是额定二次电流I2e通过额定负载Z2e时所消耗的视在功率,即S2e=。
一般I2e=5A,因此S2e=25Z2e。
在电流互感器的使用中,二次连接及仪表电流线圈的总阻抗不超过铭牌上规定的额定容量(伏安数或欧姆数)时,才能保证它的准确性。
5.什么是电流互感器误差答:由于电流互感器铁芯的结构以及材料性能等原因的影响,电流互感器存在着激磁电流Í0,使其产生误差。
从电流互感器一次电流Í1和折算后的二次电流Í2’的向量图来看(如图 2所示),折算后的二次电流旋转180˚后一Í2’,与一次电流Í1相比较,不但大小不等而且两者相位不重合,即存在着两种误差,称为比差(比值误差)和角差(相角误差)。
电流互感器接线原则及使用注意事项
电流互感器接线原则及使用注意事项在接线方面,电流互感器有一些原则和注意事项需要遵守,确保其工作正常、准确和安全。
首先是接线原则:1.接地:电流互感器的金属外壳需要接地,以确保安全。
对于带有金属外壳的互感器,将外壳接地,通常可以使用电气接地刀开关或导线进行接地。
2.连接方向:电流互感器有两个端子,一个是主绕组端子,用于连接被测电流线路;另一个是测量线圈端子,用于连接仪表、控制器或保护设备。
在接线时,需要正确连接这两个端子,以保证测量的准确性。
通常,主绕组的电流方向与被测电流方向相同,测量线圈的电流方向则相反。
3.定向标记:电流互感器上通常有一个定向标记,用于指示主绕组和测量线圈的方向。
确保正确连接电源和负载之前,应该检查互感器上的定向标记。
其次是使用注意事项:1.避免过载:电流互感器有其额定电流,如果将超过这个额定电流的电流通过互感器,可能会导致互感器过载。
因此,在选择互感器时,需要根据被测电流的最大值来选定合适的额定电流。
2.避免短路:电流互感器会在连接短路时产生非常高的瞬态电流,这可能导致设备或互感器本身的损坏。
因此,在安装和维护过程中,需要注意避免短路现象,并确保互感器有足够的绝缘和耐压能力。
3.定期检查:定期对电流互感器进行检查是必要的,以确保其正常工作。
检查包括检查连接线路是否松动、绝缘是否完好、外壳是否有损坏等。
任何发现的问题都需要及时修复或更换互感器,以保证测量的准确性和安全性。
4.防止谐波干扰:电流互感器在测量电流时,有时会受到谐波干扰的影响,这可能导致测量结果的误差。
因此,对于存在谐波电流的场合,需要使用具有抑制谐波能力的互感器,并采取补偿措施,以确保测量的准确性。
5.遵循安装规范:在安装电流互感器时,需要根据相关的安装规范进行操作。
安装过程需要注意防止任何不必要的机械冲击,避免长时间暴露在水分和腐蚀性气体中,并确保连接线路的正确接线和固定。
总结起来,电流互感器的接线原则包括接地、正确连接方向和检查定向标记。
电流互感器极性接反造成二次保护动作及计量变化的分析
电流互 感器 测量 线 圈和 保 护线 圈混接 由于测量用和保护用的线圈铁芯设计级别不同 ,如果 图1 电流互感器原理接线图
一
接 错 ,会 出现 : ( 1 )正 常运 行 中电能 计量 的准 确度 降低 , 增加计量误差; ( 2 )在 发 生 短 路 故 障后 , 由于 计 量 用 的
流。
电流 互 感器 现 场安 装 常 见 错
误接法
电流 互感 器二 次倜开路 二 次 侧开 路 可能 会 造成 严 重事 故 ,一 是 会造 成 铁 芯 发
热, 温 升后 过热 烧毁 互感 器 ;再者 由于 二次 绕组 匝 数很 多 ,
电流互感器极性 的基本概念
很感 应 出危 险的高 电压 ,危 及人 身和 设备 的安 全 。
如 图 接反 引 起保 护误动或拒动
当 A相 极性接 反,测量运 行 中 C T二 次 侧 I a = 2 A, I c = 2 A,零 线 电流 为 I n = 3 。 4 A,画 出 向量 图 后 ,得 到零 线
电流为 A、C相 的 电流 向量 和 。
1 3 5 —
实 用技 术 推 广
中 国 科 技 信 息 2 4 年 第 ∞翳- C H  ̄ N A S C I E N C E A N D T  ̄ . C H N O L O @ ( I N F O  ̄ M A S I O N D e c o 4
试 验结 果 表 明 :两 台开 关 C T变 比无 误 ,保 护 动 作正 确 ,
电流 ( 5 A或 1 A) 。 电流互感器变换电流的原理如图 1 所示。 其中 I 1 为输 入 的一次 侧 电流 ; wl 为 一次绕 组 线 圈的匝数 ;
电流互感器的二次接线方式和电流互感器的极性判断
电流互感器的二次接线方式和电流互感器的极性判断以双圈变压器差动保护接线为例,简要说明如何判断电流互感器极性以及正确的零序电流互感器二次接线。
新安装设备的实验报告中,往往是各种实验技术数据都很全,所有实验都合格,唯独没有电流互感器极性及接线方面的记录,由于验收工作欠仔细,且电流互感器极性及接线方面出些差错,不容易被发现,结果在设备运行后,在某一特定条件下暴露出问题,造成保护误动或拒动。
1 正确的电流互感器的二次接线方式(1)变压器按Y/△-11接线时,两侧电流之间有30。
的相位差,即同相的低压侧电流超前高压侧电流30。
,为了消除这一不平衡电流,差动保护的电流互感器二次侧应采用△/Y接线,如图2所示。
根据电流相位关系做出向量图,因2组电流互感器的二次线电流同相位,若不考虑其它因素的影响,流入差动继电器的各相电流均应为0。
变压器高压侧即原边一次线圈接成Y,则与其对应的高压侧电流互感器二次接线应接成△型,将A相电流互感器的负端子与B相电流互感器的正端子联接后,引出a相线电流;B相负端子与C相正端子联接后,引出b相线电流;C相负端子与A相正端子联接后,引出c相线电流。
变压器低压侧,即副边一次线圈接成△,则与其对应的低压侧电流互感器二次接线应接成Y型。
如电流互感器为减极性,并假定靠母线侧为正,电流互感器的正端子联接在一起,作为中性线。
二次引出线分别接在a、b、c各相负端子上。
2电流互感器的极性判断电流互感器一次和二次线圈间的极性,应按减极性标注,如图1所示,L1和K1为同极性端子(L2和K2也为同极性端子)。
标注电流互感器极性的方法是在同极性端子上注以“*”号,从图1可以看出,当一次电流从极性端子L1流入时,在二次绕组中感应出的电流应从极性端子K1流出。
(2)一般的过电流保护只靠动作时限获得选择性,但对双侧电源线路和环形网络,不能满足选择性的要求,为实现保护的选择性,在各电流保护上加装一方向元件,便构成方向过流保护。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
谈谈对于极性和方向保护的理解
以电流互感器为例,我们常说要以减极性方式接线,为什么要这样规定呢
所谓减极性接线就是在某一个瞬间(因为交流电方向随着时间变化,但某一个时刻还是具备明确的方向性的)电流互感器一次侧感受到的电流方向如果是流入,那么二次侧应该是流出;一次侧如果是流出,那么二次侧就是流入。
为什么一次电流和二次侧电流要相反呢
其实这个相反是针对电流互感器而言的,再想一想二次侧电流要接到哪个装置保护装置!
这样当电流互感器一次侧感受到电流流入,二次侧则流出,那么对于保护装置又是流入了!!
因此,减极性的接法的目的是要保证二次设备(例如保护装置)感受到的电流方向要与一次电流方向一致!!
减极性具体接线接线
具体来
说比方说当流变P1侧指向母线,则二次上应该将三根S1 和短接三根S2成为一根后总计4根线接入保护装置。
当流变P2侧指向母线,则二次上应该将三根S2 和短接三根S1成为一根线后总计4根线接入保护装置。
对于电压互感器而言
也存在一个极性问题,采用减极性接线的目的也是要保证二次设备感受到的电压要和一次电压相一致。
再说说方向保护
对于方向过电流保护,一次侧感受到的电流电压之间的相位关系具有明显的规律性:
当正方向故障时一次侧电压超前电流30°左右
当反方向故障时一次侧电流超前电压150°左右(150°=180°-30°)
既然流变和压变均采用减极性接法,也就是说它们能够原封不动地将一次侧的相位关系搬到二次侧,那么保护装置就可以利用一次侧的电流电压相位关系来对方向进行判断了!
再想一想,如何才能够原封不动地将一次侧的电流电压关系照搬到二次
侧我们必须遵循一定的规范,这个规范就是减极性接法!!
如果一旦流变或压变二次接线接错了,那么保护装置判断为正方向的可能实际是反方向,判断为反方向其实为正方向,那么就乱了套了!
这就再一次印证了我们经常说的
对于方向性保护,一定要注意二次接线,极性不要搞错了
交流电每时每刻电流、电压的大小和方向均是在不停变化的,我们常说假设电流由母线流向线路为正,其实是指某个瞬间交流电流由母线流向线路。
但是不管电流电压怎么变化方向,但是有一点需要切记,电流和电压之间的相位关系具有一定的规律性,即电流和电压矢量之间的夹角肯定是有规律的!
由此可见掌握方向保护(不管是方向过电流还是零序方向保护或者其他方向保护)的精髓就是要记住
正方向和反方向故障时电流和电压之间的相位关系。